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Abstract

The literature on incentive-based regulation indleetricity sector indicates that the size of this
sector in a country constrains the choice of femthethods as well as the model specification
itself to measure economic efficiency of reguldfieths. The aim of this study is to propose a
stochastic frontier approach with maximum entrogyingation, which is designed to extract
information from limited and noisy data with minimatatements on the data generation
process. Stochastic frontier analysis with genegdlimaximum entropy and data envelopment
analysis — the latter one has been widely usedaltipmal regulators — are applied to a cross-
section data on thirteen European electricity ghgtion companies. Technical efficiency scores
and rankings of the distribution companies gendrhteboth approaches are sensitive to model
specification. Nevertheless, the stochastic frordigalysis with generalized maximum entropy
results indicate that technical efficiency scorasehsimilar distributional properties and these
scores as well as the rankings of the companiesdrgery sensitive to the prior information.
In general, the same electricity distribution comipa are found to be in the highest and lowest
efficient groups, reflecting weak sensitivity tetprior information considered in the estimation
procedure.
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1. Introduction

Incentive-based regulation in the electricity sett@s been introduced in many countries during
the last three decades. Although there are a wadiety of incentive-based schemes used for
electricity utilities (e.g., Jamasb and Pollitt 2D0most regulation practices are based on
benchmarking (i.e., assessing a firm’s efficiengginst a reference performafci order to

promote economic efficiency (e.g., productive édficy, cost efficiency) of regulated firms.

The size of a country’s electricity sector, definsdthe number of companies in the electricity
value chain, constrains the choice of benchmarkiethods, as well as the specification of the
frontier model (e.g., Haney and Pollitt 2009, 202013; Pollitt 2005; Per Agrell and Bogetoft

2014). Data problems (or lack of data) and the sfza country’s electricity sector are among
the reasons pointed out by some national reguldtorsiot employing frontier approaches

(Haney and Pollitt 2009).

Energy regulators employing frontier methods amegeneral, associated with countries with a
large number of regulated companies (e.g., Finl&nidain, Germany). In contrast, there are a
number of countries with very few regulated compar(e.g., Portugal, Slovenia and Panama)
that employ frontier methods using internationgbd&ven in these cases, the sample size may
not be enough to allow the use of some frontierhows$, due to the limited number of
appropriate comparators that can be identifiedndrassion and distribution electricity utilities
are heterogeneous, in the sense that utilitiesimesize and other characteristics that are ctitica
for regulation, namely ownership, governance, faskision, size of operational areas, number
of customers, and financial accounting system ,(€gr Agrell and Bogetoft 2014; Cullmann
and Nieswand 2016).

The international survey of regulators conductedHapey and Pollitt (2009) indicates that data
envelopment analysis (DEA) is strongly preferreccéorected ordinary least squares (COLS)
and maximum likelihood (ML) with stochastic frontianalysis (SFA) in the electricity sector.
For an interesting literature survey on the apfibicaof DEA to energy (and environmental)
issues, please see Zhou et al. (2008). Theredteatlidea that DEA requires a relatively low
number of observations and this may be one of rsafsw the stronger preference for DEA over
COLS and ML with SFA. Furthermore, there are als® drawbacks of employing COLS and

ML in extremely small data samples (for instantés important to note that ML is attractive

% For a detailed presentation of methods for efficiemeasurement, see Kumbhakar and Lovell (2000)
and Fried et al. (2008), chapter 2, for paramdtoatier models and Fried et al. (2008), chaptefos,
non-parametric frontier models.

® Regulation of the electricity distribution secisrchanging from an efficiency-oriented instrumémt
one that also includes the provision of servicdityuge.g., Cambini et al. 2014).



mainly due to its large-sample properties). Yet ADdtiffers from the curse of dimensionality

which casts doubts on its results.

Some national regulators have been facing a probfeiihposed frontier models. lll-posedness
of a model may arise from several reasons (e.darGeat al. 1996; Golan 2018). In the case of
regulation of the electricity sector, an ill-posaddel arises mainly from (i) limited information
available - small sample sizes, incomplete datd,veimen the number of unknown parameters
exceeds the number of observations; (ii) modekscégtl by collinearity and/or outliers; and (jii)
missing data (e.g., unobserved heterogeneity). s,Tthe question is how to achieve the best
possible results with an ill-posed model? The amnssvaot straightforward and the choice of a
specific methodology is usually controversial. Atiractive approach is based on some
maximum entropy (ME) estimators, which are desigioeelxtract information from limited and

noisy data using minimal statements on the datargéon process.

The purpose of this study is to show that with gelmed maximum entropy estimation, all the
available information can be included in the modethout the usual need to convert ill-posed
into well-posed problems required by traditiondireation techniques. This study proposes a
frontier approach, based on stochastic frontietyarsa(SFA) with the generalized maximum
entropy (GME) estimator to measure productive (el) efficiency of a sample of thirteen
European electricity distribution companies. Thengla was employed by the Portuguese
regulator of the electricity sector (ERSE) to det tegulatory parameters for the distribution
companies in the period of 2012-2014 (ERSE 2014yefal possible model specifications are
considered specifying different returns to scald, amput and output variables. SFA with GME
and DEA (the most preferred method by national letgus) are applied to the ERSE data set

and the efficiency results are compared, as wahaefficiency rankings.

The remainder of the paper is organized as folldwssection 2, a brief literature review is
presented focusing on the performance of the mostnwn frontier methods used in the
electricity sector. Section 3 presents the radigiif distance function, used to measure technical
efficiency, and the GME estimation. The data sangueclectricity distribution companies is
discussed in section 4, as well as the empiricallté obtained from SFA with GME and DEA.

Concluding remarks are presented in section 5.

“* A very brief discussion of the radial input distarfunction and GME estimation, using a sample with
eleven companies, were presented at the Conferekd¢ 2016 (Silva et al. 2016). It was a first
preliminary study where efficiency scores were gatesl but there was neither statistical analysisano
full interpretation of the efficiency results. Tkample used in this study is different and incluties
additional companies considered as outliers by ERSE



2. A Brief literaturereview

The most common benchmarking methods used in thetrigity sector are econometric
modeling, involving constrained ordinary least sgga(COLS) and SFA, indexing (e.g., unit
costs and total factor productivity indexes), andtimematical modeling, using DEA (e.g.,
Lowry and Getachew 2009). More recently, Kuosmaanash Kortelainen (2012) propose a two-
stage method, called the stochastic non-smoothlgmwent of data (StoNED), to estimate a
frontier model. However, there are still some uwmedl issues underlying the StoNED (c.f.,
Andor and Hesse 2014; Kuosmanen and Kortelainer?;2Rliosmanen and Johnson 2010;
Kuosmanen 2006), namely: (1) the StoNED model irodfoanen and Kortelainen (2012)
involves one output and multiple inputs; (2) whstatistical properties of the univariate convex
nonparametric least squares (CNLS) estimator aié eséablished (consistency and rate of
convergence), the same does not apply to the radlite CNLS estimator; and (3) the
composite error term assumptions imported from Ski& very restrictive and may be

inappropriate.

Several studies compare the performance of soréidranethods in the context of regulating
the electricity sector or/and using a Monte Carfoutation study. In particular, those studies
report dissimilarities of efficiency estimates amatfferent methods and model specifications.
Jamasb and Pollitt (2003) discuss the effect otctiwce of frontier methods (DEA, COLS and
SFA models) using an international cross sectieaaiple of 63 regional electricity distribution
utilities in six European countries. This studyigades that the selection of frontier methods,
model specification, and variables (choice of ispwutputs and environmental variables) can
affect not only the efficiency scores but alsorduaking of the companies. Additionally, frontier
approaches are sensitive to shocks and errorsidata. This is particularly true when cross-
sectional data is used and with frontier methods #re deterministic, such as the DEA and
COLS (Jamasb and Pollitt 2001, 2003).

Farsi and Filippini (2004) attempt to investigateether the problems presented by Jamasb and
Pollitt (2003) are due to the limitations assoaat®ith cross-section data models. The
sensitivity of inefficiency estimates to differelstochastic parametric frontier models is
evaluated using an unbalanced panel of 59 distoibuttilities in Switzerland over a time
period of 9 years. The individual inefficiency sesrand ranks vary across different models.
These problems are not limited to cross-sectiomdh dand cannot be completely overcome

through panel data models (Farsi and Filippini 20@issimilarities in efficiency estimates

®Due to these unsolved issues underlying the StoNtlel, namely the fact that involves only one
output, this method is not used in this study. Teels employed in the empirical application inelv
more than one output.



across methods are also reported by Estache €2Gfl4) for distribution utilities in South

America and Farsi et al. (2006) for a panel datdistfibution companies in Switzerland.

The variation of inefficiency estimates across mdthand models is an important issue, since
the robustness and accuracy of the estimétittors can be questioned. TXédactor is one of
the regulatory tools in price or revenue caps @guh, on the basis of which utilities are
rewarded or punishéd Thus, the inefficiency estimates can have imporiaancial effects for

the regulated firms (e.g., Farsi and Filippini 2p04

3. Distancefunction and GM E estimation

Technical efficiency can be estimated using théatadput distance function, which provides

an input-based measure of technical efficiehy. input-oriented technical efficiency measure,
rather than an output-based technical efficiencyasuee, is considered appropriate for the
electricity distribution utilities, since the denthfor distribution services is a derived demand
that is not controlled by the utilities (e.g., Giakis et al. 2005).

Definition 1 The radial input distance function is a function:OY xO% - 0O, D{+ oo}
defined as follows:

D(y,X) =sud8>0: x/ B0V (y)}, DyooM,
B

wherex is aN-input vectory is aM-output vector and(y) is the input (requirement) set far

By definition, D(y,x) 21 = xOV(y). Figure 1 illustrates the radial input distancaction in
the case of two inputs and one output. Consideinghigt requirement set fof, V(y°), and the

input vector<’. In this caseD(y°, x°) >1, andx’ is technically inefficient.

® Price (revenue) caps are established on the basie general formula RPI — X, that is the maximum
rate of price (revenue) increase is equal to tliation rate of the retail price index, RPI, mintige
expected efficiency savings (X).

’ The radial input distance function is developedSephard (1953). For an overview of this function
and its properties, please see Féare and Primofi5j19
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Figure 1 Radial input distance function

A flexible functional form is used to specify thedial input distance functich Flexible forms,
such as the translog, are not employed when th@leasize is small (due to an excessive
number of parameters to be estimated) and to awaidpotential risk of collinearity among
second order terms because of strong correlatiomelea outputs (e.g., Farsi et al. 2006). The
radial input distance function for the caseMfoutputs andN inputs is specified as a translog

functior?

M N L MM
InD, =ay + Zlami Ny, + Z;-lgni In X +§ 22 miInyniny,
m=! n=

m=1l=1 1
1NN 1M N )
+=> > BuaInx X + =3 YN yinx,
2 n=1k=1 2 m=1n=1

wherei denotes théth firm in the sample. Given that the distancecfion is differentiable, the
symmetry restrictions arer,,; = a,, , m,|=1,...M, and 5.,; = B » n.k=1,...N. Homogeneity

of degree (+1) in inputs requires the followingtriesions: > B, =1, > B =0, k=1,...N,
n n
and ) ymq =0, m=1,... M. Also, the restrictions to test for separabilitgtseen inputs and
k

outputs arey,,,; =0, m=1,...M; n=1,... N.

8 Flexible functional forms are either second-omdemerical or second-order differential approximasio
to an arbitrary function and impose considerablecferestrictions prior to estimation than the ttiaal
technologies, such as Cobb-Douglas, Leontief an8.(lbe translog form is a second-order numerical
approximation of the natural logarithm of an ardniyrfunction (Chambers 1988).

Besides a small sample size, there is a strongletion between outputs in this study, as discugsed
section 4. The GME estimator is an adequate infaomdheoretic method to use under these
circumstances.



Choosing inpuk; and imposing homogeneity of degree 1 in the inghs distance function in

(1) can be rewritten as

IN(D; /%) = a0,+2amllnym,+2ﬂmlnx += ZZam“Inym,Iny,l

m=1 m-lI =1
1M
- ZZﬁnkllanllnxkl +222me|n yml nlv
n 2k=2 m=1n=2

or, equivalently,

=In X:Lu - aOI + Zaml In yml + Zﬁnl In Xm + Zzamll In yml In y||

m=1 m 11=1

+§ZZﬁnki In X 1N % +522ani|n Yo INXG + &,

n=2k=2 m=1n=2

(2)

where

X, =X, /X; ande =-InD,, which is the error term.

The ME estimation, also known as information-thdorestimation, by avoiding criticisms and
difficulties of DEA and SFA, appears to be a prangsapproach in efficiency analysis (e.g.,
Campbell et al. 2008; Rezek et al. 2001; Tonini Bede 2011; Macedo et al. 2014; Robaina-
Alves et al. 2015). Traditional distributional asstions for the two-error component in SFA
with ML estimation are defined reflecting expecias regarding the behaviour of the errors
(e.g., Kumbhakar and Lovell, 2000, p. 74). Thesenfd statistical distributions (truncated
normal, exponential, gamma, among others) are sed with GME estimation, which represent
an important advantage. Moreover, with the strateggd by Macedo et al. (2014) that includes
the use of DEA to define an upper bound for théficiency error supports, the main criticism
on DEA is used in this context as an advantagethi® work only the GME estimator is

considered and its features in SFA are brieflyuised next.

Rewriting the stochastic frontier model in (2) as
—-Inx, =V8+v-u, (3)

whereV is the (Sx K ) matrix of the variables on the right-hand side 2}, (including the
intercept,@ is the (K x1) vector of the parameters in (2) anth (2) is defined as a composed
error term,e=v—-u, with v being a random noise error term amdepresenting technical

inefficiency.



The reparameterizations of t& x1)vector 8, the (Sx1) vectorv and the(Sx1) vector

ufollow the same procedures as in the traditiongtegsion model (Golan et al. 1996; Golan
2018). Each parameter is treated as a discret@mandriable with a compact support and
possible outcomes; each ermoris defined as a finite and discrete random vagiabith J
possible outcomes; and each euds defined as a finite and discrete one-sidedoandariable
with L possible outcomes, which implies that the lowenrabfor the supports is zero for all

error values (the full efficiency cas®)Thus, the reparameterizations are givendoy Zp ,
with Z being( K X KT ) a matrix of support points amqla (KT %1) vector of unknown
probabilities;v = Aw, with A a (Sx SJ) matrix of support points and a (SJx1) vector of
unknown probabilities; andu = Bp,with B a (Sx SL) matrix of support points ang a

(SLx1) vector of unknown probabilities.

The GME estimator in Golan et al. (1996) extenaethé SFA context is given by

argmax- p'ln p-wInw- p'In o} (4)
pW, 0

subject to the model constraints
—-Inx, =VZp+ Aw-Bp (5)

and the set of additivity constraints

I = O%)p, (6)
Is =(Is01))w, (7)
Is=(ls01)p, (8)

where® represents the Kronecker product. The supporticestZ andA are defined by the
researcher based on prior information. When suidhrimation does not exist for the parameters
of the model, symmetric supports around zero wittevbounds can be used without expecting
extreme risk consequences (Golan et al. 1996; (f)aB). On the other hand, the traditional 3-
sigma rule with some scale estimate for the elisousually considered to establish the supports
in matrix A. Finally, concerning the support matBxi.e., the supports for the inefficiency error
component, although the traditional specific disttional assumptions with ML estimation are
not considered here, as previously mentioned, déingesbeliefs in the distribution of technical

inefficiency estimates are expressed in the mdaelugh the error supports (e.g., Campbell et

19 The supports are defined as closed and boundedvats in which each parameter or error is resict
to lie.



al. 2008; Macedo et al. 2014; Moutinho et al. 201t8¥% important to note that, as mentioned by
Rezek et al. (2011), while this information defireegectations on efficiency estimates, it does
not predetermine any outcome beforehand, whichesgmts an important feature of GME
estimation in this context. Additionally, an ef@ocy prediction from DEA is used in SFA with
GME estimation to define an upper bound for thepsuis, which means that the main criticism
on DEA (it does not account for noise; all deviaidrom the production frontier are estimated
as technical inefficiency) is used here as an adgan since it provides a possible worst case

scenario to establish the bound for the suppotts.details are presented in Section 4.

4. Dataand empirical results

The data sample of this study was employed by treu§uese regulator of the electricity sector
(ERSE) to set the regulatory parameters for theiloligion companies in the period of 2012-
2014 (ERSE 2011). Appendix A reports the dafBhe data consist of a cross-section sample
with thirteen European distribution companies the¢ suitable comparators with respect to
operational expenses (OPEXand the main cost drivers. OPEX are costs coetidlly the
companies and calculated on the basis of 2009 auingtices. In the case of ESB (Ireland) and
SP distribution (UK) whose year of the data is 2009, OPEX is calculated considering the
inflation rate of those countries. The OPEX of eaochintry is calculated in US$ PPP. The
number of customers and energy delivered (GWh)cast drivers in all models specified
below. Network length (Km) is considered a cosvelriin two of the models, while in the other

two it is specified as a fixed input.

Table 1 reports the Pearson product-moment coioelatoefficient between each pair of

variables. There is a high correlation namely betwie main cost drivers, indicating a positive
linear dependence between them and an expecterksmtbnearity problem in the estimation

of model (2).

! The Serbian EPS and Croatian HEP-ODS are consiaerttiers by ERSE (ERSE 2011).

21n the regulatory period of 2012-2014, ERSE atteniptimprove the methodology employed in the
distribution activity, with the objective of decstag OPEX, without harming investment. As a reghi,
price-cap methodology is applied only to OPEX, wheapital costs (CAPEX) are analyzed separately.
Excluding CAPEX to set the price-cap, the compangequired to propose and accomplish an amount of
investment for the regulatory period, avoidingthis way, the effects of excessive investment. Moee,

this implies remunerating the accepted investmetiteacompany’s cost of capital (ERSE 2011).



Table 1. Pearson product-moment correlation caefftc

Number of Energy Network
_ OPEX

customers | delivered length
Number of 1
customers
Ener

_ i 0.9907 1
delivered
Network
0.9790 0.9676 1

length
OPEX 0.9117 0.9171 0.9331 1

Regarding the model specification, four models @esidered specifying different returns to

scale and variables specification. The four modeds

Model 1. CRS,x;=0OPEX, y,=energy deliveredy,=number of customergz=network
length;
Model 2: CRS,x;= OPEX,x;=network lengthy;=energy deliveredy,= number
of customers;
Model 3: VRS, x=0OPEX, yi=energy delivered,znumber of customers, ys=network
length;
Model 4: VRS, x;= OPEX,x,=network lengthy,=energy deliveredj,= number
of customers;
where CRS and VRS represent, respectively, const¢amtns to scale and variable returns to

scale®®

Network length is specified in some empirical sésdas an output variable with the purpose of
measuring the difficulty of topology (Pollitt 20089 other studies, network length, as part of
the physical inventory of existing real capitalcmnsidered a proxy for capital stocks or asset
utilization (Jamasb and Pollitt 2003; Lins et a02). In models 1 and 3, network length is

defined as an output; in models 2 and 4, netwargtteis a fixed input factor.

13VRS is the most relaxed form of returns to scal¢hie sense that allows not only constant retuwns t
scale but also increasing returns to scale andedsitrg returns to scale (Fried et al. 2008, chdpter

10



Due to the extremely small size of the sample t@éhim observations), it is not recommended to
use COLS or SFA with ML. Thus, DEA and SFA with GNEe employed in this study. The
DEA models, employed in this study, are presentefpipendix B.

Table 2 reports the DEA efficiency scores as welhe rankings of the companies (presented in
parenthesis). The sensitivity of the efficiency resois high to the specification of network
length as an output variable or a fixed input M@lgaThe efficiency scores either increase or
remain constant when the network length changes the specification of an output variable to
a fixed input. In fact, the mean and the mediathefefficiency scores are greater in model 2
(model 4) than in model 1 (model 3).

Moreover, the rankings of the companies changegeineral, across models (Table 2). The
rankings are very sensitive to the specificatiorthef network length as an output variable or a
fixed input. Regarding the hypothesis of returnsdale, the rankings of the companies change
substantially. EPS, Vychodoslovenskd, and Sibetgattze least efficient in models 1 and 2;
EPS, Vychodoslovenska and ESB are the least effiiempanies in models 3 and 4. HEP-
DOS is fully efficient in all models.

Table 2. DEA efficiency scores and rankings

Company Model 1 Model 2 Model 3 Model 4
East 0.2980 (2)| 1.0000 (1) 1.0000 (1) 1.0000](1)
EDP 0.1189 (7)| 1.0000 (1) 0.3305 () 0.8826 (8)
Endesa 0.0917 (8) 1.0000 (1) 0.2854(8) 1.00p0 (1
Enel Distribuzione] 0.0670 (9 1.0000 (1) 0.17@p( 1.0000 (1)
ESB 0.0573 (10) 0.3428 (9) | 0.0965 (12)| 0.1529 (12)
NEDL 0.2537 (3) | 0.3039 (10) 1.0000 (1) | 1.0000 (1
PPC 0.1216 (6)] 1.0000 (1) 0.4247 (6) 1.0000](1)
Sibelga 0.0528 (11))0.1453 (11)] 0.1724 (10)| 1.0000 (1)
South East 0.1899 (5] 0.4507 () 0.6479(5) 423
SP Distribution 0.1970 (4)] 0.4298 (8) 0.6106 (]LD)8205 (10)
Vychodoslovenska 0.0354 (12) 0.1343 (12)| 0.1060 (13)| 0.5309 (11)
EPS 0.0173 (13) 0.0866 (13)| 0.0363 (11)| 0.0513 (13)
HEP-ODS 1.0000 (1) 1.0000 (1) 1.0000 (1) 1.0a90|(
Mean 0.1924 0.6072 0.4527 0.7894
Standard deviation ,2576 0.3928 0.3631 0.3339
Median 0.1189 0.4507 0.3305 1.000

11



Adding the constraintZzi <1 in the DEA model in Appendix B, efficiency scorese

generated under the hypothesis of non-increasingn®to scale. These efficiency scores are
equal to the ones generated with CRS (models 1 Zndvhich indicate that electricity

distribution companies are operating at increasitigrns to scal&’

Our DEA results are, in general, consistent with timdings in some previous studies (e.g.,
Farsi and Filippini 2004; Jamasb and Pollitt 2008@ur experience in Europe shows, however,
that different versions of a DEA model will giveitudifferent results and that there is no way
to tell which set of results is most reliable.(..THis finding from Shuttleworth (2003, p. 45) is

also evident in this study.

Before discussing the estimation procedures of 8fA the GME estimator, as well as the

results from this method, it is important to sttat these are ill-posed models, namely ill-
conditioned (the collinearity problem revealed bg tinalysis of Table 1) and under-determined
(the number of parameters to estimate exceedsumber of observations available in some
models). Therefore, the use of traditional estioratiechniques in SFA should be avoided in

this empirical application and ME estimators a@remended.

As mentioned previously, the support matrizeandA are defined by the researcher based on
prior information. In this work, the supports i are defined through [-10,10] for all the
parameters of the models (wide bounds; the impadhe estimates using supports of higher
amplitude were negligible; e.g., Preckel 2001), #ralsupports in the matrix are defined by
[-4,4] and [-2,2] considering the standard deviatad the noisy observations and the 3-sigma
rule as a guide. The supports in maBiare established accordingly to Macedo et al. (2014)

where the upper bound of each support is given—byDEA,) , being DEA, the lower
efficiency estimate obtained by DEAFive points in the supportd =J =L =5) of each

support matrix are considered (a usual value éndture).

Tables 3 and 4 present the estimated coefficiehtth® input distance function with its
corresponding standard errors using bootstrap Bgmeling residuals in 1000 trials. The
median of each estimated coefficient is generasetthe@ median of the 1000 estimates obtained

by bootstrapping residuals.

% For details on this procedure, seeeret al. (1994), chapter 3.

*Another strategy based on Campbell et al. (2008) iwmlemented to define the supports in malix
Although the efficiency estimates are different ttankings in terms of efficiency are equal and the
elasticities computed at the mean values of ingntsoutputs are identical.

12



Table 3. Parameters estimates of the input distmotion obtained by SFA with GME, [-10,10], [-¥2

Model 1 Model 2 Model 3 Model 4
Parameter| Standard ) Parameter| Standard ) Parameter| Standard ) Parameter| Standard )
) Median ) Median ) Median ) Median
estimates error estimates error estimates error estimates error

a0 -1.3069* 0.4874 -0.8918 -0.8229 0.8071 -1.1112 073 0.2273 -0.3514 -0.5614*  0.3116 -0,6490
al 0.7587 0.5587 0.2294 0.0420 0.7173 0.3368 2236 0.3842 0.0685 -1.0731*  0.3991 -1,6065
a2 -1.4937* | 0.5696 -1.2614 -1.0420**| 0.7173 -1.3368 | 1.4947* | 0.3891 -1.2538 -3.7810*% 0.3525 -3,4955
a3 -0.2650 0.5786 0.0399 -0.6054 0.5672 -0.2563
B2 0.1115** | 0.3354 0.5279 4.1816** | 0.2571 4,4383
all 1.5300 0.8446 0.8631 0.4122* 0.3958 0.7086 6306 0.8043 -0.3166 -1.1678 0.9500 -0,7536
12 -0.2731 0.3300 -0.2625 -0.3904* 0.3371 -0.5857 5868* | 0.4807 1.0163 | 1.8098 0.5709 0,9884
13 -1.2370 0.7243 -0.5847 -2.2501* | 0.5789 -1.2304
021 -0.2731 0.3314 -0.2630 -0.3904* 0.3371 -0.5857 5929* | 0.4806 1.0163 1.8098 0.5709 0,9884
a22 0.6413 0.4032 0.5897 0.3685* 0.2939 0.4711 1445 0.4946 -0.5963 -1.3469 0.4748 -0,4006
a23 -0.3406 0.5724 -0.2918 0.5499 0.4844 0.1175
a3l -1.2671 0.7199 -0.5881 -2.2509* | 0.5812 -1.2638
a32 -0.3406 0.5719 -0.2918 0.5499 0.4842 0.1175
a33 1.5602 0.8938 0.8932 1.3074 0.6677 0.9397
yl -2.8331 0.9565 -1,2244
y2 1.2817 0.6514 0,1558

& Confidence intervals are provided upon requestaaauthors. *, ** and *** are coefficients stateally significant at 10%, 5% and 1% respectively.
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Table 4. Parameters estimates of the input distummtion obtained by SFA with GME, [-10,10], [-§4

Model 1 Model 2 Model 3 Model 4
Parameter| Standard ) Parameter| Standard ) Parameter| Standard ) Parameter| Standard )
) Median ) Median ) Median ) Median
estimates error estimates error estimates error estimates error

a0 -0.9651 0.4380 -0.6165| -0.9970* 0.6575 -1.3077| -0.2568 0.1336 -0.1649 | -0.5470** 0.1533|  -0.4982
al 0.4017 0.3831 0.0343| 0.2760 0.6277 0.6001] 0.1321 0.2507 -0.2924| -1.6086*1* 0.2735| -2.0063
a2 -1.2680* | 0.5091 -0.9714 | -1.2760*F 0.6277 -1.6001 | -1.1582*** | 0.2599 -0.7965 | -3.4270*f 0.2551 | -3.1009
a3 -0.1336 0.3238 -0.0823 -0.4757 0.3288 -0.4383

B2 0.5255%+* | 0.3587 1.1976 4.3363** | 0.1184 4.4044
all 0.8664 0.5537 0.3835|  0.6027*%* 0.3889 1.0112 | -0.3933 0.6024 -0.1307| -0.6760 0.6239  -0.2191
ai12 -0.2312 0.2812 -0.2410| -0.4997*  0.3236 -0.7530| 1.0980 0.3247 0.3413|  0.9955 0.3671 0.3604
ai3 -0.6490 0.4673 -0.1483 -1.2968 0.4133 -0.4331

a2l -0.2312 0.2836 -0.2419| -0.4997*  0.3236 -0.7530| 1.0980 0.3245 0.3413|  0.9955 0.3671 0.3605
a22 0.5640 0.3282 0.4645| 0.3968*| 0.2769 0.4933| -0.6913 0.3565 -0.0062| -0.4546 0.2965) 0.1837
a23 -0.3209 0.4118 -0.2321 0.1936 0.3997 -0.0383

a3l -0.6489 0.4677 -0.1483 -1.2968 0.4168 -0.4339

a32 -0.3209 0.4189 -0.2316 0.1936 0.4035 -0.0383

a33 0.9717 0.6584 0.4330 0.8962 0.5741 0.4410

vl -1.4242 0.5764 | -0.4844
V2 0.2865 0.3942 | -0.3591

& Confidence intervals are provided upon requestaaauthors. *, ** and *** are coefficients statelly significant at 10%, 5% and 1% respectively.

14



Most of the parameter estimates of models 1 ang 3@t statistically significant for both set of
supports, namely for the set [-10,10] and [-4,48t,Ynost of the parameter estimates of models
2 are statistically significant for both set of pops. Estimation results for model 4 indicate that
there is separability between outputs (number sfauers and energy delivered) and the fixed
input factor (network lengthf.Note that the parameter estimate of network leigthodels 2
and 4 is statistically significant at the 1% levantrasting with the statistical insignificance of
the parameter estimate of the network length inet®dl and 3, where this variable is specified

as an output.

In summary, SFA with GME results indicate that mo2lseems a stable specification of the
technology. This means that the specification dfvoek length as a fixed input may be more
appropriate than as an output variable and CRS beamore adequate than the hypothesis of
VRS. However, the choice of network length as gnuirvariable or an output variable deserves

further research work.

Tables 5 and 6 present the efficiency scores aadéahkings of the companies (presented in
parenthesis) generated by SFA with GME for each ddesupports. Although there are

differences in the standard deviation, for everydelothe efficiency scores are not very
sensitive to the set of supports in terms of cérigadency. The average (median) of the
efficiency scores, for example, in model 1 is 09186.4223) in the case of the set of supports
being [-10,10] and [-4,4] and 0.4338 (0.4140) whensupports are [-10,10] and [-2,2].

As DEA efficiency scores, the GME efficiency scoege also sensitive to the specification of
the network length as an output variable or a fiigzut variable. Consider, for example, the
supports [-10,10] and [-2,2].The efficiency scores increase, in general, wherspecification

of network length changes from an output variable tfixed input (compare models 1 and 2,

and models 3 and 4).

Although the rankings of the companies change acnesdels, there are a few of companies
that are in the highest and lowest efficiency gsoup all models: HEP-DOS is the most
efficient company and EPS and Vychodoslovenska theeleast efficient for both set of

supports. Interestingly, the DEA rankings indicag mentioned before, that HEP-DOS is fully

efficient and EPS and Vychodoslovenska are the doeficient companies in all models.

'® Separability between the outputs and the fixed tinfactor implies that the marginal rate of
transformation between the two outputs does no¢nigjon the network length.
" For the set of supports [-10,10] and [-4,4], tesults are similar.
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Table 5. SFA with GME efficiency scores and rankingl10,10],[-2,2]

Company Model 1 Model 2 Model 3 Model 4
East 0.4984 (4) 0.8297 (2) 0.5485 (4) 0.6118 (3
EDP 0.4378 (5) 0.5678 (7) 0.4407 (10 0.4662 (10)
Endesa 0.4104 (8) 0.5519 (8) 0.5226 (7 0.4849 (9)
Enel Distribuzione 0.3016 (11) 0.4630 (10 0@ 98) 0.6182 (2)
ESB 0.3672 (10) 0.4614 (11) 0.5265 (6) 0.5690 (7
NEDL 0.3695 (9) 0.7709 (3) 0.4509 (9) 0.5914 (5)
PPC 0.4242 (6) 0.5706 (6) 0.4135 (11 0.4225 (1[L)
Sibelga 0.4140 (7) 0.5242 (9) 0.5375 (5) 0.5926 (4
South East 0.5864 (3) 0.7035 (4) 0.5967 (3 0.5859
SP Distribution 0.6399 (2) 0.6906 (5) 0.6365 (2) 57®7 (6)
Vychodoslovenska 0.1434 (13) 0.2872 (12 0.292) 0.3072 (12)
EPS 0.1841 (12) 0.2635 (13 0.2807 (13 (6283)
HEP-ODS 0.8624 (1) 0.9193 (1) 0.8049 (1) 0.8@19
Mean 0.4338 0.5849 0.5043 0.5349
Standard deviation |  0.1887 0.1955 0.1379 0.1514
Median 0.4140 0.5678 0.5256 0.5680

Table 6. SFA with GME efficiency scores and ranking10,10], [-4,4]

Company Model 1 Model 2 Model 3 Model 4
East 0.4809 (4) 0.6928 (3) 0.5455 (3) 0.5770 (2)
EDP 0.4474 (5) 0.6026 (7) 0.4949 (8) 0.5344 (9)
Endesa 0.4215 (8) 0.5935 (8) 0.5056 (7) 0.5203 (10)
Enel Distribuzione 0.3826 (11) 0.5614 (10) 0.4870 (9) 0.5570 (4
ESB 0.4169 (9) 0.5278 (11) 0.5213 (5) 0.5515 (7
NEDL 0.4223 (7) 0.6990 (2) 0.4857 (10 0.5537 (5
PPC 0.4390 (6) 0.6101 (6) 0.4820 (11 0.5180 (11)
Sibelga 0.4033 (10) 0.5638 (9) 0.5083 (6) 0.5516 (6
South East 0.4891 (3) 0.6543 (4) 0.5386 (4) 0.5511 (8)
SP Distribution 0.5127 (2) 0.6459 (5) 0.5553 (2) 0.5650 (3)
Vychodoslovenskad | 0.2933 (13) 0.5034 (12) 0.3992 (13 0.4385H
EPS 0.2985 (12) 0.4469 (13) 0.4066 (12 0.4QR)
HEP-ODS 0.6721 (1) 0.7232 (1) 0.6675 (1) 0.7105 (1)
Mean 0.4369 0.6019 0.5075 0.5435
Standard deviation | 0.0960 0.0814 0.0671 0.0668
Median 0.4223 0.6026 0.5056 0.5515
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Table 7 presents the Pearson correlation coeftitietween the DEA efficiency scores and the
SFA with GME efficiency scores generated with supp§-10,10], [-4,4] (denoted by GME4)
and [-10,10], [-2,2] (denoted by GME?2), as well lztween GME2 and GME4. Moreover,
results from the Kruskal-Wallis and the mediandeste also reported in this table. Both are
nonparametric tests, the first one with a null hijpsis that different populations have an
identical distribution, and the second with a nujipothesis that different populations have

identical medians.

Table 7. Pearson correlation coefficient and n tric tests on efficiency scores
Model 1 Model 2 Model 3 Model 4
Pearson correlation
DEA, GME2 0.808" 0.466 0.592 0.514
DEA, GME4 0.861 0.486 0.659" 0.521
GME2, GME4 0.984 0.981" 0.978" 0.978"
Kruskal-Wallis test| p-value=0.0003 | p-value= 0.936| p-value=0.562| p-value=0.013
Median Test p-value=0.001 p-value=0.488| p-value=0.663 | p-value=0.007

*, ** and *** are correlations statistically signdant at 10%, 5% and 1% respectively.

The correlation between DEA and each of the SFA WME efficiency scores is positive and
very strong in model 1. For the other models, theedation is moderately positive. However,

the correlation between GME2 and GME4 is very grioneach model (as expected).

The following decisions on Kruskal-Wallis and mediasts can be performed, for example, at
2% significance level. The null hypothesis that BieA and the two SFA with GME efficiency
scores originate from the same distribution (tlee,three populations have equal distribution) is
rejected in models 1 and 4; yet the null hypothésisot rejected when it considers that the
GMEZ2 and GME4 population efficiency scores originibm the same distribution. Results for
the median test are similar in the sense that wiéehppothesis considering that the DEA and the
two GME population efficiency scores have the sansglian is rejected in models 1 and 4.
However, the hypothesis that the GME2 and GME4 [atjmun efficiency scores have the same
median is not rejected.

Table 8 reports the Spearman correlation coefficen the efficiency rankings obtained by
DEA and SFA with GME. Results indicate a significpositive monotonic trend between each
pair of efficiency rankings, namely between thesgenerated with GME2 and GME4, in all

models.
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Table 8. Spearman correlation coefficient on edficy rankings

Model 1 Model 2 Model 3 Model 4
DEA, GME2 0.797 0.526 0.552 0.597
DEA, GME4 0.890" 0.488 0.525 0.466
GME2, GME4 0.962 0.995" 0.967" 0.945"

* ** and *** are correlations statistically signdant at 10%, 5% and 1% respectively.

5. Conclusions

The main purpose of this study is to propose arrative stochastic frontier approach that can
be used by national regulators of electricity tii. Some national regulators have been facing
a problem of ill-posed frontier models. In the caseegulation of the electricity sector, an ill-
posed model arises mainly from (i) limited informoat available - small sample sizes,
incomplete data, and under-determined models;niiddels affected by collinearity and/or
outliers; and (iii)) missing data. Information-thetic methods, where generalized maximum

entropy is included, are useful in the estimatibauxh ill-posed models.

The empirical study involves a sample data on @bt European electricity distribution
companies used by the Portuguese regulator of lgwdrieity sector to set the regulatory
parameters for the distribution companies in thiéopeof 2012-2014. SFA with GME and DEA
methods are employed and the estimates of techeffialency are compared, as well as the

efficiency rankings.

Considering the SFA with the GME estimator, it igpbrtant to note that the models are ill-
posed. Additionally, the number of parameters toebtmated is greater than the number of
observations in some models. The results from SKA the GME indicate that model 2 seems
a stable specification of the technology. This he® implications in the technology

specification of the electricity distribution utiBs: the specification of network length as adixe

input rather than an output variable may be mongr@gwiate, as well as the hypothesis of
constant returns to scale. Yet, further studies meeded addressing in particular the

specification of network length as an output ofrgout variable.

The SFA with GME and DEA efficiency scores as wadlthe rankings of the companies are
very sensitive to model specification, namely ttumes to scale and the specification of the
network length as an output variable or a fixeduin@he Kruskal-Wallis and the median tests
indicate that DEA and the two SFA with GME efficognscores do not originate from the same
distribution and do not have the same median. Hewedtose statistical tests indicate that the
two SFA with GME efficiency scores originate frofmetsame distribution and have the same

median. Also, the correlation between the two SH#H GME efficiency scores is very strong
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and there is a significant positive monotonic trémtween each pair of efficiency rankings in

all models.

Furthermore, the empirical results indicate thattlie SFA with GME efficiency scores and
rankings are not very sensitive to prior informatigset of supports) and have similar
distributional properties; (i) SFA with GME usindifferent prior information rank the

electricity distribution utilities in approximatethe same order; and (iii) SFA with GME using
different prior information find mostly the sameeetricity distribution companies to be in the
highest and lowest efficiency groups. The empirieallts of this study indicate that it may be
useful for national regulators of distribution ehégty companies, namely in countries with
very few regulated companies, to employ SFA with Etd set price controls within incentive-

based regulation.

In this empirical study, quality of service in dibution networks, such as technical quality, is
not considered. Additionally, high penetration ehewable distributed generation (DG) puts
new challenges which has not been understood aodparated homogeneously in distribution

regulation across Europe. The connection of renkw8ts to distribution networks has a

double impact on costs: network costs and energgel The situation across EU is that not all
member states regulators consider renewable DCcastariver, at least explicitly (Cossent et
al. 2009).

The research issue of this study is crucial fofomal regulators and the electricity sector. The
SFA with GME approach allows national regulator@nely the ones that regulate a few firms,
to set price controls using this frontier methodrbbver, the GME estimation can be extremely
useful and a robust empirical methodology for itigeding the nexus between the incentive-
based regulation and investment behavior of etecttilities, an issue recently debated in the
literature in different countries (e.g., CambindaRondi 2010; Cullmann and Nieswand 2016;
Huang and Séder 2017). Investment in the electriictor, in general, and in the electricity
distribution, in particular, is increasingly impant with the energy transition, which involves
installing new capacity and replacing existing ésdavestments are also induced by new loads
such as electric vehicles, and the widespread useart metering systems which imply very
large investments for the distribution utilitiesivén that distribution utilities are regulated, the
design of incentive mechanisms becomes crucialtferenergy sector (e.g., Cambini et al.
2014; Banovac et al. 2009; Cullmann and Niesward®20
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Appendix A. International data on electricity distributionlities

Number of Er_lergy Network OPEX
Company Country Year customers delivered | length (PPC
(GWh) (km) USD)
East UK 2010 2223548 34719 3016( 100724
EDP distribuicdo| Portugal 2009 6119805 46146 218226335630
Endesa Spain 2009 11786168 115476 312336 1088632
Enel Distribuzione| ltaly 2009 30000000 240900 1@%H8 3106148
EPS Serbia 2009 2310811 27157 142195 1354942
ESB Irland 2006 2063925 24874 165771 375589
HEP-ODS Croatia 2009 2310811 14701 132988 12708
NEDL UK 2010 1600000 15540 15540 52959
PPC Greece 2009 7554289 54400 2220[72 386646
Sibelga Belgium 2009 211001 5342 6307 87476
South East UK 2010 2229279 22135 45000 100724
SP Distribution UK 2009 2310811 20321 63752 89165
Vychodoslovenska Slovakia 2009 609554 3386 23500 94621

Source: ERSE (2011)

Appendix B: DEA models

DEA is a non-parametric, mathematical programmiageldl method to generate the efficient

frontier in a given data set and measure the effiy of each firm relative to the frontier. It

fully envelops the data and makes no accommodétionoise (Fried et al. 2008, chapter 1).

The DEA model, assuming CRS, to generate techaftialency for each firm i, is given as:

TE(Y ,x') = /D@y ,x")) = n;yizn{)\ X OV(y))

= min{)\ ; f;z"y"m >y . m
Az =1

J .. .
Iyl L
>2'X) <AX,, n

1...,M;

1....,N;

2'20j=1..J

wherey' andx' are, respectively, the M-output vector and thenplit vector of firm i, z is a

Jx1 intensity vector, where J is the total numbfefirms in the data sef is a scalar whose

optimal value is the technical efficiency scorefioh i, TE(y',x'), which, in turn, is equal to

the inverse of the value of the radial distancefiom.

In the minimization problem, technical efficiencl/fom i is assessed in terms of its ability to

contract its input vector subject to the efficinontier. If a radial contraction of the input vect

23



is possible for firm i, its optimal < 1 (i.e., firm i is technically inefficient), wi if the radial

contraction is not possible, its optimak 1 (i.e., firm i is technically efficient).

For model 1, M=3 and N=1. For model 2, M=2 and NwBere network length is considered a

fixed input. Models 3 and 4 are similar to, resp@ty, models 1 and 2, except that the former

models assume VRS. This assumption is modeled diyngdhe convexity constraidt Z =1
j

in the minimization problem, presented above.
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