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Abstract 

Helical milling is a hole-making process which has been applied in hardened materials. Due to the 

difficulties on achieving high-quality boreholes in these materials, the influence of noise factors, and 

multi-quality performance outcomes, this work aims the multi-objective robust design of hole quality 

on AISI H13 hardened steel. Experiments were carried out through a central composite design 

considering process and noise factors. The process factors were the axial and tangential feed per 

tooth of the helix, and the cutting velocity. The noise factors considered were the tool overhang 

length, the material hardness and the borehole height of measurement. Response models were 

obtained through response surface methodology for roughness and roundness outcomes. The models 

presented good explanation of data variability and good prediction capability. Mean and variance 

models were derived through robust parameter design for all responses. Similarity analysis through 

cluster analysis was realised, and average surface roughness and total roundness were selected to 

multi-objective optimisation. Mean square error optimisation was performed to achieve bias and 

variance minimization. Multi-objective optimisation through normalized normal constraint was 

performed to achieve a robust Pareto set for the hole quality outcomes. The normalized normal 

constraint optimisation results outperformed the results of other methods in terms of evenness of the 

Pareto solutions and number of Pareto optimal solutions. The most compromise solution was 

selected considering the lowest Euclidian distance to the utopia point in the normalized space. 

Individual and moving range control charts were used to confirm the robustness achievement with 

regard to noise factors in the most compromise Pareto optimal solution. The methodology applied 

for robust modelling and optimisation of helical milling of AISI H13 hardened steel was confirmed 

and may be applied to other manufacturing processes. 
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Abbreviations 

 

EDM electrical-discharge machining 

CAM computer-aided manufacturing 

CFRP carbon fiber reinforced plastic 

DOE design of experiments 

RSM response surface methodology 

CCD central composite design 

RPD robust parameter design 

SNR signal-to-noise ratio 

MSE mean square error 

NNC normalized normal constraint 

TCP tool centre point 

OLS ordinary least squares 

WLS weighted least squares 

WS weighted sum 

NBI normal boundary intersection 

I/MR individual values/moving range 

SQP sequential quadratic programming 

LOF lack-of-fit 

 

Nomenclature 

 

vf helical feed velocity [mm/min] 

vfha axial feed velocity of the helix [mm/min] 

vfht tangential feed velocity of the helix [mm/min] 

fza axial feed per tooth of the helix [mm/tooth] 

z number of teeth 

n spindle rotation speed [rev/min] 

vft tangential feed velocity [mm/min] 

Db borehole diameter [mm] 

Dh helix diameter [mm] 

fzt tangential feed per tooth of the helix [mm/tooth] 

ap axial depth of cut [mm] 

φ tool contact angle [º] 

ap
* maximum depth of cut [mm] 

α helix angle [º] 

ae radial depth of cut [mm] 

x vector of process variables 

xi i-th process factor, i = 1, …, k 



 

 

z vector of noise variables 

zj j-th noise factor, j = 1, …, r 

 zx,ŷ  Response model 

0  Intercept of response model  

β  vector of linear coefficients of process factors 

βi i-th linear coefficient of process factors, i = 1, …, k 

B  matrix of second-order coefficients of process factors 

βii i-th quadractic coefficient of process factors, i = 1, …, k 

βij ij-th interaction coefficient of process factors, i ≠ j 
γ  vector of linear coefficients of noise factors 

γj j-th linear coefficient of noise factors, j = 1, …, r 

Δ  matrix of process×noise interaction terms 

δij ij-th process×noise interaction,   i,j 

ε experimental error 

V variance matrix of noise factors 

σzj
2 variance of the j-th noise factor, j = 1, …, r 

  zx
εz

,
,

yE  mean model 

  zx
εz

,
,

yVar  variance model 

 xl̂  slope in the direction of noise factors 

X* general design matrix of the response model 

β* general coefficient vector of the response model 

C* variance-covariance matrix of X* 

W* general matrix of weigths for WLS estimates of the response model 

MSE mean square error equation 

Ty target of the mean model 

Y matrix of responses 

yij i-th observation of the j-th response, i = 1, …, N, j = 1, …, m.  

P proximity matrix 

prs proximity between yr and ys 
2

rsd  quadratic distance 

Ψ metric of interest for the quadratic distance 

sii variance of i-th variable 

srs similarity between yr e ys  

drs dissimilarity between yr e ys 

rrs correlation coefficient between yr e ys 

f(x) vector of objective functions 

fi i-th objective function 

m number of objective functions 

x vector of control factors 

fi
* i-th anchor point 

fU utopia point 

fN nadir point 

fPN pseudo-nadir point 
U

f  normalized utopia point 



 

 

PN
f  normalized pseudo-nadir point 

f  normalized vector of objective functions 

if  i-th normalized objective function 

Φ  pay-off matrix 

Φ  normalized pay-off matrix 

ijQ  point in the utopia line 

rN  utopia line vector 

*
f  Pareto optimal solution 


if  i-th normalized anchor point 

wij weigths assigned to the objective functions 

nsub number of subproblems 

δr spacing among the points in the utopia line vector 

ηr number of points in the utopia line vector 

jd  normalized Euclidian distance between the adjacent Pareto solutions 

d  vector of Euclidian distance between the adjacent Pareto solutions in 

the normalized space 

d
CV  coefficient of variation of d  

d
  standard deviation of d  

d
  mean of d  

dj+ Euclidian distance of each Pareto optimal solution 
*

jf  to the utopia 

point 
U

f  in the normalized space 

ap(máx) maximum axial cutting depth of the cutting tool 

hd material hardness 

lto tool overhang length 

lb borehole height 

Ra average surface roughness 

Rz maximum surface roughness 

Ront total roundness 

Cylt total cylindricity 

α significance level 

Ω experimental region 

ρ radius of the spherical region 

nf number of factorial points 

nc number of centre points 

na number of axial points 

R2 coefficient of determination 

Radj
2 adjusted coefficient of determination 

Radj
2 prediction coefficient of determination 

 

 

 

 

 

 



 

 

1 Introduction 

 

Molds and dies are important but complex tools for forming processes. Molds and dies 

demand evolves requesting products with better quality and high complexity, besides, reduction of 

time to market response and costs [1]. In this sense, molds and dies industry present important 

impact in the competitiveness of the forming processes. In a mold manufacturing it is estimated that 

65% of the costs are due to finishing and semi-finishing processes by machining [2,3]. Between 

these processes, hole-making spends from 25% to 50% of the cycle time and 33% of the total 

number of operations, requesting reliability due to the high added value to the part being processed 

[4,5]. 

Hard milling has captured the attention of manufacturers of the molds and dies industry. In 

this field materials such as AISI P20, H13 and others are commonly cut. Traditionally, core and 

cavities of molds and dies are removed in the hardened state using electrical-discharge machining 

(EDM). Nowadays, new toolpaths are available to perform hard milling of these materials. The 

hardness of these materials can range from 45 HRC to as hard as 64 HRC [6]. To allow the adoption 

of new technologies for hard milling, computer-aided manufacturing (CAM) software developers 

have programmed special toolpaths so that tool deflection in milling sculptured surfaces can be 

compensated for [7]. For hole-making and cavities opening through milling, a helical milling path is 

an option which ensures the milling advantages to the detriment of hard drilling difficulties.  

In helical milling, the tool proceeds a helical path concomitant to the tool rotation around its 

own axis. Due to the helical path and the use of a mill instead of a drill, the helical milling presents 

several advantages with regard to conventional drilling. In helical milling, holes with different 

diameters may be obtained with the same tool throughout the helical diameter adjustment, enabling 

tool inventory reduction and setup time economy. In this process, the material removal is realized by 

frontal and peripheral cutting edges continuously and discontinuously, respectively, while in 

conventional drilling the material removal is continuous through the frontal cutting edges [8]. In 

helical milling low cutting force levels in the axial direction are developed due to the helical 

trajectory, due to the tool geometry and the material removal aspects [9]. Easy chip evacuation and 

modern lubri-cooling techniques application, such as minimum quantity lubrication and air cooling, 

are allowed due to the offset between tool and borehole [10]. 

Borehole quality is generally assessed through roughness and roundness outcomes [11]. 

Improved dimensional, geometrical and microgeometrical borehole quality are obtained through 

helical milling [9] due to the helical path, low cutting forces, discontinuous material removal through 

peripheral cut and easy chip evacuation. Correction of dimension deviation may be realized through 



 

 

the adjustment of the helical diameter [12]. Tool wear may be monitored, since it occurs 

progressively, allowing tool life prediction and tool replacement [9]. A high quality of borehole 

entrance and exit with low burr levels and fracture in these regions are achieved [13]. In carbon fiber 

reinforced plastic (CFRP), low delamination levels are obtained through hole-making with helical 

milling technique [14]. Through helical milling it is possible to obtain finished boreholes in just one 

operation, avoiding reaming operations [15]. Due to these advantages, helical milling has been 

consolidating as a sustainable hole-making process. Some of the advantages of helical milling 

process are illustrated in Figure 1. 

 

 

Figure 1. Helical milling features 

 

Helical milling has been widely applied for hole-making in difficult-to-cut materials, such as 

titanium alloys and CFRP [16]. There are still few studies about helical milling in hardened steels. 

Some important results in this field are the case of helical milling of AISI D2 steel with 60 HRC [9], 

AISI D3 steel with 55 HRC [17] and AISI 4340 steel from 34 to 45 HRC [18]. 

To study the helical milling in hardened materials presents itself as a possibility of increasing 

competitiveness of molds and die industry due to the difficulties of drilling these materials. Efforts 

have been made to shorten entire process chains by direct hard machining of components, aiming to 

reduce production time and to substitute conventional, time and resource intensive inflexible 

grinding and electrical discharge machining processes [19]. As Iyer et al. [9] highlights, the 

advantage on manufacturing molds and dies with the workpiece hardened, instead of roughing the 

material in its soft state followed by heat treatment and finishing by grinding or electrical discharge 

machining (EDM), comes from the finishing operations with intensive labour and logistical needs, 
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apart from guaranteeing a higher quality product eliminating the errors associated to heat treatment 

and several setups. Due to the lack of experimental studies about helical milling in hardened steels, 

there are scientific aspects poorly explored. Statistical and computational methods may be applied to 

achieve high-quality boreholes in these materials, bringing economic, social and environmental 

benefits to the whole chain of tool and die industry.   

Process modelling through the design of experiments (DOE) aims to find an approximation 

for the response with regard to control factors. The response surface methodology (RSM) is one 

DOE methodology widely applied for modelling and optimization, including a set of tools for 

building and exploring empirical models [20]. To achieve these aims, designed experiments must be 

conducted. Among the available options, the central composite design is an interesting experimental 

design enabling sequential experimentation, curvature region search, economy in the 

experimentation, possibility of getting first and second order models, besides, low prediction 

variance [21].  

Robust optimisation deals with uncertainties in the input data [22]. In these problems, it is 

desired the “robust solution” achievement, when a solution is referred as robust if its near-optimal 

under distinct scenarios of the input data; and “model robustness” if the solution is nearly feasible in 

all scenarios [23]. More specifically, Taguchi methods aim the robust design of a process or product 

with minimal costs and, especially, low sensitivity to fluctuations of uncontrollable variables [24]. 

Taguchi considers the problem on finding optimal levels of controllable factors which optimize the 

response taking into consideration the sensitiveness of the optimal solution obtained with regard to 

the noise variables which affect the process under the experimental region. Noise factors are those 

which affect the response and cannot be controlled by the engineer at production level [25]. The 

robust parameter design (RPD), aims to find levels of control factors which makes the optimal level 

of the response insensitive with regard to control factors variability [26,27]. The reason for applying 

RPD is related to the higher costs of controlling noise factors than to make the process insensitive to 

them [28]. 

 Robust optimisation through the RPD concepts of Taguchi may be achieved through different 

approaches. The Taguchi idea of applying a statistical design to attain a product or process 

insensitive to environmental disturbances and having the lowest possible cost is considered important 

in the quality engineering field. However, Taguchi methods are labelled to be inefficient due to the 

application of saturated designs, interactions neglect, orthogonal arrays inconsistent use for 

optimisation, the difficulty of interpretation of signal-to-noise ratio and its use as universal criteria 

for optimisation, and other weaknesses [29]. The Taguchi crossed array designs and SNR metrics are 



 

 

yet used but, the ideas and concepts with regard to robustness introduced by Taguchi are nowadays 

used with more vigorous statistical and optimisation methods.  

RPD allied to RSM through combined array approach have been applied effectively, once it 

enables economy in the experimentation, allows to study the process×noise factors interactions and 

let getting mean and variance models for the response through the propagation of error with regard to 

the noise factors [30]. Mean square error (MSE) can also be applied together with RSM and RPD 

aiming to approximate the mean of the response to the target and, simultaneously, reduce the 

variance of the process [31].  

    

 

Figure 2. Experiments optimization (a) overview; (b) conventional optimization; (c) robust 

optimization 

 

Figure 2 highlights the differences between the conventional optimization and the robust 

optimization. Essentially, in the conventional optimization, Figure 2(b), there is a major concern in 

approximate the mean from the target defined with regard to the specification limits for the product. 

However, the level of the mean response closest to the target of the response occasionally may 

present high variability with regard to the noise factors, resulting in a high probability of non-
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compliance with the specifications. In the robust optimization, Figure 2(c), through the RSM, RPD 

and MSE approaches deals with the trade-off between mean and variance. Despite in this approach 

the mean optimal level of the response may remain farther from the target, the robustness may be 

achieved, diminishing the variance of the response with regard to the noise factors, guaranteeing high 

possibility of meeting the specifications.  

 Another important aspect in engineering optimization, apart from the achievement of 

robustness, is the presence of several responses of interest to be optimized simultaneously. 

Optimization procedures involving multiple responses are called multi-objective. In this approach, it 

is impossible to get simultaneously the individual optima for all the evaluated responses. Therefore, 

the optimal solution is not unique, but it consists of a set of solutions denominated Pareto optimal 

solutions. A solution is said Pareto optimal when it improves one of the objective functions with the 

prejudice of almost one of the remaining ones. Throughout a set of Pareto optimal solutions, the 

region called Pareto front is explored and the trade-off among the objective functions may be studied 

[32]. There are several multi-optimization approaches available in the literature. The normalized 

normal constraint method (NNC) [33] presents itself as a good alternative, guaranteeing good 

exploration of the Pareto frontier and, consequently, the trade-off between the responses. 

 Helical milling in the soft alloy Al 7075 was addressed considering robust multi-response 

optimisation [34] and considering multivariate robust optimisation [35]. In both cases the noise 

factor considered was the tool overhang length. However, the challenges in the helical milling of 

AISI H13 hardened steels are unique, these are difficult-to-cut materials and presents a significant 

demand in hole-making. Besides, it is important to take into consideration different noise factors 

which are critical in the field of hole-making in hardened steel.  

Helical milling of AISI H13 hardened steel is challenging due to the high mechanical and 

wear resistance, inducing tool deflection, geometrical and microgeometrical deviation in helical 

milling. These problems may be related to the high tool wear rates and high cutting forces developed 

in helical milling of AISI H13 hardened steel. Consequently, it is important to conjoin different 

methods to achieve the robust modelling and optimisation of this feasible but challenging operation 

in a difficult-to-cut material. Then, the combination of RSM, RPD, MSE and NNC methods is 

justified by the difficulties on hole-making of AISI H13 hardened steel through helical milling.” 

 Since conventional hard drilling presents unfavourable conditions [36], helical milling is a 

practicable hole-making process which has been applied in these materials with good results [9,18]. 

As AISI H13 hardened steel has been insufficiently studied in helical milling of AISI H13 hardened 

steel, this study may be a reference for the manufacturers of moulds and dies. To choose suitable 

helical milling cutting conditions to assure high quality in hole-making in these materials is a 



 

 

difficult task. Due to the challenges in the machining of hardened steels, such as AISI H13 hardened, 

to consider noise factors in the experimental planning is a consistent proposal to attain variability 

minimization. As important quality parameters of boreholes are expressed with different and, 

frequently, dissimilar outcomes, such as roughness and roundness, it is important to apply multi-

objective optimisation in the helical milling of AISI H13 hardened steel. By conjoining RSM/RPD 

and multi-objective optimisation, boreholes of AISI H13 hardened steel with robust optimal quality 

levels of multiple responses may be attained. The same methodology proposed in the present study 

can be applied in other manufacturing process and systems which present significant noise factors 

and multiple outcomes of interest as a statistical, mathematical and computational procedure. 

 The purpose of this investigation is the multi-objective robust modelling and optimization of 

borehole geometry and roughness in the helical milling of AISI H13 hardened steel. Through the 

results attained in this study, boreholes with high geometrical and microgeometrical quality with 

robustness in regard to noise may be achieved in helical milling process of AISI H13 hardened steel. 

These goals are achieved through the application of the RPD, MSE and NNC methods. This 

statistical, mathematical and computational approach may also be applied to the robust optimisation 

of other manufacturing processes.  

 

2 Helical milling kinematics 

 

The helical milling kinematics is basically defined by a helical toolpath conjugated with tool 

rotation around its own axis. The kinematics of helical milling may be studied considering the vector 

decomposition of the helical feed velocity (vf) in the tangential and frontal components [14]. This 

allows the engineer to study the effect of peripheral and frontal cutting in the borehole quality [16]. 

Figure 3 illustrates the helical milling kinematics. The helical feed velocity (vf) in [mm/min], 

developed on tool centre point (TCP) can be calculated considering the axial feed velocity of the 

helix (vfha) in [mm/min] and the tangential feed velocity of the helix (vfht), also in [mm/min], 

according to Equation 1. The axial feed velocity of the helix (vfha) may be described considering the 

axial feed per tooth of the helix (fza) in [mm/tooth] according to the Equation 2, where z is the 

number of teeth and n in [rev/min] is the spindle rotation speed. The tangential feed velocity of the 

helix (vfht) in [mm/min], may be calculated according to the Equation 3 concerning the tangential 

feed velocity (vft) in [mm/min]. In the circular cutting, the feed velocity in the periphery of the 

borehole, vft, related to the borehole diameter (Db), in [mm], is higher than the feed velocity in the 

TCP, vfht, related to the helix diameter (Dh) in [mm]. Consequently, the tangential feed per tooth of 



 

 

the helix (fzt) in the tangential direction should be considered in the point of high velocity, vft, 

according to the Equation 4. 
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Figure 3. Helical milling kinematics [35] with permission from Springer Nature, license number: 

4467180469015 

 

The axial depth of cut (ap) varies according to the contact angle (φ), considering the approach 

of Denkena et al. [14], or taking an arbitrary inspection ratio, it can be determined the proportions of 

ap relative to frontal and peripheral cut, according to the approach of Brinksmeier et al. [8]. 

However, the maximum depth of cut (ap
*) suits as a measure of geometrical mechanical load, since, 

it is related to chip geometry. The maximum axial depth of cut (ap
*) is mathematically dependent of 

the feed velocities components in axial and tangential directions [14]. Firstly, the helix angle (α) can 

be expressed through Equation 5 and, subsequently, ap
*, which is the helical pitch, in [mm/rev], is 

calculated through the Equation 6, considering the helix angle and the length of the circular path 

(π×Dh). By manipulating this expression considering Equations 1-4, ap
* may be defined with regard 

to fza and fzt to understand the effect of these portions of cut related to axial and peripheral cut, 

respectively [16]. According to Iyer et al. [37], in helical milling without a pre-hole the radial depth 
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of cut (ae) in [mm] is measured in the xy plane and is the ratio between the total area removed to the 

length of the circular path, as expressed in the Equation 7, depending only on the diameters Db and 

Dh. 
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3 Noise factors identified in the helical milling of hardened steel 

 

As early stated, a noise factor is a variable which affects the process but cannot be controlled in 

production level. However, noise factors may be fixed at the experimental stage to achieve process 

robustness. An important noise factor in mold and die machining is the tool overhang length. Tool 

overhang length is not defined considering the engineer preferences, but according to the workpiece 

geometry [35,38]. In cavities machining, it is necessary high tool overhang length to avoid collision 

between the tool holder and the workpiece. The tool overhang length may originate tool deflection, 

vibration and, consequently, affect roughness, geometrical error, and productivity [39,40]. Hence, it 

is required to find levels of process parameters which allows robustness with regard to tool overhang 

length [38]. 

Workpiece hardness may present variation due to heat treatment, anisotropy, and other 

metallurgical characteristics. The effect of workpiece hardness was addressed in the helical milling 

of the AISI 4340 steel [18], nevertheless, it was not studied as a noise factor. The workpiece 

hardness has been studied as a noise factor in the context of hard machining [41]. Paiva et al. [41] 

affirmed that, in turning of AISI 52100, after some longitudinal turning passes, the hardness 

decreased from nearby 50 HRC to approximately 40 HRC. Besides the authors affirmed that after 

heat treatment, the hardness was between 49 and 52 HRC. Then, due to difficulties in heat treatment, 

the hardness may present significant variation. Since, RPD theory advocates that it is less costly to 

achieve robustness to difficult-to-control factors than to controll them, in hole-making of hardened 

materials it is important to achieve control factors levels’ guaranteeing insensitive in quality 

parameters with regard to hardness variation. 



 

 

Another specific difficult of hole-making is to achieve a borehole with steady quality in relation 

to the borehole surface height. In helical milling and other hole-making processes, usually the quality 

in the borehole end is poorer than in the beginning. It may be related to the high tool-workpiece 

contact area increasing tool deflection and radial force [14], resulting in dimensional, geometrical 

and microgeometrical variation [15,42]. Furthermore, in helical milling the tool realizes more orbital 

revolutions in the beginning than in the end of the borehole, resulting in the smoothing of the surface 

due to the peripheral cut. Then, the roughness is lower as the borehole height point is closer to the 

borehole entry [43]. 

 

4 Robust parameter design and mean square error 

 

 RPD aims to find levels of process factors robust with regard to noise factors [25,44]. Due to 

several statistical contradictions of the Taguchi’s methods [29], its philosophy was adopted by 

several researchers in more reliable alternatives to RPD. Some of these proposals highlight the use of 

RSM procedures to RPD, where mean and variance modelling is achieved [30]. Welch et al. [25] 

proposed a design including process and noise factors which requires lower runs than the crossed 

arrays. Shoemaker et al. [26] called this RPD approach combined array, highlighting the importance 

of process×noise interactions. Through the study of process×noise interactions, the propagation of 

error is feasible and the achievement of levels of process factor robust to noise factors variation is 

possible. 

 Box and Jones [31] described a response model in function of process, xT = (x1, x2, …, xk), and 

noise factors, zT = (z1, z2, …, zr), which may be written in the matrix form according to Equation 8.  

 

  εΔzxγzBxxβxzx
TTTT  0, y       (8) 

 

where 0  is the intercept, β is the vector of linear coefficients of process factors, B is the matrix of 

second-order coefficients of process factors, containing quadratic and interaction terms, γ is the 

vector of linear coefficients of noise factors and Δ is the matrix of process×noise interaction terms 

[38], as follows: 
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 For the response model in the Equation 8, it is assumed that the experimental error ε is 

normally and independently distributed NID (0, σε
2). The model takes into account a second-order 

response surface in function of process factors, Bxxβx
TT 0 , linear terms of noise factors, γz

T
, 

in addition to the important process×noise interactions, Δzx
T

. It is presumed that control and noise 

factors are continuous [46]. 

 Taking into account a coded design with continuous and random noise factors from a vector z, 

it may be presumed that E(z) = 0 and Var(z) = V, where Vr×r, is the variance-covariance matrix of z, 

symmetrical positive definite, usually assumed diagonal with terms σzj
2 = σz

2, j = 1, …, r. V is 

assumed diagonal since the noise factors are considered not correlated among themselves [46,47]. 

 Applying the mean operator with regard to z in the Equation 8 [30]: 

 

   xBxβxzx TT

εz

ˆˆˆ, 0
,

 yE          (9) 

  

Analogously, the variance model is obtained through the application of the variance operator 

with respect to z in the Equation 8 [30]. 
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 The slope in the direction of noise factors is important to predict the process variance of the 

response in the experimental region. The slope is the vector of partial derivatives of the response 

model in the Equation 8 with respect to z [30,46,47], according to the Equation 11. 
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 The variance-covariance matrix V is assumed diagonal and it may be presumed that σzj
2 = σz

2 = 

1, due to the codification of the noise factors levels in ±1, in a way that the variance-covariance 



 

 

matrix is assumed as an identity matrix, V = I. Consequently, the Equation 10 may be rewritten as 

[48]: 
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 Figure 4 presents two graphical examples of process×noise interactions. In the first case, 

Figure 4(a), it is clear that the effect of x1 depends on the level of z1. However, the most important 

aspect in RPD is that it is possible to achieve a level of x1 which makes y insensitive to the variation 

of z1. Them, setting x1 = 0.5 makes y robust to the variation of z1. In the case of the interaction 

between x1 and z2 it is clear that it is not possible to achieve a level of x1 which makes y robust to z2 

variation since in all the domain of x1 the effect of z2 is significant in the response. Consequently, 

when the process×noise interaction is not significant it is not feasible to achieve robustness 

concerning noise variation. 

 

 

Figure 4. Process×noise (a) significant interaction; (b) non-significant interaction 

 

 Taking the response model in the Equation 8, in a general form, to facilitate the 

understanding of the least squares estimates for the response model, it may be written [47]: 
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 The matrix X* presents 1 + 2k + k(k − 1) + r + rk columns taking into account the intercept, 

the linear, second order interactions, and quadratic effects of the process factors, the linear effects of 

the noise factors, and the process×noise interactions, respectively. Similarly, β* comprises the 

0.5

(a) (b)

x1*z1 x1*z2

z2



 

 

response model coefficients β0, β, B, γ, and Δ. The least squares approximation for β* is found in the 

Equation 14 [47].  

 

  yXXXβ
T *

1
***


                      (14) 

 

 The matrix   1
***


 XXC
T

 is composed by important submatrices, as illustrated in Figure 5. 

The submatrix C*kl, k,l = 1,2,3, are the variance-covariance matrices for various subsets of factors of 

the response model, as illustrated in Figure 5 [47]. 

 

 

Figure 5. Structure of the submatrix of C* (adapted from BORROR et al. [47]) 

 

 When using RPD combined array approach, the guarantee of homoscedasticity may not be 

confirmed due to the presence of the difficult-to-control noise factors. In these cases, the response 

model achieved by ordinary least squares (OLS) may present prediction problems. In these cases, the 

weighted least squares (WLS) may be employed.  

 The matrix C* may be considered to WLS estimates, standing as   1
****


 XWXC
T

, and the 

coefficients obtained by the WLS are   yWXXWXβ
T **

1
****



 , where W* is a diagonal matrix 

containing the weights related to the heteroscedastic variance of the observations. The OLS method 

presents the assumption Cov(ε) = σ2I, which implies in the independence of yi and homocedasticity, 
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i.e., variance homogeneity, σ2, i = 1, …, N, which is not easy to achieve in RPD. In the presence of 

heteroscedasticity, the model εβXzxy  **),(  presents ε ~ N(0, σ2W) [49,50]. Romano and Wolf 

[51] showed that WLS is more efficient than OLS also with nonnormal error terms.  

 The use of a weighted residual sum of squares is remedial when some observations present 

more prominent error than others. Consequently, observations with lower variances will receive 

larger weight in the WLS regression. Then, instead of considering the variance constant for each 

observation, it can be considered that Var(yi) = σ2/wi. The variance function is yet constant, however 

the individual variance i = 1, …, N differs for each observation [50]. In the appendix A it is 

demonstrated that OLS results may be applied to WLS problems. 

 Mean square error optimization is commonly used together with RPD to allow bias and 

variance optimization. The mean square error measures the expectancy of the quadratic deviations of 

an estimator. Then, the MSE is a measure of approximation of the estimated value with regard to a 

target value. Box and Jones [31] proposed the first application of MSE in RPD. Vining and Myers 

[52] affirmed that this application is more recommended with combined array approach. Lin and Tu 

[53] proposed the same formulation of Box and Jones [31], denoting this approach as dual 

optimization. This formulation with regard to mean and variance Equations 9 and 12, is defined in 

Equation 15, where Ty is the target value for )],([
,

zx
εz

yE  obtained through )]},([{
,

zx
εzx

yEMinTy


 . 

 

)],([})],([{
,

2

,
zxzx

εzεz
yVarTyEMSE y          (15) 

 

5 Similarity study through cluster analysis 

 

The cluster analysis aims to group similar objects in the same group and the dissimilar ones 

in different groups. The analysis may be applied to group observations or variables. For m variables 

to be hierarchically grouped the analysis begging with m groups, each one with one variable and 

finishes with a group with all variables. In each step, the variables are grouped throughout an 

adopted similarity measure. Consider the data of the m variables in the matrix Y as follows [54]. 
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A proximity matrix is necessary to start the analysis, storing the similarity or dissimilarity 

among the variables. For instance, the correlation is a similarity measure, while the distance is a 

dissimilarity one. The proximity matrix P of order m × m is a matrix of proximity coefficients prs 

between two variables yr and ys, with m(m ˗˗ 1) proximity measures results, as follows. The matrix P 

is symmetrical, i.e., prs = psr [54]. 
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 An example of similarity measure is the quadratic measure between two variables yr and ys as 

follows [54]: 

 

   srsrrsd yyΨyy
T

2
           (18) 

 

with Ψ as a metric of interest. When Ψ = I, being I and identity matrix, this quadratic distance is the 

Euclidian distance, which is recommended for the cases when the variables present similar scales. 

When Ψ = diag(1/sii), with i = 1, …, N and sii the variance of i-th variable, drs
2 is the quadratic 

Euclidian distance, being this measure suitable for non-correlated variables with distinct scales. To 

consider the correlation, it is recommended to use Ψ = s-1, with s as the sampling variance-

covariance matrix, with drs
2 in this case as the generalized Mahalanobis distance [54]. 

 Taking the vectors of values of the variables yr e ys in the N-dimensional space of the 

variables, a similarity measure srs = ssr presents domain [0; 1]. If srs = 1, the variables present perfect 

similarity, it is, yr = ys. The dissimilarity can be obtained considering the similarity through drs = 1 ˗ 

srs. However, the contrary is not possible, since distance measures present domain [0; ∞). The 

correlation coefficient rrs is used as controversial similarity measure, since its domain is [-1; 1] and, 



 

 

when rrs = 1, it does not mean that the similarity is perfect, but that there is a perfect linear 

relationship between the variables. It is suggested to use the absolute correlation |rrs| as a similarity 

measure, however, the problem of the perfect similarity persists. When clustering variables, it is 

generally used |rrs| as a similarity measure and drs = 1 ˗ |rrs| as dissimilarity measure [54].  

 The hierarchical grouping methods classify the variables in sequential steps, representing the 

groups using a dendrogram. A general algorithm for m variables may be described as follows [54]: 

a. To obtain the proximity matrix considering the similarities or dissimilarities of order 

m × m between the variables. In the Ward method the proximity measure is [pij] = 

[0,5dij
2]; 

b. To start the analysis with m groups each with one variable; 

c. To identify in the matrix P the pair with the highest proximity and represent the 

distance between them by prs; 

d. To merge the groups r and s forming a new group rs. Recalculate the matrix P 

eliminating the lines and columns r and s and creating a new line and column rs. In 

the Ward method, the calculation of the distance between thr group rs and other group 

t is calculated as in Equation 19, with mt and mrs as the number of variables in the 

groups rs and t respectively. 
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e. To repeat the steps c to d until grouping all the variables hierarchically.  

   

6 Normalized normal constraint multi-objective optimization method 

 

 A multi-objective optimization task is related with the simultaneous optimization of m 

objective functions. In these problems, the solution is not unique, but a set of solutions called Pareto 

optimal or non-inferior solutions. Operationally, the performance of some of the m objective 

functions cannot be improved without the worsening of at least one of the m – 1 remaining one [32]. 

Multi-objective tasks are frequently employed to solve engineering problems. Recently, multi-

objective optimization was applied on steel case hardening to solve the trade-off between hardness 

and residual stresses [55]. The trade-off between minimum weldline temperature and clamping force 

in plastic injection moulding was also solved through multi-objective optimization [56]. 



 

 

 The terminology of multi-objective optimization should be presented. A generic multi-

objective optimization problem is defined as follows: 

   )(),...,()( xxxfx mi ffMin 

                     (20) 

 

were fi represents the i-th objective function i = 1, … m, x = [x1, …, xk]
 T is the vector of control 

factors, Ω is the experimental space and f(x) = [f1(x), ..., fm(x)] T is the vector of objective functions. 

The anchor points are the individual minima for each objective function f1
*, ..., fm

*, i = 1, …, m, 

resulting in an optimal vector xi
*. The anchor point related to the i-th objective function is [f1(xi

*), …, 

fi
*(xi

*), …, fm(xi
*)] T. The utopia point is the vector fU = [f1

*, ..., fm
*] T or explicitly fU = [f1(x1

*), ..., 

fm(xm
*)] T, i.e., fi

* = fi(xi
*). The utopia hyperplane (for m = 2, the utopia line and m = 3 utopia plane) is 

the hyperplane which connects all the anchor points.   

 The nadir point fN = [f1
N, ..., fm

N]T, is the combination of the maximization of all objective 

functions individually, i.e.,  T)()(

N )(),...,( xxf mxix fMaxfMax  , is, therefore, the combination of 

the worst results of the objective functions. The nadir and utopia points are not in the feasible region. 

The pseudo-nadir point is the combination of the worst result of each objective function considering 

the application of the optimal vector xi
* obtained in the optimisation of the other functions, defined 

as 
T

1

PN ],...,[ PN

m

PN fff . The pseudo-nadir point may be inside or outside the feasible region, 

depending on the objective functions. For the i-th objective function, the pseudo-nadir point is 

defined as  )(...,),( 1)(



 miix

PN

i ffMaxf xx , i = 1, …, m.  

 To avoid scale and size effect, it is important to normalize the objective functions and the 

objective space. In the normalized solution space, the utopia and pseudo-nadir points are 
U

f = [0, ..., 

0]T and 
PN

f = [1, ..., 1] T, respectively. The normalization is defined according to the Equation 21. The 

normalized vector of objective functions is  Tmff ...,,1f . 
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The payoff matrix measures the trade-off limits among the m objective functions. The main 

diagonal is composed of the individual minima of the objective functions which composes the utopia 

vector fU. The pseudo-nadir vector is achieved as the maximization of the values of the payoff matrix 



 

 

rows. Besides, each column of the payoff matrix is an anchor point. The payoff matrix is exposed in 

the Equation 22 and the normalized payoff matrix is exposed in the Equation 23.  
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 The normalized normal constraint method (NNC) [29] may be applied to achieve a set of 

Pareto optimal points. The NNC formulation is expressed as follows and may be solved to achieve 

each Pareto optimal solution with regard to a point ijQ , j = 1, …, nsub, in the utopia line.  

 

}{
)(

mfMin
x

                              (24) 

Subject to: 

0)( ij QfN
T

r                         (25) 



 

 

 

Figure 6. Normalized normal constraint method. Adapted from Pereira et al. [34], with permission 

from Elsevier, license number: 4467180839435 

 

The formulation in Equations 24 and 25 may be illustrated in the normalized solution space 

according to Figure 6 for the bi-objective case. In the Equation 24 the m-th normalized objective 

function, i = 1, …, m, should be minimized. The constraint in Equation 25 is the normalized normal 

constraint, which is the product between the utopia line vector rN , 
  rmr ffN , r = 1, ..., m – 1, and 

the vector )( ijQf  from the point ijQ  to the searched Pareto optimal solution f  which will be 

denoted 
*

f  after optimization. As the “normal” constraint is an inequality, the vector )( ijQf  is 

quasi-normal to the utopia line vector rN , forcing the non-linear optimization method to achieve the 

minima in the constrained space, giving the vector the possibility of deflecting of dominated regions. 

Through NNC, a set of well-distributed Pareto optimal solutions may be found in the Pareto frontier. 

To achieve a set of solutions in the Pareto frontier, the point ijQ  should be modified 

considering the weights wij, attributed to the objective functions, i = 1, …, m, according to Equations 

26 to 28.  
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 To solve the NNC method considering a set of weights’ vector, j = 1, …, nsub, the number of 

subproblems (nsub) is calculated according to the Equation 29, considering the desired spacing δr 

among the points in the utopia line vector rN , where ηr = 1 + 1/δr is the number of points in the 

utopia line vector. For the bi-objective case nsub = ηr. 
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 The NNC method can be formulated in algebraic notation to facilitate its understanding and 

implementation [57]. Considering m = 2 objective functions, r = m − 1 = 1. Consequently, the utopia 

line vector 1N in the constraint in Equation 25 may be calculated as follows: 
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 The vector that links the point ijQ  to the sought Pareto optimal solution, ijQf  , for m = 2, is 

derived as follows: 
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 Consequently, by using the Equations 30 and 31, the constraint in Equation 25 may be 

expressed as follows: 
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 In this way, the NNC method for m = 2 objective functions can be explicitly formulated as 

follows: 

 

}{ 2
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            (33) 

Subject to: 

02121  jj wwff          (34) 

 

 After solving the NNC method formulated in Equations 24 and 25 or explicitly through 

Equations 33 and 34, for j = 1, …, nsub, it is necessary to apply a Pareto filter. The Pareto filter 

compares each solution to all remaining solutions obtained in the frontier. It is well-known that a 

solution is Pareto optimal if it improves at least one of the m objective functions in the multi-

objective optimisation. Taking two solutions 
*

pf  and 
*

qf , if mqmpqpqp ffffff  ...,,, 2211 , the 

solution 
*

qf  is dominated by the solution 
*

pf . On the contrary, if mqmpiqipqp ffffff  ...,,...,,11 , 

i.e., the point 
*

qf  improves at least one objective function, the two solutions are considered local 

Pareto optimal with regard to each other. The solution is considered global Pareto optimal only if 

after the Pareto filtering process, it presents the behaviour of this last case in all comparisons. 

 NNC is a priori multi-objective method. In a priori approaches the decision maker needs to 

state its preference prior to the optimisation, for example, defining weights for each objective 

function [58]. Other a priori multi-objective optimization methods are the well-known weighted sum 

(WS) and the normal boundary intersection (NBI) [59]. Das and Dennis [60] showed that the WS 

method fails on achieving an even spread Pareto set in the frontier not only in non-convex Pareto 

fronts but also in convex Pareto fronts an even spread of weights does not produce an even spread of 

Pareto optimal solutions. Then, it was presented the NBI method aiming to achieve an evenly 

distributed Pareto optimal solutions [59]. The formulation of the bi-objective NBI method is similar 

to the formulation in Equations 33 and 34, however, in NBI the constraint in Equation 34 is an 

equality instead of an inequality [57].  



 

 

 The distribution of the points in the Pareto frontier is very important to guarantee that the 

weights express the desired preference for the objective functions in evaluation. A measure of the 

distributions evenness of the Pareto points was proposed and may be useful to quantify the 

distribution of the Pareto optimal solutions achieved [61]. Messac and Mattson [61] proposed as a 

measure of evenness the coefficient of variation of the two distances between each Pareto solution 

and the adjacent Pareto points. However, considering each Pareto point as to calculate the distances, i 

= 1, …, nsub, the distances are duplicated since the distance from 
*

pf  to 
*

qf  is the same as the distance 

from 
*

qf  to 
*

pf . Here is proposed to adopt another similar measure, by considering the coefficient of 

variation of the vector of Euclidian distances between the adjacent Pareto optimal solutions, 

calculated in the normalised solutions space, jd = 1, …, nsub – 1. For nsub solutions, there will be nsub 

− 1 adjacent distances jd , j = 1, …, nsub – 1, with d  as the vector of distances. The coefficient of 

variation of the Euclidian distance between the adjacent Pareto optimal solutions is calculated as the 

ratio between the sample standard deviation and the mean of d , i.e., 
ddd

CV . If 
d

CV  = 0, then 

the Pareto optimal solutions are perfectly evenly distributed. 

 Messac et al. [33] presented the NNC method aiming to deal with some drawbacks of NBI 

method, such as the scale effect since NBI is formulated in the original scale of the objective 

functions. Besides, the authors presented the notion of Pareto filtering to achieve only a set of Pareto 

points considering the obtained solutions in the frontier, while this concept is neglected in the NBI 

proposal. The NNC method is frequently more efficient than the NBI method due to the inequality 

constraint which is more flexible in deviating of dominated regions of the Pareto frontier.  

 For m ≥ 3 objective functions, the exploitation of the Pareto frontier in the NNC and NBI 

methods, is not complete, as a consequence of the definition of the anchor points considering the 

pseudo-nadir points. The constraint may not achieve the solutions out of the region delimitated by 

the utopia line vectors rN  [61,62]. To deal with this limitation in the NNC method Messac and 

Mattson [61] proposed to relax the weights limits in the constraint exposed in Equation 27. Another 

approach to deal with this problem was proposed by Sanchis et al. [62] by transforming the payoff 

matrix, which is composed by the anchor points, to achieve its ideal form to guarantee a better 

exploitation of the Pareto front. The limitation of the anchor points and, consequently, of the payoff 

matrix, is due to the similarity of the objective functions in the optimisations.  

 The similarity may be measured considering the significant correlation between the objective 

functions into consideration and/or due to the limited distance between the responses in the multi-

objective space, always evaluated in pairs. If two objective functions present high correlation or 



 

 

small distance in the multi-objective space, it means that the trade-off between them is irrelevant and 

a multi-objective optimisation with this scenario may not achieve interest results, since the 

optimisation of one of these functions may reach near optimal results for the other one. 

Consequently, in the present work, it is proposed a similarity analysis earlier to the multi-objective 

optimisation to deal with the imperfections of the objective functions. The objective is mainly related 

to the optimisation, and not to the modelling, since some functions measure different performance 

characteristics but with similar results in optimisation. 

 After achieving the Pareto frontier, it is sometimes required to rank the Pareto solutions 

through a mathematical criterion. The obtained Pareto solutions may serve to the experimenter as a 

set of possibilities to manage the process or product, by selecting the desired weight for each 

objective function in each specific situation of production scheduling. However, for the decision 

maker, a mathematical criterion may be useful to define the best compromise Pareto optimal 

solution. Considering the Euclidian distance dj+ of each Pareto optimal solution 
*

jf  to the utopia point 

U
f , j = 1, …, nsub, calculated according to the Equation 35, the most compromise solution will be 

the one with lower dj+, i.e., Min(j ϵ nsub){dj+} [63]. 
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 Next section presents the experimental procedure, describing equipment, material, tool, 

experimental design, method, and software.  

 

7 Experimental procedure 

 

Helical milling tests were carried out in workpieces of AISI H13 hardened steel using a CNC 

machining centre ROMI® Discovery 560 with numerical control Siemens® Sinumerik 810D in the 

machining laboratory of UFSJ. A hydraulic chuck BT-40 from DIN 1835-A/B standard, model 

34.90.010 was used. The end mills were from Sandvik®, coromill plura code ISO/ANSI R215.H4 

10050DAC03H 1610 with Dt = 10 mm diameter, z = 4 and ap(máx) = 0.3 mm, Sandvik grade GC 1610, 

ISO grade H, with (Ti,Al)N2 PVD coating. The experimental setup is detailed in Figure 7. 

 



 

 

 

Figure 7. (a) Experimental setup: (i) hydraulic chuck, (ii) end mill, (iii) workpiece, (iv) fixture device 

and (v) air cooling system; (b) tool detail 

 

As boreholes with diameter Db = 18 mm were obtained, the helical diameter was Dh = 8 mm 

and the eccentricity of the tool centre point with regard to borehole centre point was e = 4 mm. All 

boreholes were obtained in full, the radial cutting depth was constant, i.e., ae = (Db
2/4×Dh) = 182/4×8 

= 10.125 mm. With Db = 18 mm and Dt = 10 mm the ratio between peripheral and frontal cut was 

(Db
2 − Dt

2)/ Dt
2 = (182

 − 102)/102 = 2.24, supporting the peripheral cut, besides enabling good chip 

formation, chip evacuation and air cooling conditions. 

To measure roughness of the borehole surfaces obtained by helical milling it was used a form 

talysurf profilometer from Taylor Hobson® with 50 mm transverse displacement, ± 0.5mm 

measuring range, up to 10 mm/s displacement velocity and up to 0.5mm/s measurement velocity. 

The profilometer is aided by computer and software ultra from Taylor Hobson®. The cut-off was 

0.25 mm. The measurements of roundness and cylindricity were carried out using a form talyround 

measurement system Talyround 131 from Taylor Hobson® with ruby probe, 2 mm high range, and 

high resolution of 6 nm. The roundness measurement system is also aided by computer and software 

ultra from Taylor Hobson®. 

Figure 8 illustrates the roughness and circularity measurement positions. For roughness, 

Figure 8(a) it was considered three radial positions angularly equidistant from 120º and three 

positions (heights) in the axial directions, denoted beginning, middle and end. For roundness, it was 

considered 15 planes (heights) equidistant from 1.2 mm. These positions were divided and denoted 

beginning, middle and end, as illustrated in Figure 8(b). For these two responses, these positions are 

related to the noise factor borehole surface height (lb).  
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(ii)

(iii)

(iv)

(v)

(b)



 

 

 

Figure 8. (a) Roughness; and (b) Roundness measurement planning 

 

Control factors (x) were considered according to helical milling kinematics as cutting 

velocity (vc), axial feed per tooth (fza) and tangential feed per tooth (fzt). The control factors’ levels of 

fza and fzt were chosen through preliminary tests, respecting the tool constraint ap(máx) = 0.3 mm while 

vc was chosen to regard tool manufacturer recommendations. Important noise factors were adopted to 

achieve robust levels of control factors with regard to noise factors influence in the outcomes. As 

argued in section 2, the noise factors (z) were material hardness (hd), tool overhang length (lto) and 

borehole height (lb). Control and noise factors’ levels are in Table 1. 

 

Table 1. Control and noise factors’ levels 

Control factors 
Levels 

Units 
-2.378 -1 0 1 2.378 

fza 0.03 0.10 0.15 0.20 0.27 µm/dente 

fzt 0.03 0.10 0.15 0.20 0.27 mm/dente 

vc 12.4 40.0 60.0 80.0 107.6 m/min 

Control factors           units 

lto - 31 33 35 - mm 

hd - 45 50 55 - HRC 

lb - Beginning Middle End - - 

 

The outcomes evaluated were the roughness parameters average surface roughness, Ra, 

maximum surface roughness, Rz, and the geometrical error parameters total roundness, Ront, and 

total cylindricity, Cylt. For all the statistical tests the significance level was α = 0.05. 

(a) (b)
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Analyses were carried out in Matlab®, Minitab® and spreadsheets software. The NNC 

routine was programmed in Matlab® considering nsub = 51 solutions, therefore, with the increment δr 

= 0.02. The algorithm sequential quadratic programming (SQP) was used with the number of 

maximum iterations equals to 1500. The experimental constraint, x ∈ Ω for the CCD design was 

according to the CCD design region, i.e., fza
2 + fzt

2 + vc
2 ≤ ρ2, where ρ is the radius of the spherical 

region, set to satisfy the design rotatability criteria. Considering three control factors, ρ = (2k)1/4 = 

(23)1/4 = 1.682. 

 

8 Multi-objective robust optimization of borehole geometry and roughness of helical milling 

of AISI H13 hardened steel 

 

Figure 9 presents the flowchart for the multi-objective robust optimisation of helical milling 

process in AISI H13 hardened steel. The methodology may be applied in other manufacturing 

process optimisation. The flow chart of the method was divided into 6 steps denoted by the letters A 

to F, and each of these steps was subdivided into detailed substeps. The flowchart of the proposed 

method is elucidated as follows. 
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Figure 9. Flowchart for the multi-objective robust optimization of helical milling of AISI H13 

hardened steel 

 

STEP A: EXPERIMENTAL TESTS. 

Substep a1: Manufacturing process selection. In the studied case it was the helical milling of AISI 

H13 hardened steel to evaluate borehole roughness and roundness. 

Substep a2: Selection of control factors and its levels. In the present case, the control factors and its 

levels are depicted in Table 1. 

 Substep a3: Selection of noise factors and its levels. In the present case, the noise factors and its 

levels are also depicted in Table 1. 

Substep a4: Combined array definition. The definition of the combined array may be provided 

considering a response surface design. In the present case it was used a CCD design with 32 tests 

considering a half fraction factorial with resolution V (nf = 2(k+r)-p = 26-1), 12 tests in centre points (nc) 

and 6 axial points for control factors (na = 2k = 2×3), with 50 tests in total. It is known that by adding 

more centre points the experimental error is better estimated. Considering the economy obtained by 

using the fractional design, the cost associated with 12 centre points, instead of 9, as recommended, 

is negligible. 

Substep a5: Experimental tests and measurements. In this work, helical milling cutting tests were 

performed and surface roughness and roundness measurements were performed. 

STEP B: SIMILARITY ANALYSIS. 

Substep b1: Dendrogram of Ward of the responses by absolute correlation. In the present case, it 

was considered different responses of microgeometrical error – roughness, and geometrical error – 

roundness. 

Substep b2: Correlation significant? The correlations between the responses separated in each group 

should be evaluated previously to the multi-objective optimisation.  

Substep b3: Selection of important outcomes in each group. This substep is applied in the positive 

case of the substep b2, to avoid redundancy in multi-objective optimisation. 

Substep b4: Account all responses. This step is aaplied in the negative case of this substep b2. In the 

absence of correlation, all the responses should be considered, since they present a substantial trade-

off. 

STEP C: ROBUST MODELLING. 

Substep c1: Heteroscedasticity? Homoscedasticity tests should be conducted to choose the better 

least squares approximations. 



 

 

Substep c2: Response models by WLS. The response models may be estimated by WLS in case of 

rejection of the null hypothesis of the homoscedasticity, i.e., in the positive case of substep c1. 

Substep c3: Response models by OLS. In case of non-rejection of homoscedasticity, i.e., in the 

negative case of substep c1, OLS estimates may be used to estimate the response models. 

Substep c4: Satisfactory adjustment? The goodness-of-fit measures should be evaluated. In the case 

of poor adjustment, return to substep a5. 

Substep c5: Significant process×noise interactions? The significance of the process×noise 

interactions is important to enable the robust design.  

Substep c6: Robustness improvement is possible. This assertion is done in the positive case of the 

substep c5. 

Substep c7: Mean and variance modelling. Considering Equations 9 and 12, mean and variance 

models should be attained for each response model. 

Substep c8: Mean target definition. For each response )]},([{
,

zx
εzx

iyi yEMinT


 . 

Substep c9: MSE equation definition. The MSE equation is set up according to the Equation 15 

considering mean, variance and target of mean obtained in substeps c7 and c8. 

Substep c10: Robustness improvement is not possible. This assertion is done in the negative case of 

substep c5. Then, skip the substeps c6-c9, since it is not possible to transmit the variance with regard 

to noise factors to the control factors. 

STEP D: MULTI-OBJECTIVE OPTIMISATION THROUGH NNC. 

Substep d1: Utopia, Pseudo nadir, anchor points, and payoff matrix definition. These multi-objective 

definitions are important to start the optimisation. Define fU
, fPN, fi

*, i = 1, …, m, and Φ.  

Substep d2: Normalization of functions, utopia, pseudo-nadir, anchor points and payoff. The 

normalization, according to Equation 21, is important to avoid scale effects in optimisation.  

Substep d3: Increment between utopia line points, utopia line vector and points in utopia line 

definition. Define δr, ηr, nsub, rN  and ijQ .  

Substep d4: For j = 1, wij, and ijQ . For the first subproblem, j = 1, define the weights, wij, i = 1, …, 

m and the related point in the utopia line ijQ . 

Substep d5: Solve NNCj. Through the formulation in Equations 24 and 25, or explicitly in Equations 

33 and 34, solve NNCj for wij, and ijQ . 

Substep d6: j < nsub? While j < nsub, solve NNCj by using the SQP algorithm. 

Substep d7: j = j + 1, update wij, and ijQ . In positive case of substep d6, actualize these metrics to 

perform the next optimisation through NNC. 



 

 

STEP E: PARETO FILTERING. 

Substep e1: fip ≤ fiq, i = 1, …, m? In negative case of substep d6, i.e., after completing NNC 

optimisations, j = 1, …, nsub, filtering the dominated solutions is necessary.  

Substep e2: Eliminate fiq. In positive case of the substep e1, fiq is dominated by fip, since fiq do not 

improve at least one objective function, i = 1, …, m. 

Substep e3: Store fiq. In negative case of the substep e1, fiq is a Pareto optimal solution and should 

be stored. 

Substep e4: q < 
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subn
? The number of comparisons performed in the Pareto filtering process is 










2

subn
.  

Substep e5: q = q + 1. In positive case of substep e4, actualize q to continue the Pareto filtering. 

Substep e6: Pareto optimal set. In the negative case of substep e4, stop filtering. The solutions stored 

in substep e3 constitute the Pareto set. 

STEP F: CONFIRMATION OF THE OPTIMISATION 

Substep f1: Compare NNC with other methods by CPU time, evenness and number of solutions.  

Substep f2: NNC outperformed other methods? Answer considering the metrics proposed in substep 

f1.  

Substep f3: Select the most compromise solution through the lowest Euclidian distance to the utopia 

point. In case positive of substep f2, calculate dj+ in the normalized solution space and select the 

solution with minimum dj+.  

Substep f4: Select another method. In negative case of substep f2, select another multi-objective 

optimisation method. 

Substep f5: Confirm variability reduction and robustness through control charts. I/MR control charts 

may be used to compare the experimental stage with the most compromise Pareto optimal solution 

simulated results. 

Substep f6: Robustness was achieved? Evaluate the robustness achievement considering the 

reduction in the variability in the most compromise robust optimal solution. 

Substep f7: Use the results at the production level and disclose the methodology. In the positive case 

of the substep f6, apply the results and methodology. 

Substep f8: Use another multi-objective robust optimisation methodology. In negative case of the 

substep f6, select other methodology for multi-objective robust optimisation. 



 

 

It is important to discuss the computational complexity of the multi-objective optimisation 

method. Considering the steps D and E, which are related to NNC multi-objective optimisation and 

Pareto filtering respectively, there are important considerations with regard to computational cost. 

The computational complexity may be expressed using big-O notation in function of the number of 

subproblems nsub.  

For the initial definitions of the NNC method, steps d1-d4, the computational time is steady 

with regard to the nsub. Then the order of the initial definition is constant, i.e., O(1). For the NNC 

loop, steps d5-d7, which is performed nsub times, the computational complexity is linear, i.e., of order 

O(nsub). In each step of the NNC loop the SQP algorithm is performed. For the Pareto filtering 

process, steps e1-e6, it is carried out   2
2

2

subsub

sub
nn

n









 comparisons among the solutions. 

Consequently, the computational complexity is quadratic, O( 2

subn ). However, since this procedure is 

a simple comparison, for a feasible desired number of Pareto solutions, nsub, the filtering process may 

present lower time than the NNC loop. This will be discussed considering the present application in 

section 9.4. 

 

9 Results and discussion 

 

Table 2 presents the experimental results for the 50 tests of helical milling of AISI H13 

hardened steel considering a CCD design. The roundness, Ront, results were from 5.28 to 16.86 μm. 

The cylindricity, Cylt, which accounts not only the roundness deviation but also the eccentricity, 

considering the measurement method of the form measurement system used, was from 6.92 to 21.01 

μm. Iyer et al. [9] achieved Ront = 10 μm in the helical milling of AISI D2 hardened steel to achieve 

boreholes of 16 mm with a solid carbide end mill. About roughness it was obtained from 0.19 to 0.44 

μm for Ra and 1.27 to 2.45 μm for Rz, attesting the excellent roughness results obtained. In the 

present work, the obtained roughness levels may be compared with the grinding process. 

 

Table 2. Experimental results 

Std 

Ord 

fza fzt vc lto hd lb   Ront Cylt Ra Rz 

[μm/dente] [mm/dente] [m/min] [mm] HRc -   [μm] [μm] [μm] [μm] 

1 0.1 0.1 40 31 45 -1  7.37 10.76 0.22 1.38 

2 0.2 0.1 40 31 45 1  7.53 9.46 0.27 1.66 

3 0.1 0.2 40 31 45 1  8.05 11.87 0.23 1.41 



 

 

4 0.2 0.2 40 31 45 -1  7.70 10.50 0.26 1.65 

5 0.1 0.1 80 31 45 1  9.04 12.82 0.29 1.68 

6 0.2 0.1 80 31 45 -1  10.02 11.77 0.23 1.40 

7 0.1 0.2 80 31 45 -1  8.87 10.44 0.23 1.44 

8 0.2 0.2 80 31 45 1  7.86 9.74 0.26 1.45 

9 0.1 0.1 40 35 45 1  11.04 12.62 0.27 1.62 

10 0.2 0.1 40 35 45 -1  12.94 15.53 0.27 1.70 

11 0.1 0.2 40 35 45 -1  9.86 12.22 0.31 1.88 

12 0.2 0.2 40 35 45 1  9.04 11.89 0.30 1.83 

13 0.1 0.1 80 35 45 -1  10.76 12.46 0.31 1.74 

14 0.2 0.1 80 35 45 1  12.48 14.86 0.35 1.96 

15 0.1 0.2 80 35 45 1  10.18 12.82 0.36 1.95 

16 0.2 0.2 80 35 45 -1  6.95 8.90 0.25 1.53 

17 0.1 0.1 40 31 55 1  8.50 13.65 0.22 1.29 

18 0.2 0.1 40 31 55 -1  7.65 11.40 0.25 1.55 

19 0.1 0.2 40 31 55 -1  8.37 11.19 0.21 1.32 

20 0.2 0.2 40 31 55 1  15.12 21.01 0.24 1.44 

21 0.1 0.1 80 31 55 -1  6.90 8.38 0.22 1.35 

22 0.2 0.1 80 31 55 1  13.74 18.35 0.26 1.52 

23 0.1 0.2 80 31 55 1  8.06 11.74 0.25 1.49 

24 0.2 0.2 80 31 55 -1  8.04 11.72 0.23 1.42 

25 0.1 0.1 40 35 55 -1  12.26 14.41 0.21 1.34 

26 0.2 0.1 40 35 55 1  7.98 10.90 0.22 1.34 

27 0.1 0.2 40 35 55 1  7.39 11.89 0.27 1.56 

28 0.2 0.2 40 35 55 -1  5.55 12.06 0.28 1.64 

29 0.1 0.1 80 35 55 1  16.86 20.68 0.36 1.95 

30 0.2 0.1 80 35 55 -1  9.83 14.05 0.23 1.37 

31 0.1 0.2 80 35 55 -1  10.60 13.41 0.26 1.58 

32 0.2 0.2 80 35 55 1  7.59 19.29 0.26 1.59 

33 0.031 0.15 60 33 50 0  9.22 10.30 0.19 1.28 

34 0.269 0.15 60 33 50 0  11.99 13.10 0.27 1.62 

35 0.15 0.031 60 33 50 0  8.78 10.24 0.44 2.45 

36 0.15 0.269 60 33 50 0  6.06 6.92 0.22 1.32 



 

 

37 0.15 0.15 12.43 33 50 0  11.42 12.80 0.22 1.46 

38 0.15 0.15 107.57 33 50 0  9.27 10.87 0.34 1.77 

39 0.15 0.15 60 33 50 0  6.57 8.49 0.30 1.72 

40 0.15 0.15 60 33 50 0  13.40 14.23 0.24 1.47 

41 0.15 0.15 60 33 50 0  12.57 14.19 0.28 1.64 

42 0.15 0.15 60 33 50 0  6.60 7.41 0.23 1.34 

43 0.15 0.15 60 33 50 0  8.33 10.10 0.22 1.29 

44 0.15 0.15 60 33 50 0  8.94 10.64 0.22 1.27 

45 0.15 0.15 60 33 50 0  5.28 7.03 0.28 1.70 

46 0.15 0.15 60 33 50 0  8.07 9.04 0.28 1.69 

47 0.15 0.15 60 33 50 0  6.34 7.44 0.26 1.57 

48 0.15 0.15 60 33 50 0  15.09 16.41 0.29 1.69 

49 0.15 0.15 60 33 50 0  5.88 7.28 0.28 1.59 

50 0.15 0.15 60 33 50 0   6.66 7.89 0.31 1.78 

 

9.1 Similarity analysis 

 

Figure 10 shows de Ward´s dendogram with absolute correlation as similarity measure. It can 

be observed that one group is formed for the roughness responses with similarity equals to 97.12%, 

while the other group is composed for the geometrical error outcomes with similarity equals to 

82.04%. For the two groups, the correlation was positive. Considering the high similarity level, it is 

impractical to consider all these responses in a multi-objective optimization scenario, since high 

correlated outcomes should present similar results in the optimization. Therefore, in each group one 

response was selected considering its importance and the goodness-of-fit measures, as presented in 

the next sections, to assure good optimization results and reproducibility.  

In the group of roughness Ra was selected, since it is the outcome defined by standards to 

determine the state of surfaces in technical drawings being the most important parameter in 

investigations of finishing manufacturing process. Also, as will be presented in section 7.3, Ra 

presented better results than Rz with regard to goodness-of-fit measures. With regard to the group of 

geometrical error outcomes, Ront was selected since it is frequently addressed as an index of 

geometrical error in machined boreholes. In addition, Ront presented better results of goodness-of-fit 

statistics when compared to Cylt, as shown in section 7.2.   

 



 

 

 

Figure 10. Ward’s dendogram for Ront, Cylt, Ra and Rz 

 

9.2 Geometrical error on helical milling of AISI H13 hardened steel 

 

Figure 11 presents one of the roundness measurements results in the workpiece of test 36. 

Total roundness is an important index of geometrical error of boreholes. More details about 

measurement and calculation can be found in SUN [64]. In this helical milling test, the following 

levels of process parameters were applied x36 = [0.15 μm/tooth; 0.269 mm/tooth; 60 m/min], with 

noise factors levels fixed in z36 = [33 mm; 50 HRC; 0]. The height lb = 0 is in the middle of the 

borehole as illustrated in Figure 8. 
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Figure 11. One of the roundness measurements for test 36  

 

Taking arbitrarily the measurement in position 8, in Figure 11, it can be observed the 

presence of protuberances in the quadrants of the roundness profile. As observed by Costa et al. [49], 

these geometrical errors are due to the machining centre axes’ backlashes. The geometrical error in 

circular trajectories appears during the change of the movement direction of the machine table during 

the interpolation of the axes x and y [66]. The backlashes were identified in the tests which presented 

Ront smaller than 11 μm. This reflects the good geometrical quality of the obtained boreholes, and 

the machining centre limit in achieving better results, since with the absence of backlash improved 

results would be achieved. 

Besides the total roundness, the total cylindricity was also evaluated. The cylindricity 

measurement method used, inherent to the measurement system, takes into account not only the 

cylindrical form error but also the eccentricity error, by calculating a least squares centre line 

considering the centre points of the roundness measurements planes considering the measurement 

planes. Then, to minimize cylindricity implies minimizing the cylindrical form error, besides, the 

eccentricity among the measured planes of the borehole. 

Figure 12 illustrates the graphical result of one of the cylindricity measurements for the test 

number 36, with regard to roundness measurements plotted in Figure 11. It can be observed in a 3D 

view the protuberances angularly equidistant from 90º due to the backlashes of the machining centre 

axes.  
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Figure 12. Cylindricity measurement result for test 36 

 

Table 3 presents the ANOVA results for Ront and Cylt which may be analysed together with 

the main and quadratic effects and interaction effects plotted in Figures 13 and 14. For Ront, with 

regard to linear process effects, fzt was the unique control factor with significance, with a negative 

effect, as observed graphically in Figure 13. Observing graphically this effect mixed with the 

quadratic effect, also statistically significant, when increasing fzt until the level 0.11 μm/tooth, Ront 

slightly increases, while above this value, the increase of fzt resulted in the decrease of Ront. The 

factors fza and vc also presented quadratic effects with convexity upward. With regard to noise 

factors, only lto presented significance in the linear effect so that the increase in lto caused the 

increase in Ront. These effects can also be confirmed through the signal of the regression coefficients 

presented hereafter. 

For Cylt, with regard to the linear process effects, only vc was significant. The quadratic effect 

for this factor also was the only one significant with convexity downward, with minimum 

cylindricity achieved nearby the centre point level vc = 60 m/min. The factors fza and fzt were not 

significant individually. However, graphically may be evaluated the effect of these parameters. The 

significance is related to the experimental error and Box and Drapper [20] claim that process 

knowledge and graphical analysis may be important to understand the results. 

With regard to noise factors effects, lto was the only one significant in Ront, while for Cylt all 

noise factors were statistically significant. The increase of tool overhang length, lto, resulted in the 

increase of Ront and Cylt, which may be related to the tool deflection increase, which may result in 

vibrations. The increase of material hardness, hd, entails the increase of Cylt, confirming the 

difficulty in obtaining tight form tolerances in hard machining. Finally, by moving to the end of the 

borehole, considering the noise factor lb, resulted in higher levels of Cylt. The noise factors effects 
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are important to enable the RPD. However, the process×noise interactions are fundamental to 

achieve robustness. 

 

Table 3. ANOVA for Ront and Cylt 

Source 
Ront Cylt   

Source 
Ront Cylt 

P-value P-value   P-value P-value 

Model *0.000 0.000  Interaction 0.000 0.004 

Linear 0.000 0.000  fza×fzt 0.942 0.274 

fza 0.510 0.253  fza×vc 0.697 0.109 

fzt 0.000 0.317  fzt×vc 0.168 0.008 

vc 0.359 0.015  fza×lto 0.004 0.070 

lto 0.011 0.002  fza×hd 0.250 0.009 

hd 0.351 0.005  fza×lb 0.484 0.410 

lb 0.073 0.001  fzt×lto 0.007 0.419 

Quadratic 0.000 0.006  fzt×hd 0.383 0.468 

fza×fza 0.006 0.051  fzt×lb 0.351 0.738 

fzt×fzt 0.001 0.983  vc×lto 0.518 0.045 

vc×vc 0.019 0.004  vc×hd 0.630 0.046 

R2 99.98% 99.15%  vc×lb 0.116 0.002 

Radj
2 99.97% 98.51%  LOF 0.362 0.202 

Rprev
2 98.78% 58.29%  S 1.114 1.068 

 

 Concerning the interaction effects for Ront, there was no significant interaction between 

process factors, while for the process×noise interactions fza×lto and fzt×lto were statistically 

significant. Tool overhang length variation may cause tool deflection and vibrations with resulting 

geometrical error. Then, it may be achieved levels of fza and fzt which are robust to lto variation. 

These levels will be achieved with robust multi-objective optimization.  

 About the interaction effects for Cylt, the interaction between process factors fzt×vc was 

statistically significant. The effect of fzt is positive when vc is low. However, when vc is high, the fzt 

effect is negative on Cylt. With regard to process×noise interactions, fza×lto, fza×hd, vc×lto, vc×hd and 

vc×lb were statistically significant. These interactions may be graphically analysed to view levels of 

process factors which makes the form error responses insensitive to noise variation. With regard to 

the first significant process×noise interaction, when increasing fza, the response Cylt becomes robust 



 

 

with regard to noise factor lto variation, as can be confirmed graphically in Figure 14. But, taking 

with consideration the interaction fza×hd, low levels of fza makes the outcome Cylt insensitive to noise 

factor hd. This trade-off between different process×noise interaction involving a fixed process factor 

is complex to manage but can be solved through optimization. The process×noise interactions 

involving the factor vc indicates lower levels of vc to make the outcome Cylt insensitive with regard 

to lto, hd and lb, as observed graphically in Figure 14.  

 

 

Figure 13. Interaction effects plots for Ront 
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Figure 14. Interaction effects plots for Cylt 

 

Equation 36 presents the response model for Ront obtained through WLS. The 

homoscedasticity test results are in Appendix B. The significance of the coefficients is summarized 

in Table 3 and the signal of the effects can be confirmed graphically in Figure 13. The model error 

estimated by ANOVA was 
tRon̂ = 1.095, with Raj

2 = 99.97% and Rprev
2 = 98.78%, assuring the good 

variability explanation and prediction capability. The lack-of-fit (LOF) reported p-value = 0.362, 

guaranteeing no lack-of-fit for the response model for Ront. 
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bcdc lvhv  4097,01209,0         (36) 

 

 Equation 37 presents the response model for Cylt in function of process and noise factors 

obtained through WLS. The homoscedasticity test results are in Appendix B. The intensity and signal of the 

effects, observed graphically in Figure 14 may be confirmed by analysing the coefficients of this 

model. The experimental error of the response model of Cylt estimated through ANOVA was
tCyl̂ = 

1.068, with Raj
2 = 98.51% and Rprev

2 = 58.29% assuring good variability explanation capability, 
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however, with modest prediction capability. The LOF test resulted in the p-value = 0.202, 

guaranteeing no lack-of-fit of the model, considering the significance level adopted, α = 0.05. 
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 To achieve robust models with regard to noise factors the RPD was performed. It was 

considered E[zj] = 0 to attain a mean model in function of process factors only. By performing the 

error propagation with regard to noise factors, a variance model was achieved also in function of 

process factors. The models for mean and variance of Ront, E[Ront] and Var[Ront], in function of 

control factors, are depicted in Equations 38 and 39 to enable achieving robust levels of control 

factors concerning noise factors variation in the total roundness of the boreholes. The response 

surfaces for E[Ront] and Var[Ront] are plotted in Figure 15 under different perspectives, with the 

variable in labels at centre point level. 
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4097,01534,06456,01090.08570,8, zacztzat fvffRonE zx    (38) 
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   22
5305,08790,00459778386166,06796,1, ztzacztzat ffvffRonVar zx  

cztczaztzac vfvfffv  4410,01943,01931,12088,0
2

   (39) 

 

Equations 40 and 41 present the models of mean and variance for Cylt. The response surface 

plots related to these models are presented in Figure 16 under different perspectives, with the 

variable in labels at centre point level.  
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Figure 15. Response surfaces for E[Ront] and Var[Ront], xhold = xCtPt 

 



 

 

 

Figure 16. Response surfaces for E[Cylt] and Var[Cylt], xhold = xCtPt 

 

As explained in section 7.1, about similarity analysis, the optimization was performed 

considering Ront to represent the outcomes with regard to geometrical error, since this output is the 

most frequently used to represent the geometrical error of boreholes and presented best fitting in the 

modelling. The modelling of Cylt is important to present models which could represent the 



 

 

cylindrical error of the borehole, however, its optimization would result in similar solutions to Ront, 

due to the high correlation between these outcomes.  

Table 4 presents the payoff matrix considering the trade-off between E[Ront] and S[Ront] = 

Var[Ront]
1/2. The optimal level for the mean was E[Ront]

* = 7.08 μm and the pseudo-nadir for the 

mean was E[Ront]
N = 7.42 μm reflecting the good quality of the results considering previous 

literature. There are studies of helical milling in difficult-to-cut materials which could serve for 

comparison aims. It is important to emphasise that in the present work it was obtained boreholes with 

Db = 18 mm and, in general, the geometrical error is proportional to the diameter. In the present 

approach, it was considered the variance with regard to the noise factors propagated on the response 

in function of control factors. Then, associated with E[Ront]
* = 7.08 μm, the standard deviation 

S[Ront]
N was 1.321 μm, the worst solution for S[Ront], while for E[Ront]

N = 7.42 μm the standard 

deviation was S[Ront]
* = 1.139 μm. 

 

Table 4. Payoff matrix for E[Ront] × S[Ront] 

E[Ront] 7.081 7.417 

S[Ront] 1.321 1.139 

 

 Figure 17 presents the Pareto frontier with nsub = 51 solutions for the dual optimization of 

E[Ront] and Var[Ront] through NNC method. No dominated solutions were found in filtering. Some 

of the optimization results are summarized in Table 5. These results offer some possibilities for the 

engineer to balance the trade-off between the mean and variance of Ront. The extreme points of the 

frontier, called anchor points, are the columns of the payoff matrix in Table 4. The optimal control 

factors’ levels varied in the following intervals fza ~ [0.117; 0.148] μm/tooth, fzt ~ [0.227; 0.233] 

mm/tooth and vc ~ [64.0; 65.2] m/min. For the optimal level of S[Ront], i.e., S[Ront]
* = 1.139 μm, the 

optimal control factor levels were x{S[Ront]*} = [0.117 μm/tooth; 0.227 μm/tooth; 64.030 m/min]. 

These levels minimize the variability propagated from noise factors in Ront, guaranteeing robustness 

of geometrical error with regard to tool overhang, hardness and borehole height in the helical milling 

of AISI H13 hardened steel. 

 



 

 

 

Figure 17. Pareto frontier for E[Ront] and S[Ront] 

 

Table 5. NNC optimization results for E[Ront] and S[Ront] 

w1 

Coded decoded Responses 

fza fzt vc 
fza fzt vc E(Ront) Var(Ront) S(Ront) 

μm/tooth mm/tooth m/min μm μm2 μm 

0 -0.660 1.534 0.201 0.117 0.227 64.030 7.417 1.298 1.139 

0.1 -0.596 1.553 0.248 0.120 0.228 64.967 7.354 1.303 1.141 

0.2 -0.532 1.572 0.273 0.123 0.229 65.456 7.297 1.317 1.148 

0.3 -0.470 1.589 0.285 0.127 0.229 65.706 7.248 1.341 1.158 

0.4 -0.408 1.605 0.291 0.130 0.230 65.817 7.205 1.374 1.172 

0.5 -0.347 1.620 0.292 0.133 0.231 65.839 7.168 1.414 1.189 

0.6 -0.286 1.632 0.290 0.136 0.232 65.798 7.138 1.463 1.210 

0.7 -0.224 1.642 0.285 0.139 0.232 65.707 7.114 1.520 1.233 

0.8 -0.161 1.651 0.279 0.142 0.233 65.577 7.096 1.586 1.259 

0.9 -0.097 1.657 0.271 0.145 0.233 65.410 7.085 1.660 1.289 

1 -0.031 1.661 0.260 0.148 0.233 65.208 7.081 1.745 1.321 

 

The optimisation of mean square error for Ront, according to the approach in the Equation 15, 

was also carried out to minimize its bias and variance simultaneously. The MSE[Ront] response 



 

 

surface plotted under different perspectives are in Figure 18. The optimization results, presented in 

Table 6, were similar to dual optimization of E[Ront] and Var[Ront] with weight w1 = 0.8. 

 

 

Figure 18. Response surface plots for MSERont, xhold = xCtPt 

 

Table 6. MSERont optimization 

coded Decoded Responses 

fza fzt vc 
fza fzt vc E(Ront) Var(Ront) S(Ront) MSERont 

μm/dente mm/dente m/min μm μm2 μm μm2 

-0.104 1.657 0.271 0.145 0.233 65.43 7.086 1.653 1.286 1.675 

 

9.3 Roughness on helical milling of AISI H13 hardened steel 

 

Surface roughness is mostly used as an index to determine the surface finish and, 

consequently, workpiece quality in machining processes [67-68]. Besides, it is an important 

requirement to evaluate machined surfaces, affecting lubrication, friction, corrosion resistance, 

fatigue resistance, and other mechanical properties [69-71]. The average surface roughness, Ra, and 

the average maximum height of the profile, Rz, were evaluated in the borehole surfaces of AISI H13 



 

 

hardened steel obtained through helical milling. While the first measures the average of the absolute 

sampled values of the filtered profile, the second measures the average of the maximum range 

obtained in each cut-off, aiming to evaluate average and dispersion of the measured profiles. 

 Figure 19 shows the filtered profiled obtained in one of the measurements realised in the 

borehole of the workpiece obtained in tests 6. In Table 2 it can be observed that lb = -1, i.e., the 

measurement position was in the beginning of the borehole. 

 

 

Figure 19. Roughness measurement for test 6 

 

Table 7 presents the results obtained through ANOVA for Ra and Rz. Figures 20 and 21 

illustrates the linear, quadratic and interaction effects plot for Ra and Rz, respectively.  With regard to 

Ra, considering the linear effects, fzt and vc were statistically significant. Without consider the 

quadratic effect, fzt effect was negative in Ra. Keeping fza constant, fzt is inversely proportional to ap
* 

as in Equation 6. As the roughness is measured in the axial direction, Ra tends to decrease with 

decreasing ap
*. Therefore, the helical milling with more turns for the same borehole depth supports 

the attainment of a borehole surface with lower roughness. Another point, as explained by Li and Liu 

[43], if there is a lag between the cutting velocity and the orbital velocity, considering the material 

removal in the axial direction equals to ap
*, in a way that at the final of an orbital revolution it has not 
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yet finished the chip removal by the edge in action, the peak of the surface left by the frontal cutting 

edge can be removed by the peripheral cutting edge in action at the next turn. Therefore, it is 

expected lower roughness in the beginning of the borehole than nearby the exit of the borehole. 

Cutting velocity, vc, presented a positive linear effect in Ra. 

 

Table 7. ANOVA for Ra and Rz 

Source 
Ra Rz   

Source 
Ra Rz 

P-valor P-valor   P-valor P-valor 

Model 0.000 0.000  Interaction 0.000 0.000 

Linear 0.000 0.000  fza×fzt 0.065 0.009 

fza 0.955 0.066  fza×vc 0.000 0.000 

fzt 0.000 0.000  fzt×vc 0.000 0.000 

vc 0.000 0.001  fza×lto 0.002 0.010 

lto 0.000 0.000  fza×hd 0.883 0.784 

hd 0.000 0.000  fza×lb 0.067 0.167 

lb 0.000 0.000  fzt×lto 0.222 0.133 

Quadratic 0.068 0.082  fzt×hd 0.911 0.739 

fza×fza 0.012 0.013  fzt×lb 0.027 0.044 

fzt×fzt 0.033 0.153  vc×lto 0.015 0.009 

vc×vc 0.622 0.810  vc×hd 0.130 0.495 

R2 99.69% 98.81%  vc×lb 0.000 0.000 

Radj
2 99.45% 97.91%  LOF 0.377 0.400 

Rprev
2 94.48% 84.81%  S 1.023 0.986 

 

 With regard to quadratic effects, fza was positive with convexity downward. For fza varying 

from low levels until 0.15 μm/rev the fza increment results in Ra growth once fza is proportional to ap
*, 

according to Equation 6. Nonetheless, from 0.15 μm/rev to higher levels of fza it was observed a 

decrease in Ra. The three noise factors were statistically significant in Ra. The increase of tool 

overhang effect, lto, entails tool deflection increase and, consequently, higher vibration levels, 

leading to instabilities during cutting and, possibly, a rougher surface. The effect of the borehole 

measurement height, lb, is also related to the smoothing of the surface for the tangential cutting edges 

due to the higher orbital rotation levels in the beginning of the borehole, as explained by Li and Liu 

[43]. With regard to workpiece hardness, hd, as it increases, the roughness decreases due to the lower 



 

 

deformation of the machined surface. The same behaviour was observed in the helical milling of 

AISI 4340 hardened steel [18]. The Rz results were graphically and statistically similar to Ra, 

according to Figures 20 and 21.  

 

 

Figure 20. Interaction plots for Ra 

 

 

Figure 21. Interaction plots for Rz 
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 With regard to the interactions among process factors, all three combinations were 

statistically significant for Rz, while for Ra only fza×fzt was not significant. The process×noise 

interactions fza×lto, fzt×lb, vc×lto, vc×lb were statistically significant in Ra and Rz. High levels of fza 

assure robustness of roughness with regard to lto variation. Similarly, fzt set in extreme positive 

levels, considering the experimental space, guarantees the insensitivity of roughness outcomes with 

regard to lb variation, providing a borehole with lower geometrical error variation in its complete 

height. As fzt is inversely proportional to ap
*, as fzt is higher, higher is the number of orbital turns of 

the tool, enabling the surface smoothing. Lower cutting velocities graphically indicate constant 

roughness with regard to lto variation. However, to achieve robustness of roughness with regard to 

borehole height, vc must be set in 40 m/min.    

Equations 42 and 43 presents the response models for Ra and Rz, respectively, obtained 

through WLS. The homoscedasticity test results are in the Appendix B. These models presented 

experimental error estimated through ANOVA respectively equals to 
aR̂ = 1.023 and 

zR̂ = 0.986. 

With regard to goodness-of-fit statistics, the models well explain the data variability with Raj
2 = 

99.45% for Ra and Raj
2 = 97.91% for Rz. In addition, the models presented good prediction capacity 

with Rprev
2 = 94.48% and Rprev

2 = 84.81% for Ra and Rz, respectively. The LOF tests appointed no 

evidence to reject the null hypothesis of do not have lack-of-fit of the data, since the reported p-

values were 0.377 and 0.400, for Ra and Rz. The signal of the coefficients in the response models, 

which are associated to the effects, can be confirmed through effects plots in Figures 20 and 21. 
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Equations 44 and 45 present the mean and variance models for Ra, enabling to achieve 

robustness to this response with regard to noise factors. The response surfaces for these models are 

plotted in Figure 22. Equations 46 and 47 presents the mean and variance models for Rz. These 

models are graphically depicted in Figure 23.  
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Figure 22. Response surfaces for E[Ra] × Var[Ra] , xhold = xCtPt 



 

 

 

Figure 23. Response surfaces for E[Rz] × Var[Rz] , xhold = xCtPt 

 

 The optimization of Ra was performed considering the similarity analysis in section 7.1. Ra is 

the most important roughness parameter and presented best fitting. The optimization of Rz would 

result in analogous results to Ra due to the high positive correlation between these outcomes. 

Considering the individual optimization of E[Ra] and S[Ra] the payoff matrix is presented in 

Table 8. The payoff matrix summarizes the limit values for E[Ra] and S[Ra] in bi-objective 



 

 

optimization. Then, E[Ra] varies from E[Ra]
* = 0.22 µm to E[Ra]

N = 0.26 µm, while S[Ra] varies 

from S[Ra]
* = 1.0228 µm to S[Ra]

N = 1.0230 µm. To explore the trade-off between E[Ra] and S[Ra] 

the NNC multi-objective optimization method was applied. The results for nsub = 51 sub-problems 

are plotted in Figure 24. In this case, it can be observed that no dominated solutions were found in 

filtering. For 11 most representative trade-off points, the results for NNC bi-objective optimization 

are summarized in Table 9. These results are options to manage the trade-off between mean and 

variance of roughness. When the engineer is interested in lower levels of the mean of roughness he 

should assign a higher level of w1 which is the weight related to E[Ra], being aware of the loss in 

variance, since its weight is w2 = 1 – w1. On the contrary, when the engineer wants to achieve a more 

promising robustness scenario for borehole surface roughness, with regard to tool overhang, 

workpiece hardness and borehole height variation, is recommended to the engineer select a Pareto 

optimal solution which prioritises Var[Ra], with w2 higher than w1.  

   

Table 8. Payoff matrix for E[Ra] × S[Ra] 

E[Ra] 0.22 0.26 

S[Ra] 1.0230 1.0228 

 

 

Figure 24. Pareto frontier for E[Ra] and S[Ra] 

 

 

 

 



 

 

Table 9. NNC optimization results for E[Ra] and Var[Ra] 

w1 

coded decoded Responses 

fza fzt vc 
fza fzt vc E(Ra) Var(Ra) S(Ra) 

μm/dente mm/dente m/min μm μm 2 μm 

0.000 0.777 -0.864 -1.216 0.189 0.107 35.682 0.259 1.0461 1.0228 

0.100 0.373 -0.821 -1.420 0.169 0.109 31.608 0.251 1.0461 1.0228 

0.200 0.102 -0.745 -1.504 0.155 0.113 29.911 0.244 1.0461 1.0228 

0.300 -0.124 -0.649 -1.547 0.144 0.118 29.069 0.238 1.0461 1.0228 

0.400 -0.331 -0.545 -1.556 0.133 0.123 28.878 0.232 1.0462 1.0228 

0.500 -0.527 -0.445 -1.534 0.124 0.128 29.321 0.227 1.0462 1.0228 

0.600 -0.711 -0.358 -1.482 0.114 0.132 30.368 0.223 1.0463 1.0229 

0.700 -0.878 -0.290 -1.405 0.106 0.136 31.900 0.220 1.0463 1.0229 

0.800 -1.025 -0.238 -1.312 0.099 0.138 33.761 0.218 1.0464 1.0229 

0.900 -1.152 -0.199 -1.209 0.092 0.140 35.825 0.217 1.0465 1.0230 

1.000 -1.262 -0.167 -1.100 0.087 0.142 38.009 0.217 1.0466 1.0230 

  

As an approach to minimize bias and variance, the MSE[Ra] was also optimized. Figure 25 

shows the response surface plot for MSE[Ra] in different perspectives. The optimization results of 

MSE[Ra] are summarized in Table 10. These results were similar to the ones obtained with w1 = 0.9 

and w1 = 1 in NNC for E[Ra] and Var[Ra] as can be confirmed in Table 9. 

 

Table 10. MSERa optimization 

coded uncoded responses 

fza fzt vc 
fza fzt vc E(Ra) Var(Ra) S(Ra) MSERa 

μm/tooth mm/tooth m/min μm μm2 μm μm2 

-1.202 -0.184 -1.162 0.090 0.141 36.8 0.217 1.047 1.023 1.047 

  

 



 

 

 

Figure 25. Response surface plots for MSERa, xhold = xCtPt 

 

9.4 Bi-objective optimization of MSE[Ra] and MSE[Ront] 

 

With the purpose of evaluating the trade-off between roughness and roundness, the bi-

objective optimization between MSE[Ront] and MSE[Ra] was performed. Table 11 presents the 

payoff matrix showing the trade-off limits, i.e., the anchor points obtained by individual 

optimization. Specially in MSE[Ront] there are an expressive difference between the utopia and 

pseudo-nadir points. The Pareto frontier, with nsub = 51 non-dominated solutions, is plotted in Figure 

26(a). For the sake of simplicity, only 11 Pareto optimal solutions are summarised in Table 12. 

Figure 26(b) shows the design space with the contour plots for MSE[Ront] and MSE[Ra], the design 

points and the solutions in the design space, denoted by x*.  

 

Table 11. Payoff matrix for E[Ra] × S[Ra] 

E[MSERa] 1.364 8.301 

S[MSERont] 1.051 1.046 

 



 

 

To achieve low roughness levels it is recommended to set up the uncoded Pareto optimal 

solution with uncoded optimal vector’ levels x*
[w1=0] = [0.116 μm/tooth; 0.131 mm/tooth; 30.08 

m/min]T, this solution reported the optimal level for MSE[Ra] and, consequently, lower E[Ra] levels, 

as exposed in Table 12. As can be observed in the Figure 26(b), this red star point with coded levels 

x*
[w1=0] = [-0.670; -0.376; -1.496]T, is a constrained Pareto optimal point, near the contour plots 

minimum of MSE[Ra] graphically depicted with continuous green lines, since it is near the spherical 

region which could be formed considering the design points denoted by magenta diamonds. To reach 

low geometrical error the optimal vector x*
[w1=1] = [0.124 μm/tooth; 0.229 mm/tooth; 65.53 m/min]T, 

which is the optimal design point related to the optimal solution which prioritizes MSE[Ront], 

responsible for the lower level of E[Ront], as observed in the bottom line of the Table 12. This 

solution, with coded levels x*
[w1=0] = [-0.519; 1.576; 0.276]T

, is near the centre of the contour 

“ellipses” for MSE[Ront], graphically depicted with blue dashed lines. This point is also a 

constrained Pareto optimal solution, although it is not possible to conclude graphically, due to the fzt
* 

value which uncoded was equal to 1.576. Taking the square root of the sum of squares of the coded 

levels of process factors, it can be concluded that the result is equal to the squared spherical radius 

equals to (23)1/2. The solutions in the design space between the anchor points solutions are the most 

part not constrained Pareto optimal solutions. Only some of the solutions nearby the MSE[Ra] 

minima are in the experimental region limit.  

   

 

Figure 26. (a) Pareto frontier; (b) Design space for fza and vc. Contour plots with fzt
*

[MSERont] = 0.229 

μm/tooth and fzt
*
[MSERa] = 0.131/tooth 
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Table 12. NNC optimization results for MSE[Ront] and MSE[Ra] 

w1 

coded decoded Responses         

dj+ 
fza fzt vc 

fza fzt vc E(Ront) S(Ront) MSE(Ront) E(Ra) S(Ra) MSE(Ra) 

μm/tooth mm/tooth m/min μm μm μm2 μm μm μm2 

0 -0.670 -0.376 -1.496 0.116 0.131 30.082 9.490 1.580 8.301 0.224 1.023 1.046 1.000 

0.1 -0.587 -0.058 -1.378 0.121 0.147 32.445 9.365 1.415 7.221 0.232 1.023 1.046 0.845 
0.2 -0.643 0.254 -1.219 0.118 0.163 35.617 9.185 1.347 6.241 0.237 1.023 1.047 0.711 

0.3 -0.661 0.474 -1.077 0.117 0.174 38.467 8.994 1.296 5.339 0.243 1.023 1.047 0.599 

0.4 -0.648 0.645 -0.939 0.118 0.182 41.230 8.797 1.251 4.512 0.248 1.023 1.047 0.520 
0.5 -0.609 0.787 -0.797 0.120 0.189 44.069 8.594 1.212 3.759 0.254 1.023 1.048 0.488 

0.6 -0.542 0.912 -0.641 0.123 0.196 47.183 8.380 1.179 3.079 0.259 1.023 1.048 0.511 

0.7 -0.445 1.032 -0.454 0.128 0.202 50.911 8.147 1.157 2.474 0.264 1.023 1.049 0.582 
0.8 -0.338 1.175 -0.211 0.133 0.209 55.778 7.872 1.155 1.960 0.269 1.023 1.049 0.691 

0.9 -0.389 1.377 0.019 0.131 0.219 60.385 7.569 1.157 1.577 0.273 1.023 1.050 0.831 

1 -0.519 1.576 0.276 0.124 0.229 65.526 7.286 1.150 1.364 0.278 1.023 1.051 1.000 

 

The non-inferior solutions in the Pareto frontier in Figure 26(a) are possibilities to manage the 

trade-off between roughness and roundness. Considering the first column of Table 12 which stores 

the weights w1 related to MSE[Ront], with w2 = 1 - w1 related to MSE[Ra], the engineer may set the 

desired weight for each quality outcome and set-up the matching x* level. 

To endorse the procedure, the NNC bi-objective optimisation results were compared with 

NBI and WS methods. Figure 27 shows the overlaid Pareto frontier for these three methods and the 

Table 13 summarizes the results considering the computational time (CPU time), number of Pareto 

optimal solutions obtained (Nsolutions) and the coefficient of variation of the vector of Euclidian 

distances between adjacent Pareto solutions (
d

CV ), which measures the evenness of the solutions. To 

measure the CPU time for solving the nsub = 51 with each method, the programmed routine was 

executed 10 times and a confidence interval for the average time was obtained with 0.95 of 

confidence. The CPU time, in this case, considers the initial definitions, the NNC loop, the Pareto 

filtering and Pareto frontier plotting. It can be observed that the NBI average time was lower than 

NNC and WS, however, it cannot be affirmed that the average times are statistically different due to 

the confidence limits. The NBI method was the only which presented difficulties in achieving the 

nsub = 51 Pareto optimal solutions, presenting two dominated solutions. About the even distribution 

of the solutions, the NNC method presented the best results, with 
d

CV NNC = 0.379. By observing 

graphically, the NBI and NNC solutions were in most equal, since the NBI points denoted by ‘*’ are 

almost inside the NNC symbols, denoted by ‘o’. However, the two solutions which NBI returned as 

dominated increased the variation among the Euclidian distances of the solutions. The equality 

constraint in NBI sometimes may present difficulties in exploring some regions of the Pareto 

frontier. Besides, in the original NBI formulation, the notion of Pareto filtering is not advised. 

 



 

 

 

Figure 27. Pareto frontier of MSE[Ront] and MSE[Ra] for WS, NBI and NNC methods (a) complete 

view (b) detail 

  

Table 13. Performance of WS, NBI and NNC methods 

Method CPU Time (s) Nsolutions d
CV  

WS 0.686 ± 0.013 51 0.972 

NBI 0.663 ± 0.023 49 1.347 

NNC 0.682 ± 0.023 51 0.379 

 

 Figure 28 presents the computational cost obtained for two critical parts of the multi-

objective optimisation of MSE[Ront] and MSE[Ra], the NNC loop in Figure 28(a), and the Pareto 

filtering in Figure 28(b). As explained in section 8 the complexity of the NNC loop is of liner order, 

O(nsub), while the complexity of the Pareto filtering is of quadratic order, O( 2

subn ). However, for a 

feasible number of desired solutions, the NNC loop will consume a higher computational time, since 

nsub the non-linear optimisations will demand considerable higher time than 2

subn  simple 

comparisons. For nsub = 1001 time for the NNC loop was more than eighty times larger than the time 

for Pareto filtering. Considering a practical situation, to achieve nsub = 1001 may not result in 

interesting results since the difference between adjacent Pareto solutions is lowermost and, 

consequently impracticable in a manufacturing production scenario. Consequently, considering a 

number of solutions feasible to represent the trade-off of the solutions in a practical scenario, the 

NNC loop will present higher computational time than the Pareto filtering, despite the computational 

complexity order of these procedures. 

 

(a)

(b)



 

 

 

Figure 28. Computational time of: (a) NNC loop; (b) Pareto filter 

 

Since in multi-objective optimization it is important to choose the best compromise Pareto 

optimal solution considering a mathematical decision criterion, it was calculated the Euclidian 

distance in the normalized space from each Pareto optimal solution to the utopia point 
U

f  = [0 0]T, 

labelled dj+. The results are also stored in Table 12. The Pareto optimal solution with lower Euclidian 

distance to 
U

f  was f*
[w1=0.5] = [3.759 μm2 1.048 μm2]T, with the same weight for both functions, i.e. 

w1 = w2 = 0.5. Figure 29 illustrates the Pareto frontier for MSE[Ra] and MSE[Ront] in the normalized 

solution space with the lowest Euclidian distance from the solution f*
[w1=0.5] to the utopia point 

U
f . 

 

 

Figure 29. Pareto frontier in the normalized solution space with lowest dj+ 
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After confirming that NNC outperformed NBI in terms of the number of Pareto optimal 

solutions and WS in terms of evenness the Pareto optimal solutions, it is important to confirm the 

optimisation to assure the reduction of the variability with regard to noise factors. Therefore, the 

experimental together with simulated results, considering the most compromise solution, f*
[w1=0.5] = 

[3.759 μm2 1.048 μm2]T, were plotted in individual and moving range (MR) control charts in Figure 

30. The variability expressed by the experimental runs is due to control and noise variables, while, 

the variability expressed in the simulated Pareto optimal points was calculated considering the slope, 

i.e., the partial derivatives with regard to the noise factors    **

5.01
ˆˆˆ xΔγxl Tw  to express the 

variability in units of the measured response. The slope is suitable to express the variability, since the 

variance expressed in Equation 12, propagated considering the noise factors, takes into consideration 

the experimental error 2ˆ
 , which reflects the variance of the experimental tests in the robust 

modelling. Consequently,   zx
εz

,
,

yVarS   always will present higher values than 2ˆ
 . 

For Ra the simulated optimal results presented mean *

aR  = 0.254 μm, while for the 

experimental runs the mean was 
aR  = 0.265 μm. With regard to the variability of Ra, the 

experimental runs presented 
aR

S  = 0.047 μm, while the slope of the simulated optimal solution, 

which is the standard deviation propagated with regard to noise factors, was   *

5.01**
ˆ

 wRR aa

S xl  = 

0.004 μm. Consequently, the most compromise Pareto optimal solution presented a lower mean Ra 

besides variability reduction, as observed in Figure 30(a).  

 



 

 

 

Figure 30. I/MR control charts for experimental and simulated optimal results, w1 = 0.5 

 

For Ront the simulated optimal results presented mean *

tonR  = 9.29 μm, while for the 

experimental runs the mean was tonR  = 8.72 μm. Concerning the variability of Ront, the 

experimental runs presented 
tonR

S  = 2.675 μm, while the slope of the simulated optimal solution, 

which is the standard deviation propagated with regard to noise factors, was   *

5.01**
ˆ

 wonRonR tt

S xl  = 

0.478 μm. Consequently, the most compromise Pareto optimal solution presented a lower mean Ront 

besides variability reduction, as concluded through Figure 30(b).  

 



 

 

8. Conclusions 

 

This paper presents a methodology to the multi-objective robust optimization of borehole 

quality obtained by helical milling on AISI H13 hardened steel. Since hole-making in hardened 

material is a difficult task, the results achieved with the proposed methodology are important to 

attain competitive advantage in the molds and die industry. The proposed methodology for robust 

multi-objective modelling and optimisation may be applied in other manufacturing processes. 

Experiments were carried out by following a CCD combined array considering process and 

noise helical milling factors. Tool overhang length, material hardness, and borehole height were 

considered as noise factors to achieve process factor levels insensitive with regard to noise variation.  

Response models were obtained for Ront, Cylt, Ra, and Rz, in function of process and noise 

factors. The models presented good data variability explanation with Radj
2 equals to 99.97%, 98.51%, 

99.45% and 97.91%, respectively. The models also presented good prediction capability for future 

observations with 98.78% for Ront, and 94.48%, 84.81% for Ra and Rz, except for Cylt with moderate 

predictability 58.29%. These models are useful to study the process and noise effects in the 

outcomes. 

Ward’s dendrogram was used to select helical milling outcomes to be optimized without 

similarity. Ront and Cylt were separated in a highly correlated group of geometrical error outcomes, 

while Ra and Rz were separated in a highly correlated group of roughness outcomes. Then in each 

group, one variable was selected to represent the group, since the multi-objective optimisation 

involving high correlated outcomes may result in similar results, since the trade-off, in this case, is 

negligible. The outcomes Ront and Ra were selected due to the best adjustment in each group and due 

to its importance in the characterization of geometrical error and roughness of boreholes, 

respectively. 

Mean and variance equations were derived through RPD for all responses since they 

represent different performance characteristics. Mean square error optimisation was realised only for 

the selected responses Ront and Ra as an approach to reduce bias and variance. The Pareto optimal 

solution with lower Euclidian distance to 
U

f  was f*
[w1=0.5] = [3.759 μm2 1.048 μm2]T, with the same 

weight for both functions, i.e. w1 = w2 = 0.5.  

NNC multi-objective optimization method was used to achieve Pareto robust optimal 

solutions, giving to the experimenter several possibilities of process parameter levels to achieve 

desired borehole quality levels insensitive to the noise factors. NNC was applied to the optimisation 

of mean and variance of Ront and Ra to evaluate the trade-off between mean and variance. 



 

 

The NNC was applied to the bi-objective optimisation of MSE[Ront] and MSE[Ra] to evaluate 

the trade-off between roughness and roundness considering the robustness with regard to noise 

factors. The NNC performance was compared with WS and NBI methods, considering CPU time, 

evenness of distributions and number of Pareto solutions. NNC presented similar CPU with regard to 

WS and NBI, the lowest coefficient of variation of the vector of Euclidian distances between 

adjacent Pareto solutions 
d

CV NNC = 0.379 resulting in the best solutions distribution and 

NsolutionsNNC = 51, while NBI presented NsolutionsNBI = 49. 

The best compromise Pareto optimal solution was selected considering the Euclidian distance 

dj+ of each Pareto optimal solution to the utopia point in the normalized solution space. I/MR Control 

charts were used to endorse the results comparing the experimental results with simulated results of 

the most compromise solution. The results showed that the Pareto solution assured robustness based 

on the noise variation. 

The proposed methodology was detailed and may be applied in other manufacturing 

processes as a multi-objective robust modelling and optimization procedure. The obtained results 

may be employed in hole-making tasks of AISI H13 hardened steel assuring excellence in 

microgeometrical and geometrical borehole quality with robustness with regard to noise factors.  

For future work, it is recommended to apply multi-objective evolutionary algorithms, such as 

Non-dominated Sorting Genetic Algorithm II, Multi-objective Evolutionary Algorithm Based on 

Decomposition, Multi-objective evolutionary particle swarm and other algorithms for solving multi-

objective problems applied to robust optimisation of manufacturing process such as helical milling of 

AISI Hardened steel. Apart from borehole quality metrics, considered in the objective of the present 

work of borehole robust design, it is recommended to address other objectives of the helical milling 

process, such as productivity, cutting force and energy consumption outcomes. 
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Appendices  

 

A. Proof that the OLS results may be applied to WLS problems 

 

The assumption of homoscedasticity of the experimental observations may be relaxed through 

Var(ε) = σ2W-1, with ε as the vector of error terms, where W is a diagonal matrix with wi as diagonal 

element. The model, in this case, can be expressed as follows [50]:  

 

εXβY  ,     12  Wε Var        (A1) 

  



 

 

 On the contrary, in the case of homoscedasticity, the model is presented as follows [50]:  

 

εXβY  ,     NVar Iε
2         (A2) 

 

In the case of Equation A2, the estimates for β are obtained through OLS, i.e., 

  YXXXβ TT 1ˆ 
 . The problem A1 may be transformed to one solved by OLS. Let W1/2 be a N×N 

diagonal matrix with i-th diagonal term iw . Then, W-1/2 is a diagonal matrix with i-th diagonal 

term iw1 . Therefore W1/2W-1/2 = IN. The covariance matrix of W-1/2ε is [50]: 
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 Taking (A1) and multiplying by W1/2 [50]: 
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212121            (A4) 

 

 Defining ΩYW 21 , ΞXW 21 , and εW
21  [50]: 

 

ΓΞβΩ              (A5) 

 

 Through A2 Var(Γ) = σ2IN. Consequently, estimating β through OLS [50]: 
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The estimates in Equation A6 are the WLS estimates.  



 

 

 

B. Homoscedasticity and normality test results 

 

Since it was used a fractional factorial design, the homoscedasticity tests of multiple 

comparison and Levene were performed considering groups of parameters, as exposed in Table B.1. 

As can be observed in the most part of the results presented in the Table B.1, the homoscedasticity 

null hypothesis can be rejected, since p-value < 0.05 = α. Consequently, the WLS estimates for the 

response models may be more efficient to deal with non-constant error terms. 

 

Table B.1. Homoscedasticity tests for the responses 

  fza, fzt, vc, lto   fza, fzt, vc, hd   fza, fzt, vc, hd 

Cylt 
0.019*  0.165  0.060 

0.262**  0.081  0.270 

Ront 
0.018  0.000  0.000 

0.013  0.010  0.080 

Ra 
0.000  0.000  0.000 

0.022  0.000  0.010 

Rz 
0.000  0.000  0.000 

0.028   0.003   0.010 

*multiple-comparisons test p-value; ** Levene test p-value 

 

The Anderson-Darling normality tests results and probability plots of residuals are presented. 

The residuals were obtained through the response models estimates of OLS. The WLS regression 

was performed considering the inverse of squared residuals and Romano and Wolf (2017) assured 

that non-normality of errors in WLS estimates is not prejudicial in the efficiency of the estimates.  

showed that WLS is more efficient than OLS also with non-normal error terms. Figure B.1 presents 

the normality test for the residuals of Ront and Cylt, and Figure B.2 for Ra and Rz.  

 

 

(a) (b)



 

 

Figure B.1. Normality test for (a) Ront and (b) Cylt 

 

 
Figure B.2. Normality test for (a) Ra and (b) Rz 

(a) (b)


