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Abstract 

The present work explores mechanosynthesis of lanthanum aluminate-based perovskite ceramics and 

corresponding effects on ionic-electronic transport properties. La1-xCaxAlO3-δ (x = 0.05-0.20) nanopowders were 

prepared via one-step high-energy mechanochemical processing. Sintering at 1450°C yielded dense ceramics with 

submicron grains. As-prepared powders and sintered ceramics were characterized by XRPD, XPS and SEM. 

Electrochemical studies showed that partial oxygen-ionic conductivity in prepared La1-xCaxAlO3-δ increases with 

calcium content up to 10 at.% in the lanthanum sublattice and then levels off at ~6×10-3 S/cm at 900°C. La1-xCaxAlO3-δ 

ceramics are mixed conductors under oxidizing conditions and ionic conductors with negligible contribution of 

electronic transport in reducing atmospheres. Oxygen-ionic contribution to the total conductivity is 20-68% at 900°C in 

air and increases with Ca content, with temperature and with reducing p(O2). Impedance spectroscopy results showed 

however that electrical properties of mechanosynthesized La1-xCaxAlO3-δ ceramics below ~800°C are determined by 

prevailing grain boundary contribution to the total resistivity. 
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1. Introduction 

Lanthanum aluminate LaAlO3 with perovskite-like structure is a semiconductor with a low electrical 

conductivity, < 5×10-4 S/cm at 900°C in air [1˗4]. Acceptor-type doping of LaAlO3 and related LnAlO3 perovskites was 

found to increase the concentration of oxygen vacancies in the perovskite-lattice and, consequently, to induce oxygen-

ionic conductivity [2,5˗8]. This attracted attention to LaAlO3-based oxides as potential candidates for electrolytes of 

solid oxide fuel cells [3,4,9˗13]. The substitutions of lanthanum by alkaline-earth elements (A = Ca, Sr, Ba) [2˗4,9,10] 

or aluminum by magnesium [4,8,10] as well as simultaneous co-substitutions into both sublattices [4,10˗12] have been 

demonstrated to result in increase of ionic transport by orders of magnitude if compared to the parent lanthanum 

aluminate. (La,A)(Al,Mg)O3-δ ceramics were reported to exhibit noticeable contribution of p-type electronic transport 

under oxidizing conditions, but nearly pure ionic conduction under reduced oxygen chemical potentials [8˗13]. 

Enhancement of the ionic conductivity was also achieved via co-doping by Ba and Y into La and Al sublattices, 

respectively [1], while the substitution of aluminum by manganese in (La,Sr)AlO3-δ results in an increase of electronic 

transport [3,14,15]. Villas-Boas and de Souza [16] reported a positive effect of Pr co-doping on the electrical transport 

properties of Sr-substituted LaAlO3, mainly by suppressing the grain boundary resistivity.  

Despite the ionic conductivity of LaAlO3-based perovskites is relatively low, these materials exhibit certain 

advantages. Those include a better stability with respect to reduction and components volatilization under reducing 

atmospheres if compared to CeO2-, LaGaO3- and silicate-based materials [17]. Taking into account the comparatively 

low cost, ionic conductors derived from LaAlO3 are still of potential interest, particularly for the anode protective layers 

and as additives to composite solid electrolytes [17˗19].  

There are a number of works describing different approaches to the synthesis of LaAlO3 including conventional 

solid state reaction route [6˗9,12,20,21], solvothermal [22], combustion [23-26], reverse micelle [27], in situ 

polymerization [28], molten salt [29,30], precipitation [31], electrochemical [32] and mechanochemical [33] methods. 

The latter approach is of particular interest being a low-temperature, high-reproducibility, solvent-free and relatively 

low-cost method of synthesis of nanostructured complex oxides [34].  

In this context, the primary objective of this paper is to introduce a new preparation method of Ca-substituted 

LaAlO3 nanoparticles via a mechanochemical route. Atomistic simulation study of LaGaO3 counterpart demonstrated a 

strong preference of Ca cations for lanthanum sites in the perovskite lattice [35]. The mechanism of substitution by Ca2+ 

for La3+ in LaAlO3 and generation of oxygen vacancies is given by equation (using Kröger–Vink notation): 

••
2 3 2 3 La La Al O O0.5(1 )La O CaO 0.5Al O (1 )La Ca Al (3 0.5 )O 0.5 V  − + + → − + + + − +x x x x x x  (1) 

The data on the solid solubility of calcium in lanthanum aluminate is not available, however, the Ca solubility limit was 

reported to be close to 10 at.% in A sublattice in the case of Nd1-xCaxAlO3-δ analogues [6]. 
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Although the mechanosynthesis of undoped LaAlO3 has already been reported by Zhang and Saito [33], it should 

be noted that the formation of desired compound has been achieved after relatively long time of ball milling. Moreover, 

in our present study we provide rapid mechanosynthesis and detailed structural study on as-prepared and subsequently 

sintered Ca-substituted LaAlO3 utilizing X-ray powder diffraction (XRPD) and X-ray photoelectron spectroscopy 

(XPS). Accordingly, it is shown that the simultaneous use of diffraction techniques, which are sensitive to medium- and 

long-range structural order, and spectroscopic techniques, which make possible observations on a local atomic scale, is 

often necessary to allow a comprehensive characterization of the product of chemical reactions. Structural, 

microstructural and spectroscopic studies were complemented by the detailed electrical characterization of 

mechanosynthesized La1-xCaxAlO3-δ ceramics in a broad range of temperatures and oxygen partial pressures, including 

the determination of grain bulk and grain boundary contributions to the total electrical conductivity as well as partial 

ionic and electronic conductivities at 600-900°C.  

 

2. Experimental 

Ca-substituted LaAlO3 powders were prepared by mechanochemical method. Solid precursors, lanthanum oxide 

(La2O3, 99.9 % purity, Aldrich), aluminum oxide (γ-Al2O3, 99.9 % purity, Aldrich) and calcium oxide (CaO, 99.9 % 

purity, Aldrich) were used for the mechanosynthesis. For each composition, a mixture (5 g) of precursors taken in 

appropriate proportions was milled for various times (up to 30 min) in a high-energy planetary ball mill Pulverisette 6 

(Fritsch, Germany). A grinding chamber (200 cm3 in volume) and balls (10 mm in diameter) made of tungsten carbide 

were used. The ball-to-powder weight ratio was 40:1. Milling experiments were performed in an ambient atmosphere at 

600 rpm. The as-prepared powders were pressed into several disks of 16 mm diameter and 2 mm thickness at 270MPa. 

Polyetheylene glycol (PEG) 10 000 was used as a plasticizer. The pellets were sintered at 1450°C for 12 h in air (except 

LaAlO3 sintered at 1700°C).  

The crystal structure of as-prepared powders and sintered samples was investigated by XRPD. The XRPD 

patterns were collected using a D8 Advance diffractometer (Brucker, Germany) with the CuKα radiation in the Bragg-

Brentano configuration. The generator was set up at 40 kV and 40 mA. The divergence and receiving slits were 0.3° and 

0.1 mm, respectively. The XRPD patterns were recorded in the range 2Θ = 20–72° with a step of 0.03° and a measuring 

time of 20 s. Due to the presence of contaminations and amorphous phase, the refinements were performed using Le 

Bail method (refinement without structural constraints [36]). Le Bail analyses of XRPD data of the as-prepared and 

sintered samples were performed in the space group Pm-3m using Fullprof computer program [37]. The XRPD line 

broadening was analyzed by the refinement of regular Thompson-Cox-Hastings pseudo-Voigt function parameters [38]. 

In order to obtain proper geometry set-up and to eliminate instrumental broadening, the instrumental resolution function 



4 

was determined by refinement of LaB6 standard specimen. The JCPDS PDF database was utilized for the phase 

identification [39].  

XPS measurements have been carried out on the ESCALAB MkII (VG Scientific) electron spectrometer at a 

base pressure in the analysis chamber of 5×10-10 mbar (2×10-9 mbar during the measurement) using twin non-

monochromatic anode MgKα/AlKα X-ray source with excitation energies of 1253.6 and 1486.6 eV, respectively. 

Passing through a 6-mm slit (entrance/exit) of a hemispherical analyzer, electrons with pass energy of 20 eV are 

detected by a channeltron. The spectra were recorded at the total instrumental resolution (as it was measured with the 

FWHM of Ag3d5/2 photoelectron line) of 1.06 and 1.18 eV for MgKα and AlKα excitation sources, respectively. The 

energy scale has been calibrated by normalizing the C1s line of adsorbed adventitious hydrocarbons to 285.0 eV. The 

processing of the measured spectra includes a subtraction of X-ray satellites and Shirley-type background [40]. The 

peak positions and areas are evaluated by a symmetrical Gaussian-Lorentzian curve fitting. The relative concentrations 

of the different chemical species are determined based on normalization of the peak areas to their photoionization cross-

sections, calculated by Scofield [41]. 

The morphology of La1-xCaxAlO3-δ powders and sintered pellets were observed using the high resolution 

scanning electron microscopy (FE-SEM) (Mira III, Tescan, Czech Republic). ImageJ software [42] was used to 

evaluate FE-SEM micrographs. The Energy-dispersive X-ray spectroscopy (EDX) detector (Oxford Instruments, UK) 

was used to determine the elemental composition of the final products. 

Total electrical conductivity () was determined by impedance spectroscopy (Agilent 4284A precision LCR 

meter) using ceramic samples with applied porous Pt electrodes. The measurements were performed as function of 

temperature in air at 340-1000°C and as function of oxygen partial pressure at 600-1000°C using flowing O2+N2 and 

10%(H2+H2O)+90%N2 gas mixtures. Bronkhorst mass-flow controllers were used to mix the gases. Oxygen partial 

pressure, p(O2), in a gas flow was continuously monitored using yttria-stabilized zirconia oxygen sensor. The average 

ion transference numbers under air/O2 and air/(10%H2+90%N2) gradients were determined at 700-900°C by the 

modified electromotive force (EMF) technique taking electrode polarization into account [43-45].  

 

3. Results and discussion 

The formation of LaAlO3 in the course of mechanosynthesis was followed by XRPD. As it is exemplarily shown 

in Fig. 1a, the XRPD pattern of the starting (unmilled) mixture is characterized by sharp diffraction peaks 

corresponding to La2O3 and La(OH)3. The formation of La(OH)3 can be explained by hygroscopic character of 

lanthanum oxide. The XRPD peaks corresponding to γ-Al2O3 are not visible due to its amorphous nature [46]. After 3 

min of intensive ball milling, the Bragg reflections decrease in intensity and broadened. On the other hand, new Bragg 

reflections belonging to LaAlO3 are formed. After 30 min of milling, all the diffraction peaks can be attributed to the 



5 

LaAlO3 only (S.G. Pm-3m). XRPD patterns of mechanosynthesized La1-xCaxAlO3-δ (0 ≤ x ≤ 0.2) solid solutions are 

shown in Fig. 1b. The effective incorporation of calcium into the perovskite-type structure of LaAlO3 results in slight 

shift of all characteristic XRPD reflections to the higher angular positions (lower values of d-spacing), indicating a 

lattice contraction of La1-xCaxAlO3-δ with increasing Ca2+ content. XRPD patterns of La1-xCaxAlO3-δ (0 ≤ x ≤ 0.2) 

sintered at 1450°C in air are shown in Fig. 1c. In addition to the main perovskite phase, XRPD pattern of undoped 

LaAlO3 showed the presence of considerable fraction of secondary LaAl11O18 (hexagonal S.G. P63/mmc) phase. 

Increasing sintering temperature to 1700°C did not help to improve the phase purity of this material. Incorporation of 

Ca resulted in reduction of secondary phase content. Within the XRPD detection limit no impurity phases containing Ca, 

as possible by-products of the sintering process, have been observed. 

As it is listed in Table 1, the lattice parameters of the mechanosynthesized materials vary with calcium content. 

Unit cell volume shrinkage of La1-xCaxAlO3-δ solid solutions compared to calcium-free LaAlO3 is the consequence of 

incorporation of Ca cations into La sites and increase in oxygen vacancy concentration in the perovskite lattice of 

LaAlO3. On top of that, it was found that the crystallite size increased when calcium is introduced into the structure 

(Table 1). However, for calcium-containing compositions, increasing calcium concentration influenced the crystallite 

size rather negligibly. On the other hand, the accumulated microstrain changed significantly once calcium is introduced 

in the structure of perovskite. This is obvious if we consider that cations replacement and generation of oxygen defects 

is accompanied by changes in the geometry of the structural units of the material. This alteration is evident if we take 

into consideration slightly different ionic radii of La3+ and Ca2+ ions in their twelve-coordinated positions; r(La3+)XII = 

1.36 Å / r(Ca2+)XII  = 1.34 Å [47]. 

Table 1. Properties of as-mechanosynthesized and sintered La1-xCaxAlO3-δ 

as-prepared    

x Lattice parameter a, Å Average crystallite size D, nm Accumulated microstrain (×10-4) 

0 3.8034(1) 11 19 

0.05 3.7931(1) 30 39 

0.10 3.7907(2) 33 52 

0.15 3.7901(3) 39 57 

0.20 3.7888(3) 34 70 

sintered    

x Lattice parameter a, Å Average grain size DG, μm Relative density, % 

0 3.7917(2) 1.18 62.7 

0.05 3.7912(2) 0.91 96.7 

0.10 3.7890(3) 0.7 96.1 

0.15 3.7877(5) 0.59 95.3 

0.20 3.7874(3) 0.22 96.5 
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Fig. 1. a) XRPD patterns of the La2O3, La(OH)3 and γ-Al2O3 mixture milled for various times (up to 30 min) illustrating 

the mechanochemical synthesis of the LaAlO3; the milling times, tM, are shown in the figure; b) XRPD patterns of 

mechanosynthesized La1-xCaxAlO3-δ (0 ≤ x ≤ 0.2) solid solutions. Vertical lines represent a guide to eye to accent a shift 

of XRPD peaks due to the formation of the solid solution; c) XRPD patterns of sintered samples. 
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In addition, the lattice parameters of the mechanosynthesized materials were found to be larger in comparison to 

the sintered samples (Table 1), with typical values for LaAlO3 as reported elsewhere [48]. The disappearance observed 

for the lattice shrinkage with applied thermal treatment can be ascribed to the structural relaxation of the samples [49].  

In order to obtain information related to the local structure modification, the as-sintered samples were crushed, refined 

and investigated by XPS. Fig. 2a shows the high resolution XPS spectra of La 3d5/2 and its satellite for LaAlO3 and 

La0.8Ca0.2AlO3-δ ceramics after sintering. The binding energies in the range of 834.1–834.5 eV are typical for La3+. The 

differences of 0.4 eV between La3d5/2 states in both samples can be explained by presence of Ca in La0.8Ca0.2AlO3-δ 

sample, which assure different surrounding of La atoms and thus change in the binding energy. The satellite peak has 

3.8 eV higher binding energy. This can be attributed to the La-OH bonds [50] due to the hygroscopic character of 

lanthanum-based oxides. Quantitative analysis of XPS spectra revealed the La-O/La-OH bonds ratio 23/77 for LaAlO3 

and 21/79 for La0.8Ca0.2AlO3-δ, respectively. Fig. 2b displays Al2p core level of LaAlO3 and La0.8Ca0.2AlO3-δ. Binding 

energy of 74.4 eV is typical for Al3+ state representing Al-O and/or Al-OH bonds. However, for calcium containing 

sample, the Al 2p level shifts to the lower binding energy and peak becomes asymmetric. Two peaks can be derived 

from this spectrum: The higher binding energy located at 74.0 eV is ascribed to Al3+; the lower binding energy located 

at 72.9 eV could be assigned to the different surrounding of Al ions as oxygen vacancies are formed. Accordingly, the 

chemical state refers to the local bonding environment of Al ions. The local bonding environment is affected by its 

oxidation state, the identity of its nearest-neighbor atom or lack of it, its bonding hybridization to that nearest-neighbor 

atom, which applied a crystal field on the element. This field creates an extra pressure on the element so the binding 

energy required to ejection of electron is slight modified. 

 Fig. 2c shows the Ca2p spectra of La0.8Ca0.2AlO3-δ compared with Ca2p core level of standard spectra measured 

for CaO and CaCO3. Binding energy of the 2p3/2 peak (BE2p3/2) and difference between BE2p3/2 and binding energy of 

core level satellite Δ = BE2p3/2-BEsat were compared. BE of Ca2p3/2 measured for La0.8Ca0.2AlO3-δ is 346.9 eV, whereas 

Δ=8.6 eV. These values are between the values extracted from the standard spectra of CaO and CaTiO3. The XPS 

parameters were found to be BE2p3/2 = 347.6 eV and Δ ~ 8 eV for octahedrally coordinated Ca in CaO and BE2p3/2 = 

346.8 eV and Δ ~ 9 eV for twelve coordinated Ca in CaTiO3. Comparison of those values indicates that the Ca2p3/2 peak 

measured for La0.8Ca0.2AlO3-δ ceramics consists of subpeaks with binding energy values between six-fold and twelve-

fold coordinated positions of Ca. Again, the shift in binding energy most likely originates from different surrounding of 

Ca ions due to the decrease in coordination number as oxygen vacancies are introduced. Although Sood et al. [51] 

reported on partial Ca2+ occupation at B site in LaInO3, the Ca2+ – Al3+ replacement is considered to be negligible due to 

the significant difference between ionic radii of Ca2+ and Al3+ ions in their octahedrally coordinated positions; r(Al3+)VI 

= 0.535 Å / r(Ca2+)VI = 1.00 Å [47]. However, more precise study should be done to shed light on proper structure 

explanation in Ca-doped LaMO3 (M = Al, Ga, In) perovskite systems. 
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Fig. 2. XPS spectra of LaAlO3 and La0.8Ca0.2AlO3-δ ceramics: a) La3d5/2 and its satellite; b) Al2p core level; c) Ca2p 

core level of La0.8Ca0.2AlO3-δ compared with Ca2p core level of standard spectra measured for CaO (top) and CaTiO3 

(bottom). 

 

The study of the microstructure was carried out to estimate the density, shape and size of the grains (Figs. 3a–

3d). The density of sintered pellets determined by Archimedes method exceed 95 % of theoretical values (Table 1), 

except for undoped LaAlO3 ceramics which still had relative density of only 63% even after sintering at 1700°C.  
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Fig. 3. SEM micrographs of fractured and thermally etched cross-sections of La1-xCaxAlO3-δ ceramics: a) x = 0.05; b) x 

= 0.10, c) x = 0.15, d) x = 0.20, and e) elemental map of La0.85Ca0.15AlO3-δ. The insets show corresponding grain size 

distribution. 

 

The results of morphological analysis show that the grain size and shape of sintered samples is affected by 

calcium doping. For LaAlO3, the non-uniform grains with noticeable porosity was observed, which is in agreement with 

lower density of these samples. The nucleation of the hexagonal LaAl11O18 phase could be seen in some parts of the 

structure. However, due to the small volume fraction of the secondary phase and since there is not much difference in 
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grain size, it is difficult to visualize the structure as observed in XRPD pattern. The average grain size of LaAlO3 was 

found to be 1.18 μm (Table 1). As shown in Fig.3 (a-d) the average grain size in the samples containing calcium is 

reduced bellow 1 μm. Accordingly, the Ca-doping hinders the grain growth of the parent perovskite phase LaAlO3. As 

the dopant concentration increases, a refined structure consisting of small grains with a narrow distribution is obtained. 

The EDX analysis, to a great extent, confirms homogeneity of the prepared materials (Fig. 3e). As listed in Table 2, the 

average elemental composition for homogenous regions of the samples is very close to the nominal composition. 

Table 2. Elemental composition of La1-xCaxAlO3-δ samples determined by EDX analysis 

Nominal elemental composition Elemental composition determined by EDX 

LaAlO3 LaAlO3 

La0.95Ca0.05AlO3-δ La0.96Ca0.04AlO3-δ 

La0.90Ca0.10AlO3-δ La0.91Ca0.09AlO3-δ 

La0.85Ca0.15AlO3-δ La0.86Ca0.14AlO3-δ 

La0.80Ca0.20AlO3-δ La0.82Ca0.18AlO3-δ 

 

 

The results of electrical measurements showed that undoped LaAlO3 is an insulator with electrical conductivity 

as low as 3.4×10-5 S/cm at 900°C in air (Fig. 4) and corresponding activation energy of 148 kJ/mol (Table 3). These 

observations are generally in agreement with the literature data, although the reported conductivity values scatter in a 

wide range from 1.1×10-6 to 1.4×10-3 S/cm at 900°C in air [1˗4,10]; this implies a strong influence of the phase and 

elemental impurities, porosity and microstructural characteristics.  

Table 3. Activation energy of the total electrical conductivity in air 

x T, °C EA, kJ/mol 

0 680-1000 148.4 ± 1.0 

0.05 630-1000 109.3 ± 0.4 

 415-630 140.1 ± 0.9 

0.10 630-1000 104.7 ± 0.4 

 370-630 115.5 ± 0.5 

0.15 340-1000 109.5 ± 0.2 

0.20 340-1000 102.0 ± 0.3 

Note: Activation energy was calculated using Arrhenius model 0 A(A /T)exp( E /(RT)) = − ; given errors are standard errors. 
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Fig. 4. Temperature dependence of total electrical conductivity of La1-xCaxAlO3-δ ceramics in air. 

 

 

Acceptor-type substitution of lanthanum by calcium results in a 2-3 orders of magnitude increase of the total 

electrical conductivity in the high-temperature range (Fig. 4) and a decrease in activation energy of conductivity (Table 

3). At the same time, increasing calcium content above 10 at.% in the lanthanum sublattice has rather negligible effect: 

the level of total conductivity is nearly independent of calcium content for the composition with x = 0.10-0.20 at 

temperature above ~550°C (Figs. 4 and 5).  

 

 

Fig. 5. Total electrical conductivity of La1-xCaxAlO3-δ ceramics in air as function of calcium content at 700-900°C. 
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Impedance spectroscopy studies revealed a strong contribution of grain boundary resistivity to the total 

resistivity of La1-xCaxAlO3-δ ceramics. As an example, Fig. 6 shows impedance spectra of x = 0.15 ceramic sample 

recorded at different temperatures in air. Three different contributions are clearly observed in the studied frequency 

range. Low-frequency contribution visible only at higher temperatures was attributed to the electrode process. 

Intermediate-frequency arc (specific capacitance ~2×10-9 F/cm) and high-frequency semicircle (~2×10-11 F/cm, visible 

only at lower temperatures in the studied frequency range) were assigned to the grain boundary and the grain bulk 

contributions to the total resistivity, respectively. The spectra were fitted using a simple (RHF//CPEHF)(RIF//CPEIF)CPELF 

equivalent circuit to extract the bulk and grain boundary resistivities. 

 

 

Fig. 6. Examples of the impedance spectra of x=0.15 ceramics recorded in air at different temperatures. The spectra 

comprise the bulk contribution at high frequencies, the grain boundary contribution at intermediate frequencies, and 

low-frequency spike (at higher temperature) corresponding to the electrode polarization contribution. 

 

Analysis of the impedance spectroscopy data showed that electrical properties of mechanosynthesized            

La1-xCaxAlO3-δ ceramics at temperatures below ~800°C are dominated by the grain boundary resistivity (Fig. 7a). Grain 
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boundary-limited electrical conduction in the low-temperature range was reported earlier for Sr- and Mg- co-substituted 

La0.9Sr0.1Al0.9Mg0.1O3-δ ceramics [12]. The grain boundary conductivity has a higher activation energy compared to the 

bulk conductivity, and the extrapolation indicates that the total conductivity is limited by the grain boundary 

conductivity in the low-temperature range and by the bulk conductivity in the high-temperature range (Fig. 7a). Fig. 7b 

compares the bulk conductivities of La1-xCaxAlO3-δ ceramics at 330-680°C. As for the total conductivity, the bulk 

conductivity in this temperature range increases slightly with increasing calcium content from 5 to 10 at.% in the A 

sublattice, and is essentially composition-independent for x ≥ 0.10. 

 

 

Fig. 7. (a) Temperature dependence of total, bulk and grain boundary conductivity of x = 0.10 ceramics in air; (b) 

Temperature dependence of bulk conductivity of La1-xCaxAlO3-δ ceramics in the low-temperature range in air. Dotted 

lines are an extrapolation to higher temperatures. 
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Fig. 8(a and b) shows the results of measurements of total electrical conductivity as function of oxygen partial 

pressure. As for other acceptor-doped LaAlO3-based materials [6,9˗12,21], electrical conductivity of 

mechanosynthesized La1-xCaxAlO3-δ ceramics decreases with reducing p(O2) under oxidizing conditions, in the p(O2) 

range between 10-5 and 1.0 atm, and show a plateau-like behavior under reducing conditions when p(O2) is below ~10-10 

atm. The changes in electrical conductivity with oxygen partial pressure can be understood considering the defect 

chemistry of acceptor-doped LaAlO3. Incorporation of oxygen into the perovskite lattice on increasing p(O2) is 

accompanied by generation of electron-holes and is expressed by equation: 

•• •
O 2 OV 0.5O O 2h+ ⎯⎯→ +oxK

        (2) 

with corresponding equilibrium constant 

• 2 2
O

•• 1/ 2 1/ 2
O 2 2

[O ] [h ] 3

[V ] p(O ) p(O )


−

= =


ox

p
K        (3) 

where p is the concentration of electron-holes. The concentrations of point defects are interrelated by electroneutrality 

conditions: 

•• •
La O[Ca ] 2[ V ] [h ] = +  or x = 2δ + p      (4) 

Combining eqn.(3) with the definition of partial electrical conductivity, one obtains the expression for the p-type 

electronic conductivity which increases with increasing oxygen partial pressure: 

2

1/ 2 1/ 4
2

3
= e = e p(O )

− 
    

 
p p p oxp K       (5) 

where μp is the electron-hole mobility. Under reducing conditions, when the concentration of electron-holes is 

negligible, the electroneutrality condition can be simplified to  

••
La O[Ca ] 2[ V ] =   or x = 2δ       (6) 

i.e., the concentration of oxygen vacancies is fixed by the doping level, and p(O2)-independent oxygen-ionic 

conductivity σO dominates under reducing conditions. Assuming that the variations of oxygen content are negligible in 

the entire p(O2) range and the mobility of charge carriers are essentially independent of the defect concentrations, total 

electrical conductivity can be expressed by a simplified model: 

0 1/4
O O 2= + = + p(O )    total p p        (7) 

where 
0 p  is electron-hole conductivity at p(O2) = 1 atm. By fitting the experimental data to eqn.(7), one may separate 

ionic and electronic contributions to the total electrical conductivity (Fig. 8c). 
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Fig. 8. Oxygen partial pressure dependence of total electrical conductivity of (a) La1-xCaxAlO3-δ ceramics at 900°C, and 

(b) La0.85Ca0.15AlO3-δ ceramics at 600–900°C; (c) experimental data points and calculated total and partial oxygen-ionic 

and p-type electronic conductivities for x = 0.15 at 800°C. All lines correspond to the fitting results using the model 

Eq.(7). 

 

Fig. 9 compares the values of partial ionic and p-type electronic conductivities in air obtained by fitting the σ – 

p(O2) data (Fig. 8(a and b)). Increasing calcium content from 5 to 10 at.% in the lanthanum sublattice results in almost 

5-fold increase of ionic conductivity, while further calcium doping leads to rather negligible improvement of ionic 

transport. At the same time, electron-hole conductivity has a tendency to decrease with increasing calcium content. 
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Fig. 9. (a) Variations of partial oxygen-ionic and p-type electronic conductivity of La1-xCaxAlO3-δ ceramics with calcium 

content at 900°C in air; (B) Arrhenius plot of total and partial ionic and electronic conductivity of x = 0.15 ceramics in 

air at 600-900°C. All values were obtained by fitting the p(O2)-dependencies of total electrical conductivity using 

Eq.(7). 

 

All studied La1-xCaxAlO3-δ ceramics are mixed ionic-electronic conductors under oxidizing conditions (Fig. 10). 

Electronic transport dominates in the x = 0.05 ceramics, with ionic contribution of only 20% to the total conductivity at 

900°C in air. Oxygen-ion transference numbers tO increase with calcium content and vary in the range 0.52-0.68 for 

other compositions under these conditions (Fig. 10). Analysis of the data showed also that the p-type electronic 

conductivity has a lower activation energy compared to the oxygen-ionic conductivity (Fig. 9b). As a result, the 

contribution of ionic transport to the total conductivity in air increases with increasing temperature (at least, for x = 

0.15). Under reducing conditions, all La1-xCaxAlO3-δ ceramics are pure ionic conductors (Fig. 10). 

The results of analysis of σ – p(O2) dependencies are in excellent agreement with the values of average oxygen-

ionic transference numbers Ot  obtained by the modified EMF technique under air/O2 and air/(10%H2-N2) gradients 

(Table 4). These data confirm that ionic contribution to the total conductivity increases with increasing calcium content 

and with reducing oxygen partial pressure. Measured Ot  values tend to increase with increasing temperature, in 

conformity with the higher activation energy for the oxygen-ionic conductivity (Fig. 9b). In the case of x = 0.20, 

average ionic transference number are close to unity under large p(O2) gradients at 700-900°C. 
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Fig. 10. Oxygen partial pressure dependence of oxygen-ion transference numbers of La1-xCaxAlO3-δ ceramics at 900°C 

calculated as tO = σO/σtotal from the results of fitting the σ vs p(O2) data using Eq.(7). 

 

Table 4. Average oxygen-ion transference numbers determined by the modified EMF technique 

x T, °C 

1.00 atm / 0.21 atm gradient 0.21 atm / p1 gradient 

Ot  p1, atm Ot  

0.05 950 0.13 ± 0.01 7.0 × 10-17 0.78 ± 0.01 

 900 0.13 ± 0.01 7.7 × 10-18 0.75 ± 0.01 

 850  7.3 × 10-19 0.74 ± 0.01 

 800  1.0 × 10-19 0.71 ± 0.01 

 750  4.6 × 10-21 0.69 ± 0.01 

 700  2.7 × 10-22 0.68 ± 0.01 

0.10 900 0.40 ± 0.01 1.6 × 10-19 0.892 ± 0.003 

 850 0.41 ± 0.01 5.7 × 10-21 0.918 ± 0.001 

 800 0.39 ± 0.03 8.8 × 10-22 0.925 ± 0.002 

 750  3.6 × 10-23 0.917 ± 0.002 

 700  1.3 × 10-24 0.922 ± 0.003 

0.15 900 0.62 ± 0.01 5.7 × 10-20 0.977 ± 0.001 

 850 0.60 ± 0.01 6.2 × 10-21 0.975 ± 0.001 

 800 0.60 ± 0.01 1.7 × 10-22 0.970 ± 0.001 

 750 0.55 ± 0.01 2.2 × 10-23 0.964 ± 0.001 

 700 0.53 ± 0.01 4.7 × 10-25 0.955 ± 0.001 

0.20 900 0.60 ± 0.01 3.0 × 10-20 0.994 ± 0.001 

 850 0.56 ± 0.01 1.7 × 10-21 0.995 ± 0.001 

 800 0.55 ± 0.01 1.2 × 10-22 0.993 ± 0.001 

 750 0.53 ± 0.01 6.4 × 10-24 0.995 ± 0.001 

 700 0.47 ± 0.01 3.7 × 10-25 0.991 ± 0.001 

Note: given errors are the standard errors of regression model used in the modified EMF technique [43-45].  
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Overall, the obtained results demonstrate that the substitution by calcium results in an increase of ionic 

conductivity up to x = 0.10. Further calcium additions are favorable for the suppression of electronic contribution to the 

total electrical transport, but have rather minor impact on the absolute values of ionic conductivity, contrary to 

expectations based on eqn.(6). This, however, can be explained if one assumes a limited solubility of calcium in 

lanthanum sublattice close to ~10 at.% or slightly higher. Small amounts of secondary phases often cannot be detected 

by XRD analysis. For instance, Kilner et al. [5] studied La1-xCaxAlO3-δ (x ≤ 0.10) and other lanthanum aluminate-based 

ceramics and detected the presence of secondary phase in all prepared materials by optical and electron microscopy, 

whereas XRD analysis showed that the samples are phase-pure. Ishihara et al. [6] reported that the solubility limit of 

calcium in neodymium sublattice of NdAlO3 is somewhat below 10 at.%, while the dependence of total electrical 

conductivity of Nd1-xCaxAlO3-δ (x = 0.05‒0.30) ceramics resembles that observed in the present work for La1-xCaxAlO3-δ 

system. In the present work, microstructural studies by FE-SEM/EDX did not detect the impurity phases but, due to the 

small grain sizes (Fig. 3 and Table 1) and limitations of the technique, cannot exclude their segregation at the grain 

boundaries. 

Another explanation was proposed by Nguyen et al. [10]. In particular, they reported that the solubility limit of 

strontium in the lanthanum sublattice of La1-xSrxAlO3-δ corresponds to ~20 at.%. At the same time, it was observed that 

the ionic conductivity in these series increases with increasing strontium content and, therefore, oxygen vacancy 

concentration up to x = 0.10, and then declines on further strontium doping. This was explained by the concentration-

dependent mobility of oxygen vacancies. The drop in mobility for the compositions with x > 0.1 was discussed in terms 

of possible point defect association, e.g. 
••

La O{Sr V } , and trapping of oxygen vacancies responsible for the ionic 

conduction. Same considerations may be applicable in the case of La1-xCaxAlO3-δ system studied in the present work. 

One should point, however, that the conclusions on the solubility limits in Ref.[10] have been done based on the XRD 

data only.  

Fig. 11 compares oxygen-ionic conductivity of x = 0.15 ceramics prepared in this work by mechanosynthesis 

with ionic conductivity of other LaAlO3-based ceramics reported in literature. The data on sintering conditions, relative 

density and activation energy of ionic conductivity are summarized in Table 5. While the preparation of lanthanum 

aluminate-based solid solutions was performed by variety of different techniques, sintering of dense aluminate ceramics 

still required high temperatures, and, in most cases, literature data on electrical transport properties are given for the 

samples with relative density ≤ 90%. Fig. 11 shows that ionic conductivity of mechanosynthesized La0.85Ca0.15AlO3-δ at 

higher temperature, 900°C, is comparable to that of LaAlO3-based materials with highest reported ionic transport. On 

the other hand, activation energy of ionic conductivity of ceramics prepared by mechanosynthesis is somewhat higher 

compared to the values reported in literature (Table 5).  



19 

 

Fig. 11. Comparison of oxygen-ionic conductivity of mechanosynthesized La0.85Ca0.15AlO3-δ with available literature 

data on LaAlO3-based ceramics. Literature data are detailed in Table 5. 

 

 

Table 5. Comparison of literature data for LaAlO3-based ceramics 

Composition 

Sintering Relative 

density, % 

Activation energy for σO 

Ref. 

T, °C Time, h T, °C EA, kJ/mol 

La0.85Ca0.15AlO3-δ 1450 12 95.3 600-900 124 this work 

La0.90Ca0.10AlO3-δ 1600 12 - 725-970 106 [5] 

Nd0.90Ca0.10AlO3-δ 1500 12 - - - [6] 

Pr0.90Ca0.10AlO3-δ 1650 - 87 - - [7] 

La0.95Sr0.05AlO3-δ 1675 4 77 800-1000 111 [9,21] 

La0.90Sr0.10AlO3-δ 1400<T<1600 4-7 72 750-900 110 [10] 

(La0.8Sr0.2)0.94AlO3-δ 1500 10 90 410-910 107 [15] 

LaAl0.85Mg0.15O3-δ 1950 0.25 - 1190-1280 95 [8] 

La0.90Sr0.10Al0.90Mg0.10O3-δ (a) 1650 4 98 800-1000 101 [12] 

La0.90Sr0.10Al0.90Mg0.10O3-δ (b) 1700 8 92.5 - - [11] 

Note: Activation energy was calculated using Arrhenius model 0 A(A /T)exp( E /(RT)) = − . 
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As a result, La0.85Ca0.15AlO3-δ ceramics exhibit a stronger drop of ionic conductivity with decreasing temperature. 

Apparently, this should be attributed to a significantly smaller grain size of ceramics prepared in this work due to 

employed preparation technique and lower sintering temperature. Submicron particle size results in a stronger 

contribution of grain boundaries to the total resistivity; as discussed above, at lower temperatures electrical properties 

are determined by grain boundary conductivity with higher activation energy. The follow up work is planned to include 

the optimization of mechanosynthesis parameters and sintering profile to suppress the grain boundary resistivity.  

 

4. Conclusions 

Ca-substituted La1-xCaxAlO3-δ (x = 0.05-0.20) perovskites were prepared by room-temperature mechanosynthesis 

technique. XRPD analyses showed formation of perovskite phase after 30 min of high-energy ball milling. Sintering at 

1450°C yielded dense ceramics with relative density above 95%. Refinement of XRPD data revealed a decrease of 

lattice constant with increasing calcium content. XPS analysis confirmed incorporation of Ca cations into perovskite 

structure replacing La cations in their twelve-coordinated positions. FE-SEM/EDX investigations indicated 

homogeneity of the sintered samples with average cation composition very close to the nominal. Substitution by 

calcium was found to increase the total electrical conductivity by 2-3 orders of magnitude compared to undoped LaAlO3 

in air. In La1-xCaxAlO3-δ (x = 0.05-0.20) series, partial oxygen-ionic conductivity increases with increasing calcium 

content up to 10 at.% in the lanthanum sublattice and is nearly independent of composition on further substitution, 

while p-type electronic conductivity tends to decrease slightly with x. All studied La1-xCaxAlO3-δ ceramics are mixed 

ionic-electronic conductors under oxidizing conditions. Oxygen-ionic contribution to the total conductivity increases 

with Ca content, with temperature and with reducing oxygen partial pressure. Under reducing conditions, when p(O2) is 

below 10-12-10-10 atm, La1-xCaxAlO3-δ (x = 0.05-0.20) perovskites are oxygen-ionic conductors with negligible 

contribution of electronic transport. Average submicron grain size of mechanosynthesized La1-xCaxAlO3-δ ceramics 

results, however, in a prevailing contribution of grain boundaries to the total resistivity at temperatures below 

approximately 800°C.  
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