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Graphical Abstract 

 

 

Highlights 

 Fluoride-mediated transformation of TiO2 nanotubes into TiO2 nanoparticles during their 

annealing in a confined space 

 Morphology, crystalline structure and chemical composition of TiO2 nanotubes and TiO2 

nanoparticles were compared  

 Fluorine doping has a positive effect on electrocatalytic performance of TiO2 

nanoparticles in oxygen reduction reaction 

 

ABSTRACT: 

The peculiarities of morphology, crystalline structure and chemical composition of TiO2 

nanotubular layers (TNT) and TiO2 nanoparticulate (NP) layers obtained by fluoride-mediated 

transformation of TNT have been described in the present paper. The annealing of amorphous 

TNT in a confined space under limited air access conditions leads to TNT-to-NP transformation 

accompanied by fluorine doping of the titania matrix as supported by X-ray photoelectron 

spectroscopy investigations. The collapse of tubular structure as well as the formation of 

nanoparticles was confirmed using scanning electron microscopy (SEM), X-ray diffraction 

(XRD) and Raman spectroscopy. Electrocatalytic activity of both TNT and NP electrodes toward 

oxygen reduction reaction (ORR) has been examined by cyclic voltammetry (CV). The positive 

shift of ORR wave of the NP layers in comparison with TNT makes the NP-based electrodes 
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more suitable for oxygen reduction. The improved activity of the NP electrodes is attributed to 

the increased concentration of redox active Ti3+ species owing to fluorine doping of TiO2 which 

plays a crucial role in electroreduction of oxygen molecules. 

 

KEYWORDS: Titanium dioxide, Fluorine doping; Nanotubes, Nanoparticles, Electrocatalysis, 

Oxygen reduction reaction 

 

1. INTRODUCTION 

Recently, nanostructured titanium dioxide has attracted considerable scientific interest due 

to combination of specific properties (unique optical properties, high catalytic activity, large 

surface area and unusual mechanical characteristics) in comparison to the bulk TiO2 which 

makes this material useful for large-scale potential applications such as solar cells, water 

splitting for hydrogen generation, battery cathode materials, sensors, recording materials and 

others [1−6]. It is generally accepted that structural and morphological features have a big impact 

on the performance of TiO2 nanomaterials. In nature, TiO2 occurs in three different polymorphs: 

anatase, rutile and brookite [7]. Rutile is widely used as a white pigment, while anatase is the 

most active polymorph in photocatalysis [8, 9]. As for brookite, it remains to be the least studied 

phase, mainly owing to the difficulties with obtaining its pure phase [10]. It should be noted that 

not only anatase and rutile demonstrate varying photoactivity, but the different crystallographic 

orientations of the same TiO2 polymorph may exhibit different activities [11]. In particular, both 

theoretical and experimental studies have demonstrated that the surface of [001] facets of anatase 

exhibits a very high reactivity [12]. Moreover, incorporation of different dopants (N, C, S, F), 

along with Ti3+ formation, H+ uptake etc., can introduce additional energy states in the oxide 

band gap, thus resulting in modification of electronic and optical properties of TiO2 [2, 13−18]. 

Interest in nanostructured titania has extended by development of 1D structures including 

nanotubes, nanorods, nanowires and nanofibers [19]. Among nanostructured TiO2 materials, 

highly ordered TiO2 nanotubes (TNT) are the most interesting structures owing to the possibility 

of efficient 1D charge transport, enhanced light absorption and propagation characteristics 

arising from their precisely controlled and oriented porosity, and excellent performance in alkali 

and acidic environment [20]. Therefore, particular attention was given to the preparation of 

titania nanotubes and many methods were developed, including the hydro/solvothermal 

treatment of TiO2 nanoparticles with an alkaline solution, anodization of Ti foil, template-

assisted methods and others [21−23]. Nowadays, electrochemical anodization of titanium in 
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fluoride-containing electrolytes is considered to be the most simple and prevalent approach for 

titania nanotubular layer production [2, 24−26]. Significant efforts were made to optimize 

anodization conditions for preparing TNT layers of desirable morphology and thickness [6, 

27−29]. Over the past few years, the third generation of TNT has attracted particular interest, 

where introduction of organic electrolytes such as ethylene glycol and glycerol with a small 

amount of water and F- ions allows the formation of highly ordered, smooth, uniformly shaped 

and significantly long tubes [27, 30]. It is well-known that as-formed TNT layers are amorphous, 

but via annealing they can be converted to the crystalline forms of anatase or rutile [31]. 

Interestingly, the annealing conditions can be crucial for reservation of tubular structure as well 

as for doping of TNT through thermal treatment in different gas atmosphere [32−36]. Recently, 

Alivov and Fan have reported on the transformation of TNT into nanoparticles (NP) under 

controllable annealing conditions [37, 38]. Necessary parameters for such transformation are the 

high temperature raping rate and the close contact of TNT’s open end with a supporting glass 

slide which needs for catalytic reaction of fluoride residues in TNT with TiO2. Such nanotube-to-

nanoparticle transition upon annealing in fluorine ambient can certainly alter the physical-

chemical properties of the TiO2 material. For example, the formation of TiO2 nanoparticles in the 

presence of fluoride ions can be accompanied by the increase of surface area with a high portion 

of reactive [001] facets [39]. At the same time, the electron lifetime and charge collection 

efficiency can be decreased significantly for nanoparticulate layers as compared to nanotubular 

ones [40]. Thus, the monitoring of TNT-to-NP transformation is an important issue to predict the 

behavior of resultant material and to fabricate the nanostructured TiO2 electrodes with desired 

properties. Moreover, the presence of fluorine atoms could also determine the properties of the 

TiO2 surface in catalysis, gas sensing, etc. [41−43].  

Recently, nanostructured TiO2 electrodes including nanotubes have received attention as a 

potential support for active metallic catalysts in fuel cells [44−48]. Besides, Sacco et al. [49] 

have shown that TNT layers can be considered as promising electrocatalytic material itself, since 

catalytic performance of the crystalline TNT in oxygen reduction reaction (ORR) is only slightly 

lower with respect to platinum. This fact dictates the necessity of detailed investigation of 

electrocatalytic activity of bare TNT as well as NP layers obtained via TNT-to-NP 

transformation.  

In the present work we provide direct comparison of morphology, crystalline structure and 

chemical composition of titania nanotubes and nanoparticulate layers formed as the result of 

fluoride-mediated TNT-to-NP transformation during thermal treatment in a confined space under 

limited air access conditions. Scanning electron microscopy (SEM), powder X-ray diffraction 

(XRD), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy were used for 
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characterization of the obtained nanostructures. Furthermore, electrocatalytic activity of both 

TNT and NP electrodes in oxygen reduction reaction was studied and discussed.  

 

2. EXPERIMENTAL 

Self-organized highly ordered titania nanotubular layers were produced on commercially 

pure titanium sheets (4 cm × 1 cm; 99.7 % Ti, Alfa Aesar) by two-steps anodization in ethylene 

glycol electrolyte containing 0.75 wt% NH4F and 2 vol. % H2O. The Ti sheets were polished 

mechanically and then chemically in a HF:HNO3 (1:2 by volume) mixture to mirror finish and 

finally rinsed with deionized water. The anodizing cell has a two electrode configuration with a 

Pt sheet as the cathode and the Ti sheet as the anode. The electrochemical anodization for both 

steps consisted of a potential ramp from 0 to 40 V (sweep rate - 200 mV s-1) followed by holding 

the potential constant for 1 h. The oxide film formed during the first step of anodization was 

removed by detachment in an ultrasound bath with deionized water. Before the second 

anodization, the electrochemical cell was filled with a fresh portion of the electrolyte. After the 

second step of anodization, the samples were washed with ethanol and then their surface was 

cleaned from debris by treatment in an ultrasound bath with distilled water during 30 s. One part 

of the anodized samples was used to produce crystalline TNT layers, other part was taken to 

convert amorphous TNT layers to the NP ones. In order to obtain crystalline TiO2, the samples 

were annealed at 450 °C for 3 h (heating rate – 5 °C/min) using a tube furnace (TERMOLAB-

Fornos Eléctricos, Lda.). To ensure a formation of well-defined tubular structure, the thermal 

treatment was performed in air flow (ALPHAGAZTM 1 AIR, O2 concentration – 20±1%). Under 

such conditions, NH4F and other fluorine-containing species, which inevitably remain in the 

amorphous TNT layers even after washing, are dragged by the flow without reacting with titania. 

On contrary, when the thermal treatment occurs in conditions of a restricted mass transfer, the 

fluorides react with the amorphous TNT matrix that results in destruction of the nanotubes and 

formation of nanoparticles. Therefore, an annealing of the samples aimed at the TNT-to-NP 

transformation was carried out at limited air access in a narrow long quartz tube with a sealed 

end (the samples were placed near the sealed end) or by covering up them with a glass slide 

resulted in the transformation of nanotubes into nanoparticles.  

Microstructure and surface morphology of the samples were characterized using using a 

Hitachi SU-70 and a Hitachi S-4800 scanning electron microscopes, as well as a Hitachi H-800 

transmission electron microscope (200 kV). Phase identification was performed using a 

PANalytical Empyrean diffractometer (Ni-filtered Cu Kα radiation, step 0.02°, 2-s exposition per 

step over the angular range of 10-80°). The crystallite orientation study was carried out using a 

PANalytical X’Pert PRO MRD high-resolution 4-circle diffractometer in Cu Kα radiation. 
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Position of the detector was fixed at the reflection angle corresponding to diffraction from the 

(004) plane. Pole densities were plotted in stereographic projection with the plane of the 

projection chosen to be parallel to the sample surface. Raman spectroscopy was also applied to 

compare the crystallite orientations in the samples. Raman spectra were taken at room 

temperature using a Nanofinder HE (Lotis TII, Belarus–Japan) confocal microscope based setup. 

Raman scattering was excited using the 532-nm solid-state laser (0.6 mW, 120 s). X-ray 

photoelectron spectroscopy (XPS) was used to analyze the influence of different annealing 

conditions on chemical composition and electronic state of elements in the specimens. XPS 

analysis was performed on a Kratos DLD Ultra spectrometer using Al Kα monochromatized 

radiation (E=1486.6 eV). For survey spectra, pass energy (PE) of 160 eV was used while for 

regions PE was 20 eV. XPS spectra were recorded before and after Ar+ etching at different 

sputtering time (sputter rate 8 nm/min calibrated on Ta2O5). All the binding energies (BEs) were 

referenced to the C 1s peak at 284.8 eV of the surface adventitious carbon.  

The electrocatalytic activity of both TNT and NP electrodes in oxygen reduction reaction 

was examined by cyclic voltammetry (CV) using an Autolab PGSTAT 302N potentiostat in a 0.1 

M KOH solution saturated with oxygen during 1 h. Electrochemical experiments were performed 

in a single-compartment glass cell using a standard three-electrode configuration. An Hg/HgO 

electrode filled with 1 M KOH (Radiometer Analytical) and a Pt foil were used as the reference 

and counter electrodes, respectively. The potential sweep rate was 10 mV s-1.  

3. RESULTS AND DISCUSSION  

3.1 Microstructure characterization 

Figure 1a shows typical SEM images of the as-grown TNT layer obtained by two-steps 

anodization in ethylene glycol based electrolyte. Well-defined tubular structure with a relatively 

narrow distribution of the inner pore diameter (60±5 nm) and the wall thickness (12±2 nm) can 

be observed. After the thermal treatment in the air flow, the TNT sample has grey color and 

preserves the ordered tubular structure (Fig. 1b). The cross-sectional view also demonstrates the 

well-aligned nanotubular arrays of 10±1 µm length (Fig. 1c). 

 

 

The as-grown titania layers annealed under limited air access were found to become of 

whitish colour and to transform into nanoparticular layers (Fig. 2a-c). The thickness of such 

layers was appr. 6 µm (Fig. 2c). The observed decrease in the thickness of the NP layers in 

comparison with the TNT ones can be explained by disturbance of the tubular architecture due to 

nanotube collapse and recrystallization into bigger nanoparticles. The average size of the formed 
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nanoparticles was estimated to be ~50 nm (Fig. 2a). Meanwhile, larger particles (150−200 nm) 

and broken parts of the nanotubes were also observed in some areas of the sample (Fig. 2b).  

TEM analysis additionally confirmed the TNT-to-NP transformation of titania matrix 

under limited air access. The tubular morphology was observed for the TNT sample annealed in 

air flow (Fig. 1d). For the NP sample, nanotubular morphology partially disappeared to form the 

nanoparticles (Fig. 2d). 

3.2 XRD analysis and the crystallite orientation study 

XRD analysis showed that the as-grown TNT layers are expectedly amorphous. The XRD 

patterns of the annealed TNT and NP layers indicate a single-phase anatase crystalline form in 

both samples (Figure 3). The NP layer demonstrates the diffraction pattern with the angular 

positions and the relative intensities of the diffraction peaks typical of a standard polycrystalline 

anatase (JCPDS card No 84−1286), with the (101) reflection as the strongest peak. The average 

crystallite size in the NP sample calculated based on the integral breadth values of the diffraction 

peaks (200) and (004) using the Scherrer equation was about 55 nm that is a good agreement 

with the SEM observations (Figure 2). The XRD pattern of the TNT sample indicates a preferred 

orientation of crystallites in the [001] direction perpendicular to the substrate. As compared to 

the NP sample, the (004) peak of the TNT layer is significantly higher (the strongest), whereas 

the (101) and (200) peaks are considerably lower. The [001] texture coefficient of the TNT 

sample evaluated by Harris method [50, 51] is 3.4, that demonstrates a strong preferred 

orientation of TiO2 crystallites in this crystallographic direction.  

 

3.3 Raman spectroscopy study 

The anatase phase of the TNT and NP samples was clearly identified by Raman 

spectroscopy. Both samples exhibit typical Raman bands (see Fig. 4) at 635 cm-1 (Eg vibration 

mode), 514 cm-1 (A1g mode), 396 cm-1 (B1g mode) and 198 cm-1 (Eg mode) as well as intensive 

band at 144 cm-1 (Eg mode) which are characteristic of anatase phase [52]. However, the relative 

intensities of the Raman bands are different for the TNT and NP layers. The NP sample has a 

Raman spectrum similar to the standard anatase polycrystalline materials. In case of the TNT 

sample, intensities of the bands at 396 cm-1 (B1g mode) and 514 cm-1 (A1g mode) are enhanced in 

comparison with the NP sample. According to the literature data [53], the percentage of anatase 

[001] exposed facets can be determined from the peak intensity ratio of the Eg and A1g modes. 

We estimated this parameter using the Eg peak at 144 cm-1 and the A1g peak at 514 cm-1 and 

found that percent of the [001] facets oriented parallel to the film surface is significantly higher 

for TNT layers (19 %) as compared with NP ones (5 %).  
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3.4 XPS spectra and chemical composition 

Chemical composition of the TNT and NP layers has been studied by XPS method. The 

layers were found to consist of titanium (Ti 2p), oxygen (O 1s), carbon (C 1s), fluorine (F 1s) 

and a negligible amount of nitrogen (N 1s). The Ti/O molar ratio for both samples before Ar+ 

etching was approximately 1:3 due to the presence of surface hydroxyl groups and probably 

some organic contaminants. After etching with Ar+ ions the Ti/O ratio becomes close to the 

expected stoichiometric value (1:2). Figure 5 demonstrates the high-resolution XPS spectra of 

the Ti 2p level for TNT and NP samples before Ar+ etching. The Ti 2p (3/2) and 2p (1/2) peaks 

were centered at 458.8 and 464.5 eV, respectively, in accordance with literature data for 

octahedrally coordinated Ti4+ in TiO2 [54−56]. Additional XPS peak with a lower binding 

energy of 457.4 eV (fitting curve in blue) is assigned to Ti3+ states [57, 58]. The area ratio of Ti3+ 

to Ti4+ 2p (1/2) peaks is higher for the NP sample, indicating a larger Ti3+ state density in the NP 

sample in comparison with TNT one. The O 1s peaks located at 530.1 eV and 531.7 eV are 

assigned to lattice oxygen in TiO2 and hydroxyl groups (Ti-OH), respectively [54−56, 59, 60].  

Figure 6 shows the high-resolution XPS spectra of the F 1s region. An analysis of this 

region for TNT and NP samples before and after Ar+ etching allows identifying significant 

difference in fluorine content and contribution of different fluorine states. Before the etching, 

only one symmetrical F 1s peak at 685.3 eV was revealed for both TNT and NP samples. The F 

1s XPS spectrum of the TNT layer was not markedly changed after etching. The only difference 

was detected in the relative area of the F 1s peak: it dropped significantly (the atomic 

concentration of fluorine decreases from 0.9 at.% to 0.25 at.%). In contrast, the spectrum of the 

NP sample after etching was clearly composed of two contributions: a main peak at 685.3 eV 

and a smaller peak at 687.1 eV. The main peak located at 685.3 eV can be assigned to the 

surface fluoride formed by ligand exchange between F– and surface hydroxyl groups on TiO2 

[61−63] or to F atoms of TiOF2 [41, 64]. The peak at higher binding energy (687.1 eV) can be 

attributed to substitutional F atoms in the TiO2 lattice [41, 60, 61, 64]. The atomic concentration 

of fluorine in the NP sample before and after Ar+ etching was 0.8 at.% and 2 at.%, respectively. 

Additionally conducted EDS mapping revealed homogeneous distribution of fluorine on the 

surface of the TNT and NP layers. 

It is worth mentioning that the fluorine concentration after Ar+ etching was reduced by a 

factor of 3.6 for the TNT samples and increased by a factor of 2.5 for the NP ones. The enhanced 

concentration of F– ions in the depth of the NP layer relative to the surface and the presence of 

additional chemical state of fluorine (687.1 eV) are the evidence of fluoride ions interaction with 

TiO2 which results in the collapse of nanotubular architecture and its transformation to randomly 

packed nanoparticles. Probably during thermal treatment under conditions of a restricted mass 
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transfer, both NH4F and the products of its decomposition (for example, HF) react with 

amorphous TiO2, producing complex species such as TiF6
2- [65]. Then, thermal decomposition 

of these complexes can give crystalline TiO2 nanoparticles. 

 

3.5 Cyclic voltammetry measurements in Ar-saturated solutions 

Electronic properties of the TNT and NP electrodes in the absence of faradaic processes 

were studied by cyclic voltammetry in deoxygenated alkaline solution. Figure 7 shows the cyclic 

voltammograms (CVs) of the electrodes in an Ar-saturated 0.1 M KOH electrolyte. At potentials 

less than ca. -0.9 V an exponential rise of the cathodic current is observed. This electrochemical 

process can be related to electron accumulation within TiO2 film coupled to proton uptake from 

electrolyte for charge compensation. As a result, electrochemical reductive doping of the TiO2 

electrodes takes place. This reaction is reversible and an anodic current is registered when the 

potential is scanned in the positive direction.  

 

Apart from the currents at E < -0.9 V, a pair of cathodic peak and related significantly 

broader anodic one is observed at CVs in the range from -0.4 to -0.9 V for both TNT and NP 

electrodes. The observed peaks are characteristic of nanostructured titania electrodes and can be 

attributed to filling/depopulation of deep traps located at grain boundaries [66]. Figures 8a and 

8b show cyclic voltammograms of TNT and NP electrodes recorded in an Ar-saturated 0.1 M 

KOH solution at various scan rates in the range up to -0.9 V. The potential of the cathodic peak 

is slightly shifted in the negative direction when the scan rate increases. As shown in Figures 8c 

and 8d, the cathodic peak current varies linearly with scan rate, indicating that there are no 

diffusion limitations for this process. We estimated the charge (Qtr) corresponding to the 

cathodic peak and found that its value varies insignificantly with the scan rate and is close to the 

charge of the coupled broad anodic peak. It is significant that the cathodic peak assigned to deep 

traps is essentially higher for NP electrodes than for TNT ones.   The value of Qtr is 

(1.2÷1.3)×10-4 C cm-2 for TNT and (4.6÷4.9)×10-4 C cm-2 for NP. Moreover, the position of this 

peak for NP is shifted by ca. 200 mV in the negative direction as compared with TNT. These 

results indicate that the energetic position of deep traps in the TiO2 band gap is markedly 

changed and their density increases when the nanotubes are transformed into nanoparticles.  

 

 

3.5 Oxygen electroreduction reaction on TNT and NP electrodes 

The effect of the fluoride-mediated TNT-to-NP transformation and related fluorine doping 

of TiO2 on its electrocatalytic activity was studied on an example of oxygen electroreduction 
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reaction, since this process is very important in various applications. Figure 9 displays the CV 

curves recorded in oxygen-saturated alkaline solution for both TNT and NP electrodes. The 

voltammetric response of the TNT is characterized by two well defined waves at potentials more 

negative than -0.7 V. It is noteworthy that the second wave of cathodic current at -0.9 V (vs. 

Hg/HgO/1M KOH) was revealed only for highly ordered titania nanotubular layers [47, 49] and 

is not typical for other compact polycrystalline films [67, 68] and single crystals of TiO2 [69]. 

The origin of the second wave of oxygen electroreduction on the TNT electrodes is still not clear 

and requires additional investigation. Characteristically this wave almost disappears after 

transformation of the TNT layers to the NP ones (Fig. 9).  

As seen from Figure 9, the half-wave potential of the oxygen reduction reaction on the NP 

electrodes shows a well reproducible positive shift by appr. 50 mV in comparison with the TNT 

layers, signifying the advantage of NP over TNT as the electrocatalyst in ORR. The enhanced 

ORR activity on the NP electrodes can be related to the destruction of tubular structure 

accompanied by fluorine doping of the TiO2 matrix. It was previously reported [67, 68, 70] that 

oxygen reduction on titania proceeds through the interaction of oxygen (chemical adsorption and 

dissociative activation of oxygen molecules) with surface defective Ti species. This chemical 

stage precedes the interfacial charge transfer step. In a number of works devoted to oxygen 

electroreduction reaction the authors suggested that the surface Ti3+ species can be considered as 

active sites which can mediate the ORR at TiO2 [67, 68, 70, 71]. For this reason the number and 

activity of these redox centers could be important factors to define the overall catalytic 

performance of TiO2 electrodes. Introduction of F- ions in the O2- sites of the titania lattice needs 

one additional electron for charge compensation. This electron localizing on a lattice cation 

provokes its reduction from Ti4+ to Ti3+. The formation of Ti3+ species as a result of fluorine 

insertion in the TiO2 structure was previously supported by theoretical calculations and ESR 

measurements [62]. This additional Ti3+ generation owing to F- doping of the TiO2 structure can 

lead to enhancing ORR activity and, as a result, to a decrease of the ORR overpotential for NP 

electrodes. 

The CV measurements at the TiO2 electrodes in deaerated electrolytes demonstrate that 

some surface species are involved in a reversible electron transfer in the same potential region 

where the irreversible electroreduction of O2 takes place (Figs. 8 and 9). The concentration of 

these species increases significantly after transformation of nanotubes to nanoparticles. We can 

suggest that these species mediate the electroreduction of oxygen on the titania surface. 

 

 

CONCLUSION 
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Titania nanoparticulate layers were synthesized through fluorine-mediated transformation 

of anodically-grown TiO2 ordered nanotubular layers during their annealing in a confined space 

at limited air access. This transformation is confirmed by SEM observations and occurs due to 

reaction of titania with fluorides remaining in the nanotubular layers from the electrolyte. XRD 

and Raman spectroscopy measurements showed both annealed nanotubular and nanoparticulate 

samples to consist of pure anatase phase with a pronounced preferred orientation of crystallites 

in the [001] direction for nanotubular layers and without any preferred orientation for 

nanoparticulate ones. XPS analysis indicated that the nanotubes-to-nanoparticles transformation 

is accompanied by incorporation of fluorine into the TiO2 lattice. The fluorine doping was found 

to have a positive effect on electrocatalytic performance of the titania electrodes in oxygen 

reduction reaction. The overpotential of ORR decreases by appr. 50 mV after nanotubes-to-

nanoparticles transformation. Additional generation of Ti3+ active centers owing to fluorine 

doping of titania was suggested to be responsible for improved electrocatalytic activity of the 

nanoparticulate electrodes. 
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Figure captions 

 

  

  

Figure 1. SEM top-view (a, b) and cross-section (c) images of the TiO2 nanotubular layers before 

(a) and after annealing in air flow (b, c); TEM image of TiO2 nanotubes after annealing in air 

flow (d). The insets show the magnified views of the corresponding samples. 

 

  ACCEPTED M
ANUSCRIP

T



  

 

Figure 2. SEM top-view (a, b) and cross-section (c) images of the TiO2 nanoparticulate layers, 

showing destruction of nanotubular structure at thermal treatment under limited air access 

conditions; TEM image of the TiO2 nanoparticles (d). The inset shows magnified view of the 

corresponding sample. 

 

 

Figure 3. XRD patterns and the corresponding pole figures of the anatase TNT and NP samples. 

Notice the difference in scales of the pole figures. 
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Figure 4. Raman spectra recorded in the 50 – 850 cm-1 range for annealed titania nanotubular 

(TNT) and nanoparticulate (NP) layers. 

 

  

Figure 5. XPS spectra of the Ti 2p level for highly ordered TiO2 nanotubular layers (a) and for 

TiO2 nanoparticulate layers (b).  
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Figure 6. XPS spectra of the F 1s region for high-ordered TiO2 nanotubular layers after 

annealing in air flow (a) and for TiO2 nanoparticulate layers (b) formed as a result of annealing 

under limited air access conditions: 

1− before Ar+ etching; 2− after Ar+ etching. 

 

 

Figure 7. CV curves recorded in an Ar-saturated 0.1 M KOH solution for the TNT layers 

annealed in the air flow and for the NP layers thermally treated at limited air access. The 

potential scan rate was 10 mV/s. 
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Figure 8. Cyclic voltammograms recorded at different potential scan rates on the TNT (a) and 

the NP (b) electrodes in an Ar-saturated 0.1 M KOH solution; the cathodic peak current as a 

function of the scan rate for the TNT (c) and the NP (d) electrodes. 

 

 

Figure 9. CV curves of ORR on the TNT and the NP electrodes in an oxygen-saturated 0.1 

M KOH solution. The potential scan rate was 10 mV/s. 
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