Application of the hypercomplex fractional integro-differential operators to the fractional Stokes $equation^*$

M. Ferreira^{†,‡},

R.S. Kraußhar[§], M.M. Rodrigues[‡], N. Vieira[‡]

[†] School of Technology and Management Polytechnic Institute of Leiria P-2411-901, Leiria, Portugal. Email: milton.ferreira@ipleiria.pt

[§] Fachgebiet Mathematik Erziehungswissenschaftliche Fakultät, Universität Erfurt Nordhäuserstr. 63, 99089 Erfurt, Germany. E-mail: soeren.krausshar@uni-erfurt.de

[‡] CIDMA - Center for Research and Development in Mathematics and Applications Department of Mathematics, University of Aveiro Campus Universitário de Santiago, 3810-193 Aveiro, Portugal. E-mails: mferreira@ua.pt, mrodrigues@ua.pt, nloureirovieira@gmail.com

Abstract

We present a generalization of several results of the classical continuous Clifford function theory to the context of fractional Clifford analysis. The aim of this paper is to show how the fractional integro-differential hypercomplex operator calculus can be applied to a concrete fractional Stokes problem in arbitrary dimensions which has been attracting recent interest (cf. [1, 6]).

1 Basics on fractional calculus and special functions

For $a, b \in \mathbb{R}$ with a < b and $\alpha > 0$, the left and right Riemann-Liouville fractional integrals $I_{a^+}^{\alpha}$ and $I_{b^-}^{\alpha}$ of order α are defined by (see [5])

$$(I_{a^{+}}^{\alpha}f)(x) = \frac{1}{\Gamma(\alpha)} \int_{a}^{x} \frac{f(t)}{(x-t)^{1-\alpha}} dt, \quad x > a, \qquad (I_{b^{-}}^{\alpha}f)(x) = \frac{1}{\Gamma(\alpha)} \int_{x}^{b} \frac{f(t)}{(t-x)^{1-\alpha}} dt, \quad x < b.$$
(1)

By ${}^{RL}D^{\alpha}_{a^+}$ and ${}^{RL}D^{\alpha}_{b^-}$ we denote the left and right Riemann-Liouville fractional derivatives of order $\alpha > 0$ on $[a,b] \subset \mathbb{R}$ (see [5]):

$$\left({^{RL}}D^{\alpha}_{a^{+}}f \right)(x) = \left(D^{m}I^{m-\alpha}_{a^{+}}f \right)(x) = \frac{1}{\Gamma(m-\alpha)}\frac{d^{m}}{dx^{m}}\int_{a}^{x}\frac{f(t)}{(x-t)^{\alpha-m+1}} dt, \qquad x > a$$
(2)

$$\begin{pmatrix} RL D_{b^{-}}^{\alpha} f \end{pmatrix}(x) = (-1)^{m} \left(D^{m} I_{b^{-}}^{m-\alpha} f \right)(x) = \frac{(-1)^{m}}{\Gamma(m-\alpha)} \frac{d^{m}}{dx^{m}} \int_{x}^{b} \frac{f(t)}{(t-x)^{\alpha-m+1}} dt, \qquad x < b.$$
(3)

^{*}The final version is published in AIP Conference Proceedings - ICNAAM 2018, 2116, (2019), Article No. 160004, 4pp. It as available via the website:https://aip.scitation.org/doi/pdf/10.1063/1.5114148

Here, $m = [\alpha] + 1$ and $[\alpha]$ means the integer part of α . The symbols ${}^{C}D^{\alpha}_{a^{+}}$ and ${}^{C}D^{\alpha}_{b^{-}}$ denote the left (resp. right) Caputo fractional derivative of order $\alpha > 0$:

$$(^{C}D^{\alpha}_{a^{+}}f)(x) = (I^{m-\alpha}_{a^{+}}D^{m}f)(x) = \frac{1}{\Gamma(m-\alpha)} \int_{a}^{x} \frac{f^{(m)}(t)}{(x-t)^{\alpha-m+1}} dt, \qquad x > a$$
(4)

$$\begin{pmatrix} ^{C}D_{b^{-}}^{\alpha}f \end{pmatrix}(x) = (-1)^{m} \left(I_{b^{-}}^{m-\alpha}D^{m}f \right)(x) = \frac{(-1)^{m}}{\Gamma(m-\alpha)} \int_{x}^{b} \frac{f^{(m)}(t)}{(t-x)^{\alpha-m+1}} dt, \qquad x < b.$$
 (5)

We denote by $I_{a^+}^{\alpha}(L_1)$ the class of functions f that are represented by the fractional integral (1) of a summable function, that is $f = I_{a^+}^{\alpha} \varphi$, with $\varphi \in L_1(a, b)$. The space $AC^m([a, b])$ contains all functions that are continuously differentiable over [a, b] up to the order m - 1 and $f^{(m-1)}$ is supposed to be absolutely continuous over [a, b].

To explicitly describe the integral kernels that are used in the sequel we need to introduce the two-parameter Mittag-Leffler function $E_{\mu,\nu}(z)$ (cf [3]) as $E_{\mu,\nu}(z) = \sum_{k=0}^{+\infty} \frac{z^k}{\Gamma(\mu k + \nu)}$, $\mu > 0$, $\nu \in \mathbb{R}$, $z \in \mathbb{C}$. Let us now turn to the treatment of the higher dimensional setting. We consider bounded open rectangular domains in \mathbb{R}^n of the form $\Omega = \prod_{i=1}^{n} a_i, b_i$. Let $\alpha = (\alpha_1, \ldots, \alpha_n)$, with $\alpha_i \in [0, 1], i = 1, \ldots, n$. The *n*-parameter fractional Laplace operators ${}^{RL}\Delta_{a^+}^{\alpha}$ and ${}^{C}\Delta_{a^+}^{\alpha}$, and the associated fractional Dirac operators ${}^{RL}\mathcal{D}_{a^+}^{\alpha}$ and ${}^{C}\mathcal{D}_{a^+}^{\alpha}$ acting on the variables $(x_1, \cdots, x_n) \in \mathbb{R}^n$ are defined over Ω by

$${}^{RL}\Delta^{\alpha}_{a^{+}} = \sum_{i=1}^{n} {}^{RL}_{a^{+}_{i}} \partial^{1+\alpha_{i}}_{x_{i}}, \quad {}^{C}\Delta^{\alpha}_{a^{+}} = \sum_{i=1}^{n} {}^{C}_{a^{+}_{i}} \partial^{1+\alpha_{i}}_{x_{i}}, \quad {}^{RL}\mathcal{D}^{\alpha}_{a^{+}} = \sum_{i=1}^{n} e_{i} {}^{RL}_{a^{+}_{i}} \partial^{\frac{1+\alpha_{i}}{2}}_{x_{i}}, \quad {}^{C}\mathcal{D}^{\alpha}_{a^{+}} = \sum_{i=1}^{n} e_{i} {}^{C}_{a^{+}_{i}} \partial^{\frac{1+\alpha_{i}}{2}}_{x_{i}}. \tag{6}$$

For i = 1, ..., n the partial derivatives ${}^{RL}_{a_i^+} \partial_{x_i}^{1+\alpha_i}$, ${}^{RL}_{a_i^+} \partial_{x_i^-}^{1+\alpha_i}$, ${}^{C}_{a_i^+} \partial_{x_i}^{1+\alpha_i}$ and ${}^{C}_{a_i^+} \partial_{x_i^-}^{1+\alpha_i}$ are the left Riemann-Liouville and Caputo fractional derivatives (2) and (4) of orders $1 + \alpha_i$ and $\frac{1+\alpha_i}{2}$, with respect to the variable $x_i \in]a_i, b_i[$. Under certain conditions we have that ${}^{RL} \Delta_{a^+}^{\alpha} = -{}^{RL} \mathcal{D}_{a^+}^{\alpha} {}^{RL} \mathcal{D}_{a^+}^{\alpha}$ and ${}^{C} \Delta_{a^+}^{\alpha} = - {}^{C} \mathcal{D}_{a^+}^{\alpha} {}^{C} \mathcal{D}_{a^+}^{\alpha}$ (see [2]). Due to the nature of the eigenfunctions and the fundamental solution of these operators we additionally need to consider the variable $\hat{x} = (x_2, \ldots, x_n) \in \hat{\Omega} = \prod_{i=2}^{n} [a_i, b_i[$, and the fractional Laplace and Dirac operators acting on \hat{x} defined by:

$${}^{RL}\widehat{\Delta}_{a^{+}}^{\alpha} = \sum_{i=2}^{n} {}^{RL}_{a_{i}^{+}} \partial_{x_{i}}^{1+\alpha_{i}}, \quad {}^{C}\widehat{\Delta}_{a^{+}}^{\alpha} = \sum_{i=2}^{n} {}^{C}_{a_{i}^{+}} \partial_{x_{i}}^{1+\alpha_{i}}, \quad {}^{RL}\widehat{\mathcal{D}}_{a^{+}}^{\alpha} = \sum_{i=2}^{n} e_{i} {}^{RL}_{a_{i}^{+}} \partial_{x_{i}^{2}}^{1+\alpha_{i}}, \quad {}^{C}\widehat{\mathcal{D}}_{a^{+}}^{\alpha} = \sum_{i=2}^{n} e_{i} {}^{C}_{a_{i}^{+}} \partial_{x_{i}^{2}}^{1+\alpha_{i}}, \quad {}^{C}\widehat{\mathcal{D}}_{a^{+}}^{\alpha} = \sum_{i=2}^{n} e_{i} {}^{C}\widehat{\mathcal{D}}_{a^{+}}^{\alpha} = \sum_{i=2}^{n} e_$$

Next recalling from [2] we know that a family of fundamental solutions of the fractional Dirac operator ${}^{C}\mathcal{D}^{\alpha}_{a^{+}}$ can be represented in the way ${}^{C}\mathcal{G}^{\alpha}_{+}(x) = \sum_{i=1}^{n} e_i \left({}^{C}\mathcal{G}^{\alpha}_{+} \right)_i(x)$, where

and for $i = 2, \ldots, n$

$$\begin{pmatrix} {}^{C}\mathcal{G}^{\alpha}_{+} \end{pmatrix}_{i}(x) = \left(E_{1+\alpha_{1},1} \left(-(x_{1}-a_{1})^{1+\alpha_{1}} \ {}^{C}\widehat{\Delta}^{\alpha}_{a+} \right) \ {}^{C}_{a_{i}^{+}} \partial^{\frac{1+\alpha_{i}}{2}}_{x_{i}^{-}} \right) g_{0}(\widehat{x})$$

$$+ (x_{1}-a_{1}) \left(E_{1+\alpha_{1},2} \left(-(x_{1}-a_{1})^{1+\alpha_{1}} \ {}^{C}\widehat{\Delta}^{\alpha}_{a+} \right) \ {}^{C}_{a_{i}^{+}} \partial^{\frac{1+\alpha_{i}}{2}}_{x_{i}^{-}} \right) g_{1}(\widehat{x}),$$

$$(9)$$

with $g_0(\hat{x}) = v(a_1, \hat{x})$ and $g_1(\hat{x}) = v'_{x_1}(a_1, \hat{x})$. The functions v and v'_{x_1} are defined in Corollary 3.5 of [2].

2 Fractional Hypercomplex Integral Operators

In this section we recall the definitions and the main properties of the fractional versions of the Teodorescu and Cauchy-Bitsadze operators that are going to be used in the sequel to treat the fractional Stokes problem. For all the detailed proofs and calculations we refer to our paper [2]. First we recall the following fractional Stokes formula **Theorem 2.1**et $f, g \in C\ell_{0,n}(\Omega) \cap AC^{1}(\Omega) \cap AC(\overline{\Omega})$ Then we have

$$\int_{\Omega} \left[-\left(f^{-C} \mathcal{D}_{b^{-}}^{\alpha} \right)(x) g(x) + f(x) \left({}^{RL} \mathcal{D}_{a^{+}}^{\alpha} g \right)(x) \right] \, dx = \int_{\partial \Omega} f(x) \, d\sigma(x) \left(I_{a^{+}}^{\alpha} g \right)(x), \tag{10}$$

where $d\sigma(x) = n(x) d\Omega$, with n(x) being the outward pointing unit normal vector at $x \in \partial\Omega$, where $d\Omega$ is the classical surface element, and where dx represents the n-dimensional volume element.

Replacing f by ${}^{C}\mathcal{G}^{\alpha}_{+}(x-y)$ in (10) we now may obtain the following fractional Borel-Pompeiu formula (a detailed proof is presented in [2]).

Theorem 2.2 et $g \in C\ell_{0,n}(\Omega) \cap AC^1(\Omega) \cap AC(\overline{\Omega})$. Then the following fractional Borel-Pompeiu formula holds

$$-\int_{\Omega} {}^{C} \mathcal{G}^{\alpha}_{+}(x+a-y) \left({}^{RL} \mathcal{D}^{\alpha}_{a+}g \right)(y) \, dy + \int_{\partial \Omega} {}^{C} \mathcal{G}^{\alpha}_{+}(x+a-y) \, d\sigma(y) \left(I^{\alpha}_{a+}g \right)(y) = g(x).$$
(11)

From (11) we may introduce the following definition.

Definition 2.3 *et* $g \in AC^{1}(\Omega)$ *. Then the linear integral operators*

$$(T^{\alpha}g)(x) = -\int_{\Omega} {}^{C}\mathcal{G}^{\alpha}_{+}(x+a-y)g(y) \, dy, \qquad (F^{\alpha}g)(x) = \int_{\partial\Omega} {}^{C}\mathcal{G}^{\alpha}_{+}(x+a-y)\, d\sigma(y)\left(I^{\alpha}_{a+}g\right)(y) \qquad (12)$$

are called the fractional Teodorescu and Cauchy-Bitsadze operator, respectively.

The previous definition allows us to rewrite (11) in the alternative form $(T^{\alpha RL}\mathcal{D}_{a+}^{\alpha}g)(x) + (F^{\alpha}g)(x) = g(x)$, with $x \in \Omega$. For the regularity and mapping properties of (12) we refer to [2]. Again, in [2] we proved the following result:

Theorem 2.4 The fractional operator T^{α} is the right inverse of ${}^{C}\mathcal{D}_{a^{+}}^{\alpha}$, i.e., for $g \in L_{p}(\Omega)$, with $p \in \left[1, \frac{2}{1-\alpha^{*}}\right]$ and $\alpha^{*} = \min_{1 \leq i \leq n} \{\alpha_{i}\}$, we have $\left({}^{C}\mathcal{D}_{a^{+}}^{\alpha}T^{\alpha}g\right)(x) = g(x)$.

All these tools in hand allow us to obtain the following Hodge-type decomposition which is our key tool to treat boundary value problems related to the fractional Dirac operator, such as presented with a small example in the next section (see [2] for a detailed proof):

Theorem 2.5 et $q = \frac{2p}{2-(1-\alpha^*)p}$, $p \in \left[1, \frac{2}{1-\alpha^*}\right]$, and $\alpha^* = \min_{1 \le i \le n} \{\alpha_i\}$. The space $L_q(\Omega)$ admits the following direct decomposition

$$L_q(\Omega) = L_q(\Omega) \cap \ker \left({}^{C} \mathcal{D}_{a^+}^{\alpha} \right) \oplus {}^{C} \mathcal{D}_{a^+}^{\alpha} \left(W_{a^+}^{\circ, p}(\Omega) \right),$$
(13)

where $W_{a^+}^{\alpha,p}(\Omega)$ is the space of functions $g \in W_{a^+}^{\alpha,p}(\Omega)$ such that $\operatorname{tr}(g) = 0$. Moreover, we can define the following projectors

$$P^{\alpha}: L_q(\Omega) \to L_q(\Omega) \cap \ker \left({}^{C} \mathcal{D}_{a^+}^{\alpha} \right), \qquad \qquad Q^{\alpha}: L_q(\Omega) \to {}^{C} \mathcal{D}_{a^+}^{\alpha} \left(W_{a^+}^{\circ, p}(\Omega) \right).$$

In the previous theorem the fractional Sobolev space $W^{\alpha,p}_{a^+}(\Omega)$ has the following norm:

$$\|f\|_{W^{\alpha,p}_{a^+}(\Omega)}^p := \|f\|_{L_p(\Omega)}^p + \sum_{k=1}^n \left\| a_k^C \partial_{x_k}^{\frac{1+\alpha_k}{2}} f \right\|_{L_p(\Omega)}^p,$$

where $\|\cdot\|_{L_p(\Omega)}$ is the usual L_p -norm in Ω , and $\alpha = (\alpha_1, \ldots, \alpha_n)$, with $\alpha_k \in [0, 1], k = 1, \ldots, n$.

Remark 2.6We would like to remark that our results coincide with the classical ones presented in [4] when considering the limit case of $\alpha = (1, ...1)$. However, we can notice differences in the fractional setting, for instance in the expression of the fundamental solution and in the function spaces considered.

3 A fractional Stokes problem

Recently fractional versions of the Stokes problem have attracted a fast growing interest (see for instance [6]). The application of the version of the Laplacian allows us to model sub-diffusion problems of (in our case incompressible) flows. The following system describes the simplest model of Stokes equation with sub (resp. super) dissipation. In the Riemann-Liouville case (the Caputo case is treated analogously) it has the form

$$\begin{array}{rcl} - {}^{RL}\!\Delta^{\alpha}_{a^+} u + \, {\rm grad}^{\alpha} \mathfrak{p} &=& F \quad {\rm in} \ \Omega \\ & {\rm div}^{\alpha} u &=& 0 \quad {\rm in} \ \Omega \\ & u &=& 0 \quad {\rm on} \ \partial\Omega \end{array}$$

Here again we suppose that Ω is a rectangular domain, F is given, \mathfrak{p} is the unknown pressure of the flow and u its unknown velocity. As in the continuous case treated in [4], the hypercomplex fractional calculus that we proposed in the previous section, now allows us to set up closed solution formulas for u and \mathfrak{p} . To proceed in this direction, remember that following [2] the fractional Laplacian can be split in the form ${}^{RL}\Delta_{a^+}^{\alpha} = -{}^{RL}\mathcal{D}_{a^+}^{\alpha} {}^{RL}\mathcal{D}_{a^+}^{\alpha}$. Applying the previously described inverse properties of the Teodorescu transform and the properties of the projector Q^{α} arising in the Hodge decomposition stated at the end of the previous section allows us to transform the first equation as follows:

$${}^{RL}\mathcal{D}_{a^+}^{\alpha} {}^{RL}\mathcal{D}_{a^+}^{\alpha} u + {}^{RL}\mathcal{D}_{a^+}^{\alpha} \mathfrak{p} = F.$$

If we now apply the fractional T^{α} -operator from the left to this equation we get

$$T^{\alpha \ RL} \mathcal{D}_{a^+}^{\alpha} {}^{RL} \mathcal{D}_{a^+}^{\alpha} u + T^{\alpha \ RL} \mathcal{D}_{a^+}^{\alpha} \mathfrak{p} = T^{\alpha} F.$$

Now we can apply our generalized fractional Borel-Pompeiu formula leading to

$${}^{RL}\mathcal{D}_{a^+}^{\alpha}u - F^{\alpha} \, {}^{RL}\mathcal{D}_{a^+}^{\alpha}u + \mathfrak{p} - F^{\alpha}\mathfrak{p} = T^{\alpha}F.$$

Application of the projector Q^{α} arising the fractional version of the Hodge decomposition then leads to

$$Q^{\alpha \ RL} \mathcal{D}_{a}^{\alpha} + u - Q^{\alpha} \ F^{\alpha \ RL} \mathcal{D}_{a}^{\alpha} + u + Q^{\alpha} \mathfrak{p} - Q^{\alpha} \ F^{\alpha} \mathfrak{p} = T^{\alpha} F.$$

Since $F^{\alpha \ RL} \mathcal{D}_{a^+}^{\alpha} u$ and $F^{\alpha} \mathfrak{p}$ are in the kernel of ${}^{RL} \mathcal{D}_{a^+}^{\alpha}$, we get $Q^{\alpha} F^{\alpha \ RL} \mathcal{D}_{a^+}^{\alpha} u = 0$ and $Q^{\alpha} F^{\alpha} \mathfrak{p} = 0$ so that our original equation simplifies to

$$Q^{\alpha \ RL} \mathcal{D}_{a^+}^{\alpha} u + Q^{\alpha} \mathfrak{p} = Q^{\alpha} \ T^{\alpha} F.$$

Next we apply once more T^{α} to the left of the equation and use that $Q^{\alpha RL} \mathcal{D}_{a^+}^{\alpha} = {}^{RL} \mathcal{D}_{a^+}^{\alpha} u$ so that the latter equation is equivalent to

$$T^{\alpha \ RL} \mathcal{D}^{\alpha}_{a^{+}} u + T^{\alpha} Q^{\alpha} \mathfrak{p} = T^{\alpha} Q^{\alpha} T^{\alpha} F$$

which in turn equals

$$u - \underbrace{F^{\alpha} u}_{=0} + T^{\alpha} Q^{\alpha} \mathfrak{p} = T^{\alpha} Q^{\alpha} T^{\alpha} F,$$

so that we finally get the following formula for the velocity of the flow

$$u = T^{\alpha} Q^{\alpha} T^{\alpha} F - T^{\alpha} Q^{\alpha} \mathfrak{p}.$$

The pressure then can be determined by the equation

$$\operatorname{Sc}(Q^{\alpha}\mathfrak{p}) = \operatorname{Sc}(T^{\alpha} Q^{\alpha} T^{\alpha} F)$$

resulting from the second equation.

Acknowledgement

The work of M. Ferreira, M.M. Rodrigues and N. Vieira was supported by Portuguese funds through the CIDMA - Center for Research and Development in Mathematics and Applications, and the Portuguese Foundation for Science and Technology ("FCT–Fundação para a Ciência e a Tecnologia"), within project UID/MAT/ 0416/2013.

The work of the authors was supported by the project New Function Theoretical Methods in Computational Electrodynamics / Neue funktionentheoretische Methoden für instationäre PDE, funded by Programme for Cooperation in Science between Portugal and Germany ("Programa de Ações Integradas Luso-Alemãs/2017" - Acção No. A-15/17 - DAAD-PPP Deutschland-Portugal, Ref: 57340281).

N. Vieira was also supported by FCT via the FCT Researcher Program 2014 (Ref: IF/00271/2014).

References

- P.M. de Carvalho-Neto and G. Planas, Mild solutions to the time fractional Navier-Stokes equations in Rⁿ, J. Differ. Equations, 259-No.7, (2015), 2948-2980.
- [2] M. Ferreira, R.S. Kraußhar, M.M. Rodrigues and N. Vieira; A higher dimensional fractional Borel-Pompeiu formula and a related hypercomplex fractional operator calculus, submitted.
- [3] R. Gorenflo, A.A. Kilbas, F. Mainardi and S. Rogosin, *Mittag-Leffler functions. Theory and applications*, Springer Monographs in Mathematics, Springer, Berlin, 2014.
- [4] K. Gürlebeck and W. Sprößig, Quaternionic and Clifford calculus for physicists and engineers, Mathematical Methods in Practice, Wiley, Chichester, 1997.
- [5] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies-Vol.204, Elsevier, Amsterdam, 2006.
- S. Lin, M. Azaïez and C. Xu, Fractional Stokes equation and its spectral approximation, Int. J. Numer. Anal. Model., 15-No.1-2, (2018), 170-192.