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Abstract8

In recent decades, the world has been confronted with the consequences of global warming; however, this9

phenomenon is not reflected equally in every part of the globe. Thus, the warming phenomenon must10

be monitored in a more regional or local scale. This paper analyzes monthly long-term time series of air11

temperatures in three Portuguese cities: Lisbon, Oporto and Coimbra. We propose a periodic state space12

framework, associated with a suitable version of the Kalman filter; which allows for the estimation of monthly13

warming rates taking into account the seasonal behavior and serial correlation. Results about the monthly14

mean of the daily mid-range temperature time series show that there are different monthly warming rates.15

The greatest annual mean rise was found in Oporto with 2.17◦C whereas, in Lisbon and Coimbra, it was16

respectively, 0.62◦C and 0.55◦C, per century.17
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1 Introduction20

The rise in global temperature has been of increasing concern for several authorities. Accordingly to the21

Intergovernmental Panel on Climate Change, the world’s greenhouse gas emissions are continuing increasing22

and on the current scenario, global temperature rise will far exceed the limit goal of 2◦C that countries have23

agreed with in order to avoid the most dangerous impacts on climate change. In the United Nations (UN)24

Framework, countries adopted the Paris Agreement, on 12 December 2015 in France, at the UN Climate25

Change Conference, where parties committed to take ambitious actions to keep global temperature rise26

below 2◦C by the end of the Century (UN, 2016).27

Hence, the monitoring and the analysis of the temperature rise, at the global, regional or local levels,28

have been a challenge for the scientific community. Global and European average time series for monthly29

temperature have been gridded using different interpolation techniques; and the results unveiled that there30

has been especially relevant climate change in the Iberian Peninsula. Indeed, a high warming has been31

observed in the past 50 years over the Iberian Peninsula and, over the past 30 years it occurred mainly in32

summer, EEA (2018). Hence, in the European context the analysis of local time series has a special interest33

in order to monitor temperature rise. Furthermore, the analysis of these time series avoids interpolation34

uncertainties associated with global or regional time series.35

Temperature data can be daily, monthly or annual depending on both the scale, nature, and the theme36

under consideration. Several studies based on different types of periodicity of data have also been considered37

in the literature. For instance, the following works were based on daily temperature data: Poppick et al.38

(2016) studied changes in the distribution of daily temperatures in an ensemble of general circulation model39

(GCM) runs predicting changes in both means and variability; Trevin (2013) developed a new homogenized40
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daily maximum and minimum temperature data set for Australia; among others (Fischer, 2015; Kleiber41

et al., 2013; Ngo and Horton, 2016; Trigo and Palutikof, 1999; Wang et al., 2013).42

A considerable volume of research based on monthly temperature data has also been published. Con-43

sidering monthly means of daily minimum temperature and daily maximum temperature data from Albert44

Park, Auckland from 1910 to 1986, Withers and Nadarajah (2015) analyzed the efficiency of modeling45

observations that are grouped into weekly means, monthly means and annual means. Monthly average46

temperature series in two widely separated European cities, Lisbon (1856–1999) and Prague (1841–2000),47

were examined in Alpuim and El-Shaarawi (2009). Other works investigated monthly temperatures (Abbas-48

nia and Toros, 2016; Bengtsson and Cavanaugh, 2008; Liu et al., 2016; Reich, 2012; William et al., 2012).49

Annual temperatures were investigated in Xu et al. (2015), and Moreno et al. (2013) analyzed the change50

points in the annual mean temperature in central England between 1659 and 2011 using a consistent online51

Bayesian procedure for detecting change points.52

The most applied statistical models in the analysis of climate time series, in particular of temperatures53

data sets, are the linear models and time series models such as Autoregressive Integrated Moving Average54

models (ARIMA) (Alpuim and El-Shaarawi, 2009; Bližňák et al., 2015; Freitas et al., 2015). As an extension55

of the linear models, state space models have been largely applied to the modeling of environmental data,56

since they incorporate a versatile stochastic structure that allow for the integration of temporal dependence.57

The statistical robustness and predictive ability of state space models make them the most promising58

avenue towards a new type of modern statistical modeling (Patterson et al., 2008). State space models59

are commonly used to analyze data sets with measurement errors as environmental data (temperature,60

precipitation, etc.) (Tandeo et al., 2011). Recent works have considered a state space approach to model61

temperature time series data sets. An additive, structural state-space model was considered in Bengtsson62

and Cavanaugh (2008) in order to represent the monthly temperature mean as a sum of an overall constant63

mean, a seasonal component, a monthly temperature anomaly, and a white noise term. An extension of the64

linear and Gaussian state space was proposed in Tandeo et al. (2011) to analyze time series with irregular65
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time sampling in the modeling of sea surface temperature data from a particular satellite. The monthly66

minimum temperatures in the State of Rio de Janeiro were analyzed by Castro Morales et al. (2013) using67

a spatial-temporal model, whose temporal trend is modeled through state space models.68

This paper is organized as follows. Section 2 introduces methodological aspects, namely, the model69

description, the periodic Kalman filter version, the parameters estimation and inference aspects. In Section70

3 an application to three Portuguese cities (Lisbon, Oporto and Coimbra) is presented. Data analyzed71

was studied by Morosova and Valente (2012a) in order to detect and correct non-climatic homogeneity72

breaks, long-term temperature data series measured in these three Portuguese cities. These three datasets73

are available for studies of climate variability in Morosova and Valente (2012b). The work finishes with a74

discussion of the results in Section 4.75

2 The Periodic Mixed Linear State Space Model76

In this section a state space model is proposed, which incorporates a flexible structure in order to accom-77

modate the different characteristics of the monthly temperature data. Nevertheless, the proposed model78

is presented in a general form which allows for its adaption to other datasets in different contexts of the79

environmental area or, for instance, of the economic area.80

2.1 The model81

The Periodic Mixed Linear State Space (PMLSS) model considers an observable variable Y that is collected82

with a regular sampling procedure, i.e., the model assumes equidistant time in observations. Usually, the83

variable Y is observed during N years and each year has S seasons. Thus, we denote Yt ≡ Ys,n with84

t = 1, 2, ..., T , n = 1, 2, ..., N and s = 1, 2, ..., S, where n is the year associated with time t and s is the85

respective season. With this notation, when t corresponds to the first season of year n than the previous time,86

which is the season S of year n− 1, can be denoted, to simplicity, as season 0 of year n, i.e., Y0,n ≡ YS,n−1.87
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The model is formulated as follows:88

Ys,n = [ 1 S(n− 1) + s ]

 as,n

Xs,n

+Ds,nβ + es,n (1)

 as,n

Xs,n − µs

 =

 φa 0

0 φs


 as−1,n

Xs−1,n − µs−1

+

 ωs,n

εs,n

 . (2)

In the observation equation, Eq. 1, the observable variable Ys,n represents the temperature observation89

in the sth season of the nth year, that is, the [S(n− 1) + s]th observation of the time series. The line matrix90

Hs,n = [ 1 S(n− 1) + s ] is a design matrix of known values, where S(n− 1) + s represents the time. The91

random vector Xs,n = [ as,n Xs,n ]′ has a Periodic Vector Autoregressive of order 1 structure, PVAR(1),92

and it includes a non-periodic autoregressive process, as,n = at, to incorporate the serial correlation; and the93

Periodic Autoregressive Process of order 1, PAR(1), Xs,n that represents the stochastic slopes. The seasonal94

pattern is incorporated by fixed seasonal coefficients through vector β = [β1 β2 ... βS ]′, (e.g., S = 12 in the95

case of monthly data). However, these seasonal fixed effects associated to the stochastic slopes in the trend96

component causes the seasonal pattern to change over time. The 1× S line matrix Ds,n is a design matrix97

with zeros and ones, as an indicator function in order to associate the respective seasonal coefficient βs,98

with s = 1, 2, ..., S, to the variable Ys,n. The observation error es,n is a Gaussian white noise process with99

variance Var(es,n) = σ2
e .100

In the state equation, Eq. 2, the state vector Xs,n follows a PVAR(1) process with mean µXs,n =

[ 0 µs ]′, where µs is the mean of the slope of season s; Φs is the autoregressive matrix Φs = diag{φa, φs},

where φa is the autoregressive coefficient of the AR(1) process, {as,n}, and φs is the autoregressive coefficient

associated with the slope of the season s. The vector of errors ζs,n = [ ωs,n εs,n ]′ has a multivariate
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Gaussian distribution with a covariance matrix Σζs,n = diag{σ2
ω, σ

2
ε,s}, such that,

Cov(εs,n, εs−i,n) =

 σ2
ε,s, i = 0

0, i 6= 0 for i = 1, 2, ..., S

and processes {ωs,n} and {εs,m} are uncorrelated, that is E(ωs,nεr,m) = 0, for all s, r, n and m. When in101

the AR(1) process {as,n} |φa| < 1 , which represents the serial correlation, the process is stationary with102

zero mean and variance Var(as,n) = σ2
ω(1− φ2

a)
−1.103

The PAR(1) process, {Xs,n}, which represents the periodic stochastic slopes, is cyclostationary when104 ∣∣∣∏S
k=1 φk

∣∣∣ < 1, (Gardner et al., 2006; Monteiro et al., 2010; Obeysekera and Salas, 1986). In this case,105

E(Xs,n) = µs and106

Var(Xs,n) = σ2
s =

σ2
ε,s +

S−1∑
i=1

 i∏
j=1

φ2
s−jσ

2
ε,s−i


(

1−
S∏
k=1

φ2
k

)−1

, (3)

with the convention φ−i = φS−i and σ2
ε,−i = σ2

ε,S−i, for i = 0, 1, · · · , S − 1.107

The model (1) – (2) assumes the periodic mixed effect state space representation108

Ys,n = Hs,nXs,n +Ds,nβ + es,n (4)

Xs,n = µXs,n + Φs(Xs−1,n − µXs−1,n) + ζs,n. (5)

The model (4)–(5) allows for the incorporation of some characteristics which make the model versatile.109

Furthermore, this state space formulation associated to the Kalman filter deals well with missing values,110

since the maximum likelihood estimates can be obtained through the EM-algorithm. In the temperature111

modeling context, the mixed effects approach associated with the intra-annual seasonality is a simple way112

of modeling the seasonality that naturally exists in this variable. For instance, in Kokic et al. (2011) the113
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potential of using a linear mixed-effect state-space model for statistical downscaling of climate variables114

compared to the frequently used approach of linear regression is shown; Ursu and Pereau (2016) considered115

Seasonal Autoregressive Moving Average (SARMA) models which represent a class of stationary models with116

large lag autocorrelations that are invariant with respect to the season. However, it is reasonable to admit117

that the long-term temperature time series have rises with periodic mean and covariance functions with118

respect to time. Therefore, the use of periodic autoregressive modeling of the slope of the temperature time119

series linear trend is an appropriate option. Nevertheless, when there are good estimates of periodicities,120

one may first deseasonalize the data and then model the resulting temperatures anomalies.121

2.2 The Kalman filter adaptation to the PMLSS model122

A state space model has, in its structure, a latent process, the state, which is not observable and needs to123

be predicted. The most usual procedure for this prediction is the Kalman filter algorithm. This algorithm124

computes, at each time, the optimal estimator of the state vector based on the available information until125

t and its success lies on the fact that it is an online estimation procedure. The optimal properties can be126

guaranteed only when all model’s parameters Θ are known and the normality of errors is valid (Harvey, 1996;127

Shumway, 2017). However, if the normality is dropped, then the Kalman filter predictors are the best linear128

unbiased estimators (BLUE). When parameters of the state space model are estimated, the uncertainty129

associated with the Kalman filter estimators are underestimated and some procedures can be implemented130

(Costa and Monteiro, 2016; Rodŕıguez and Ruiz, 2012).131

Briefly, the Kalman filter is an iterative algorithm that produces, at each time, an estimator of the state132

vector Xs,n, which is given by the orthogonal projection of the state vector onto the observed variables up133

to that time. Considering the matrix representation of the PMLSS model (4) – (5), let X̂s|s−1,n denote the134

estimator of Xs,n based on the observations Y1,1, Y2,1, ..., Ys−1,n and let Ps|s−1,n be its covariance matrix,135

i.e. E[(X̂s|s−1,n − Xs,n)(X̂s|s−1,n − Xs,n)′], the Mean Square Error (MSE) matrix. Since the orthogonal136
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projection is a linear estimator, the forecast of the observable vector Ys,n is given by137

Ŷs|s−1,n = Hs,nX̂s|s−1,n +Ds,nβ (6)

with MSE given by ωs,n = Hs,nPs|s−1,nH
′
s,n + σ2

e .138

When Ys,n is available, the prediction error or innovation, ηs,n = Ys,n − Ŷs|s−1,n, is used to update the139

estimate of Xs,n (filtering) through the equation140

X̂s|s,n = X̂s|s−1,n + Ks,nηs,n, (7)

where Ks,n is called the Kalman gain matrix and is given by Ks,n = Ps|s−1,nH
′
s,nω

−1
s,n. Furthermore, the141

MSE of the updated estimator X̂s|s,n, represented by Ps|s,n, verifies the relationship Ps|s,n = Ps|s−1,n −142

Ks,nHs,nPs|s−1,n. The forecast for the state vector Xs+1|s,n is given by the equation143

X̂s+1|s,n = µs+1 + Φs+1(X̂s|s,n − µs) (8)

and its MSE matrix is Ps+1|s,n = Φs+1Ps|s,nΦ′s+1 + Σζs,n .144

The Kalman filter algorithm is initialized with X1|0,1 and P1|0,1. When the state process is stationary,145

the Kalman filter algorithm can be initialized considering that initial state vector X̂1|0,1 = diag{0, µ1} and146

the covariance matrix P1|0 = diag{σ2
ω, σ

2
1} according to Eq. 3. In the non-stationarity case, the initialization147

of the Kalman filter can be incorporated in the estimation procedure or can be specified in terms of a diffuse148

or non-informative prior (Harvey, 1996).149

2.3 Gaussian maximum likelihood estimation of parameters150

Under the assumptions that the initial state, the state noise process {εs,n} and the observation noise process151

{es,n}, are normal and mutually independent and considering, without loss of generality, N complete years152
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in the realization Y = (Y1,1, Y2,1, ..., YS,N )′, the logarithm of the conditional Gaussian likelihood function is153

computed as follows154

log(L(Θ;Y)) = −NS
2

log(2π)− 1

2

N∑
n=1

S∑
s=1

log(ωs,n)− 1

2

N∑
n=1

S∑
s=1

η2
s,n

ωs,n
, (9)

where Θ = (β1, ..., βS , σ
2
e , µ1, ..., µS , φa, φ1, ..., φS , σ

2
ω, σ

2
1,ε, ..., σ

2
S,ε)
′ is the τ -vector, τ = 4S+3, of the unknown155

parameters to be estimated.156

The maximum likelihood (ML) estimates are obtained upon maximizing the log-likelihood function, that157

is, ΘML = argmaxΘ log(L(Θ;Y)). As the log-likelihood function log(L) is nonlinear, it is possible to obtain158

the ML estimates using numerical algorithms. Further details on parameters estimation can be obtained in159

the Appendix.160

3 Application to homogenized monthly time series of air temperature161

In this section, we apply the periodic mixed linear state space modeling to the homogenized monthly time162

series of air temperature in three Portuguese cities produced by Morosova and Valente (2012a) and available163

in Morosova and Valente (2012b). Based on these time series, we constructed monthly mean temperature164

series based on maximum and minimum of the homogenized time series.165

3.1 Data description166

This section provides a description of the data that motivates this study. Morosova and Valente (2012a)167

developed and provided a data set with long-term time series of monthly data of temperatures in the three168

Portuguese cities. This data set is the result of a procedure that detected and corrected non-climatic ho-169

mogeneity breaks in an original data set. As mentioned by these authors Morosova and Valente (2012a),170

long instrumental climatological records assume a paramount role in the studies of atmospheric conditions171
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variation, providing vital information about climate variability, trends and cycles. However, long-term series172

often contain inhomogeneities originated by changes in instruments, station locations and surrounding envi-173

ronment, observation routines and methods of preliminary data treatment. Thereof, the data set available174

after the detection and correction of these inhomogeneities is useful to develop accurate climate studies.175

The procedure adopted in Morosova and Valente (2012a) is based, in a first step, on statistical methods for176

detection of non-climatic breaks and their corrections dT were computed considering time interval around177

the break and smoothing of 12 monthly correction values dT by 3-month adjacent averaging to achieve a178

reasonable variation of dT throughout the year; so, the correction of each time series only depends on itself.179

The work developed in Morosova and Valente (2012a) produced a set of homogenized time series of180

monthly averages of daily minimum (Tmin) and daily maximum (Tmax) temperatures in three Portuguese181

cities – Lisbon, Oporto and Coimbra– based on the original data sets, which were tested in order to detect182

and correct the homogeneity breaks. Our work focuses on the monthly mean of the daily mid-range183

temperature time series, computed as Taver = (Tmin + Tmax)/2. This climatology variable was used in other184

previous works on temperature evolution in these Portuguese cities, for instance in Alpuim and El-Shaarawi185

(2009); Esṕırito Santo et al. (2014); Ramos et al. (2011); or in other contexts (Bengtsson and Cavanaugh,186

2008; Perry and Hollis, 2005).187

Relatively to the Oporto data series, the original data set was measured by the Instituto Geof́ısico188

(Observatório Meteorológico da Serra do Pilar) da Universidade do Oporto (IGUP), from 1888 to 2001,189

comprising 114 years. The original data series of Lisbon were measured at the Instituto Geof́ısico do Infante190

D. Lúıs (IGIDL), from 1856 to 2008, corresponding to a data set length of 153 years. The original data191

set of Coimbra was measured at the Instituto Geof́ısico da Universidade de Coimbra (IGUC), from 1865 to192

2005, with a length of 141 years.193

Notice that Lisbon, Oporto and Coimbra have different climate characteristics (see geodesic coordinates194

in Table 1). While Lisbon has a humid temperate climate with dry and hot summer, Oporto and Coimbra195

have a temperate climate with dry and mild summers. Nonetheless, Oporto is located along the Atlantic196
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Figure 1: Ten-year moving average temperature series, with a linear trend adjustment.

Ocean in the northern coast, while Coimbra is located approximately 40 km from the Atlantic Ocean and197

close to the cordillera Montejunto – Serra da Estrela System, highest mountain of mainland Portugal with198

an altitude of 1993 m.199

—— table 1 ——200

Since the time series are quite long, Figure 1 shows the 10-year moving average of the time series in order201

to facilitate a visual inspection of an over-all behavior. Figure 1 shows that the rise in temperature varies202

on time. Figure 2 represents, for each city, the least squares parameters estimates of the 12 linear regression203

models to the respective annual time series associated with each month of the year. These estimates indicate204

that the temperature rise is not the same through every month of the year. In fact, in the previous work205

Alpuim and El-Shaarawi (2009), based on monthly temperatures data of Lisbon (1856–1999), and Prague,206

results showed that the rise in temperature is not equal in each month of the year. Thus, this means that207

the rise in temperature has two types of variability: from monthto month over the year and over time.208
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Figure 2: Least squares estimates of the linear model for each month of the year, for each city; (left)
estimates of the slopes and (right) estimates of levels.

3.2 Models adjustments and validation209

A first approach to model the time series under analysis was to consider, based on the exploratory analysis210

exposed in section 3.1, a PMLSS model (1) – (2) without the autoregressive state {as,n} component, since it211

was expected that the serial correlation would be accommodated through the state vector of stochastic slopes212

with a PAR(1) structure with S = 12 seasons – the months of the year. The log-likelihood maximization213

procedure was initialized using the least squares estimates of the linear regression models Y
(s)
t = bs+ t ·ms+214

ξ
(s)
t , where t = s + 12k for s = 1, 2, ..., 12 and k is an integer, for the monthly subseries. Hence, the initial215

values for the fixed effects were the estimated levels, β̂
(0)
s = b̂s, and for the mean of the periodic stochastic216

slopes were the estimated slopes in the regression models, µ̂
(0)
s = m̂s (see Figure 2).217

In the initial model validation phase, the analysis of the observed innovations series {η̂s,n} showed the218

existence of a remaining temporal correlation. In fact, both sample autocorrelation (ACF) and partial219

autocorrelation (PACF) functions of innovations {η̂s,n} of this model in three cities (Lisbon, Oporto and220

Coimbra) have indicated that there is a temporal correlation. Therefore, innovations series do not present221

the characteristics of a white noise as it was assumed; sample ACF and PACF of the innovations series show222
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Figure 3: Plots of the cumulative sum (CUSUM).

that an autoregressive process should be incorporated into the model under analysis.223

Thus, the estimation procedure described in Section 2.3 was implemented for three models (1) – (2) with224

the autoregressive process, using the Generalized Reduced Gradient (GRG2) method in the maximization225

step. In the optimization procedure, several disturbances were added to the initial values in order to assess226

the stability of the procedure. In each time series, the maximum likelihood procedure converged, with227

several significant digits, to the same solution. Before the discussion and interpretation of the results, a228

set of procedures were performed in order to validate the models and to evaluate their assumptions. In229

a global analysis, all models adjusted very well to data, since all assumptions are verified and they also230

present high values of the respective coefficients of determination. Innovations ηs,n were assumed to have231

a conditional Gaussian distribution ηs,n = Ys,n − Ŷs|s−1,n ∼ N(0, ωs,n). The normality of residuals series232

were tested considering both the Kolmogorov–Smirnov (K-S) test and the Jarque–Bera (JB) test. In all233

cases, normality was not rejected considering the usual 5% to the significance. In fact, in the K-S test ,all234

p-values were greater than 0.20 and in the JB test p-values were equal to 0.74, 0.21 and 0.10, respectively235

for Lisbon, Oporto and Coimbra. Moreover, histograms and QQ–plots with 95% confidence envelopes of236

standardized innovations allow to conclude that their empirical distributions are consistent with the Gaussian237

curve.Furthermore, the three innovations series did not present serial correlation, as assumed, since empirical238

ACF and PACF indicated that innovations are compatible with a white noise process.239
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Moreover, plots of cumulative sum (CUSUM) with a significance level of 5% were obtained to three240

residuals series. A considerable amount of information can be obtained simply by inspecting these plots; the241

CUSUM procedure is particularly valuable for detecting structural change (Harvey, 1996). Figure 3 shows242

the plots of CUSUM and the graphical analysis indicates that there are no structural changes in residuals243

series.244

In order to assess models adjustment, coefficients of determination associated with the one-step ahead245

forecasts were computed, i.e., r2 = corr(Ys,n; Ŷs|s−1,n)2. All models have coefficients of determination greater246

than 90%. Indeed, in Lisbon, the adjusted model has a coefficient of determination for the one-step-ahead247

forecast of r2 = 0.937, while, in Oporto, this coefficient is r2 = 0.919 and in Coimbra r2 = 0.922 (see Table248

2).249

—- TABLE 2 —–250

Furthermore, for each model the coverage probability for the empirical one-step-ahead 95% confidence251

intervals were computed and are close to the confidence level considered. The coverage probability values252

were 95.15%, 95.76% and 94.98%, in Lisbon, Oporto and Coimbra, respectively.253

3.3 Warming rates estimates based on the PMLSS models adjustment254

Figure 4 represents the estimated curves of the seasonal fixed effects according to the Gaussian maximum255

likelihood estimates of βi, with i = 1, 2, ..., 12. These estimates show that Lisbon and Coimbra have a similar256

pattern over the year, nonetheless Lisbon has the highest values of monthly means. Results associated with257

Oporto indicate that the annual temperature curve in this city has a different pattern in comparison with258

the other two cities and also that Oporto has comparatively the lowest monthly values of temperature.259

The monthly means µs, with s = 1, 2, ..., 12, of the stochastic slopes Xs,n, have an environmental special260

interest, since they quantify the monthly rise of the long-term temperature time series. Note that these261

parameters are the mean parameters of the PAR(1) model. For each month s, based on the ML estimate262

of µ̂s, we compute 100× 12× µ̂s, which are represented in Figure 5 (see also Table 3), in order to compare263
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Figure 4: Maximum likelihood estimates of the seasonal fixed effects of temperature for Lisbon, Oporto
and Coimbra.

the mean rise of temperature in the different cities using a reference time unit. These values represent264

12 estimates of the mean rise of temperature in 100 years, that is, a mean rise per century. Hence, their265

average is an estimate of the mean increase of annual temperature in a century, 1/12
∑S

s=1(100×12× µ̂s) =266

100×12× µ̂. In fact, if we compute, for each time series (city), the overall monthly mean rise of temperature267

µ = 1/12
∑12

s=1 µs, then the mean µs in the PMLSS model can be rewritten as µs = µ+ µ∗s, where µ is the268

overall monthly mean rise of temperature and µ∗s is the effect of the month s, with
∑12

s=1 µ
∗
s = 0.269

—-TABLE 3—-270

The adjusted model for Lisbon estimates the mean increase, per century, in the annual temperature271

at 0.621◦C, whereas in the corresponding models for Coimbra and Oporto the estimate is 0.545◦C and272

2.166◦C, respectively. The annual rise in temperature in Lisbon and Coimbra is similar and less than 1◦C,273

while in Oporto we estimated a rise exceeding 1◦C, per century. Relatively to Lisbon, we can compare274

the annual rise of temperature with two other works. In the first work, Alpuim and El-Shaarawi (2009)275

used linear models with correlated errors to model Lisbon monthly temperatures time series between 1856276
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Figure 5: Estimates of monthly warming rates, per century, in Lisbon, Oporto and Coimbra.

and 1999 collected at the Climatological Archive of the Portuguese Meteorological Institute and they have277

obtained the value of 1.024◦C as an estimate to the annual rise per century. That is, the adjusted PMLSS278

model to the homogenized data produced by Morosova and Valente (2012a) obtained a lower estimate than279

Alpuim and El-Shaarawi (2009), although both indicate a mean rise of temperature in Lisbon in the last280

decades. The linear model that was applied only considered a AR(1) structure in residuals series, once281

slopes are deterministic, whereas in the PLMSS model two types of serial correlation were considered: a282

VAR(1) structure in slopes and a month-to-month AR(1) structure. More recently, Costa and Monteiro283

(2015) obtained an estimate of the mean rise of 0.427◦C, per century, in Lisbon, based on the same dataset284

of this work considering a dynamic linear model without a periodic structure for the stochastic slopes, which285

may explain the difference between both estimates.286

Regarding the Oporto and Coimbra monthly mean temperature data, there are no other studies which287

allow us to make a direct comparison. In fact, the Lisbon series is usually chosen to make comparative288

European or global climate studies, because it is the best documented series and is generally considered289

representative of the Portuguese average climate, although one should keep in mind that there may be some290
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regional variations (Miranda et al., 2002). In a more thorough analysis, we can also observe the estimates291

of monthly mean rises in temperature for each month of the year since this value changes according to the292

month. In Lisbon, from April until September, the temperature rise is less than the annual rise average,293

whereas between December and March the temperature rise have values on average or greater than the294

annual average. So, mean temperatures are increasing every month, but the warming rate in winter months295

is greater. The largest warming rate per century is found in March with an estimated value of 1.066◦C296

and the lowest warming rate is estimated in May with the value of 0.167◦C. The monthly mean rises of297

temperature in Coimbra are close to the corresponding values in Lisbon time series and with a similar shape298

(empirical linear correlation of r = 0.700). In Coimbra, the largest warming rate per century is in December299

with 1.044◦C, very close to the estimate rise in March with 1.024◦C. Nevertheless, the lowest warming rate300

per century is found in September with 0.158◦C . In Oporto, eventhough annual warming is more significant301

than in Lisbon or Coimbra, results show that there is a clear annual cycle in the warming rate. In fact,302

excluding June, which has a rate similar to the annual average, the remaining months (between February and303

July) have warming rates greater than the annual rate average, while from August until January warming304

rates are lower. Therefore, in Oporto there are two periods of the year with different warming rates.305

3.4 Global analysis of the adjusted models306

The proposed PMLSS model has three types of variability sources. One is related to the errors of the307

periodic state associated with the stochastic slopes, εs,n, with variance σ2
ε,s; another is associated with the308

error ωs,n of the autoregressive process {as,n}; and the last source of variability is the observation error es,n309

with variance σ2
e .310

—— TABLE 4 ———311

Table 4 presents Gaussian maximum likelihood estimates of all variances present in the PMLSS models.312

Lisbon and Coimbra have observations errors es,n with similar estimates of their variances while in the313

time series of temperatures of Oporto this estimate is greater. Coimbra presents, each month, the highest314
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Figure 6: Trend estimates of June in Lisbon obtained by PMLSS model and the multiple linear regression
model with PAR errors.

estimated variance of the periodic state errors. As expected, the autoregressive processes as,n has errors315

with small variances, since this component incorporates the month-to-month serial correlation. Estimates316

of the autoregressive parameters involved in the PMLSS model are presented in Table 5. On the one hand,317

all three autoregressive processes as,n are estimated as stationary, since estimates of φ in three cities verify318

comfortably the stationarity condition |φ̂| < 1. On the other hand, the PAR(1) process, that represents the319

periodic stochastic slopes, is stationary as well, since we have
∏12
s=1 φ̂s < 1 in Lisbon, Coimbra and Oporto.320

—— TABLE 5 ——–321

A competing multiple linear regression model with PAR(1) errors, MLR PAR, was adjusted to perform322

a comparison of trends estimates. This model is an improvement of the linear regression model considered323

in the initialization of the log-likelihood maximization procedure, that is, Ys,n = bs + t ·ms + ξ(s,n) where324

ξ(s,n) follows a PAR(1) process. Analyzing the PMLSS model trend estimates justaposed against MLR PAR325

trends estimates, we concluded that the these estimates are more similar when the month’s subseries trend326

is approximately linear (fixed). Unlike this, when in a month trend is not linear, the PMLSS model captures327

these changes in a more dynamic way than the MLR PAR model. For instance, Figure 6 shows trend328

estimates of June in Lisbon obtained by PMLSS model and the MLR PAR. The PMLSS model has a PAR329
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structure in the slopes process, which allows for local linear trends, while the MLR PAR model incorporates330

a periodic structure in errors.331

Since PMLSS models adjusted very well to three time series, their structural components can be used332

to monitor the rise in temperature both in a large scale, for instance in a secular period as was done before,333

or in a on-line procedure, that is, in a month-to-month analysis.334

In an online scheme, the Kalman filter provides one-step-ahead forecasts for monthly temperature,335

Ŷs|s−1,n with the respective empirical confidence intervals at (1− α)× 100% level336

Ys,n = Ŷs|s−1,n ± z1−α
2

√
ω̂s,n

where z1−α/2 represents the normal quantile of probability 1 − α/2. The unobservable structural compo-

nents can be predicted through the Kalman filter equation and the associated confidence intervals. Hence,

confidence intervals for the stochastic slopes, {Xs,n}, can be computed through

Xs,n = X̂s|s,n ± z1−α
2

√
p̂

(2,2)
s|s,n

while the confidence interval for the AR(1) process, {as,n}, which incorporates the month-to-month serial

correlation is

as,n = âs|s,n ± z1−α
2

√
p̂

(1,1)
s|s,n

where p̂
(i,i)
s,n represents the ith element, with i = 1, 2, of the diagonal of the MSE matrix P̂s|s,n.337

Figure 7 represents predictions with the respective empirical 95% confidence intervals of the monthly338

mean temperature in Lisbon and the filtered predictions of the unobservable components obtained with the339

adjusted PMLSS model in last decade of available data. These results allow for the monitoring of monthly340

rise of temperature in mean temperature measurement, as well as in the monthly ratio of warming filtering341

errors of observation.342
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Figure 7: (top) Observed temperature (points) in Lisbon, Ys,n, with the one-step-ahead forecast, Ŷs|s−1,n;

(middle) filtered estimates of the PAR(1) process, X̂s|s,n; (below) filtered estimates of autoregressive process,
âs|s,n, with empirical 95% confidence intervals, related to the last decade (January 1999 to December 2008).
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4 Conclusions and discussion343

In this work, we have proposed a periodic state space model to analyze long-term temperature time series.344

The proposed framework incorporates fixed and stochastic effects, namely, the seasonality behavior with fixed345

levels effects and dynamic slopes over the months of the year. Previous works indicated that temperature rise346

differs between months, as well as an autoregressive process in order to accommodate the serial correlation.347

The state space representation allows for the achievement of accurate one-step-ahead forecasts for the348

monthly mean temperature and for the unobservable structural components, as well as filtered estimates of349

states. These estimates are computed by a periodic version of the Kalman filter algorithm.350

The proposed model was adjusted to monthly mean of the daily mid-range temperature long-term time351

series of three Portuguese cities: Lisbon, Oporto and Coimbra. Main results showed that Lisbon and Coimbra352

had a similar annual rise of temperature: 0.6212◦C and 0.5454◦C, per century, respectively. Additionally, it353

was estimated that, in Oporto, there is a significant mean rise in temperature of 2.1655◦C per century. In354

a more refined analysis, it was found that there is a similarity between mean monthly rises in Lisbon and355

Coimbra while Oporto has a unique rise pattern. In fact, Oporto has greater warming rates in spring and356

in the beginning of summer, and lower warming rates at the end of summer until the middle of winter. In357

Lisbon and Coimbra the biggest warming rates were found in winter and in the beginning of spring and the358

lowest rise rates were found from the middle of spring until the beginning of autumn.359

The PMLSS model accommodates the most common properties of environmental. The seasonality is360

incorporated in two ways: seasonal levels as fixed effects and in the periodic process of monthly slopes; the361

month-to-month serial correlation is accommodated by an autoregressive process. The proposed model can362

be improved in order to include spatial-variation when a set of time series of monthly mean temperature363

are available. If the number of locations is significant and locations are geographically scattered, a spatial364

structure can be incorporated in the model via the error in the observation equation, through the specification365

of a spatially structured variance-covariance matrix (Castro Morales et al., 2013). Alternatively, the spatial366
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structure can be incorporated in an additive way according to an isotropic Gaussian process as proposed in367

Cunha et al. (2017).368
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6 Appendix375

In model (6)–(7) the dimension of the vector of parameters Θ can be quite large, depending on the number376

of seasons S of the year that is being considered in the model. Taking into account that temperature data in377

this work has a monthly periodic structure, that is S = 12, we have τ = 51 parameters to be estimated, which378

makes the optimization problem computationally unstable. Hence, in this case a partitioned algorithm with379

leapfrog (non-simultaneous) iterations is adopted to replace the original estimation problem into a series of380

problems of lower dimension (Smyth, 1996). Without loss of generality, lets assume that Θ is partitioned381

into subvectors Θ1 and Θ2, allowing for the updating equation to be written as382

Θ
(k+1)
1 = argmax

Θ1

log(L1(Θ
(k)
1 ,Θ

(k)
2 ;Y))

Θ
(k+1)
2 = argmax

Θ2

log(L2(Θ
(k+1)
1 ,Θ

(k)
2 ;Y)).

In the model under analysis, the natural partition of Θ is considering Θ1 the fixed effects βs; Θ2 the383

slopes averages µs, Θ3 the autoregressive parameters φs,s = 1, · · · , S, and φa and Θ4 with S + 2 variances384
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parameters.385

So, the ML estimates are computed through the iterative procedure:386

Step 1 Obtain least squares estimates of intercept, slope and error variance of a linear trend model for387

each month, Y
(s)
t = bs + t ·ms + ξ

(s)
t , and ξ

(s)
t is a random error with var(ξ

(s)
t ) = σ2

s,ξ, where t = s+Sk388

for s = 1, 2, ..., S, k = 0, ..., N − 1.389

Step 2 Consider initial values to subvector of fixed effects and slopes averages such that Θ
(0)
1 = {b̂1, ..., b̂S}390

and Θ
(0)
2 = {m̂1, ..., m̂S}.391

Step 3 Initialize the subvector of the autoregressive parameters taking initial values satisfying the cyclo-392

stationary of the process {Xs,n} and the AR(1) process, for instance φ
(0)
k = 0.51/S and φ

(0)
a = 0.5, that393

is, Θ
(0)
3 = {0.5, 0.51/S , ..., 0.51/S}.394

Step 4 Take initial values to the subvector of variances Θ
(0)
4 = {σ2(0)

e , σ
2(0)
ω , σ

2(0)
1,ε , ..., σ

2(0)
S,ε } considering the395

estimates σ̂2
s,ξ as the total variability in each month, for instance, σ̂

2(0)
s,ε = σ̂

2(0)
e = σ̂2

s,ξ/2, and a small396

value to monthly variability of slopes, (σ
2(0)
ω = 10−10).397

At this step, vector Θ is fully initialized with values Θ(0) = {Θ(0)
1 ,Θ

(0)
2 ,Θ

(0)
3 ,Θ

(0)
4 };398

Step 5 Initialize the periodic Kalman filter according to stationary properties of the state process; without399

loss of generality, considering that the first observation is related to the season s = 1, take X̂1|0,1 =400

[ 0 µ̂
(0)
1

]′ and P1|0,1 = diag{σ̂2(0)
ω (1− φ̂2(0)

a )−1, σ̂2
1}, where σ̂

2(0)
1 is computed by Eq. 3.401

Step 6 Compute the periodic Kalman filter estimators by equations Eq. (6), Eq. (7) and Eq. (8); and the402

log-likelihood log(L(Θ(0);Y)) by Eq. (9).403

Step 7 Use a computational routine in order to perform, in a leapfrog algorithm, the direct numerical404
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maximization of the log-likelihood function to obtain Θ
(k+1)
j , with j = 1, 2, 3, 4, by:405

Θ
(k+1)
1 = argmax

Θ1

log(L1(Θ
(k)
1 ,Θ

(k)
2 ,Θ

(k)
3 ,Θ

(k)
4 ;Y))

Θ
(k+1)
2 = argmax

Θ2

log(L2(Θ
(k+1)
1 ,Θ

(k)
2 ,Θ

(k)
3 ,Θ

(k)
4 ;Y))

Θ
(k+1)
3 = argmax

Θ3

log(L3(Θ
(k+1)
1 ,Θ

(k+1)
2 ,Θ

(k)
3 ,Θ

(k)
4 ;Y))

Θ
(k+1)
4 = argmax

Θ3

log(L4(Θ
(k+1)
1 ,Θ

(k+1)
2 ,Θ

(k+1)
3 ,Θ

(k)
4 ;Y))

In this step the parameters estimates are available in iteration k + 1, Θ(k+1).406

Step 8 Repeat steps 5 to 7 up to the convergence.407
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Table 1: Geodesic coordinates of three stations in Lisbon, Oporto and Coimbra
Station Latitude Longitude Altitude

Lisbon 38o 43′ N 9o 09′ W 77 m
Porto 41o 08′ N 8o 36′ W 93 m
Coimbra 40o 12′ N 8o 25′ W 141 m
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Table 2: Coefficients of determination and the log-likelihood of PMLSS models of Lisbon, Coimbra and
Oporto.

Lisbon Coimbra Porto

r2 0.937 0.922 0.919
− log (L) 2744.35 2795.64 2152.73
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Table 3: Estimates of the mean rise of temperature Celsius degree per century, in Lisbon, Coimbra and
Oporto.

Lisbon Coimbra Porto

Jan 0.918 0.596 1.076
Feb 0.615 0.411 2.427
Mar 1.066 1.024 3.939
Apr 0.574 0.232 2.801
May 0.167 0.283 2.594
Jun 0.521 0.747 1.998
Jul 0.559 0.412 2.810
Aug 0.562 0.437 2.047
Sep 0.492 0.158 0.343
Oct 0.771 0.715 1.811
Nov 0.420 0.487 2.109
Dec 0.789 1.044 2.031

overall mean 0.621 0.545 2.166
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Table 4: Estimates of the variances in the PMLSS models of Lisbon, Coimbra and Oporto.
month Lisbon Coimbra Porto

σ̂2
ε,s Jan 0.404 0.488 0.330

Feb 0.662 1.073 0.909
Mar 0.457 1.061 0.749
Apr 0.554 1.082 0.661
May 0.751 1.174 0.633
Jun 0.592 1.017 0.394
Jul 0.438 0.782 0.475
Aug 0.345 0.491 0.295
Sep 0.582 1.077 0.658
Oct 0.603 1.398 1.029
Nov 0.305 0.836 0.720
Dec 0.795 0.920 0.871

σ̂2
ω 9.013× 10−10 9.992× 10−12 6.694× 10−10

σ̂2
e 0.548 0.562 0.643
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Table 5: Estimates of autoregressive parameters in the PMLSS models of Lisbon, Coimbra and Oporto.
month Lisbon Coimbra Porto

φ̂s Jan 0.549 0.914 0.428
Feb 1.231 2.162 3.029
Mar 2.703 2.376 1.265
Apr 1.369 0.961 0.907
May 0.537 0.402 1.165
Jun 1.763 1.729 0.755
Jul 0.566 0.232 1.326
Aug 1.078 1.485 0.712
Sep 0.221 0.035 0.227
Oct 4.176 7.668 2.398
Nov 1.011 4.142 1.231
Dec 0.596 0.730 1.087∏12

s=1 φ̂s 0.804 0.869 0.900

φ̂a 0.381 0.307 0.351
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