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Abstract 

The objective of this study is to propose a methodological approach to assess the capability of different traffic monitoring 

applications to estimate emissions generated by road traffic. Global Navigation Satellite Systems and traffic data were collected 

from different roadways in Portugal and Spain. Emissions were estimated through the Vehicle Specific Power concept, and then, 

data mining tools were explored to reveal patterns hidden on large amount of data (154 000 sec). Finally, the best relationships 

between traffic variables and emissions are evaluated. Results show a prediction for CO2 emissions of 99% and 98% to NOX.   
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1. Introduction and Objectives 

Development in technologies (such as mobile traffic sensors or Global Positioning System (GPS)-equipped devices) 

has opened up new opportunities for location-based services. According to Kalamaras et al. (2018) these include traffic 

measurements and sophisticated models for accurate short-term traffic predictions which has resulted in lower 

infrastructure costs in comparison with fixed location sensors. Nonetheless, mining traffic data can be a challenging 

task furthermore for traffic flow improving or traffic performance prediction. Through linear regressions and 

sequential minimal optimization regression techniques, it has been possible to analyse the historical traffic big data to 

extract and find abnormal traffic patterns, and thus improving traffic management systems (Alam et al. (2017)).  

 The advent and development of FCD (floating car data) systems in accordance with Siddique et al. (2017) and 

Bandeira et al. (2013), such as Google traffic or TOMTOM, allows mapping and identifying hotspot congestion 

locations on different road types. Stevens et al. (2017) state that a definition of a criterion to describe traffic congestion 

on a road segment involves the balancing of competing objectives. The congestion causes can be determined by 

surveying speed, travel time or traffic flow data (Lu et al, 2015). Through surveying speed analysis, the 
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implementation of speed management techniques can also be helpful to the reduction of emissions and the 

minimization of the trade-off between the minimization of CO2 and other pollutants (Bandeira et al, 2016). 

Bisoffi et al. (2017) refer that despite currently available techniques use continuous probe data collected from 

Global Navigation Satellite Systems (GNSS) installed in vehicles or smartphones, the detection of congestion and its 

causes along a segment is not trivial. Moreover, mobile traffic sensors can provide wider coverage than fixed location 

sensors, as demonstrated in a study carried out by Herrera (2009). Bandeira et al. (2018) developed a platform based 

on empirical GPS data and microscopic simulation models of traffic, emissions and noise. The authors highlighted the 

need to consider real-time activity patterns in a way that will be possible to implement sustainable traffic management 

measures. Also Rao et al. (2012) showed that micro-level congestion can be triggered by factors as too many people 

want to move at the same time, while macro level congestion depends of land use patterns or car ownerships trends. 

Recently, Teixeira et al. (2017) developed a fluidity formula based on surveying speed and travel time to determine 

a criterion that could identify and describe vehicle dynamic patterns along an urban arterial. However, the proposed 

model was only tested in a single case study, so there is a lack of evidence of its scalability to other scenarios. With 

these concerns in mind, the purpose of the present research is to extend the methodology developed in Teixeira et al. 

(2017) for wider application in several real-world arterials using variables dependent on driver behaviour. This paper 

intends to address this issue by developing a simple and generic formula that can predict traffic emissions through 

traffic variables. The main contribution of this research is the possibility to include the developed models in sensors 

that will require low processing capacity, making the production and implementation economically viable.   

In the literature, it is known that vehicle operating variables are quite related to pollutant emissions. One of the 

objectives of the present work is to compare values of speed, acceleration and traffic volume with levels of CO2 and 

NOx emissions. Therefore, in this paper it is proposed a conceptual system in which data related to vehicle operating 

variables serve as input, and information regarding CO2 and NOx emission values is the output. In a first phase, 

different scenarios on data acquisition strategies were simulated, namely, wi-fi sensors, speed radar each 100 meters 

along a road, and FCD for different time intervals. Then, after obtaining the best traffic/vehicle monitoring application, 

expressions for deriving estimates for CO2 and NOx emissions were developed. Concretely, the objectives are: i) to 

test the applicability of different traffic monitoring applications; ii) to correlate traffic and emissions variables; iii) to 

create a generic equation capable of describing CO2 and NOx emissions in both urban and national roads. 

2. Methodology 

2.1. Field Campaigns 

Vehicle activity along with traffic flow measurements were collected in five corridors in Aveiro (Portugal), one in 

Guimarães (Portugal) and one in Badajoz (Spain). These areas were selected to account for variability in real-world 

rural and urban corridors, namely:  number of lanes, traffic controls (roundabouts, traffic signals), speed limits. Table 

1 shows some of the routes’ characteristics. Data was collected at the candidate locations between 2016 and 2017. For 

vehicle dynamic characterization, a light duty vehicle equipped with a GNSS was used to collect second-by-second 

data (as travel time, instantaneous speed and acceleration). The probe vehicle always moved according to the driver’s 

perception of the traffic flow. Video cameras were installed in strategic points of the studied locations to record 

segment-specific traffic volume. Prior to on-road dynamic tests, the minimum sample size (number of travel time 

runs) on each location was investigated such that the minimum required within a reasonable confidence interval based 

on the density of traffic lights, intersections, etc., was satisfied (Dowling et al, 2004). Total data collected included 

571 GPS travel runs, which corresponded to a road coverage of 431km over 107h.  

Table 1. Routes characteristics. 

Route ID Type of road Length (m) N. of lanes N. of trips Travel distance (km) Road capacity 

a) arterial 2,200 1/2 12 26 3600 
b) urban 1,400 2 32 45 2610 

c) urban 102 2 136 13 1800 

d) arterial 950 1/2 80 76 2880 
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e) urban 850 1 92 78 2240 

f) arterial 850 2 80 68 3420 
g) arterial 900 2 139 125 3600 

2.2. Emission estimation 

The probe vehicle was used to collect dynamic data as vehicle speed and acceleration. Emissions were estimated 

second-by-second with these data and through Vehicle Specific Power (VSP) methodology. It includes the impact of 

different levels of accelerations and speed changes on emission calculations according to Frey et al. (2006) and Coelho 

et al. (2009). VSP is a function of speed, acceleration-deceleration and slope, and it can be expressed by Equation 1. 

These parameters are computed second-by-second: 

 

𝑉𝑆𝑃 = 𝑣[1.1𝑎 + 9.81(atan(sin(𝑔))) + 0.123] + 0.000302𝑣3                                                                   (1) 

 

where VSP is the vehicle specific power (kW/ton); v is the instantaneous speed (m/s); a is the instantaneous 

acceleration (m/s2) and g is defined as the instantaneous vertical rise/horizontal distance (± %). 

According to US EPA (2002), each VSP can be categorized in 14 engine modes, which in turn is associated to an 

emission rate for CO2 and NOX. Modes 1 and 2 represent deceleration episodes or traveling downhill, whereas mode 

3 represents idling or low speed situation. Modes 4 to 14 describe combinations of increasing and positive 

accelerations or hill climbing. 

2.3. Extracting meaningful information framework 

The general framework can be seen in the Figure 1. 

 

 

 

 

 

 

 

2.4. Testing applicability of different traffic monitoring scenarios 

One of the aims of the present study is to test the applicability of different traffic monitoring applications with the 

purpose of selecting the best way to collect data that will serve as input in the generic model we will present in Section 

2.5. The examined traffic monitoring applications are depicted in Figure 2.  

Figure 1. General framework overview. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In particular, various data acquisition methods were simulated (Table2). This table presents the coefficient of 

determination (R2) between the dynamic variables (mean speed or mean acceleration) for each data acquisition method 

(as Bluetooth or Wi-Fi sensors represented in figure 1a)) with emissions variables (CO2 and NOX) and traffic volume. 

Table 2. Coefficient of determination (%) between dynamic variables and emissions/traffic volume. 

Data acquisition methods Variables 
Coefficient of determination R2 (%) 

Traffic volume CO2 emissions NOX emissions 

Wi-Fi sensors (road segment analysis) mean speed 37 0.8 0.3 

mean acceleration 2 3 5 

traffic volume - 2 1 

Floating car data second-by-second Instantaneous  speed 13 8 5 

Instantaneous  acceleration 0 58 63 

traffic volume - 1 1 

Floating car data each 5 second interval mean speed 13 11 9 

mean acceleration 0 61 60 

travel distance 13 0 7 

traffic volume - 2 2 

Floating car data each 10 second interval mean speed 14 20 16 

mean acceleration 0 57 53 

travel distance 11 1 4 

traffic volume - 4 4 

Radar in each 100 meters using instantaneous 
information 

Instantaneous speed 13 4 3 

Instantaneous acceleration 0 61 69 

traffic volume - 1 0 

Speed Radar in the end of the intersections 
using instantaneous information 

Instantaneous speed 29 4 2 

Instantaneous acceleration 2 71 71 

traffic volume - 2 2 

 

From Table 2 it can be observed that route travel time using WI-FI sensors can explain 37% of the variability and 

flow changes. When collecting data in intervals of 1, 5 or 10 seconds, instantaneous or mean acceleration are the 

suitable variables to predict CO2 and NOX emissions. It is possible to see a better equilibrium in the 5 seconds interval. 

It is not possible to predict traffic volume based on sub-segments of GNSS data collected in regular time. Speed radar, 

particularly in the end of the segments, presents the best relationship, however it presents more difficulties to predict 

Figure 2. Data acquisition methods. 
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in all the segment emissions with the same precisions of floating car data. Acceleration showed to be suitable to 

describe CO2 and NOX emissions in all scenarios. Regarding traffic volume, only a segment analysis enables a 

prediction of traffic volume. The two best hypotheses to do the data collection to feed the proposed system, would be 

in 5 seconds intervals or speed radar in the end of the segments, due to the high correlation values as a systematic 

relation for the two pollutants in order to obtain a general expression as it is exemplified in Section 3. 

After comparing the two best hypotheses, the 5 second interval methodology was chosen over the radar in the end 

of the segment for two main reasons:  

• It describes the emissions with more reliability in the entire road segment; 

• In a strategic way of implementing the developed system, it will be less expensive the use of FCD 

equipment already installed in the vehicles, than installing speed radars over all segments in a city. 

2.5. System design 

Considering the foregoing discussion and having in mind that using limited floating car data at each 5 second interval 

may be an efficient way to collect traffic-related data to be further used to estimate associated emissions, the main 

steps of the proposed system to predict CO2 and NOX emissions can be outlined as follows (Figure 3): 

1. Extract vehicle dynamics information in 5-second intervals, meaning that only information of few vehicles 

will be needed, reducing thus, the amount of data to store.  

2. Compute travel distance in each 5-second interval (e.g. mean speed of the five instantaneous speeds gathered 

in the interval). 

3. Send the information to the server (both dynamic and static); 

4. Treat dynamic information to get relevant variables. The information is available in a 3-way matrix: 

1. Data related to the driver location such as latitude or travelled distance; 

2. Static information based on vehicles’ position such as weather, speed limits or road capacity, and 

dynamic information such as instantaneous speed and acceleration-deceleration; 

3. CO2, NOX prediction levels. 

5. Results are sent to the user interface. 

  

The development of a new model to allow to estimate traffic-related environmental impacts will be described in 

the following section. It was called Segment Emission Index (SEI) and it uses limited FCD at each 5 second interval. 

3. Results 

In what follows, the results of our work will be presented and discussed. 

Figure 3. Demonstration of the proposed system. 



 

 

3.1. Estimating Emissions: Generic Model SEI 

To construct a general model to estimate the level of traffic-related emissions, a regression model was developed using 

neural networks with a single hidden layer in a process conducted in the Rapid Miner software (Kotu et al, 2014). 

First, the input data was pre-processed to deal with possible outliers and then, divided into training and evaluation 

subsets, with a ratio of 70% for training (to identify the variables) and the remaining 30% for evaluation (output 

results).  

The developed linear regression for predicting the traffic-related CO2 emissions (𝑒𝐶𝑂2) for a single vehicle involves 

maximum speed, 𝑀𝑎𝑥𝑆𝑝𝑒𝑒𝑑, average speed, 𝐴𝑣𝑆𝑝𝑒𝑒𝑑, and average acceleration, 𝐴𝑣𝐴𝑐𝑐, for each 5-second interval 

as predictor variables. The obtained model is given by: 

  

𝑒𝐶𝑂2 = 0.139𝑀𝑎𝑥𝑆𝑝𝑒𝑒𝑑 + 0.26𝐴𝑣𝑆𝑝𝑒𝑒𝑑. 𝐴𝑣𝐴𝑐𝑐 + 1.417.                                                  (2) 

 

The above regression gives us a prediction of CO2 emissions (g/s) taking into account few variables of data 

collected at each 5 seconds (R2 = 87%).  

Moreover, the results suggest a direct connection between CO2 and NOX emissions (𝑒𝑁𝑂𝑥 ) (both in g/s). In 

particular, we were able to derive the following linear relationship (R2 = 86%): 

 

𝑒𝑁𝑂𝑥 = 0.003𝑒𝐶𝑂2 . 

 

These results allow one to estimate CO2 and NOX emissions in an easy and inexpensive way. Furthermore, we 

empirically derived a general model in the form of an index that is able to provide estimates of pollutant emissions, 

which we had called Segment Emission Index (SEI). For this purpose, we used the variables of the expression (2) and 

introduced another one as follows:  

 

𝑆𝐸𝐼 =
𝑀𝑎𝑥𝑆𝑝𝑒𝑒𝑑

𝑑̅0
+ 50

𝐴𝑣𝑆𝑝𝑒𝑒𝑑.𝐴𝑣𝐴𝑐𝑐

𝑑̅0
2  ,                                                                        (3) 

where 𝑑̅0 is the average travelled distance under free-flow speed. The objective of this expression is that it returns an 

index which corresponds to a specific level of CO2 and NOX emissions for a single vehicle (in the present study, for 

a passenger car).  

The following section is devoted to presenting the clear relationship between SEI values and pollutant emission 

levels.  

3.2.  SEI model results 

In what follows, the relationships between SEI values and CO2 and NOX emissions per vehicle on specific links are 

presented. Figure 4a (b) exhibits the relation between CO2 (NOX) emissions and SEI values applied to each 5-second 

data. To perform a regression analysis, the goodness-of-fit measures used here were the coefficient of determination, 

R-square and adjusted R-square, and the standard error of the regression. As it can be observed in Table 3, the findings 

suggest the model fits well the data in all studied locations. In particular, it can be verified that SEI can explain around 

99% of the average CO2 emissions per vehicle, while it can explain 98% of the NOX emissions. This means that the 

there exists strong linear relationship with SEI values. The standard error of the regression is the precision that the 

regression coefficient is measured and the results show coefficients are clearly large when compared to the error, and 

thus, they are statistically significant with p-value under 0.05. 
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a) b) 

 

 

Table 3. Regression statistics and coefficients for SEI as predictor variable for explaining pollutant emissions. 

 CO2 NOX 

R-square 99 98 
Adjusted R-square 94 93 

Standard Error 0.553 0.003 

Coefficient 16.8587 0.0519 
Standard error 0.3081 0.0015 

t Statistic 54.7143 34.0732 

p-value 1.8099E-21 8.4170E-18 

 

Equation (3) returns an index which corresponds to an emission level. In particular, the SEI values were 

approximated in ranges of 0.032 values. For each of these intervals, a mean of the emissions related to each value was 

computed. Figure 4 shows the relation of estimation of these values with the average emissions for each 5 seconds 

given by VSP. Because volume was calculated per segment, to a number of vehicles per hour, there was a wide range 

of SEI values, making impossible to make a direct correlation. SEI values increase proportionately with emissions. 

Although SEI can predict the average emission rate per a 5-second interval, at this moment it is not possible to know 

exactly which emissions are due to the presence of traffic or not.  

4. Conclusions 

In this paper, a conceptual system for providing vehicle CO2 and NOx emission values was suggested. For that purpose, 

various vehicle monitoring applications were simulated and analysed. Among the different monitoring applications, 

the method of disseminating the data in 5-second intervals (although this requires second-by-second information to 

the server for each 5 seconds to be computed) showed to be the most suitable tool for this case. This method was also 

the most appealing because of the lack of need of investing in more infrastructures to obtain higher resolution data. 

Then, expressions for deriving estimates for CO2 and NOx emissions levels were developed. In particular, the Segment 

Emission Index (SEI) model was proposed, which is a single expression that allows one to conclude about estimates 

of such emissions with high-level of accuracy. 

The analysis allows to conclude the predictions using the proposed SEI approach can be useful for predicting 

traffic-related emissions. The proposed models showed to be consistent with emission model estimates based on 

instantaneous speed and acceleration. The approach enabled the prediction of CO2 emissions with a coefficient of 

determination around 99% and of NOX emissions around 98% (with p-value<0.05).  

The results are very promising since the models can be incorporated in sensors, which in turn lead to massive 

memory savings, because the input information to predict traffic-related externalities only requires storing data in 5-

Figure 4 Relation between SEI values and average CO2 (a) and NOx (b) emissions per vehicle in each 5-second interval. 
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second of time resolution. It also reduces the information needed to predict traffic-related impacts with respect to data 

collected only for a small set of vehicles along the segment. In essence, there is great potential benefit of using SEI 

for traffic management with environmental concerns. The advantages of using SEI is that no infrastructure in vehicles 

or along the road is needed, it returns timely and accurate information, and it is easily deployable in traffic network. 

However, there are also some limitations such as estimated emissions from VSP were considered as benchmark, which 

we can overcome in the future using a portable emissions measurement system (PEMS). 
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