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Abstract 

The literature on incentive-based regulation in the electricity sector indicates that the size of this 
sector in a country constrains the choice of frontier methods as well as the model specification 
itself to measure economic efficiency of regulated firms. The aim of this study is to propose a 
stochastic frontier approach with maximum entropy estimation, which is designed to extract 
information from limited and noisy data with minimal statements on the data generation 
process. Stochastic frontier analysis with generalized maximum entropy and data envelopment 
analysis – the latter one has been widely used by national regulators – are applied to a cross-
section data on thirteen European electricity distribution companies. Technical efficiency scores 
and rankings of the distribution companies generated by both approaches are sensitive to model 
specification. Nevertheless, the stochastic frontier analysis with generalized maximum entropy 
results indicate that technical efficiency scores have similar distributional properties and these 
scores as well as the rankings of the companies are not very sensitive to the prior information. 
In general, the same electricity distribution companies are found to be in the highest and lowest 
efficient groups, reflecting weak sensitivity to the prior information considered in the estimation 
procedure. 
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1. Introduction 

 

Incentive-based regulation in the electricity sector has been introduced in many countries during 

the last three decades. Although there are a wide variety of incentive-based schemes used for 

electricity utilities (e.g., Jamasb and Pollitt 2001), most regulation practices are based on 

benchmarking (i.e., assessing a firm’s efficiency against a reference performance2) in order to 

promote economic efficiency (e.g., productive efficiency, cost efficiency) of regulated firms.3  

The size of a country’s electricity sector, defined by the number of companies in the electricity 

value chain, constrains the choice of benchmarking methods, as well as the specification of the 

frontier model (e.g., Haney and Pollitt 2009, 2011, 2013; Pollitt 2005; Per Agrell and Bogetoft 

2014). Data problems (or lack of data) and the size of a country’s electricity sector are among 

the reasons pointed out by some national regulators for not employing frontier approaches 

(Haney and Pollitt 2009).  

Energy regulators employing frontier methods are, in general, associated with countries with a 

large number of regulated companies (e.g., Finland, Britain, Germany). In contrast, there are a 

number of countries with very few regulated companies (e.g., Portugal, Slovenia and Panama) 

that employ frontier methods using international data. Even in these cases, the sample size may 

not be enough to allow the use of some frontier methods, due to the limited number of 

appropriate comparators that can be identified. Transmission and distribution electricity utilities 

are heterogeneous, in the sense that utilities vary in size and other characteristics that are critical 

for regulation, namely ownership, governance, task provision, size of operational areas, number 

of customers, and financial accounting system (e.g., Per Agrell and Bogetoft 2014; Cullmann 

and Nieswand 2016).  

The international survey of regulators conducted by Haney and Pollitt (2009) indicates that data 

envelopment analysis (DEA) is strongly preferred to corrected ordinary least squares (COLS) 

and maximum likelihood (ML) with stochastic frontier analysis (SFA) in the electricity sector. 

For an interesting literature survey on the application of DEA to energy (and environmental) 

issues, please see Zhou et al. (2008). There is a latent idea that DEA requires a relatively low 

number of observations and this may be one of reasons for the stronger preference for DEA over 

COLS and ML with SFA. Furthermore, there are also the drawbacks of employing COLS and 

ML in extremely small data samples (for instance, it is important to note that ML is attractive 

                                                           
2 For a detailed presentation of methods for efficiency measurement, see Kumbhakar and Lovell (2000) 
and Fried et al. (2008), chapter 2, for parametric frontier models and Fried et al. (2008), chapter 5, for 
non-parametric frontier models. 
3 Regulation of the electricity distribution sector is changing from an efficiency-oriented instrument to 
one that also includes the provision of service quality (e.g., Cambini et al. 2014). 
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mainly due to its large-sample properties). Yet, DEA suffers from the curse of dimensionality 

which casts doubts on its results.  

Some national regulators have been facing a problem of ill-posed frontier models. Ill-posedness 

of a model may arise from several reasons (e.g., Golan et al. 1996; Golan 2018). In the case of 

regulation of the electricity sector, an ill-posed model arises mainly from (i) limited information 

available - small sample sizes, incomplete data, and when the number of unknown parameters 

exceeds the number of observations; (ii) models affected by collinearity and/or outliers; and (iii) 

missing data (e.g., unobserved heterogeneity).  Thus, the question is how to achieve the best 

possible results with an ill-posed model? The answer is not straightforward and the choice of a 

specific methodology is usually controversial. An attractive approach is based on some 

maximum entropy (ME) estimators, which are designed to extract information from limited and 

noisy data using minimal statements on the data generation process.  

The purpose of this study is to show that with generalized maximum entropy estimation, all the 

available information can be included in the model, without the usual need to convert ill-posed 

into well-posed problems required by traditional estimation techniques. This study proposes a 

frontier approach, based on stochastic frontier analysis (SFA) with the generalized maximum 

entropy (GME) estimator to measure productive (technical) efficiency of a sample of thirteen 

European electricity distribution companies. The sample was employed by the Portuguese 

regulator of the electricity sector (ERSE) to set the regulatory parameters for the distribution 

companies in the period of 2012-2014 (ERSE 2011). Several possible model specifications are 

considered specifying different returns to scale and, input and output variables. SFA with GME 

and DEA (the most preferred method by national regulators) are applied to the ERSE data set 

and the efficiency results are compared, as well as the efficiency rankings. 

  
The remainder of the paper is organized as follows. In section 2, a brief literature review is 

presented focusing on the performance of the most common frontier methods used in the 

electricity sector. Section 3 presents the radial input distance function, used to measure technical 

efficiency, and the GME estimation. The data sample on electricity distribution companies is 

discussed in section 4, as well as the empirical results4 obtained from SFA with GME and DEA. 

Concluding remarks are presented in section 5. 

 
                                                           
4 A very brief discussion of the radial input distance function and GME estimation, using a sample with 
eleven companies, were presented at the Conference EEM 2016 (Silva et al. 2016). It was a first 
preliminary study where efficiency scores were generated but there was neither statistical analysis nor a 
full interpretation of the efficiency results. The sample used in this study is different and includes two 
additional companies considered as outliers by ERSE.  
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2. A Brief literature review 

The most common benchmarking methods used in the electricity sector are econometric 

modeling, involving constrained ordinary least squares (COLS) and SFA, indexing (e.g., unit 

costs and total factor productivity indexes), and mathematical modeling, using DEA (e.g., 

Lowry and Getachew 2009). More recently, Kuosmanen and Kortelainen (2012) propose a two-

stage method, called the stochastic non-smooth envelopment of data (StoNED), to estimate a 

frontier model. However, there are still some unsolved issues underlying the StoNED (c.f., 

Andor and Hesse 2014; Kuosmanen and Kortelainen 2012; Kuosmanen and Johnson 2010; 

Kuosmanen 2006), namely: (1) the StoNED model in Kuosmanen and Kortelainen (2012) 

involves one output and multiple inputs; (2) while statistical properties of the univariate convex 

nonparametric least squares (CNLS) estimator are well established (consistency and rate of 

convergence), the same does not apply to the multivariate CNLS estimator; and (3) the 

composite error term assumptions imported from SFA are very restrictive and may be 

inappropriate.5  

Several studies compare the performance of some frontier methods in the context of regulating 

the electricity sector or/and using a Monte Carlo simulation study. In particular, those studies 

report dissimilarities of efficiency estimates among different methods and model specifications. 

Jamasb and Pollitt (2003) discuss the effect of the choice of frontier methods (DEA, COLS and 

SFA models) using an international cross sectional sample of 63 regional electricity distribution 

utilities in six European countries. This study indicates that the selection of frontier methods, 

model specification, and variables (choice of inputs, outputs and environmental variables) can 

affect not only the efficiency scores but also the ranking of the companies. Additionally, frontier 

approaches are sensitive to shocks and errors in the data. This is particularly true when cross-

sectional data is used and with frontier methods that are deterministic, such as the DEA and 

COLS (Jamasb and Pollitt 2001, 2003).  

Farsi and Filippini (2004) attempt to investigate whether the problems presented by Jamasb and 

Pollitt (2003) are due to the limitations associated with cross-section data models. The 

sensitivity of inefficiency estimates to different stochastic parametric frontier models is 

evaluated using an unbalanced panel of 59 distribution utilities in Switzerland over a time 

period of 9 years. The individual inefficiency scores and ranks vary across different models. 

These problems are not limited to cross-sectional data and cannot be completely overcome 

through panel data models (Farsi and Filippini 2004). Dissimilarities in efficiency estimates 

                                                           
5 Due to these unsolved issues underlying the StoNED model, namely the fact that involves only one 
output, this method is not used in this study. The models employed in the empirical application involve 
more than one output. 
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across methods are also reported by Estache et al. (2004) for distribution utilities in South 

America and Farsi et al. (2006) for a panel data of distribution companies in Switzerland. 

The variation of inefficiency estimates across methods and models is an important issue, since 

the robustness and accuracy of the estimated X-factors can be questioned. The X-factor is one of 

the regulatory tools in price or revenue caps regulation, on the basis of which utilities are 

rewarded or punished.6  Thus, the inefficiency estimates can have important financial effects for 

the regulated firms (e.g., Farsi and Filippini 2004). 

 

3. Distance function and GME estimation 

Technical efficiency can be estimated using the radial input distance function, which provides 

an input-based measure of technical efficiency.7 An input-oriented technical efficiency measure, 

rather than an output-based technical efficiency measure, is considered appropriate for the 

electricity distribution utilities, since the demand for distribution services is a derived demand 

that is not controlled by the utilities (e.g., Giannakis et al. 2005).  

 

Definition 1: The radial input distance function is a function { }∞+∪ℜ→ℜ×ℜ +++
NMD :  

defined as follows: 

{ } MyyVxxyD +ℜ∈∀∈>= ,)(/:0sup),( ββ
β

, 

where x is a N-input vector, y is a M-output vector and V(y) is the input (requirement) set for y. 

 

By definition, )(1),( yVxxyD ∈⇔≥ . Figure 1 illustrates the radial input distance function in 

the case of two inputs and one output. Consider the input requirement set for yo, V(yo), and the 

input vector xo. In this case, 1),( >oo xyD , and xo is technically inefficient.  

 

 

 

 

 
                                                           
6 Price (revenue) caps are established on the basis of the general formula RPI – X, that is the maximum 
rate of price (revenue) increase is equal to the inflation rate of the retail price index, RPI, minus the 
expected efficiency savings (X). 
7
 The radial input distance function is developed by Shephard (1953). For an overview of this function 

and its properties, please see Färe and Primont (1995). 
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Figure 1 Radial input distance function 

A flexible functional form is used to specify the radial input distance function.8  Flexible forms, 

such as the translog, are not employed when the sample size is small (due to an excessive 

number of parameters to be estimated) and to avoid the potential risk of collinearity among 

second order terms because of strong correlation between outputs (e.g., Farsi et al. 2006). The 

radial input distance function for the case of M outputs and N inputs is specified as a translog 

function9 
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where i denotes the i-th firm in the sample. Given that the distance function is differentiable, the 

symmetry restrictions are: lmimli αα = , m,l =1,…,M, and kninki ββ = , n,k = 1,…,N. Homogeneity 

of degree (+1) in inputs requires the following restrictions: 1=∑
n

niβ , 0=∑
n

nkiβ , k=1,…,N, 

and 0=∑
k

mkiγ , m=1,…,M. Also, the restrictions to test for separability between inputs and 

outputs are: 0=mniγ , m=1,…,M; n=1,…,N.
  

                                                           
8 Flexible functional forms are either second-order numerical or second-order differential approximations 
to an arbitrary function and impose considerable fewer restrictions prior to estimation than the traditional 
technologies, such as Cobb-Douglas, Leontief and CES. The translog form is a second-order numerical 
approximation of the natural logarithm of an arbitrary function (Chambers 1988).  
9Besides a small sample size, there is a strong correlation between outputs in this study, as discussed in 
section 4. The GME estimator is an adequate information-theoretic method to use under these 
circumstances.  
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Choosing input x1 and imposing homogeneity of degree 1 in the inputs, the distance function in 

(1) can be rewritten as 
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or, equivalently, 
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where  

 

inini xxx 1
* /=  and ii Dln−=ε , which is the error term. 

The ME estimation, also known as information-theoretic estimation, by avoiding criticisms and 

difficulties of DEA and SFA, appears to be a promising approach in efficiency analysis (e.g., 

Campbell et al. 2008; Rezek et al. 2001; Tonini and Pede 2011; Macedo et al. 2014; Robaina-

Alves et al. 2015). Traditional distributional assumptions for the two-error component in SFA 

with ML estimation are defined reflecting expectations regarding the behaviour of the errors 

(e.g., Kumbhakar and Lovell, 2000, p. 74). These formal statistical distributions (truncated 

normal, exponential, gamma, among others) are not used with GME estimation, which represent 

an important advantage. Moreover, with the strategy used by Macedo et al. (2014) that includes 

the use of DEA to define an upper bound for the inefficiency error supports, the main criticism 

on DEA is used in this context as an advantage. In this work only the GME estimator is 

considered and its features in SFA are briefly discussed next.  

Rewriting the stochastic frontier model in (2) as 

,ln 1 uvVx −+=− θ                        (3) 

where V is the )KS( × matrix of the variables on the right-hand side of (2), including the 

intercept, θ  is the )1( ×K  vector of the parameters in (2) and ε in (2) is defined as a composed 

error term, u−=νε , with ν being a random noise error term and u representing technical 

inefficiency.  
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The reparameterizations of the )K( 1× vector θ , the )S( 1× vector v  and the )S( 1× vector 

u follow the same procedures as in the traditional regression model (Golan et al. 1996; Golan 

2018). Each parameter is treated as a discrete random variable with a compact support and T 

possible outcomes; each error ν is defined as a finite and discrete random variable with J 

possible outcomes; and each error u is defined as a finite and discrete one-sided random variable 

with L possible outcomes, which implies that the lower bound for the supports is zero for all 

error values (the full efficiency case).10 Thus, the reparameterizations are given by Zp=θ , 

with Z being )KTK( ×  a  matrix of support points and p a  )KT( 1×  vector of unknown 

probabilities; Awv = , with A a )SJS( ×  matrix of support points and w a )SJ( 1×  vector of 

unknown probabilities; and  ,Bu ρ= with B a )SLS( ×  matrix of support points and ρ  a 

)SL( 1×  vector of unknown probabilities.  

The GME estimator in Golan et al. (1996) extended to the SFA context is given by 

{ }ρρ
ρ

lnwlnwplnpmaxarg
,w,p

′−′−′−                        (4) 

subject to the model constraints 

 ρBAwVZpx −+=− 1ln                       (5) 

and the set of additivity constraints 

,)1(1 pI TKK ′⊗=                                 (6) 

,)1(1 wI JSS ′⊗=                                              (7) 

,)1(1 ρLSS I ′⊗=                                              (8) 

where ⊗ represents the Kronecker product. The support matrices Z and A are defined by the 

researcher based on prior information. When such information does not exist for the parameters 

of the model, symmetric supports around zero with wide bounds can be used without expecting 

extreme risk consequences (Golan et al. 1996; Golan 2018). On the other hand, the traditional 3-

sigma rule with some scale estimate for the errors is usually considered to establish the supports 

in matrix A. Finally, concerning the support matrix B, i.e., the supports for the inefficiency error 

component, although the traditional specific distributional assumptions with ML estimation are 

not considered here, as previously mentioned, the same beliefs in the distribution of technical 

inefficiency estimates are expressed in the model through the error supports (e.g., Campbell et 

                                                           
10 The supports are defined as closed and bounded intervals in which each parameter or error is restricted 
to lie. 
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al. 2008; Macedo et al. 2014; Moutinho et al. 2018). It is important to note that, as mentioned by 

Rezek et al. (2011), while this information defines expectations on efficiency estimates, it does 

not predetermine any outcome beforehand, which represents an important feature of GME 

estimation in this context.  Additionally, an efficiency prediction from DEA is used in SFA with 

GME estimation to define an upper bound for the supports, which means that the main criticism 

on DEA (it does not account for noise; all deviations from the production frontier are estimated 

as technical inefficiency) is used here as an advantage, since it provides a possible worst case 

scenario to establish the bound for the supports. The details are presented in Section 4. 

 

4. Data and empirical results 

The data sample of this study was employed by the Portuguese regulator of the electricity sector 

(ERSE) to set the regulatory parameters for the distribution companies in the period of 2012-

2014 (ERSE 2011). Appendix A reports the data.11 The data consist of a cross-section sample 

with thirteen European distribution companies that are suitable comparators with respect to 

operational expenses (OPEX)12 and the main cost drivers. OPEX are costs controlled by the 

companies and calculated on the basis of 2009 constant prices. In the case of ESB (Ireland) and 

SP distribution (UK) whose year of the data is not 2009, OPEX is calculated considering the 

inflation rate of those countries. The OPEX of each country is calculated in US$ PPP. The 

number of customers and energy delivered (GWh) are cost drivers in all models specified 

below. Network length (Km) is considered a cost driver in two of the models, while in the other 

two it is specified as a fixed input.  

Table 1 reports the Pearson product-moment correlation coefficient between each pair of 

variables. There is a high correlation namely between the main cost drivers, indicating a positive 

linear dependence between them and an expected severe collinearity problem in the estimation 

of model (2). 

 

 

 

                                                           
11 The Serbian EPS and Croatian HEP-ODS are considered outliers by ERSE (ERSE 2011). 
12 In the regulatory period of 2012-2014, ERSE attempts to improve the methodology employed in the 
distribution activity, with the objective of decreasing OPEX, without harming investment. As a result, the 
price-cap methodology is applied only to OPEX, where capital costs (CAPEX) are analyzed separately. 
Excluding CAPEX to set the price-cap, the company is required to propose and accomplish an amount of 
investment for the regulatory period, avoiding, in this way, the effects of excessive investment. Moreover, 
this implies remunerating the accepted investment at the company’s cost of capital (ERSE 2011).  
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Table 1. Pearson product-moment correlation coefficient 

 
Number of 

customers 

Energy 

delivered 

Network  

length 
OPEX 

Number of 

customers 
1    

Energy 

delivered 
0.9907 1   

Network  

length 
0.9790 0.9676 1  

OPEX 0.9117 0.9171 0.9331 1 

 

Regarding the model specification, four models are considered specifying different returns to 

scale and variables specification. The four models are  

Model 1: CRS, x1=OPEX, y1=energy delivered, y2=number of customers, y3=network 

length; 

 Model 2: CRS, x1= OPEX, x2=network length, y1=energy delivered, y2= number  

             of customers; 

Model 3: VRS, x1=OPEX, y1=energy delivered, y2=number of customers,    y3=network 

length; 

Model 4: VRS, x1= OPEX, x2=network length, y1=energy delivered, y2= number  

of customers; 

where CRS and VRS represent, respectively, constant returns to scale and variable returns to 

scale.13   

Network length is specified in some empirical studies as an output variable with the purpose of 

measuring the difficulty of topology (Pollitt 2005). In other studies, network length, as part of 

the physical inventory of existing real capital, is considered a proxy for capital stocks or asset 

utilization (Jamasb and Pollitt 2003; Lins et al. 2007). In models 1 and 3, network length is 

defined as an output; in models 2 and 4, network length is a fixed input factor. 

                                                           
13 VRS is the most relaxed form of returns to scale in the sense that allows not only constant returns to 
scale but also increasing returns to scale and decreasing returns to scale (Fried et al. 2008, chapter 1).   
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Due to the extremely small size of the sample (thirteen observations), it is not recommended to 

use COLS or SFA with ML. Thus, DEA and SFA with GME are employed in this study. The 

DEA models, employed in this study, are presented in Appendix B.  

Table 2 reports the DEA efficiency scores as well as the rankings of the companies (presented in 

parenthesis). The sensitivity of the efficiency scores is high to the specification of network 

length as an output variable or a fixed input variable. The efficiency scores either increase or 

remain constant when the network length changes from the specification of an output variable to 

a fixed input.  In fact, the mean and the median of the efficiency scores are greater in model 2 

(model 4) than in model 1 (model 3).  

Moreover, the rankings of the companies change, in general, across models (Table 2). The 

rankings are very sensitive to the specification of the network length as an output variable or a 

fixed input. Regarding the hypothesis of returns to scale, the rankings of the companies change 

substantially. EPS, Vÿchodoslovenská, and Sibelga are the least efficient in models 1 and 2; 

EPS, Vÿchodoslovenská and ESB are the least efficient companies in models 3 and 4. HEP-

DOS is fully efficient in all models.  

Table 2. DEA efficiency scores and rankings 

Company Model 1 Model 2 Model 3 Model 4 

East   0.2980 (2) 1.0000 (1) 1.0000 (1) 1.0000 (1) 

EDP   0.1189 (7) 1.0000 (1) 0.3305 (7) 0.8826 (8) 

Endesa   0.0917 (8) 1.0000 (1) 0.2854 (8) 1.0000 (1) 

Enel Distribuzione   0.0670 (9) 1.0000 (1) 0.1746 (9) 1.0000 (1) 

ESB   0.0573 (10) 0.3428 (9)  0.0965 (12) 0.1529 (12) 

NEDL   0.2537 (3) 0.3039 (10) 1.0000 (1) 1.0000 (1) 

PPC   0.1216 (6) 1.0000 (1) 0.4247 (6) 1.0000 (1) 

Sibelga   0.0528 (11) 0.1453 (11) 0.1724 (10) 1.0000 (1) 

South East   0.1899 (5) 0.4507 (7) 0.6479 (5) 0.8239 (9) 

SP Distribution   0.1970 (4) 0.4298 (8) 0.6106 (11)  0.8205 (10) 

Vÿchodoslovenská   0.0354 (12) 0.1343 (12) 0.1060 (13) 0.5309 (11) 

EPS   0.0173 (13) 0.0866 (13) 0.0363 (11) 0.0513 (13) 

HEP-ODS   1.0000 (1) 1.0000 (1) 1.0000 (1) 1.0000 (1) 

Mean   0.1924     0.6072      0.4527     0.7894 

Standard deviation   0.2576     0.3928      0.3631     0.3339 

Median   0.1189     0.4507      0.3305     1.000 
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Adding the constraint 1≤∑ jz  in the DEA model in Appendix B, efficiency scores are 

generated under the hypothesis of non-increasing returns to scale. These efficiency scores are 

equal to the ones generated with CRS (models 1 and 2), which indicate that electricity 

distribution companies are operating at increasing returns to scale.14 

Our DEA results are, in general, consistent with the findings in some previous studies (e.g., 

Farsi and Filippini 2004; Jamasb and Pollitt 2003). “Our experience in Europe shows, however, 

that different versions of a DEA model will give quite different results and that there is no way 

to tell which set of results is most reliable.(…)” This finding from Shuttleworth (2003, p. 45) is 

also evident in this study. 

Before discussing the estimation procedures of SFA with the GME estimator, as well as the 

results from this method, it is important to state that these are ill-posed models, namely ill-

conditioned (the collinearity problem revealed by the analysis of Table 1) and under-determined 

(the number of parameters to estimate exceeds the number of observations available in some 

models). Therefore, the use of traditional estimation techniques in SFA should be avoided in 

this empirical application and ME estimators are recommended. 

As mentioned previously, the support matrices Z and A are defined by the researcher based on 

prior information. In this work, the supports in Z are defined through [-10,10] for all the 

parameters of the models (wide bounds; the impact on the estimates using supports of higher 

amplitude were negligible; e.g., Preckel 2001), and the supports in the matrix A are defined by 

[-4,4] and [-2,2] considering the standard deviation of the noisy observations and the 3-sigma 

rule as a guide. The supports in matrix B are established accordingly to Macedo et al. (2014), 

where the upper bound of each support is given by )ln( nDEA− , being nDEA  the lower 

efficiency estimate obtained by DEA.15 Five points in the supports )5( === LJT  of each 

support matrix are considered (a usual value in literature). 

 

Tables 3 and 4 present the estimated coefficients of the input distance function with its 

corresponding standard errors using bootstrap by resampling residuals in 1000 trials. The 

median of each estimated coefficient is generated as the median of the 1000 estimates obtained 

by bootstrapping residuals. 

                                                           
14 For details on this procedure, see Fӓre et al. (1994), chapter 3. 
15Another strategy based on Campbell et al. (2008) was implemented to define the supports in matrix B. 
Although the efficiency estimates are different, the rankings in terms of efficiency are equal and the 
elasticities computed at the mean values of inputs and outputs are identical.  
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Table 3. Parameters estimates of the input distance function obtained by SFA with GME, [-10,10], [-2,2]a 

 Model 1 Model 2 Model 3 Model 4 

 Parameter 

estimates 

Standard 

error 
Median 

Parameter 

estimates 

Standard 

error 
Median 

Parameter 

estimates 

Standard 

error 
Median 

Parameter 

estimates 

Standard 

error 
Median 

α0 -1.3069* 0.4874 -0.8918 -0.8229 0.8071 -1.1112 -0.3147 0.2273 -0.3514 -0.5614** 0.3116 -0,6490 

α1  0.7587 0.5587  0.2294  0.0420 0.7173  0.3368   0.6223 0.3842  0.0685 -1.0731*** 0.3991 -1,6065 

α2 -1.4937** 0.5696 -1.2614 -1.0420** 0.7173 -1.3368 -1.4947*** 0.3891 -1.2538 -3.7810*** 0.3525 -3,4955 

α3 -0.2650 0.5786  0.0399    -0.6054 0.5672 -0.2563    

β2     0.1115*** 0.3354  0.5279     4.1816*** 0.2571  4,4383 

α11  1.5300 0.8446  0.8631  0.4122* 0.3958  0.7086 -0.6630 0.8043 -0.3166 -1.1678 0.9500 -0,7536 

α12 -0.2731 0.3300 -0.2625 -0.3904* 0.3371 -0.5857  1.9586** 0.4807   1.0163  1.8098 0.5709  0,9884 

α13 -1.2370 0.7243 -0.5847    -2.2501** 0.5789 -1.2304    

α21 -0.2731 0.3314 -0.2630 -0.3904* 0.3371 -0.5857  1.9592** 0.4806  1.0163  1.8098 0.5709  0,9884 

α22   0.6413 0.4032  0.5897  0.3685* 0.2939  0.4711 -1.5164 0.4946 -0.5963 -1.3469 0.4748 -0,4006 

α23 -0.3406 0.5724 -0.2918     0.5499 0.4844  0.1175    

α31 -1.2671 0.7199 -0.5881    -2.2509** 0.5812 -1.2638    

α32 -0.3406 0.5719 -0.2918     0.5499 0.4842  0.1175    

α33  1.5602 0.8938  0.8932     1.3074 0.6677  0.9397    

γ1          -2.8331 0.9565 -1,2244 

γ2           1.2817 0.6514  0,1558 
a Confidence intervals are provided upon request to the authors.  *, ** and *** are coefficients statistically significant at 10%, 5% and 1% respectively. 
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Table 4. Parameters estimates of the input distance function obtained by SFA with GME, [-10,10], [-4,4]a 

 Model 1 Model 2 Model 3 Model 4 

 Parameter 

estimates 

Standard 

error 
Median 

Parameter 

estimates 

Standard 

error 
Median 

Parameter 

estimates 

Standard 

error 
Median 

Parameter 

estimates 

Standard 

error 
Median 

α0 -0.9651 0.4380 -0.6165 -0.9970** 0.6575 -1.3077 -0.2568 0.1336 -0.1649 -0.5470*** 0.1533 -0.4982 

α1  0.4017 0.3831  0.0343  0.2760 0.6277  0.6001  0.1321 0.2507 -0.2924 -1.6086*** 0.2735 -2.0063 

α2 -1.2680* 0.5091 -0.9714 -1.2760*** 0.6277 -1.6001 -1.1582*** 0.2599 -0.7965 -3.4270*** 0.2551 -3.1009 

α3 -0.1336 0.3238 -0.0823    -0.4757 0.3288 -0.4383    

β2     0.5255*** 0.3587  1.1976     4.3363*** 0.1184  4.4044 

α11  0.8664 0.5537  0.3835  0.6027*** 0.3889  1.0112 -0.3933 0.6024 -0.1307 -0.6760 0.6239 -0.2191 

α12 -0.2312 0.2812 -0.2410 -0.4997** 0.3236 -0.7530  1.0980 0.3247  0.3413  0.9955 0.3671  0.3604 

α13 -0.6490 0.4673 -0.1483    -1.2968 0.4133 -0.4331    

α21 -0.2312 0.2836 -0.2419 -0.4997** 0.3236 -0.7530  1.0980 0.3245  0.3413  0.9955 0.3671  0.3605 

α22   0.5640 0.3282  0.4645  0.3968* 0.2769  0.4933 -0.6913 0.3565 -0.0062 -0.4546 0.2965  0.1837 

α23 -0.3209 0.4118 -0.2321     0.1936 0.3997 -0.0383    

α31 -0.6489 0.4677 -0.1483    -1.2968 0.4168 -0.4339    

α32 -0.3209 0.4189 -0.2316     0.1936 0.4035 -0.0383    

α33  0.9717 0.6584  0.4330     0.8962 0.5741  0.4410    

γ1          -1.4242 0.5764 -0.4844 

γ2           0.2865 0.3942 -0.3591 
a Confidence intervals are provided upon request to the authors.  *, ** and *** are coefficients statistically significant at 10%, 5% and 1% respectively. 
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Most of the parameter estimates of models 1 and 3 are not statistically significant for both set of 

supports, namely for the set [-10,10] and [-4,4]. Yet, most of the parameter estimates of models 

2 are statistically significant for both set of supports. Estimation results for model 4 indicate that 

there is separability between outputs (number of customers and energy delivered) and the fixed 

input factor (network length).16 Note that the parameter estimate of network length in models 2 

and 4 is statistically significant at the 1% level, contrasting with the statistical insignificance of 

the parameter estimate of the network length in models 1 and 3, where this variable is specified 

as an output. 

In summary, SFA with GME results indicate that model 2 seems a stable specification of the 

technology. This means that the specification of network length as a fixed input may be more 

appropriate than as an output variable and CRS may be more adequate than the hypothesis of 

VRS. However, the choice of network length as an input variable or an output variable deserves 

further research work. 

Tables 5 and 6 present the efficiency scores and the rankings of the companies (presented in 

parenthesis) generated by SFA with GME for each set of supports. Although there are 

differences in the standard deviation, for every model the efficiency scores are not very 

sensitive to the set of supports in terms of central tendency. The average (median) of the 

efficiency scores, for example, in model 1 is 0.4369 (0.4223) in the case of the set of supports 

being [-10,10] and [-4,4] and 0.4338 (0.4140) when the supports are [-10,10] and [-2,2]. 

As DEA efficiency scores, the GME efficiency scores are also sensitive to the specification of 

the network length as an output variable or a fixed input variable. Consider, for example, the 

supports [-10,10] and [-2,2].17 The efficiency scores increase, in general, when the specification 

of network length changes from an output variable to a fixed input (compare models 1 and 2, 

and models 3 and 4). 

Although the rankings of the companies change across models, there are a few of companies 

that are in the highest and lowest efficiency groups in all models:  HEP-DOS is the most 

efficient company and EPS and Vÿchodoslovenská are the least efficient for both set of 

supports. Interestingly, the DEA rankings indicate, as mentioned before, that HEP-DOS is fully 

efficient and EPS and Vÿchodoslovenská are the lowest efficient companies in all models. 

 

 

                                                           
16 Separability between the outputs and the fixed input factor implies that the marginal rate of 
transformation between the two outputs does not depend on the network length.   
17 For the set of supports [-10,10] and [-4,4], the results are similar. 
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Table 5. SFA with GME efficiency scores and rankings, [-10,10],[-2,2] 
Company Model 1 Model 2 Model 3 Model 4 

East 0.4984 (4) 0.8297 (2) 0.5485 (4) 0.6118 (3) 

EDP 0.4378 (5) 0.5678 (7)  0.4407 (10)  0.4662 (10) 

Endesa 0.4104 (8) 0.5519 (8) 0.5226 (7) 0.4849 (9) 

Enel Distribuzione  0.3016 (11)   0.4630 (10) 0.4960 (8) 0.6182 (2) 

ESB  0.3672 (10)   0.4614 (11) 0.5265 (6) 0.5680 (7) 

NEDL 0.3695 (9) 0.7709 (3) 0.4509 (9) 0.5914 (5) 

PPC 0.4242 (6) 0.5706 (6)  0.4135 (11)  0.4225 (11) 

Sibelga 0.4140 (7) 0.5242 (9) 0.5375 (5) 0.5926 (4) 

South East 0.5864 (3) 0.7035 (4) 0.5967 (3) 0.5469 (8) 

SP Distribution 0.6399 (2) 0.6906 (5) 0.6365 (2) 0.5737 (6) 

Vÿchodoslovenská  0.1434 (13)   0.2872 (12)  0.2977 (12)   0.3072 (12) 

EPS  0.1841 (12)   0.2635 (13)  0.2807 (13)   0.2886 (13) 

HEP-ODS 0.8624 (1) 0.9193 (1)    0.8049 (1) 0.8819 (1) 

Mean     0.4338     0.5849    0.5043     0.5349 
Standard deviation     0.1887     0.1955    0.1379     0.1514 

Median     0.4140     0.5678    0.5256     0.5680 

 
 

Table 6. SFA with GME efficiency scores and rankings, [-10,10], [-4,4] 
Company Model 1 Model 2 Model 3 Model 4 

East 0.4809 (4) 0.6928 (3) 0.5455 (3) 0.5770 (2) 

EDP 0.4474 (5) 0.6026 (7) 0.4949 (8) 0.5344 (9) 

Endesa 0.4215 (8) 0.5935 (8) 0.5056 (7)   0.5203 (10) 

Enel Distribuzione   0.3826 (11)   0.5614 (10) 0.4870 (9) 0.5570 (4) 

ESB 0.4169 (9)   0.5278 (11) 0.5213 (5) 0.5515 (7) 

NEDL 0.4223 (7) 0.6990 (2)   0.4857 (10) 0.5537 (5) 

PPC 0.4390 (6) 0.6101 (6)   0.4820 (11)   0.5180 (11) 

Sibelga   0.4033 (10) 0.5638 (9) 0.5083 (6) 0.5516 (6) 

South East 0.4891 (3) 0.6543 (4) 0.5386 (4) 0.5511 (8) 

SP Distribution 0.5127 (2) 0.6459 (5) 0.5553 (2) 0.5650 (3) 

Vÿchodoslovenská   0.2933 (13)   0.5034 (12)   0.3992 (13)   0.4385 (12) 

EPS   0.2985 (12)   0.4469 (13)   0.4066 (12)   0.4370 (13) 

HEP-ODS 0.6721 (1) 0.7232 (1) 0.6675 (1) 0.7105 (1) 

Mean     0.4369     0.6019     0.5075     0.5435 
Standard deviation     0.0960     0.0814     0.0671     0.0668 

Median     0.4223     0.6026     0.5056     0.5515 
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Table 7 presents the Pearson correlation coefficient between the DEA efficiency scores and the 

SFA with GME efficiency scores generated with supports [-10,10], [-4,4] (denoted by GME4) 

and [-10,10], [-2,2] (denoted by GME2), as well as between GME2 and GME4. Moreover, 

results from the Kruskal-Wallis and the median tests are also reported in this table. Both are 

nonparametric tests, the first one with a null hypothesis that different populations have an 

identical distribution, and the second with a null hypothesis that different populations have 

identical medians.  

 
Table 7. Pearson correlation coefficient and non-parametric tests on efficiency scores 

 Model 1 Model 2 Model 3 Model 4 

Pearson correlation     

DEA, GME2 0.806***       0.466*      0.592**         0.514**  

DEA, GME4 0.861***       0.486**  0.659***         0.521**  

GME2, GME4 0.984***  0.981***  0.978***  0.978***  

Kruskal-Wallis test p-value=0.0003 p-value= 0.936 p-value=0.562 p-value=0.013 

Median Test p-value=0.001 p-value=0.488 p-value=0.663 p-value=0.007 

*, ** and *** are correlations statistically significant at 10%, 5% and 1% respectively. 

 

The correlation between DEA and each of the SFA with GME efficiency scores is positive and 

very strong in model 1. For the other models, the correlation is moderately positive. However, 

the correlation between GME2 and GME4 is very strong in each model (as expected).  

The following decisions on Kruskal-Wallis and median tests can be performed, for example, at 

2% significance level. The null hypothesis that the DEA and the two SFA with GME efficiency 

scores originate from the same distribution (i.e., the three populations have equal distribution) is 

rejected in models 1 and 4; yet the null hypothesis is not rejected when it considers that the 

GME2 and GME4 population efficiency scores originate from the same distribution. Results for 

the median test are similar in the sense that the null hypothesis considering that the DEA and the 

two GME population efficiency scores have the same median is rejected in models 1 and 4. 

However, the hypothesis that the GME2 and GME4 population efficiency scores have the same 

median is not rejected.   

Table 8 reports the Spearman correlation coefficient on the efficiency rankings obtained by 

DEA and SFA with GME. Results indicate a significant positive monotonic trend between each 

pair of efficiency rankings, namely between the ones generated with GME2 and GME4, in all 

models. 
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Table 8. Spearman correlation coefficient on efficiency rankings 
 Model 1 Model 2 Model 3 Model 4 

DEA, GME2 0.797***       0.526**       0.552**         0.597**  

DEA, GME4 0.890***       0.488**  0.525**         0.466* 

GME2, GME4 0.962***  0.995***  0.967***  0.945***  

*, ** and *** are correlations statistically significant at 10%, 5% and 1% respectively. 

 

5. Conclusions 

The main purpose of this study is to propose an alternative stochastic frontier approach that can 

be used by national regulators of electricity utilities. Some national regulators have been facing 

a problem of ill-posed frontier models. In the case of regulation of the electricity sector, an ill-

posed model arises mainly from (i) limited information available - small sample sizes, 

incomplete data, and under-determined models; (ii) models affected by collinearity and/or 

outliers; and (iii) missing data. Information-theoretic methods, where generalized maximum 

entropy is included, are useful in the estimation of such ill-posed models.  

The empirical study involves a sample data on thirteen European electricity distribution 

companies used by the Portuguese regulator of the electricity sector to set the regulatory 

parameters for the distribution companies in the period of 2012-2014. SFA with GME and DEA 

methods are employed and the estimates of technical efficiency are compared, as well as the 

efficiency rankings. 

Considering the SFA with the GME estimator, it is important to note that the models are ill-

posed. Additionally, the number of parameters to be estimated is greater than the number of 

observations in some models. The results from SFA with the GME indicate that model 2 seems 

a stable specification of the technology. This has two implications in the technology 

specification of the electricity distribution utilities: the specification of network length as a fixed 

input rather than an output variable may be more appropriate, as well as the hypothesis of 

constant returns to scale.  Yet, further studies are needed addressing in particular the 

specification of network length as an output or an input variable.  

The SFA with GME and DEA efficiency scores as well as the rankings of the companies are 

very sensitive to model specification, namely to returns to scale and the specification of the 

network length as an output variable or a fixed input. The Kruskal-Wallis and the median tests 

indicate that DEA and the two SFA with GME efficiency scores do not originate from the same 

distribution and do not have the same median. However, those statistical tests indicate that the 

two SFA with GME efficiency scores originate from the same distribution and have the same 

median. Also, the correlation between the two SFA with GME efficiency scores is very strong 
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and there is a significant positive monotonic trend between each pair of efficiency rankings in 

all models. 

Furthermore, the empirical results indicate that (i) the SFA with GME efficiency scores and 

rankings are not very sensitive to prior information (set of supports) and have similar 

distributional properties; (ii) SFA with GME using different prior information rank the 

electricity distribution utilities in approximately the same order; and (iii) SFA with GME using 

different prior information find mostly the same electricity distribution companies to be in the 

highest and lowest efficiency groups. The empirical results of this study indicate that it may be 

useful for national regulators of distribution electricity companies, namely in countries with 

very few regulated companies, to employ SFA with GME to set price controls within incentive-

based regulation. 

In this empirical study, quality of service in distribution networks, such as technical quality, is 

not considered. Additionally, high penetration of renewable distributed generation (DG) puts 

new challenges which has not been understood and incorporated homogeneously in distribution 

regulation across Europe. The connection of renewable DG to distribution networks has a 

double impact on costs: network costs and energy losses. The situation across EU is that not all 

member states regulators consider renewable DG as a cost driver, at least explicitly (Cossent et 

al. 2009). 

The research issue of this study is crucial for national regulators and the electricity sector. The 

SFA with GME approach allows national regulators, namely the ones that regulate a few firms, 

to set price controls using this frontier method. Moreover, the GME estimation can be extremely 

useful and a robust empirical methodology for investigating the nexus between the incentive-

based regulation and investment behavior of electric utilities, an issue recently debated in the 

literature in different countries (e.g., Cambini and Rondi 2010; Cullmann and Nieswand 2016; 

Huang and Söder 2017). Investment in the electricity sector, in general, and in the electricity 

distribution, in particular, is increasingly important with the energy transition, which involves 

installing new capacity and replacing existing assets. Investments are also induced by new loads 

such as electric vehicles, and the widespread use of smart metering systems which imply very 

large investments for the distribution utilities. Given that distribution utilities are regulated, the 

design of incentive mechanisms becomes crucial for the energy sector (e.g., Cambini et al. 

2014; Banovac et al. 2009; Cullmann and Nieswand 2016). 
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Appendix A. International data on electricity distribution utilities 

 

Company Country Year 
Number of 
customers 

Energy 
delivered 
(GWh) 

Network 
length 
(km) 

OPEX 
(PPC 
USD) 

East UK 2010 2223548 34719 30160 100724 
EDP distribuição Portugal 2009 6119805 46146 218226 335630 

Endesa Spain 2009 11786168 115476 312336 1088632 
Enel Distribuzione Italy 2009 30000000 240900 1095868 3106148 

EPS Serbia 2009 2310811 27157 142195 1354942 
ESB Irland 2006 2063925 24874 165771 375589 

HEP-ODS Croatia 2009 2310811 14701 132938 12708 
NEDL UK 2010 1600000 15540 15540 52959 
PPC Greece 2009 7554289 54400 222072 386646 

Sibelga Belgium 2009 211001 5342 6307 87476 
South East UK 2010 2229279 22135 45000 100724 

SP Distribution UK 2009 2310811 20321 63752 89165 
Vychodoslovenska Slovakia 2009 609554 3386 23500 94621 
Source: ERSE (2011) 

 
 

Appendix B: DEA models 

DEA is a non-parametric, mathematical programming-based method to generate the efficient 

frontier in a given data set and measure the efficiency of each firm relative to the frontier. It 

fully envelops the data and makes no accommodation for noise (Fried et al. 2008, chapter 1). 

The DEA model, assuming CRS, to generate technical efficiency for each firm i, is given as: 
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where iy  and ix  are, respectively, the M-output vector and the N-input vector of firm i, z is a 

J×1 intensity vector, where J is the total number of firms in the data set. λ is a scalar whose 

optimal value is the technical efficiency score of firm i, )x,y(TE ii , which, in turn, is equal to 

the inverse of the value of the radial distance function. 

In the minimization problem, technical efficiency of firm i is assessed in terms of its ability to 

contract its input vector subject to the efficient frontier. If a radial contraction of the input vector 
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is possible for firm i, its optimal λ < 1 (i.e., firm i is technically inefficient), while if the radial 

contraction is not possible, its optimal λ = 1 (i.e., firm i is technically efficient). 

For model 1, M=3 and N=1. For model 2, M=2 and N=2, where network length is considered a 

fixed input. Models 3 and 4 are similar to, respectively, models 1 and 2, except that the former 

models assume VRS. This assumption is modeled by adding the convexity constraint 1=∑
j

jz  

in the minimization problem, presented above.  

 


