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Abstract

We present a generalization of several results of the classical continuous Clifford function theory to the

context of fractional Clifford analysis. The aim of this paper is to show how the fractional integro-differential

hypercomplex operator calculus can be applied to a concrete fractional Stokes problem in arbitrary dimen-

sions which has been attracting recent interest (cf. [1, 6]).

1 Basics on fractional calculus and special functions

For a, b ∈ R with a < b and α > 0, the left and right Riemann-Liouville fractional integrals Iαa+ and Iαb− of order

α are defined by (see [5])

(Iαa+f) (x) =
1

Γ(α)

∫ x

a

f(t)

(x− t)1−α dt, x > a, (Iαb−f) (x) =
1

Γ(α)

∫ b

x

f(t)

(t− x)1−α dt, x < b. (1)

By RLDα
a+ and RLDα

b− we denote the left and right Riemann-Liouville fractional derivatives of order α > 0 on

[a, b] ⊂ R (see [5]):

(
RLDα

a+f
)

(x) =
(
DmIm−αa+ f

)
(x) =

1

Γ(m− α)

dm

dxm

∫ x

a

f(t)

(x− t)α−m+1
dt, x > a (2)

(
RLDα

b−f
)

(x) = (−1)m
(
DmIm−αb− f

)
(x) =

(−1)m

Γ(m− α)

dm

dxm

∫ b

x

f(t)

(t− x)α−m+1
dt, x < b. (3)
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Here, m = [α] + 1 and [α] means the integer part of α. The symbols CDα
a+ and CDα

b− denote the left (resp.

right) Caputo fractional derivative of order α > 0:

(
CDα

a+f
)

(x) =
(
Im−αa+ Dmf

)
(x) =

1

Γ(m− α)

∫ x

a

f (m)(t)

(x− t)α−m+1
dt, x > a (4)

(
CDα

b−f
)

(x) = (−1)m
(
Im−αb− Dmf

)
(x) =

(−1)m

Γ(m− α)

∫ b

x

f (m)(t)

(t− x)α−m+1
dt, x < b. (5)

We denote by Iαa+(L1) the class of functions f that are represented by the fractional integral (1) of a summable

function, that is f = Iαa+ϕ, with ϕ ∈ L1(a, b). The space ACm([a, b]) contains all functions that are continuously

differentiable over [a, b] up to the order m− 1 and f (m−1) is supposed to be absolutely continuous over [a, b].

To explicitly describe the integral kernels that are used in the sequel we need to introduce the two-parameter

Mittag-Leffler function Eµ,ν(z) (cf [3]) as Eµ,ν(z) =
∑+∞
k=0

zk

Γ(µk+ν) , µ > 0, ν ∈ R, z ∈ C. Let us now turn to

the treatment of the higher dimensional setting. We consider bounded open rectangular domains in Rn of the

form Ω =
∏n
i=1]ai, bi[. Let α = (α1, . . . , αn), with αi ∈ ]0, 1], i = 1, . . . , n. The n-parameter fractional Laplace

operators RL∆α
a+ and C∆α

a+ , and the associated fractional Dirac operators RLDαa+ and CDαa+ acting on the

variables (x1, · · · , xn) ∈ Rn are defined over Ω by

RL∆α
a+ =

n∑
i=1

RL
a+i
∂1+αi
xi , C∆α

a+ =

n∑
i=1

C
a+i
∂1+αi
xi , RLDαa+ =

n∑
i=1

ei
RL
a+i
∂

1+αi
2

xi , CDαa+ =

n∑
i=1

ei
C
a+i
∂

1+αi
2

xi . (6)

For i = 1, . . . , n the partial derivatives RL
a+i
∂1+αi
xi , RL

a+i
∂

1+αi
2

xi , C
a+i
∂1+αi
xi and C

a+i
∂

1+αi
2

xi are the left Riemann-Liouville

and Caputo fractional derivatives (2) and (4) of orders 1 +αi and 1+αi
2 , with respect to the variable xi ∈]ai, bi[.

Under certain conditions we have that RL∆α
a+ = −RLDαa+

RLDαa+ and C∆α
a+ = − CDαa+

CDαa+ (see [2]). Due

to the nature of the eigenfunctions and the fundamental solution of these operators we additionally need to

consider the variable x̂ = (x2, . . . , xn) ∈ Ω̂ =
∏n
i=2]ai, bi[, and the fractional Laplace and Dirac operators acting

on x̂ defined by:

RL∆̂α
a+ =

n∑
i=2

RL
a+i
∂1+αi
xi , C∆̂α

a+ =

n∑
i=2

C
a+i
∂1+αi
xi , RLD̂αa+ =

n∑
i=2

ei
RL
a+i
∂

1+αi
2

xi , CD̂αa+ =

n∑
i=2

ei
C
a+i
∂

1+αi
2

xi . (7)

Next recalling from [2] we know that a family of fundamental solutions of the fractional Dirac operator CDαa+
can be represented in the way CGα+(x) =

∑n
i=1 ei

(
CGα+

)
i
(x), where(

CGα+
)

1
(x) = (x1 − a1)−

1+α1
2 E

1+α1,
1−α1

2

(
−(x1 − a1)1+α1 C∆̂α

a+

)
g0(x̂)

+ (x1 − a1)
1−α1

2 E
1+α1,

3−α1
2

(
−(x1 − a1)1+α1 C∆̂α

a+

)
g1(x̂), (8)

and for i = 2, . . . , n

(
CGα+

)
i
(x) =

(
E1+α1,1

(
−(x1 − a1)1+α1 C∆̂α

a+

)
C
a+i
∂

1+αi
2

xi

)
g0(x̂)

+ (x1 − a1)

(
E1+α1,2

(
−(x1 − a1)1+α1 C∆̂α

a+

)
C
a+i
∂

1+αi
2

xi

)
g1(x̂), (9)

with g0(x̂) = v(a1, x̂) and g1(x̂) = v′x1
(a1, x̂). The functions v and v′x1

are defined in Corollary 3.5 of [2].

2 Fractional Hypercomplex Integral Operators

In this section we recall the definitions and the main properties of the fractional versions of the Teodorescu and

Cauchy-Bitsadze operators that are going to be used in the sequel to treat the fractional Stokes problem. For

all the detailed proofs and calculations we refer to our paper [2]. First we recall the following fractional Stokes

formula
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Theorem 2.1Let f, g ∈ C`0,n(Ω) ∩ AC1(Ω) ∩ AC(Ω) Then we have∫
Ω

[
−
(
f CDαb−

)
(x) g(x) + f(x)

(
RLDαa+g

)
(x)
]
dx =

∫
∂Ω

f(x) dσ(x) (Iαa+g) (x), (10)

where dσ(x) = n(x) dΩ, with n(x) being the outward pointing unit normal vector at x ∈ ∂Ω, where dΩ is the

classical surface element, and where dx represents the n-dimensional volume element.

Replacing f by CGα+(x−y) in (10) we now may obtain the following fractional Borel-Pompeiu formula (a detailed

proof is presented in [2]).

Theorem 2.2Let g ∈ C`0,n(Ω) ∩ AC1(Ω) ∩ AC(Ω). Then the following fractional Borel-Pompeiu formula holds

−
∫

Ω

CGα+(x+ a− y)
(
RLDαa+g

)
(y) dy +

∫
∂Ω

CGα+(x+ a− y) dσ(y) (Iαa+g) (y) = g(x). (11)

From (11) we may introduce the following definition.

Definition 2.3Let g ∈ AC1(Ω). Then the linear integral operators

(Tαg) (x) = −
∫

Ω

CGα+(x+ a− y) g(y) dy, (Fαg) (x) =

∫
∂Ω

CGα+(x+ a− y) dσ(y) (Iαa+g) (y) (12)

are called the fractional Teodorescu and Cauchy-Bitsadze operator, respectively.

The previous definition allows us to rewrite (11) in the alternative form
(
TαRLDαa+g

)
(x) + (Fαg) (x) = g(x),

with x ∈ Ω. For the regularity and mapping properties of (12) we refer to [2]. Again, in [2] we proved the

following result:

Theorem 2.4The fractional operator Tα is the right inverse of CDαa+ , i.e., for g ∈ Lp(Ω), with p ∈
]
1, 2

1−α∗

[
and α∗ = min1≤i≤n{αi}, we have

(
CDαa+ T

αg
)

(x) = g(x).

All these tools in hand allow us to obtain the following Hodge-type decomposition which is our key tool to treat

boundary value problems related to the fractional Dirac operator, such as presented with a small example in

the next section (see [2] for a detailed proof):

Theorem 2.5Let q = 2p
2−(1−α∗)p , p ∈

]
1, 2

1−α∗

[
, and α∗ = min1≤i≤n{αi}. The space Lq(Ω) admits the following

direct decomposition

Lq(Ω) = Lq(Ω) ∩ ker
(
CDαa+

)
⊕ CDαa+

( ◦
Wα,p
a+ (Ω)

)
, (13)

where
◦

Wα,p
a+ (Ω) is the space of functions g ∈Wα,p

a+ (Ω) such that tr(g) = 0. Moreover, we can define the following

projectors

Pα : Lq(Ω)→ Lq(Ω) ∩ ker
(
CDαa+

)
, Qα : Lq(Ω)→ CDαa+

( ◦
Wα,p
a+ (Ω)

)
.

In the previous theorem the fractional Sobolev space Wα,p
a+ (Ω) has the following norm:

‖f‖pWα,p

a+
(Ω) := ‖f‖pLp(Ω) +

n∑
k=1

∥∥∥∥ C
a+k
∂

1+αk
2

xk f

∥∥∥∥p
Lp(Ω)

,

where ‖ · ‖Lp(Ω) is the usual Lp-norm in Ω, and α = (α1, . . . , αn), with αk ∈ ]0, 1], k = 1, . . . , n.

Remark 2.6We would like to remark that our results coincide with the classical ones presented in [4] when

considering the limit case of α = (1, ...1). However, we can notice differences in the fractional setting, for

instance in the expression of the fundamental solution and in the function spaces considered.
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3 A fractional Stokes problem

Recently fractional versions of the Stokes problem have attracted a fast growing interest (see for instance [6]).

The application of the version of the Laplacian allows us to model sub-diffusion problems of (in our case

incompressible) flows. The following system describes the simplest model of Stokes equation with sub (resp.

super) dissipation. In the Riemann-Liouville case (the Caputo case is treated analogously) it has the form

− RL∆α
a+u+ gradαp = F in Ω

divαu = 0 in Ω

u = 0 on ∂Ω

Here again we suppose that Ω is a rectangular domain, F is given, p is the unknown pressure of the flow and u its

unknown velocity. As in the continuous case treated in [4], the hypercomplex fractional calculus that we proposed

in the previous section, now allows us to set up closed solution formulas for u and p. To proceed in this direction,

remember that following [2] the fractional Laplacian can be split in the form RL∆α
a+ = −RLDαa+

RLDαa+ . Applying

the previously described inverse properties of the Teodorescu transform and the properties of the projector Qα

arising in the Hodge decomposition stated at the end of the previous section allows us to transform the first

equation as follows:

RLDαa+
RLDαa+u+ RLDαa+p = F.

If we now apply the fractional Tα-operator from the left to this equation we get

Tα RLDαa+
RLDαa+u+ Tα RLDαa+p = TαF.

Now we can apply our generalized fractional Borel-Pompeiu formula leading to

RLDαa+u− F
α RLDαa+u+ p− Fαp = TαF.

Application of the projector Qα arising the fractional version of the Hodge decomposition then leads to

Qα RLDαa+u−Q
α Fα RLDαa+u+Qαp−Qα Fαp = TαF.

Since Fα RLDαa+u and Fαp are in the kernel of RLDαa+ , we get Qα Fα RLDαa+u = 0 and Qα Fαp = 0 so that our

original equation simplifies to

Qα RLDαa+u+Qαp = Qα TαF.

Next we apply once more Tα to the left of the equation and use that Qα RLDαa+ = RLDαa+u so that the latter

equation is equivalent to

Tα RLDαa+u+ TαQαp = TαQα TαF

which in turn equals

u− Fαu︸︷︷︸
=0

+TαQαp = TαQα TαF,

so that we finally get the following formula for the velocity of the flow

u = TαQα TαF − TαQαp.

The pressure then can be determined by the equation

Sc(Qαp) = Sc(TαQα TαF )

resulting from the second equation.
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