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Abstract

We present a generalization of several results of the classical continuous Clifford function theory to the
context of fractional Clifford analysis. The aim of this paper is to show how the fractional integro-differential
hypercomplex operator calculus can be applied to a concrete fractional Stokes problem in arbitrary dimen-
sions which has been attracting recent interest (cf. [1}[6]).

1 Basics on fractional calculus and special functions

For a,b € R with a < b and o > 0, the left and right Riemann-Liouville fractional integrals I and I;* of order
« are defined by (see [5])
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By RLD;)‘+ and RLDI?‘, we denote the left and right Riemann-Liouville fractional derivatives of order a > 0 on
[a,b] C R (see [5]):
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Here, m = [a] + 1 and [a] means the integer part of c. The symbols CD(‘;‘Jr and CDZ‘))‘_ denote the left (resp.
right) Caputo fractional derivative of order o > 0:
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We denote by I%, (L1) the class of functions f that are represented by the fractional integral of a summable
function, that is f = I%, ¢, with ¢ € Li(a,b). The space AC™({a, b]) contains all functions that are continuously
differentiable over [a,b] up to the order m — 1 and f(™~1) is supposed to be absolutely continuous over [a, b].
To explicitly describe the integral kernels that are used in the sequel we need to introduce the two-parameter
Mittag-Leffler function E,,,(2) (cf [3]) as E,.(2) = 3725 F(;T:V), uw>0, veR zeC. Let us now turn to
the treatment of the higher dimensional setting. We consider bounded open rectangular domains in R™ of the
form Q =[] ,]a;,b;[. Let o = (auq,..., ), with o; €]0,1],i = 1,...,n. The n-parameter fractional Laplace
operators "FAYand “A%, . and the associated fractional Dirac operators #/D% and ©“D?, acting on the
variables (z1,---,2,) € R™ are defined over 2 by

14+a;

n 1+oy
RL RL 1+a1 C 1+az RLpya RLay—=2 e}
Aa+ = E 3 a+ = E 3 at — E €+ TR a+ = ez +8931
i=1 )

(6)

1+ai g
RL@”” RL@ , C(?H"“ and 08@2 are the left Riemann-Liouville

and Caputo fractional derivatives and of orders 1+ az and 1+20“ Wlth respect to the variable z; €]a;, b;[.
Under certain conditions we have that RLA;“ = —RLlpo, RIpo and ©AY = — “D2, “D2, (see [2]). Due

to the nature of the eigenfunctions and the fundamental solution of these operators we additionally need to

For i = 1,...,n the partial derivatives

consider the variable T = (z2,...,2,) € Q= [17_,]a;, b;[, and the fractional Laplace and Dirac operators acting
on 7 defined by:
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Next recalling from [2] we know that a family of fundamental solutions of the fractional Dirac operator %3+
can be represented in the way “G%(z) = Y1, €; (Cgi)i (z), where
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and fori=2,...,n
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with go(Z) = v(a1,7) and g1(Z) = v}, (a1,Z). The functions v and v}, are defined in Corollary 3.5 of [2].

2 Fractional Hypercomplex Integral Operators

In this section we recall the definitions and the main properties of the fractional versions of the Teodorescu and
Cauchy-Bitsadze operators that are going to be used in the sequel to treat the fractional Stokes problem. For
all the detailed proofs and calculations we refer to our paper [2]. First we recall the following fractional Stokes

formula



Theorem 2.Let f,g € Cl () N ACH(Q) N AC(Q) Then we have
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where do(x) = n(x) dQ, with n(z) being the outward pointing unit normal vector at x € 9N, where dQ) is the
classical surface element, and where dx represents the n-dimensional volume element.

Replacing f by ng"_ (x—y) in we now may obtain the following fractional Borel-Pompeiu formula (a detailed
proof is presented in [2]).

Theorem 2.2¢t g € Cly () N ACH(Q) N AC(Q). Then the following fractional Borel-Pompeiu formula holds
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From we may introduce the following definition.

Definition 2.%et g € AC*(). Then the linear integral operators
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are called the fractional Teodorescu and Cauchy-Bitsadze operator, respectively.

The previous definition allows us to rewrite in the alternative form (7LD, g) (z) + (F%g) (z) = g(=),
with z € Q. For the regularity and mapping properties of we refer to [2]. Again, in [2] we proved the
following result:

Theorem 2.4'he fractional operator T is the right inverse of CD;’;, i.e., for g € Ly(2), with p € ]1, ﬁ[

and o = mini<;<n{o;}, we have ( “D%, T%g) (z) = g(x).

All these tools in hand allow us to obtain the following Hodge-type decomposition which is our key tool to treat
boundary value problems related to the fractional Dirac operator, such as presented with a small example in
the next section (see [2] for a detailed proof):

Theorem 2.%et g = zi(ffpa*)p, pE }1, — {, and o = miny<;<p{c;}. The space Ly(Q) admits the following
direct decomposition

Lg(Q) = Ly(Q) Nker ( CD;’Q) o “p2, (WZ)‘;” (Q)> , (13)

where WP (Q) is the space of functions g € W 5P () such that tr(g) = 0. Moreover, we can define the following
projectors

P Ly(Q) — Lg(Q) Nker ( “D2 ), Q% : Ly () — “D2y (Wzaf’ (Q)> :

In the previous theorem the fractional Sobolev space W 4”(Q) has the following norm:
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where || - ||, (o) is the usual L,-norm in ©, and o = (ay, ..., ay), with ag, €]0,1,k =1,...,n.

Remark 2.8Ve would like to remark that our results coincide with the classical ones presented in [{|] when
considering the limit case of a = (1,...1). However, we can notice differences in the fractional setting, for
instance in the expression of the fundamental solution and in the function spaces considered.



3 A fractional Stokes problem

Recently fractional versions of the Stokes problem have attracted a fast growing interest (see for instance [6]).
The application of the version of the Laplacian allows us to model sub-diffusion problems of (in our case
incompressible) flows. The following system describes the simplest model of Stokes equation with sub (resp.
super) dissipation. In the Riemann-Liouville case (the Caputo case is treated analogously) it has the form

—BIAY u + grad®p = F inQ
diviy = 0 inQ
v = 0 ondQd

Here again we suppose that 2 is a rectangular domain, F' is given, p is the unknown pressure of the flow and u its
unknown velocity. As in the continuous case treated in [4], the hypercomplex fractional calculus that we proposed
in the previous section, now allows us to set up closed solution formulas for u and p. To proceed in this direction,
remember that following [2] the fractional Laplacian can be split in the form RLAZ‘+ = le’Dg‘Jr RL’D3+. Applying
the previously described inverse properties of the Teodorescu transform and the properties of the projector Q%
arising in the Hodge decomposition stated at the end of the previous section allows us to transform the first
equation as follows:

RIpo, RIS 4 DS p = F.
If we now apply the fractional T“-operator from the left to this equation we get
T filpe, Blpe o 4 7> RIpe p = ToF,
Now we can apply our generalized fractional Borel-Pompeiu formula leading to
MDY u— F ™MD u+p — Fp = T°F.
Application of the projector Q% arising the fractional version of the Hodge decomposition then leads to
QMDY u— Q¥ F* MDY u+ Q% — Q“ F*p = T°F.

Since F* LD 4 and F*p are in the kernel of #'D%, | we get Q* F* D% 4 = 0 and Q® F*p = 0 so that our
original equation simplifies to

QMDY u+ Q% = Q" T°F.

Next we apply once more T to the left of the equation and use that Q< RL’DS‘+ = RDDS+U so that the latter
equation is equivalent to

T RL/D3+U + T Qap — T Qa TOF
which in turn equals

u— Fou+T* Q% =T Q* T“F,
=0

so that we finally get the following formula for the velocity of the flow
u=TQTF —TQ%.
The pressure then can be determined by the equation
Sc(Q%p) = Sc(T*QTF)

resulting from the second equation.
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