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Abstract

Kewords: 

1. Introduction

Polymeric materials have been replacing metallic materials in several tribological applications

in  industry, such as bearings, seals, gear wheels, due combined requirements of light weight, ease of

processing, mechanical strength and stiffness, lower friction coefficient and wear [1-3].

The properties of polymer composites are determined by design of the reinforcement phase

within the matrix phase. The most common reinforcements used for the so-called Engineering Plastics,

in general, and the polyamides, in particular, are carbon and glass fibers due to their high modulus of

elasticity. Glass fibers have the advantages of combining good thermal conductivity, tensile strength,

wear  resistance,  in  addition  to  costing  less  than  one-  third  of  the  price  of  carbon  fiber  [4].  The

tribological behavior of these composites varies according to the amount of  reinforcement [5], fiber

orientations to the sliding interface [6], as well as the set of conditions of the tribological tests, such as,

contact temperature, sliding velocity, contact pressure [7,8].

In general, the literature on sliding surface analysis of polymer composites suggests the use of

scanning electron microscopy (SEM) [5,6,9,10] due to its peculiar advantages, such as, large depth of

field and fine lateral resolution. In fact, the images produced by the SEM have great sharpness and are

quite representative of the sliding surfaces of the polymer composites. In addition, this microscopy

have the advantage to combine the images obtained through secondary electron signal (topography and

morphology)  with  images  obtained  by  backscattered  electrons  signal  (contrasts  in  compositions).
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Nevertheless  the  SEM  has  several  limitations  [11,12,13]:  costly  operation,  electron  beam-induced

damage,  vacuum degradation, charging effects, sputter-coating artifacts. Similarly, the use of atomic

force microscopy, in spite of the large resolution and directly providing 3D images, usually covers very

small and shallow areas.

The optical microscope (OM) is normally undervalued and considered an equipment of minor

importance in the topographic analysis of polymeric composites. The issue of contrast, which is often

pointed out as a limitation of OM, can be partially solved with a selection of contrast techniques like

the use of green filter and Differential interference contrast (DIC) technique improving the perception

of topography variation in the bright field [14]. 

Alternatively,  the  morphology  and topography  of  sliding  surfaces  of  polymeric  composites

could be inspected by the extended depth of focus (EDF) from OM images. This technique consists on

acquisition  of  sequence  pictures  with  a  digital  camera  in  an  optical  microscope  with  progressive

focusing with a regular displacement intervals, and taking the best-focused pixels for each x-y position

throughout the entire stack to construct a focused picture to provide a reliable elevation map (15]. This

technique has been applied to quantitative fractography and is very well supported by the set of articles

developed  by  Hein  et  al.  [14-18].  Nowadays  there  are  several  freeware  solutions  for  EDF

reconstruction. Some of them are available as plugins or commands for NIH ImageJ [16], a public

domain Java image processing  and analysis  program, winch are are  widely  used by the academic

community, as well as provide analysts with free reliable software options.

The surface topography plays an important role on understanding on friction and wear

behavior, on the other hand the wear process itself can modify the surface of sample. Thus,

several  papers  have  been  dedicated  to  find  out  qualitative  and  quantitative  relationships  between

topography changes and tribological behavior. Some authors have opted for the fractal approach to

describe the topography of the sliding surfaces, since the fractal geometry can be effectively applied to

tribological processes which are stochastic in nature. 

The term "fractal" was created by Benoit Mandelbrot in 1977 to a plot developed to represent a

series of chaotic processes in nature. The main characteristic of a perfect fractal object is its "self-

similarity" and scale-independent., it means, the maintenance of a relief pattern regardless of its scale

[19].  In  nature,  though,  most  surfaces  are  rough  and  multi-scale.  The  real-world  data  show self-

similarity happens only locally on a certain variety of scales, which defines the concept of multi-fractal.

In  this  way,  the  sliding  surfaces  are,  in  general,  self-similar  instead  of  self-similar,  with  different



properties  that  vary  with  the  magnification  of  the  image  [20].  These  sliding  surfaces  cannot  be

described by a single dimension, but by an infinite number of fractal dimensions. 

Zhu et.al [21] assumed a monofractal approach to characterize the sliding surface of metallic

alloys in tribological tests and concluded neither fractal dimension nor the scale coefficient used alone

were optimal in characterizing rough surfaces. The same way, other authors assigned unique values for

the fractal dimension on the tribological behavior studies: Izquierdo et al. [22] developed a method of

characterization and modeling for sliding surfaces based on the fractal concept; Liang et al. [23] found

qualitative  relations  between the fractal  dimension and some mechanical  properties  of  engineering

ceramics;  Stachowiak  et  al.  [24].developed  a  hybrid  fractal-wavelet  method  to  classification  of

tribological surfaces; Ji et. al [25] developed a method combining three parameters, among them the

fractal dimension, to analyze the topography of sliding surfaces of different tribological pairs. In fact,

the real issue relies on the fact that sliding surfaces do not present the same behavior at all scales due to

the intrinsic anisotropy of wear processes [26]

According  Kaye  [27]  several phenomena  of  formation  of  rough  surfaces,  such  as  fracture

surface, distribution of corrosion sites, among others, could be described as mixed fractals, the author

summarized  this  multi-fractal  behavior  in  two  scales  for  fractal  analysis,  nominating  then  as

‘‘structural’’ dimension  (Ds)  and  ‘‘textural’’ dimension  (Dt)  according  to  their  scale  range.  The

structural dimension represents small  scales, or fine roughness, where compositional aspects of the

object emerge, whereas the textural dimension represents large scales and describes a physical process

that controls the surface roughness [19].  This approach raises another issue in terms of the field of

image processing: fractal dimension is not a good texture descriptor since the images does not exhibit

the same structure at all scales [14]. The general idea is: limiting the scale range may improve the

fractal characterization of fracture surfaces and the definition of scale ranges may delimit the influence

of the acting factors in crack growth processes. This scale boundary also must improve the accuracy of

fractal  dimension  as  a  texture  parameter  by  diminishing  the  anisotropy  influences  on  fractal

measurement. 

The  main  objective  of  this  study is  to  evaluate  the  fractal  behavior  of  sliding  surfaces  of

Polyamide66  with  glass  fiber  reinforcement  after  tribological  tests,  measuring  the  sliding  surface

topography perpendicularly to the sliding direction after tribological tests, comparing mixed or multi-

fractal values to corresponding morphological and tribological data. Thus, this work also intends to

contribute to expand the set of useful tools for quantitative inspection of wear in composite materials.



In  this  context,  the  3-D reconstruction  by  extended  depth-of-field is  presented  here  as  a  tool  for

quantitative evaluation of sliding surfaces. Finally, it is proposed a new method to split between the

textural and structural fractal scales.

2. Experimental procedure

2.1 Tribological tests

The tribological tests were conducted using the commercial material polyamide 66 reinforced

with 30wt% glass fibers (PA66GF30). The fiber orientations were fabricated normal with respect to the

sliding interface. Table 1 presents the physical-chemical properties of the materials. The properties of

PA66 are also shown for comparison.

 Friction and wear behavior of the polymers were carried out on a Pin-on-Disk Tribometer, in

dry sliding conditions. Cilindric pin shaped samples of PA66GF30 (diameter of 15mm and height of 10

mm) were allowed to slide against a rotating disk (diameter of 76mm and height of 8 mm). The pin

stays on the disk with two degrees of freedom: one vertical, which allows its direct contact with the

surface of the disk, and another horizontal which is shown the friction on the contact, activating the

load cell  with a strain which is  a function of the friction torque.  The temperature on contact  was

measured in steel disk boundary with an optical pyrometer. The counterface material was Ck45K-DIN

steal with 0.45%C, 0.25%Si, 0.65%Mn and average surface hardness is 220HB. The tribological tests

used the same sliding velocity (0.48 m/s) and sliding distance (7500m), with three values of contact

pressures. All tests were run in duplicate.

The other detailed conditions are listed in Table 2, where: m is the initial mass of pins; Ra is the

surface roughness of the disk; P is the contact pressure; PV is the momentum (product of pressure and

velocity); T is the room temperature; and RH% is the relative humidity. Two tests were performed for

each pair and tribological condition.



Table1 Physical-chemical properties of materials.1

Properties Standards PA66 PA66GF30

Phisical proprerties

Density g/cm³ ISO1183 1.14 1.29

Melting temperature ºC 260 260

Thermal conductivity at 23°C
W/(K.m)

0.2 0.3

Mechanical properties at 23°C

Modulus of elasticity (Mpa) ISO 527 3250 590

Tensile Strength MPa ISO 527 80 85

Hardness (Rockwell Test)  ISO 2039-2 M88 M88

1 http://www.lanema.pt      accessed July 13, 2017 

http://www.lanema.pt/


Table 2 Tribological tests conditions used in the studies.

PA66GF30 pin samples Disk Test conditions

                                                          Ra [µm]                      P [MPa]       Pv [MPa.m/s]      T[oC]    RH%

1                                                          0.31                            0.42             0.2                      23         60

2                                                          0.33                            0.42             0.2                      24         60

3                                                          0.32                            1.04             0.5                      23         65

4                                                          0.31                            1.04             0.5                      25        60

5                                                          0.33                            1.46             0.7                      23        58

6                                                          0.35                            1.46             0.7                     24         60

2.3 Optical microscopy analisys and 3-D reconstruction description

After tribological tests, sixteen regions on each sliding surface sample were pictured with a

digital  camera  in  an  optical  microscope  at  regular  displacement  intervals  following  the  centerline

relative to  the diameter of samples, sampled perpendicularly the sliding direction. Since two samples

were tested by tribological condition, thirty two regions were studied per condition. The selection of

the parameters of microscopy and image acquisition had the criterion of optimizing the parameters for

extended depth-of-field method. These issues are explained in detail in a previous article [28]. It was

used  a  Nikon-Eclipse  LV150  microscope,  a  reflected  Light  microscope,  with  objective  lenses  for

extended  working distances  Thus,  all  pictures  throughout  the  sliding  surfaces  were  acquired  with

spatial resolution of 1260 960 pixels, with a 50X objective (numerical aperture of 0.9) was used to

obtain 500 total magnification under brightfield illumination, using green filter. At each position, stacks

of images were pictured. Objective lenses were displaced successively in vertical position at 1mm steps

for 3D mapping by an extended depth-of-field reconstruction. The algorithm used in this case was

‘‘Stack Focuser” plugin, a solution proposed by Michael Umorin and distributed from NIH ImageJ

website  (http://rsb.info.nih.gov/ij/plugins/stack-focuser.htm  l  ).  It  was  used  sample  3  of  Table  2

(P=1.46MPa)  as  an  example  of  extended  depth-from-focus  reconstruction  process  is  presented  on

sequence of Fig.1. 

http://rsb.info.nih.gov/ij/plugins/stack-focuser.html
http://rsb.info.nih.gov/ij/plugins/stack-focuser.html


Fig.1 Example of of extended depth-from-focus reconstruction process:  (a) ordered image stack (b)
reconstructed image showing scratch marks on sliding surfaces and the glass fibers; (c) corresponding
3D elevation map.

(a)

(c)

(b)



2.3 Morphological analysis

 In order to analyses the morphological variation of the sliding surfaces along the diameters of

the samples tested under the tribological conditions (Table2), the quantitative inspection was done from

reconstruct  images.  Fig.  2 is  a  montage  that  shows  the  sampling  scheme  and  illustrates  the

morphological evolution perpendicularly to sliding direction 

Fig.2 Photomontage describing morphological evolution along the diameter.

The routine of image processing and analysis used for the detection of morphological aspects of

surface (constituent glass fibers) along of diameters was similar to that proposed in a previous work

[29]. The following parameters to evaluate fiber morphology were chosen:

1. Mean area



2.Mean diameter

3. Aspect ratio, or the ratio between maximum and minimum chord lengths inside an object to evaluate

the fiber morphology. 

4. Area fraction of fibers

Populations of about 1000 features per condition were analyzed, as suggested elsewhere [30].

2.4 Fractal dimension analysis

The fractal dimension information were computed from elevation maps of all sliding surfaces

samples, by using Map Fractal Count, a plug-in for NIH Image J [31],  based on Minkowski–Bouligand

method, also called as Box-Counting algorithm. This method is one of the most widely used algorithms

to estimate the fractal dimension due to its ease of implementation and simplicity. The method consists

of overlaying an image to square grids varying size and counting the number of grids needed to cover

the entire image [19]. The fractal dimension can be calculated by the following equation: 

(1)

where N(r) is the box count (number of boxes that cover the image), and r is the box size (length of grid

edge).  The  mono-fractal  dimension  is  an  approximation  of  the  logarithmic  regression  line  slope

coefficient for the box count and box size.

Since  the  work  proposal  is  to  analyze  the  sliding  surface  using  the  mixed or  multi-fractal

approach, several procedures can be used to separate a set of points in regions of different slopes. In the

case  of  multi-fractals  the  box  counting  method  has  been  chosen  to  identify  the  two  slopes

corresponding to the structural  and textural  mixed fractal  components.  Here it  was propose a new

method, more robust and requiring no user's parameters like box size or limit standard deviation:

Having the (x,y) data points of length n (Fig3a),  corresponding to log (box size),  log (box

count), the method starts by calculating the slope from point i to n, slope 1 (Fig3b). The initial slope

includes all the data so that with increasing i the slopes will gradually converge to the slope calculated



with less, more sparse data. At some point there is a regime change and that is the point of interest as it

separates the two regimes. But this change is not simply given by the noisy relative extreme of the

slopes calculated but by the point from were the steady state is abandoned. New slopes are therefore

calculated from i to n but using the data set (x, slope1) instead of (x,y). The result is slope 2 (Fig3c)

which is much less noisy and can be interpreted as a second derivative so that the extreme of interest

can be interpreted as an inflection point. To find it, the data set is adjusted to a polygon of degree 3 and

its root within the x data range is calculated (indicated as a vertical line if Fig 3c). Finally the two

slopes are calculated using the (x,y) points at the right and left of root obtained (Fig 3d).

Fig.3 Steps to determine the to regions of different slopes in a (x,y) data set.



3. Results and Discussion

Table 3 shows the experimental results obtained for the samples PA66GF30 for tribological

tests at different contact pressure: friction coefficient, μ, wear coefficient, W, final temperature, Tf and

maximum temperature,  Tm,  recorded  during  each  test.  The  tribological  behavior  of  PA66GF30 is

influenced by the  contact  pressure.  In  general,  it  can  be  seen  that  the  temperature  increased with

increasing contact pressure.  The friction coefficient decreases with increasing contact pressure. This

decrease  is  more  sensitive  in  the  test  performed  1.46  MPa.  However,  the  wear  coefficients  of

PA66GF30 increases with increasing contact pressure in the tribological tests. In fact, the addition of

glass fiber reinforcement to the polyamide can improve the wear resistance and decrease the coefficient

of friction, since it improves the load capacity and the thermal conductivity of the polymer matrix. On

the other hand, the glass fibers may work as a third body during sliding, since they have much higher

hardness than the polymer matrix, causing abrasive wear on the material [9].

Table 3: Experimental results of wear coefficient, W, friction coefficient μ, final temperature Tf and the
maximum temperature Tm, recorded during the tribological tests for PA66GF30 under different contact
pressure.

Contact
pressure
[MPa]

W 
[mm3/N.m]

µ Tf 

[ºC]
Tm 
[ºC]

0.42 3.2E-06 0.425 51 52

1.04
8.95x10-6 0.62

92 92

1.46
10.07x10-6 0.39 101 119

The Table 4 shows the statistical values of morphological parameters for PA66GF30 samples

under different contact pressure along the positions. One can note an evolution of the average fiber size

as the contact pressure increases. These effects are most obvious for samples under condition P=1.46.

The fiber growth, for this condition, is clearly associated with the increase in fiber aspect ratio values.

These observations seems consistent with the parameters of tribological tests. As the contact pressure

increases the sliding surface temperature also increases (Table3), thus the fibers can be pulled out more

easily  and,  since the sliding velocity  is  not uniform throughout  the sample,  these particles  can be

radially dragged. Moreover, these surfaces exhibited an increasing in area fraction of fibers (Table 4),

±0.05

±0.07

±0.09

±1.8E-08

±5E-08

±5.5E-08



corroborating this hypothesis. The Fig.4 illustrates some examples of micrographies of sliding surfaces

of PA66GF30 samples their corresponding 3D elevation map after the tribological tests under different

contact pressure,where it is possible to visualize the resulting grooving wear.

Table  4  Statistical  values  of  morphological  parameters  for  PA66GF30  samples  under  different
tribological conditions
Physical                        Statistical                                 Contact pressure samples (MPa)
parameters                    parameters                     P=0.42                   P=1.04                  P=1.46

1st 2nd 3rd  4th 1st 2nd 3rd  4th 1st 2nd 3rd  4th

 Area                                 Mean (mm2) 35 23 23 27 30 31 30 25 43 43 39 35

                                  std(mm2) 17 14  17 22 11 16 14 17 36 40 27 36

                                         CV 0.7 0.6 0.7 0.6 0.4 0.5 0.5 0.7 0.8 0.9 0.9 1

Mean diameter                  Mean (mm)  5.5 5 5 6 6 6 6 5.5 7 7 7 6

                                          SD(mm) 2 1.4 2 2.9 1.3 1.4 1.4 1.9 3 3.5 3.4 3.4

                                          CV 0.4 0.3 0.4 0.5 0.2 0.2 0.2 0.3 0.4 0.5 0.5 0.6

Aspect ratio                       Mean (mm) 1.4 1.4 1.7 1.5 1.4 1.4 1.4 1.3 2.3 2.3 2.5 2.5

                                          SD(mm) 0.3 0.3 0.6 0.5 0.3 0.4 0.4 0.2 2 2 2.2 1.9

                                          CV 0.2 0.2 0.3 0.4 0.2 0.3 0.3 0.1 0.8 0.8 0.9 0.8

Area fraction% 10 8 10 7 15 14 16 20 16 20 23 27

 

(b)(a)

(a) (b)



Fig.4 Examples of micrographies of sliding surfaces of PA66GF30 samples their corresponding 3D
elevation map after the tribological tests under different contact pressure: P=0.42 (Figs a,b); P=1.04
(Figs. c,d); P=1.46 (Figs.e,f).

The overall results presented in Table 4 correspond to the combination of morphological fiber

information obtained from several sliding surfaces, collected in different fields per position of each

sample in order to compensate for possible heterogeneities. It should be noted that the heterogeneity

indicators  can have consequences  for  the development  of surface roughness and its  effects  on the

tribological behavior.

 In fact, there seems to be a qualitative relation between the coefficient of variation of samples

(Table 4) and strutural fractal dimension, Ds, or microscale, shown in sequence of Fig.5. In general, the

(c) (d)

(e) (f)



greater  the indicator  of  heterogeneity,  or,  the coefficient  of  variation,  the larger  dispersion  can be

observed for  strutural  fractal  dimension.  These  results  are  more  obvious  for samples  tested  under

conditions P =1.46 (Fig.5i,j) where larger values and larger dispersion can be observed in fourth range

of sliding surfaces. Fig. 5j exhibits the highest variance value at fourth plot range. These results agree

on the observation about the morphology since the more heterogeneous the morphological arrangement

is, the higher is the surface roughness, or fractal dimension [32].

A visual inspection of Fig.4 suggest that for the conditions, P =0.42 and P=1.04, the roughness

seems more uniform and regular. For the condition P=1.42 the topography of the surface seems more

heterogenous. The  abrasive  wear  of  the  polymeric  composites,  as polyamide  with  glass  fiber

reinforcement,  takes  place  in  contacts  where  the  harder  glass  particles  are  pressed  into  the  softer

polyamide  surface  which  results  in  plastic  flow  of  matrix  around  the  hard  one.  In  general,  the

micromechanisms acting in association in abrasive wear of ductile materials are the micro-cutting and

the ploughing. The abrasive wear regime depends on the conditions of the abrasive particles (size,

shape and movement restriction) and the applied stress levels. Different combinations of these variables

define different levels of system severity [33]. Depending on the shape and size of the glass particle

surfaces and the degree of penetration, the removal of matrix material may take different topography,

such as  plowing [34].  Therefore  the  contact  pressure  and the  morphology of  the  particles  exert  a

marked influence on the abrasive wear of the material.

In fact, the action of the contact pressure in associationn with the aspect ratio of the particles

seems to be related to the textural fractal dimension, Dt, or macroscale, as shown in Table 4 and the set

of Fig.5 (c, d, gh, L and m). The sliding surfaces under P = 0.42 and P = 1.04, exhibit Dt values with

lower dispersion, it means, there is more uniformity in rough roughness. It should be noted that in these

samples, particles exhibit average aspect ratio close to 1.5 (values in which one feature is considered

equiaxial). With increasing contact pressure, sliding surfaces under P = 1.46, which have a markedly

higher  and more heterogeneous particle  aspect  ratio  (Table 4),  present  also larger  scattering in  Dt

values.  These observations suggest that measurements of textural fractal dimension are sensitive to

changes in tribological parameters



(e) (f)

(a) (b)

(d)(c)



Fig.5.  Fractal  behavior  of  samples  under  different  tribological  conditions:  P=0.42:  (a)  Ds  along
positions; (b) Variance distribution of Ds values; (c) Dt along positions; (d) Variance distribution of Dt
 values: P=1.04: (e) Ds along positions; (f) Variance distribution of Ds values; (g) Dt along positions;
(h) Variance distribution of Dt values: P=1.46: (i) Ds along positions; (j) Variance distribution of Ds
values; (l) Df along positions; (m) Variance distribution of Dt values

(f)



5.Conclusions

In summary, the following comments can be done at this time:

-The  fractal  analysis  of  sliding  surface  in  Polyamide66  with  glass  fiber  reinforcement could  be

successfully  conducted  from elevation  maps  resulting  for  the  combining of  a  conventional  optical

microscope and the 3-D reconstruction by extended depth-of-field.

-A robust method was proposed to separate the influences of micro and macro scales on multi-

fractal behavior.  It's a fully automatic approach  requiring no user's parameters like box size or limit

standard deviation.

-The mixed or multi-fractals concept seems to explain the  relationship among morphological

structure  (size,  aspect  ratio...),  tribological  parameters  (contact  pressure...)  and  surface  roughness,

splitting the phenomena in two components: macro scale and micro scale.

-It is certainly necessary to carry out more experiments, to analyses a larger number of sliding

surfaces samples, different tribological conditions, many other material systems s in order to improve

reliability of results. However, since verifying the systematic bias, we confide that such results will

provide more compelling evidence in order that approaches based on fractal analysis of sliding surfaces

of polymeric composites find widespread utilization.
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