
rPrism – A software for reactive weighted state
transition models

Daniel Figueiredo1, Eugénio Rocha1, Manuel António Martins1,
Madalena Chaves2

1CIDMA – University of Aveiro, Portugal
2INRIA – Sophia Antipolis, Mediterranée, France

Abstract

In this work we introduce the software rPrism, as a branch of the
software PRISM model checker, in order to be able to study weighted
reactive state transition models. This kind of model gathers together the
concepts of reactivity – which consists of the capacity of a state transition
model to alter its accessibility relation – and weights, which can be seen
as costs, rates, etc.. Given a specific model, the tool performs a simulation
based on a Continuous Time Markov Chain. In particular, we show an
example of its application for biological systems.

Keywords: rPrism; PRISM model checker ; Reactive models; Weighted
switch graphs

1 Introduction

The concept of reactivity in state transition models have been introduced by
several authors such as van Benthem, Areces and Gabbay and some examples
can be found in [1, 2, 3, 8, 9]. These reactive models are those whose accessibility
relation (set of edges) is not fixed but can vary according to a taken path. In
some sense, it can be seen as a model with memory.

The authors mentioned before, proposed several formalisms to study such
models. In this paper, we will focus on the approach of [8]. In this paper, switch
graphs are presented and their application is illustrated with some examples. In
particular, systems whose dynamics can be described using counters or demand-
ing some specific order to evolve are shown to be more efficiently described by
reactive models. Also in biology, this kind of model can be applied: a previous
work in a related topic, where a reactive model is proposed for the study of
biological regulatory networks can be found in [6].

Here, we present the tool rPrism that was designed as a branch of Prism
model checker ([10]) to study such reactive models. The proposed tool calls
PRISM to simulate the evolution of a reactive state transition model.

1.1 Background

We start by introducing some theoretical foundations in the topic in order to
be able to explain better the relevance and usability of rPrism.

Definition 1 (Switch graph)

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional da Universidade de Aveiro

https://core.ac.uk/display/231953999?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A switch graph is a pair (W,S) such that W is a non empty set of states
and S is defined recursively as:

• S0 ⊆W ×W ;

• Si+1 ⊆ S0 × Si × {◦, •}, for i ∈ Z+
0 ;

• S =
⋃

i∈Z+
0

Si.

We say that S is the set of edges and the edges in S\S0 are higher-level
edges. Furthermore, if e ∈ Si, e is said to be a i-level edge. Also, the ini-
tial configuration of a switch graph is given by an initial instantiation function
I0 : W → {0, 1}.

A higher-level edge (d, e, ∗) is said to be an activator if ∗ is • and is said
to be an inhibitor if ∗ is ◦. It means that it will either inhibit (temporarily
remove) or activate (reintroduce) its target edge e in the model whenever the
source edge d is crossed. If the state of the target edge already agrees with the
directed by the higher-level edge (d, e, ∗), then it has no effect.

In the graphical representation of a switch graph, as shown in Fig. 1, inhibitor
edges are depicted as white headed arrows, while black headed arrows represent
activator edges.

At any time, the configuration of a switch graph is given through an instan-
tiation function I : S → {0, 1} which marks each edge as inhibited (temporarily
removed) or active depending on I(s). An edge is active if I(s) = 1 and it is
inhibited otherwise. The former edges are depicted as dashed arrows while the
later edges are depicted as full arrows. Inhibited edges cannot be crossed, and
they can neither activate nor inhibit other edges. Moreover, only 0-level edges
(going from nodes to nodes) can be crossed: if one such edge x is crossed, all ac-
tive higher-level edges with source in x, i.e. (x, e, ∗) will fire and activate/inhibit
the respective target edge e.

Example 1
Fig 1 depicts a switch graph (W,S) with W = {w} and

S = {(w,w),
(
(w,w), (w,w), ◦

)
,
(
(w,w),

(
(w,w), (w,w), ◦

))
, •
)
}

For simplicity, we define e1 =
(
(w,w),

(
(w,w), ◦

))
, •
)

and e2 =
(
(w,w), (w,w), ◦

)
.

The initial instantiation I0 is such that I0(w,w) = 1 (the edge (w,w) can be
crossed), I0(e2) = 0 (meaning that it is inhibited) and I0(e1) = 1 (therefore,
activated and ready to activate e2, the pointed edge whenever (w,w) is crossed).
Therefore, starting from w, the edge (w,w) can be crossed (since it is active)
and this causes the higher-level edge e1 to fire and activate e2. But e2 has no
effect since it was originally inhibited when (w,w) was crossed. One can then
cross (w,w) again. Now, e1 acts but has no effect, since e2 is already active,
while e2 acts and inhibits (w,w). Hence, (w,w) can no longer be crossed. This
is illustrated in Fig. 1.

2



Figure 1: Example and evolution of a switch graph.

Switch graphs can indeed be used in several fields. See [6, 7] for more
examples.

1.2 Weighted switch graphs

In this section, we introduced a generalization of switch graphs to include
weights. Weights in state transition models are very useful and can repre-
sent diverse mechanisms such as costs, distances, rewards, probabilities, besides
others.

Definition 2
A weighted switch graph is a pair (W,S) together with an initial instantiation

I0 : S → Ω∪ {}} where Ω is the set of weights, and can be chosen according to
the context.

In weighted switch graphs, instead of simply considering that an edge is
active or inhibited, each domain has a weight. In order to express this, we
can generalize the notion of instantiation. This is attained by considering an
instantiation as a function whose images belong to a set of weights Ω, along
with an element } as image. Thus, if s is an edge of the model and I an
instantiation, I(s) = } mean that the edge s is inhibited (temporarily removed
from the model) and, otherwise, we say that the edge s is active and with weight
I(s).

Given this definition, we can describe the evolution of a weighted switch
graph when some edge s ∈W ×W is crossed in the following way:

I+(t) =


I(t), if (s, t, ∗) /∈ S ∨ I

(
(s, t, ∗)

)
= }, for any ∗ ∈ {•, ◦}

}, if (s, t, ◦) ∈ S and I
(
(s, t, ◦)

)
6= }

I
(
(s, t, •)

)
, otherwise.

Although we introduced this general definition, we only consider a particular
class of models for now. The current version of the package rPrism, version 1.0,
is suitable for one-level weighted switch graphs, which are defined as follows.

Definition 3
A one-level weighted switch graph is a pair (W,S) with W 6= {} and S =

S0 ∪ S1 such that:

3



• S0 ⊆W ×W

• S1 ⊆ S0 × S0

along with an initial instantiation I0 : S → Ω, where Ω is the set of weights.

Note. In this context, } ≡ 0, because our weights will be conceived as rates.

2 About the tool rPrism

As mentioned before, rPrism is suitable to deal with one-level weighted switch
graph. Furthermore, the codomain for the considered instantiations must be
Q+

0 and, in practical cases, weights should be considered as rates. For instance,
if an edge from a node w to a node w′ has weight a, then it means that the
component represented by w will become the component w′ with rate a. The
tool then performs a stochastic simulation based on a Continuous Time Markov
Chain.

Given a one-level weighted switch graph, the user of rPrism must specify the
model in a simple text format, with the following structure:

NS {

N "definition of node 1" {

"definition of edge 1";

"definition of edge 2";

...

}

N "definition of node 2" {

}

...

}

H1 {

"definition of one-level edge 1";

"definition of one-level edge 2";

...

}

options "command1";

output "command2";

sim cmtc;

The “definition of a node” has the following format:

”node label” ”lbound” ”ubound” ”initvalue”

where “node label” is a valid string with the name/identifier of the node;
“lbound” (respectively, “ubound”) is an integer determining the lower (respec-
tively, upper) bound with respect to the number of elements of type “node” on

4



the system; and “initvalue” is a integer with the initial value of elements of type
“node” on the system.

The “definition of an edge” is done in the following way:

”target node” ”initial weight”

where “target node” is a valid string with the name/identifier of the target node;
and “initial weight” is a float with the initial weight of the edge.

Finally, to define a one-level edge, we must use the following code:

”source edge” ”target edge” ”weight”

where both “source edge” and “target edge” are strings and have the format
“source node”:“target node”; and “weight” is a float with the weight of the
one-level edge.

The entry “command1” determines the output of the program and must be
filled according to the goal of the user, for example, can be ”simpath 10” (mean-
ing the simulation will make at least 10 steps) or ”simtime 5.7” (the simulation
will run at least until the unit of time reaches the value 5.7). The entry ”com-
mand2” can be replaced as “all” in order to obtain the entire set of outputs or
restricted to any combination of the commands: “odel”, “simulation results”,
“simulation plot”, “reachable sets”, “transition matrix”, “labels”, separated by
a space.

Given a one-level switch graph, rPrism translates the introduced model into
PRISM language in order to use it to study reactive models. For readers who
are used to PRISM syntax, the process traduces nodes to variables and edges to
actions. However, an additional module for rates is considered. There, higher-
level edges are encoded as an additional variable whose value determines the
rates of target edges (actions).

Finally, we point out that the rPrism software is implemented as a sDL
package1, and an online demo is available2 for testing purposes. Nevertheless,
the online demo has several limitations due to the fact of being over a web
browser, such specific limitations do not exist when using directly the sDL
client.

3 Modeling biochemical systems

Switch graphs can describe diverse dynamics of systems which regular graphs
can not. An example is the possibility of describing counters such as the one
illustrated at Fig. 1 and many others can be found in [3, 7, 9, 8]. Also in
biochemical contexts, we can find systems which can intuitively be described by
switch graphs. Indeed, as mentioned before, an application of switch graph to
the study of biological regulatory networks can be found in [6].

A simple example of a biochemical process which can be modeled using a
switch graph is presented in Fig. 2: the scheme represents the general sequence

1http://sdl.mathdir.org
2http://sdl-vm2.mathdir.org/demos/sDL-pck-run?pck=rPrism/1.0&sdoc=Example A

5



of stages related to a vaccination process. Upon vaccination, a susceptible indi-
vidual immediately has a lower probability of becoming infected if it comes into
contact with a virus. This fact is described by the inhibition arrow.

Figure 2: Example of a switch graph describing a biological systems.

Another biological system which could be described by reactive formalisms
is the cooperativity of a hemoglobin protein and it is described in [5]. In this
system, a hemoglobin protein can bind up to 4 oxygen molecules. Thus, al-
though this seems a simple systems, it needs to be described by a model which
accommodates features such as counters, and switch graphs are perfect for the
case. However, at this point, we must note that even switch graphs do not fully
describe the dynamics of the mentioned system. Indeed, the cooperativity of
hemoglobin is characterized by the fact that binding to one oxygen molecule
increases the likelihood of binding to another one (up to the maximum of four).
This increase of the binding rate cannot be described by simple switch graphs
which do not consider any kind of quantitative measure. Thus, this issue is
solved with weighted switch graphs which admit weights in edges.

The example of a weighted switch graph describing a hemoglobin protein is
shown in Fig. 3. There, each loop represents the binding of one oxygen molecule
and the weight of the loop represents the respective rate: note that the weights
increase for the binding of sucessive oxygen molecules, but a fifth molecule can
no longer bind.

Finally, we introduce another example and show how rPrism can be used to
study weighted switch graph models.

Example 2 (Circadian rhythm of cyanobacteria)
In [4] we may find a model for the circadian rhythm of a cyanobacteria which

considers three phosphorylated forms of the protein KaiC (s, t and ts) and an
unphosporylated form (u). Here, we omit the occurrences of protein KaiA, as
related in the model of [4], in order to show that it can be represented by the
reactivity of the system. In fact, a one-level weighted switch graph for such
model is presented in Fig.4.

rPrism was used to simulate the evolution of this system. The plot of the
output is presented in Fig. 5. Below, the code introduced in rPrism is presented.

6



Figure 3: Model representing the cooperativity of hemoglobin.

Figure 4: Weighted switch graph of the biological circadian rhythm model.

Figure 5: Plot of the simulation.

We note that this model shows a cyclic behavior as would be expected for a
circadian rhythm system. Thus, this kind of model seems suitable to represent
by higher-level edges the effect of non linear or even unknown mechanisms of a
cell and still obtain coherent simulations and results.

7



Through all examples we can find a common pattern: reactivity and, in
particular, higher-level edges appear to describe the dynamics caused by a com-
ponent/variable which is not considered. Indeed, note that, for instance, in the
hemoglobin example we could consider a model with five states where each node
is fully described by the number of oxygen molecules bound. In this way, we
could obtain a model as the one shown in Fig. 6. Compared to the this one,
the reactive model in Fig. 3 ignores a variable: the number of oxygen molecules
already bound by the hemoglobin protein.

Figure 6: Non-reactive weighted model for hemoglobin protein.

We note that the proposed software – rPrism – is able to, in general, con-
struct a reactive model which contains less states than a non-reactive model.
Nevertheless, rPrism internally introduces additional state variables when trans-
lating the introduced model into PRISM language, in order to retrieve the
hidden information about the system. Using simple words, rPrism considers
additional variables which determine what weights must be considered for each
edge, at each time. Therefore, we cannot think about one-level switch graphs
as reduced models but as a different description of the same model with, in
general, the same “computational size”. In this way, weighted switch graphs
and rPrism are specially useful in two general cases:

• When the user understands that the system is more intuitively described
by a reactive model, which in general depends on the background of the
user.

• When the “hidden” components/variables causing reactivity are still un-
known by the user.

In fact, the second point described above occurs frequently in biological
contexts when, for instance, there is a missing or misunderstood regulation
between two components in a system. Reactive formalisms allows one to, even
so, recover coherent results from such model.

4 Conclusions and future work

In this paper we briefly introduce the software rPrism to study one-level weighted
switch graphs. The proposed software has a proper syntax in order to be a
friendly software, translating the rPrism input language to a suitable input for
simulations in Prism. Also, we present an example of a biological system which
can be modeled and studied using this approach.

8



As future work, we intend to extend the rPrism language with the aim of
exploring as much as possible the rich set of features of PRISM, namely, adding
some model checking capabilities for reactive graphs. In fact, we choose to use
PRISM to be the basis of our work based on its model checking capacities.
It has a temporal logic language embedded and it would allow us to compute
the validity of properties as well of probabilities for some events to occur, which
would be quite relevant for model analysis and predictions for biological systems.
Also, we intend to expand the class of models that are suitable to be studied
using rPrism. In particular, we intend to consider the general set of higher-level
edges. Finally, as ongoing work, we are applying rPrism to a wider number of
biological problems.

Acknowledgments.

This work was supported by ERDF - The European Regional Development
Fund through the Operational Programme for Competitiveness and Interna-
tionalisation - COMPETE 2020 Programme and by National Funds through
the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnolo-
gia, within project POCI-01-0145-FEDER-030947 and project with reference
UID/MAT/04106/2019 at CIDMA. The authors acknowledge the support given
by a France-Portugal partnership PHC PESSOA 2018 between M. Chaves (Cam-
pus France #40823SD) and M. A. Martins. D. Figueiredo also acknowledges
the support given by FCT via the PhD scholarship PD/BD/114186/2016.

References

[1] Areces, C., Fervari, R., Hoffmann, G.: Swap logic. Logic Journal of IGPL
p. jzt030 (2013)

[2] Areces, C., Fervari, R., Hoffmann, G.: Relation-changing modal operators.
Logic Journal of IGPL p. jzv020 (2015)

[3] van Benthem, J.: An essay on sabotage and obstruction. In: Mechanizing
Mathematical Reasoning, pp. 268–276. Springer (2005)

[4] Chaves, M., Preto, M.: Hierarchy of models: From qualitative to quantita-
tive analysis of circadian rhythms in cyanobacteria. Chaos: An Interdisci-
plinary Journal of Nonlinear Science 23(2), 025113 (2013)

[5] Chou, K.C.: Low-frequency resonance and cooperativity of hemoglobin.
Trends in Biochemical Sciences 14(6), 212 (1989)

[6] Figueiredo, D., Barbosa, L.S.: Reactive models for biological regulatory
networks. In: International Symposium on Molecular Logic and Computa-
tional Synthetic Biology. p. (to be published). Springer (2019)

9



[7] Figueiredo, D., Martins, M.A., Barbosa, L.S.: A note on reactive tran-
sitions and Reo connectors. In: It’s All About Coordination, pp. 57–67.
Springer (2018)

[8] Gabbay, D., Marcelino, S.: Global view on reactivity: switch graphs and
their logics. Annals of Mathematics and Artificial Intelligence 66(1-4), 131–
162 (2012)

[9] Gabbay, D.M., Marcelino, S.: Modal logics of reactive frames. Studia Log-
ica 93(2), 405–446 (2009)

[10] Kwiatkowska, M., Norman, G., Parker, D.: Prism 4.0: Verification of prob-
abilistic real-time systems. In: International conference on computer aided
verification. pp. 585–591. Springer (2011)

10



A Appendix

The code used in rPrism for the circadian rhythm reactive model is presented
bellow:

NS {

N s 0 100 25 {

u 0.3;

}

N ts 0 100 25 {

s 0.4;

}

N t 0 100 25 {

ts 0.4;

}

N u 0 100 25 {

t 0.4;

}

}

H1 {

s:u u:t 0.4;

s:u ts:s 0.4;

s:u t:ts 0.4;

ts:s u:t 0.2;

ts:s t:ts 0.2;

ts:s ts:s 0.6;

}

options simtime 100000;

output all;

sim cmtc;

11


