brought to you by

22nd International Conference on Solid State Ionics

June 16(Sun)-21(Fri), 2019

PyeongChang Alpensia Resort, Korea

22nd International Conference on Solid State Ionics

PROGRAM DETAILS

[Day 1]	[Day 2]	[Day 3]	[Day 4]	[Day 5]	[Day 6]	
and the second se	Constraint				and the second se	6550122002020005555555555555555
June 16 (Sun)	June 17 (Mon)	June 18 (Tue)	June 19 (Wed)	June 20 (Thu)	June 21 (Fri)	

11:00-12:40 | Convention Center 2F, Forest Hall

11:00-11:20 Invited			Ji Haeng Yu (Korea Institute of Energy Research, Korea)		
	SO-055	Proton conducting oxide electrolyte for application to fuel cells			
11:20-11:40 Invited			Steven McIntosh (Lehigh University, U.S.A.)		
	SO-056	Linking Bulk and Surface in MIEC materials utilizing Neutron Diffraction and High-Sensitivity Low Energy Ion Scattering			
11:40-11:55 Oral			Ranran Peng (University of Science and Technology of China, China)		
	SO-057	Hexagonal perovskite structure transformed to cubic perovskite structure of SrCoO _{3-δ} by means of anion F-doping and obtained excellent OER electrochemical properties			
11:55-12:10 Oral	Oral	50.059	Federico Baiutti (IREC, Spain)		
	SO-058	Thin-film nanostructuring for electrode application in solid oxide cell microdevices			
12:10-12:25 Oral	Oral	SO-059	Aleksey Yaremchenko (CICECO - Aveiro Institute of Materials, University of Aveiro, Portugal		
	Urai		Praseodymia-infiltrated LnNiO ₃ -based oxygen electrodes for solid oxide cells		
12:25-12:40 Or a			Vincent Thoréton (University of Oslo, Norway)		
	Oral	SO-060	Enhanced oxygen diffusion in polycrystalline $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3+\delta}$ in humid oxygen		

11:00–12:00 | Convention Center 2F, Lake Hall

11:00-11:15 Oral	Oral	BA-047	Zachary Hood (Massachusetts Institute of Technology, U.S.A.)
	Ural		Wet Chemical Processing of Lithium Garnets: Previous Challenges, A New "Solution"
11:15-11:30 Oral	6	Yuntong Zhu (Massachusetts Institute of Technology, U.S.A.)	
	Oral	BA-048	Crystallization Kinetics and Temperature-Time-Transformation-Conductivity (TTTC) Diagrams for Li-Garnet from Amorphous to Crystalline Conductive Phases
11:30-11:45 Oral		BA-049	Jae Chul Kim (Stevens Institute of Technology, U.S.A.)
	Oral		Interphase Engineering for Solid-State Batteries by Additive-Assisted Low- Temperature Densification
11:45-12:00 C		BA-050	Xin Guo (Huazhong University of Science & Technology, China)
	Oral		Ion Transport in Lithium-Ion Conducting Solid Electrolytes: Oxides and Composites

PrO_x-infiltrated LnNiO₃-based oxygen electrodes for solid oxide cells

Aleksey Yaremchenko^{*}, Blanca I. Arias-Serrano, Kiryl Zakharchuk, Jorge Frade

CICECO - Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal

* ayaremchenko@ua.pt

Abstract

Ln₂NiO_{4+ δ} and its derivatives with perovskite-related K₂NiF₄-type structure demonstrate high mixed ionic-electronic conductivity, moderate thermal and negligible chemical expansion. As a result, these phases attracted significant attention as prospective cathode materials for intermediate-temperature solid oxide fuel cells (IT-SOFC). At the same time, perovskite-like LnNiO₃ have not been considered for these applications, mostly due to the limited phase stability under ambient oxygen pressures. On heating in air, LaNiO₃ decomposes at ~ 1000°C; cathodic polarization can be expected to induce the decomposition of perovskite phase at lower temperatures characteristic for IT-SOFC operation. On the contrary, redox changes imposed by anodic polarization (in solid oxide electrolysis cell mode) under oxidizing conditions should not be of risk for the phase stability of LaNiO₃. The goal of the present work was the evaluation of LnNiO₃-based oxygen electrodes for solid oxide fuel/electrolysis cells.

The LnNiO_{3- δ} ceramic powders with perovskite-like structure was prepared by glycine-nitrate combustion synthesis followed by calcinations in oxygen atmosphere at 800-1000°C. Porous ceramic samples for electrical and dilatometric studies were sintered in oxygen at 950-1050°C.

Porous LaNiO_{3- δ} samples were found to exhibit favorably high *p*-type metallic-like electrical conductivity, 400-500 S/cm at 800-600°C in air. These ceramics demonstrated also a moderate thermal expansion, with average CTE ~ 13.0 ppm/K at 25-800°C, ensuring thermomechanical compatibility with solid electrolytes.

As a first step, the electrochemical performance of LaNiO_{3-δ} electrodes was assessed in contact with three common electrolytes including $(ZrO_2)_{0.92}(Y_2O_3)_{0.08}$ (8YSZ), Ce_{0.9}Gd_{0.1}O_{2-δ} (CGO10) and (La_{0.8}Sr_{0.2})_{0.98}Ga_{0.8}Mg_{0.2}O_{3-δ} (LSGM). The electrode layers were sintered at 1050°C for 2 h under oxygen flow. The studies of symmetrical cells by EIS demonstrated that the electrochemical activity of LaNiO_{3-δ} electrodes increases in the sequence 8YSZ < CGO10 < LSGM; the corresponding values of electrode polarization resistance (R_η) at 800°C were 1.4, 0.8 and 0.25 Ohm×cm², respectively. Significant variations of R_η with electrolyte composition correlate with the extent of chemical reactivity between LaNiO_{3-δ} and electrolyte materials during the electrode fabrication.

The R_{η} values of LaNiO_{3- δ} electrodes in contact with LSGM electrolyte were further reduced to 0.03 Ohm×cm² at 800°C and 0.11 Ohm×cm² at 700°C by the surface modification with PrO_x which is known for its electrocatalytic activity. At 750°C and current density of 0.5 A/cm², LaNiO₃+PrO_x (~20 wt.%) electrodes in contact with LSGM solid electrolyte demonstrate the overpotentials of ~60 mV under cathodic polarization and ~40 mV under anodic polarization.

The impact of substitution of lanthanum by praseodymium (in order to improve the chemical compatibility and electrochemical activity) on the relevant properties of LnNiO₃ is briefly discussed.