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Abstract

We provide a numerical method to solve a certain class of fractional differential
equations involving ψ-Caputo fractional derivative. The considered class includes
as particular case fractional relaxation-oscillation equations. Our approach is based
on operational matrix of fractional integration of a new type of orthogonal polyno-
mials. More precisely, we introduce ψ-shifted Legendre polynomial basis, and we
derive an explicit formula for the ψ-fractional integral of ψ-shifted Legendre poly-
nomials. Next, via an orthogonal projection on this polynomial basis, the problem
is reduced to an algebraic equation that can be easily solved. The convergence of
the method is justified rigorously and confirmed by some numerical experiments.
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1 Introduction

A relaxation oscillator is an oscillator based upon the performance of a physical system’s
resending to equilibrium after being disturbed. The relaxation-oscillation equation is
the primary equation of relaxation and oscillation processes. The standard form of a
relaxation equation is given by

y′(t) + λy(t) = f(t), (1)

where λ ∈ R is a constant and f is a given function. Eq.(1) models several physical
phenomena, such as the Maxwell model, which describes the behavior of a viscoelastic
material using a spring and a dashpot in series. In this case, λ = E

η
, where E is the elastic

modulus, η is the viscosity coefficient, and f(t) denotes E multiplying the strain rate.
The standard oscillation equation describes a simple physical process with a controlled
phase shift. In the simplest linear case, the equation describes oscillation y of a system
responding to an external forcing f :

y′′(t) + λy(t) = f(t), (2)

where λ = ω2
0 with ω0 is the natural (resonant) frequency of the oscillator. Note that in

(2), it is supposed that the damping coefficient is zero.
In order to represent slow relaxation and damped oscillation, fractional derivatives are

employed in the relaxation and oscillation models (1) and (2) (see [19, 20]). Fractional
relaxation-oscillation equation has the following form

Dαy(t) + λy(t) = f(t), t > 0, α ∈ (0, 2) \ {1}, (3)

1



under the initial conditions
y(0) = y0, if 0 < α < 1 (4)

or
y(0) = y0, y

′(0) = y1, if 1 < α < 2, (5)

where Dα is a certain fractional derivative operator of order α. In the case 0 < α < 1,
(3)-(4) describe the relaxation with the power law attenuation. In the case 1 < α < 2,
(3)-(5) represent the damped oscillation with viscoelastic intrinsic damping of oscillator
(see [5, 26]).

Recently, the numerical study of fractional relaxation-oscillation equations has at-
tracted much attention. In [5], the authors studied the numerical solution of (3) (with
f(t) = 0) by considering positive fractional derivative and fractal derivative. In [11], the
authors used a Taylor matrix method in order to obtain the numerical solution of (3) by
considering Caputo fractional derivative. This method is based on a fractional version of
Taylor’s formula established in [21]. In [12], the numerical solution of (3) in which the
fractional derivative is given in the Caputo sense, is obtained by the optimal homotopy
asymptotic method. In [7], the numerical solution of (3) with Caputo fractional deriva-
tive, is computed using a trapezoidal approximation of the fractional integral. In [25],
a generalized wavelet collocation operational matrix method based on Haar wavelets is
proposed to solve (3) in which the fractional derivative is given in the Caputo sense.

In this paper, motivated by the above cited works, we are concerned with the numerical
solution of the fractional differential equation

Dα,ψ
a y(t) + λy(t) = f(t), a < t < b, (6)

under the initial conditions

(δψ)iy(a) = yi, i = 0, 1, . . . ,m− 1, (7)

where λ ∈ R is a constant, max
{
m− 1, 1

2

}
< α < m, m ∈ N, ψ : I = [a, b]→ [0, 1] is an

increasing function that belongs to Cm(I) satisfying ψ′(t) > 0, t ∈ I, and ψ(I) = [0, 1],
f : I → R is a given function, Dα,ψ

a is the ψ-Caputo fractional derivative of order α (see
Definition 2.3), and for i = 0, 1, . . . ,m− 1,

(δψ)iy(t) =

{
y(t), if i = 0,(

1
ψ′(t)

d
dt

)i
y(t), if i = 1, 2, . . . ,m− 1.

Note that in the case ψ(t) = t, (6)-(7) includes as particular cases (3)-(4) for m = 1, and
(3)-(5) for m = 2, where Dα is the Caputo fractional derivative of order α. Our approach
is based on operational matrix of fractional integration of a new type of orthogonal
polynomials. More precisely, we introduce ψ-shifted Legendre polynomial basis, and we
derive an explicit formula for the ψ-fractional integral of ψ-shifted Legendre polynomials.
Next, by projecting the problem on this polynomial basis, we obtain an algebraic equation
that can be easily solved. We present a rigorous proof of the convergence of the proposed
method. Moreover, some numerical experiments are given to show the convergence of
such procedure, comparing the exact solution with numerical approximation.

The operational matrix of integer integration has been used with different types of
orthogonal polynomials such as Chebyshev polynomials [22], Legendre polynomials [23],
Laguerre and Hermite polynomials [8], etc. Next, it was extended to the fractional case
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by many authors, see for example [3, 4, 9, 10, 13, 15, 24], and the references therein. Note
that in all these cited works, only Caputo or Riemann-Liouville fractional derivatives were
considered.

The paper is organized as follows. In Section 2, we present some preliminaries on
fractional calculus and Hilbertian analysis, and we fix some notations. In Section 3,
we introduce ψ-shifted Legendre polynomials, and study their properties. In Section
4, an explicit formula for the ψ-fractional integral of ψ-shifted Legendre polynomials
is derived. The numerical scheme and the convergence of the method are discussed in
Section 5. Finally, in Section 6, some numerical experiments are presented to demonstrate
the efficiency of the proposed approach.

2 Preliminaries

Let I = [a, b], (a, b) ∈ R2, a < b, and ψ ∈ C1(I; [0, 1]) be an increasing function such that
ψ′(t) > 0, t ∈ I and ψ(I) = [0, 1].

First, let us define some functional spaces that will be used later.
Given a finite interval J ⊂ R, let

L2(J ;R) =

{
f : J → R : f is measurable &

∫
J

|f(t)|2 dt <∞
}

be the Hilbert space with respect to the scalar product

(f, g)L2(J) =

∫
J

f(t)g(t) dt, f, g ∈ L2(J ;R).

We denote by ‖ · ‖L2(J) the norm in L2(J ;R) induced by the scalar product (·, ·)L2(J), i.e.,

‖f‖L2(J) =
√

(f, f)L2(J) =

(∫
J

|f(t)|2 dt
) 1

2

, f ∈ L2(J ;R).

Let L1
ψ(I;R) be the Banach space defined by

L1
ψ(I;R) =

{
f : I → R : f is measurable &

∫
I

|f(t)|ψ′(t) dt <∞
}

with respect to the norm

‖f‖L1
ψ(I)

=

∫
I

|f(t)|ψ′(t) dt, f ∈ L1
ψ(I;R).

Let L2
ψ(I;R) be the functional space defined by

L2
ψ(I;R) =

{
f : I → R : f is measurable &

∫
I

|f(t)|2ψ′(t) dt <∞
}
.

It can be easily seen that L2
ψ(I;R) is a Hilbert space with respect to the scalar product

(f, g)L2
ψ(I)

=

∫
I

f(t)g(t)ψ′(t) dt, f, g ∈ L2
ψ(I;R).
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We denote by ‖ · ‖L2
ψ(I)

the norm in L2
ψ(I;R) induced by the scalar product (·, ·)L2

ψ(I)
, i.e.,

‖f‖L2
ψ(I)

=
√

(f, f)L2
ψ(I)

=

(∫
I

|f(t)|2ψ′(t) dt
) 1

2

, f ∈ L2
ψ(I;R).

Further, given a function f : I → R, we define the function f̃ : [0, 1]→ R by

f̃(s) = f
(
ψ−1(s)

)
, 0 ≤ s ≤ 1.

Lemma 2.1. Let f ∈ L2
ψ(I;R). Then f̃ ∈ L2([0, 1];R). Moreover, we have

(f, g)L2
ψ(I)

= (f̃ , g̃)L2([0,1]), f, g ∈ L2
ψ(I;R).

Proof. Let f ∈ L2
ψ(I;R). Then

‖f‖2L2
ψ(I)

=

∫ b

a

|f(t)|2ψ′(t) dt.

Using the change of variable s = ψ(t), we obtain∫ b

a

|f(t)|2ψ′(t) dt =

∫ 1

0

∣∣f (ψ−1(s))∣∣2 ds
=

∫ 1

0

|f̃(s)|2 ds

= ‖f̃‖2L2([0,1]).

Hence, we have
‖f‖L2

ψ(I)
= ‖f̃‖L2([0,1]),

which yields f̃ ∈ L2([0, 1];R). Next, let f, g ∈ L2
ψ(I;R). We have

(f, g)L2
ψ(I)

=

∫ b

a

f(t)g(t)ψ′(t) dt.

Again, using the change of variable s = ψ(t), we obtain

(f, g)L2
ψ(I)

=

∫ 1

0

f
(
ψ−1(s)

)
g
(
ψ−1(s)

)
ds

=

∫ 1

0

f̃(s)g̃(s) ds

= (f̃ , g̃)L2([0,1]).

Definition 2.1 (see [16]). Let f ∈ L1
ψ(I;R). The ψ-fractional integral of order α > 0 of

the function f is given by

(Iα,ψa f)(t) =
1

Γ(α)

∫ t

a

ψ′(x)(ψ(t)− ψ(x))α−1f(x) dx,

where Γ is the Gamma function.

4



Note that in the particular case ψ(t) = t, Iα,ψa reduces to Riemann-Liouville fractional
integral of order α. In the case ψ(t) = ln t (a > 0), Iα,ψa reduces to Hadamard fractional
integral of order α (see [16] for more details).

Lemma 2.2. Let α > 1
2
. Then Iα,ψa : L2

ψ(I;R) → L2
ψ(I;R) is a linear and continuous

operator. Moreover, we have

‖Iα,ψa f‖L2
ψ(I)
≤ 1

Γ(α)
√

2α− 1
‖f‖L2

ψ(I)
, f ∈ L2

ψ(I;R).

Proof. Let f ∈ L2
ψ(I;R). We have

(Iα,ψa f)(t) =
1

Γ(α)

∫ t

a

ψ′(x)(ψ(t)− ψ(x))α−1f(x) dx

=
1

Γ(α)

∫ t

a

√
ψ′(x)(ψ(t)− ψ(x))α−1

√
ψ′(x)f(x) dx, t ∈ I.

Using Hölder’s inequality, for all t ∈ I, we have

∣∣(Iα,ψa f)(t)
∣∣2 ≤ (

1

Γ(α)

)2(∫ t

a

ψ′(x)(ψ(t)− ψ(x))2α−2 dx

)(∫ t

a

|f(x)|2ψ′(x) dx

)
≤

(
1

Γ(α)

)2(∫ t

a

ψ′(x)(ψ(t)− ψ(x))2α−2 dx

)(∫ b

a

|f(x)|2ψ′(x) dx

)
=

(
1

Γ(α)

)2
1

2α− 1
(ψ(t))2α−1 ‖f‖2L2

ψ(I)

≤
(

1

Γ(α)

)2
1

2α− 1
‖f‖2L2

ψ(I)
.

Therefore, we obtain

‖Iα,ψa f‖2L2
ψ(I)

=

∫ b

a

∣∣(Iα,ψa f)(t)
∣∣2 ψ′(t) dt

≤
(

1

Γ(α)

)2
1

2α− 1
‖f‖2L2

ψ(I)

∫ b

a

ψ′(t) dt

=

(
1

Γ(α)

)2
1

2α− 1
‖f‖2L2

ψ(I)
,

which yields the desired result.

Definition 2.1 can be extended to a vector function as follows.

Definition 2.2. Let F : I → RN , N ∈ N, be a vector function given by

F (t) = (F1(t), F2(t), · · · , FN(t))T , t ∈ I.

Suppose that Fi ∈ L1
ψ(I;R), i = 1, 2, · · · , N . The ψ-fractional integral of order α > 0 of

the vector function F is given by

(Iα,ψa F )(t) =
(
(Iα,ψa F1)(t), (I

α,ψ
a F2)(t), · · · , (Iα,ψa FN)(t)

)T
.
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The ψ-fractional integral operator has the following properties (see [16]):

Iα,ψa (ψ(t))γ =
Γ(γ + 1)

Γ(α + γ + 1)
(ψ(t))α+γ, α > 0, γ > −1 (8)

and
Iα,ψa Iβ,ψa f(t) = Iβ,ψa Iα,ψa f(t) = Iα+β,ψa f(t), α, β > 0.

For n ∈ N ∪ {0}, we define the differential operator (δψ)n by

(δψ)nf(t) =

{
f(t) if n = 0,(

1
ψ′(t)

d
dt

)n
f(t) if n ∈ N.

Recently, Almeida et al [1, 2] introduced the concept of ψ-Caputo fractional derivative
as follows.

Definition 2.3. Let n− 1 < α < n, n ∈ N, ψ ∈ Cn(I;R) be an increasing function such
that ψ′(t) > 0, t ∈ I and ψ(I) = [0, 1], and f ∈ Cn−1(I;R). The ψ-Caputo fractional
derivative of order α of f is given by

(Dα,ψ
a f)(t) =

(
1

ψ′(t)

d

dt

)n
In−α,ψa

[
f(t)−

n−1∑
i=0

(δψ)if(a)

i!
(ψ(t))i

]
. (9)

For some special cases of ψ, we obtain from (9) different Caputo-type fractional deriva-
tives. For example, if ψ(t) = t, then (9) reduces to the Caputo fractional derivative of
order α (see [16]). In the case ψ(t) = ln t, (9) reduces to the Caputo-Hadamard fractional
derivative (see [14]). When function f is of class Cn, the ψ-Caputo fractional derivative
of f can be represented by the expression (cf. [1, Theorem 3])

(Dα,ψ
a f)(t) = In−α,ψa (δψ)nf(t) =

1

Γ(n− α)

∫ t

a

ψ′(s)(ψ(t)− ψ(s))n−α−1(δψ)nf(s) ds.

For example, (see [1])

Dα,ψ
a (ψ(t))γ =

Γ(γ + 1)

Γ(γ + 1− α)
(ψ(t))γ−α, α > 0, γ > n− 1.

Lemma 2.3 (see [2]). Let n− 1 < α < n, n ∈ N. Then:

1. If f ∈ C(I;R), then
Dα,ψ
a Iα,ψa f(t) = f(t).

2. If f ∈ Cn−1(I;R), then

Iα,ψa Dα,ψ
a f(t) = f(t)−

n−1∑
i=0

(δψ)if(a)

i!
(ψ(t))i. (10)
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Further, let H be a Hilbert space with respect to a certain scalar product (·, ·)H . We
denote by ‖ · ‖H the norm on H induced by (·, ·)H . Let (ei)i∈N∪{0} be a Hilbertian basis
of H. For K ∈ N, we denote by

ΠK : H → span{ei : i = 0, 1, · · · , K − 1}

the orthogonal projection operator on span{ei : i = 0, 1, · · · , K − 1} defined by

ΠK(x) =
K−1∑
i=0

(x, ei)Hei, x ∈ H.

We recall the following standard result from functional analysis (see, for example [6]).

Lemma 2.4. For K ∈ N, ΠK is a linear and continuous operator on H, satisfying

‖ΠKx‖H ≤ ‖x‖H , x ∈ H.

Moreover, we have
lim
K→∞

‖x− ΠK(x)‖H = 0.

Lemma 2.5. Let {xK} ⊂ H be the sequence defined by

xK =
K−1∑
i=0

aiei, K ∈ N,

where {an} ⊂ R is a certain real sequence. Suppose that there exists x ∈ H such that

lim
K→∞

‖xK − x‖H = 0.

Then
xK = ΠK(x), K ∈ N.

Proof. For all K ∈ N, we have

‖x− xK‖2H = ‖ΠK(x)− xK‖2H + ‖x− ΠK(x)‖2H

=
K−1∑
i=0

((x, ei)H − ai)2 + ‖x− ΠK(x)‖2H .

Passing to the limit as K →∞, we obtain

∞∑
i=0

((x, ei)H − ai)2 = 0,

which yields
(x, ei)H = ai, i ∈ N.

Then

xK =
K−1∑
i=0

(x, ei)Hei = ΠK(x), K ∈ N.
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3 ψ-shifted Legendre polynomials

The analytic form of the normalized shifted Legendre polynomials Li(s) of degree i ∈
N ∪ {0}, defined on [0, 1], is given by (see, for example [18]):

Li(s) =
√

2i+ 1
i∑

n=0

(−1)i−n(i+ n)!

(i− n)!(n!)2
sn, s ∈ [0, 1].

Lemma 3.1 (see, for example [17]). The set {Li : i ∈ N ∪ {0}} is a Hilbertian basis of
the Hilbert space L2([0, 1];R).

We introduce ψ-shifted Legendre polynomials as follows.
The ψ-shifted Legendre polynomials Pi,ψ(t) of degree i ∈ N∪{0}, defined on I, are given
by

Pi,ψ(t) = Li(ψ(t)), t ∈ I,

that is,

Pi,ψ(t) =
√

2i+ 1
i∑

n=0

(−1)i−n(i+ n)!

(i− n)!(n!)2
(ψ(t))n, t ∈ I.

Lemma 3.2. The set {Pi,ψ : i ∈ N ∪ {0}} is a Hilbertian basis of the Hilbert space L2
ψ(I;R).

Proof. First let us prove that {Pi,ψ : i ∈ N ∪ {0}} is an orthonormal basis of L2
ψ(I;R).

Let i, j ∈ N ∪ {0}. Using Lemma 2.1, we have

(Pi,ψ, Pj,ψ)L2
ψ(I)

=
(
P̃i,ψ, P̃j,ψ

)
L2([0,1])

=

∫ 1

0

P̃i,ψ(s)P̃j,ψ(s) ds

=

∫ 1

0

Pi,ψ
(
ψ−1(s)

)
Pj,ψ

(
ψ−1(s)

)
ds

=

∫ 1

0

Li(s)Lj(s) ds

= (Li, Lj)L2([0,1]).

Therefore, by Lemma 3.1, {Pi,ψ : i ∈ N ∪ {0}} is an orthonormal basis of L2
ψ(I;R).

Next, we have to prove that for any f ∈ L2
ψ(I;R), we have

f =
∞∑
i=0

(f, Pi,ψ)L2
ψ(I)

Pi,ψ. (11)

Let f ∈ L2
ψ(I;R). Then, by Lemma 2.1, we know that f̃ ∈ L2([0, 1];R). Hence, by

Lemma 3.1, we have

f̃(s) =
∞∑
i=0

(
f̃ , Li

)
L2([0,1])

Li(s), s ∈ [0, 1].
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Then, for all t ∈ I, we have

f(t) = f
(
ψ−1 (ψ(t))

)
= f̃ (ψ(t))

=
∞∑
i=0

(
f̃ , Li

)
L2([0,1])

Li(ψ(t))

=
∞∑
i=0

(
f̃ , Li

)
L2([0,1])

Pi,ψ(t).

Again, using Lemma 2.1, we obtain(
f̃ , Li

)
L2([0,1])

=
(
f̃ , P̃i,ψ

)
L2([0,1])

= (f, Pi,ψ)L2
ψ(I)

, i ∈ N ∪ {0}.

Therefore, we obtain

f(t) =
∞∑
i=0

(f, Pi,ψ)L2
ψ(I)

Pi,ψ(t), t ∈ I,

which proves (11).

Further, given a function f ∈ L2
ψ(I;R) and K ∈ N, let ΠK(f) be the orthogonal

projection of f on
span{Pi,ψ : i = 0, 1, · · · , K − 1},

i.e.,

ΠK(f)(t) =
K−1∑
i=0

(f, Pi,ψ)L2
ψ(I)

Pi,ψ(t), t ∈ I. (12)

By Lemmas 2.4 and 3.2, we deduce immediately the following fact.

Lemma 3.3. Let f ∈ L2
ψ(I;R). Then

lim
K→∞

‖f − ΠK(f)‖L2ψ(I) = 0.

4 Operational matrices of integrations

Let F : I → RK , K ∈ N, be a vector function given by

F (t) = (F0(t), F1(t), · · · , FK−1(t))T , t ∈ I.

Suppose that F ∈ L2
ψ(I;RK), i.e., Fi ∈ L2

ψ(I;R), i = 0, 1, · · · , K − 1. We shall use the
notation

(ΠKF )(t) = ((ΠKF0)(t),ΠK(F1)(t), · · · ,ΠK(FK−1)(t))
T , t ∈ I, (13)

where ΠK is the orthogonal projection operator defined by (12).
We define the binary relation ' on L2

ψ(I;RK) by

U ' V ⇐⇒ V = ΠKU, U, V ∈ L2
ψ(I;RK).

We note that ' is not symmetric.
For K ∈ N (supposed to be large enough), let φK,ψ : I → RK be the vector function

defined by
φK,ψ(t) = (P0,ψ(t), P1,ψ(t), · · · , PK−1,ψ(t))T , t ∈ I. (14)
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Lemma 4.1. Let α > 1
2
. Then

Iα,ψa φK,ψ ∈ L2
ψ(I;RK).

Proof. Let i ∈ {0, 1, · · · , K − 1}. Since Pi,ψ ∈ L2
ψ(I;R) and α > 1

2
, by Lemma 2.2, we

have
Iα,ψa Pi,ψ ∈ L2

ψ(I;R),

which yields the desired result.

For α > 0 and i, τ ∈ {0, 1, . . . , K − 1}, let

Ω(τ, i) =
τ∑

n=0

∆τ,n,αG(i, n),

where

∆τ,n,α =
(−1)τ−n(τ + n)!

√
2τ + 1

n!(τ − n)!Γ(α + n+ 1)

and

G(i, n) =
i∑
l=0

(−1)i−l(i+ l)!
√

2i+ 1

(i− l)!(l!)2(α + n+ l + 1)
.

Let Mα
K×K be the square matrix of size K, given by

Mα
K×K = (Mα

i,j)1≤i,j≤K ,

where
Mα

i,j = Ω(i− 1, j − 1), 1 ≤ i, j ≤ K.

We have the following result.

Theorem 4.1. Let α > 1
2
. Then

Iα,ψa φK,ψ 'Mα
K×KφK,ψ.

Proof. First, it is obvious that Mα
K×KφK,ψ ∈ L2

ψ(I;RK). On the other hand, by Lemma

4.1, we know that Iα,ψa φK,ψ ∈ L2
ψ(I;RK). Now, we have to prove that

ΠK

(
Iα,ψa φK,ψ

)
= Mα

K×KφK,ψ. (15)

For t ∈ I, we have

ΠK

(
Iα,ψa φK,ψ

)
(t) =

(
ΠK

(
Iα,ψa P0,ψ

)
(t),ΠK

(
Iα,ψa P1,ψ

)
(t), · · · ,ΠK

(
Iα,ψa PK−1,ψ

)
(t)
)T

and

Mα
K×KφK,ψ(t)

=

(
K∑
j=1

Ω(0, j − 1)Pj−1,ψ(t),
K∑
j=1

Ω(1, j − 1)Pj−1,ψ(t), · · · ,
K∑
j=1

Ω(K − 1, j − 1)Pj−1,ψ(t)

)T

.

Let τ ∈ {0, 1, · · · , K − 1} be fixed. We have

ΠK

(
Iα,ψa Pτ,ψ

)
(t) =

K−1∑
i=0

(
Iα,ψa Pτ,ψ, Pi,ψ

)
L2
ψ(I)

Pi,ψ(t). (16)
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On the other hand, for all i = 0, 1, · · · , K − 1, we have

(
Iα,ψa Pτ,ψ, Pi,ψ

)
L2
ψ(I)

=
√

2τ + 1
τ∑

n=0

(−1)τ−n(τ + n)!

(τ − n)!(n!)2
(
Iα,ψa (ψ(t))n, Pi,ψ

)
L2
ψ(I)

.

Using the property (8), for all n = 0, 1, · · · , τ , we have

Iα,ψa (ψ(t))n =
n!

Γ(α + n+ 1)
(ψ(t))α+n.

Therefore, we get

(
Iα,ψa Pτ,ψ, Pi,ψ

)
L2
ψ(I)

=
τ∑

n=0

(−1)τ−n(τ + n)!
√

2τ + 1

(τ − n)!n!Γ(α + n+ 1)

(
ψα+n, Pi,ψ

)
L2
ψ(I)

,

i.e., (
Iα,ψa Pτ,ψ, Pi,ψ

)
L2
ψ(I)

=
τ∑

n=0

∆τ,n,α

(
ψα+n, Pi,ψ

)
L2
ψ(I)

.

By Lemma 2.1, for all n = 0, 1, · · · , τ , we have(
ψα+n, Pi,ψ

)
L2
ψ(I)

=
(
ψ̃α+n, P̃i,ψ

)
L2([0,1])

,

which yields (
ψα+n, Pi,ψ

)
L2
ψ(I)

=

∫ 1

0

sα+nLi(s) ds

=
√

2i+ 1
i∑
l=0

(−1)i−l(i+ l)!

(i− l)!(l!)2

∫ 1

0

sα+n+l ds

=
i∑
l=0

(−1)i−l(i+ l)!
√

2i+ 1

(i− l)!(l!)2(α + n+ l + 1)

= G(i, n).

Hence, we obtain (
Iα,ψa Pτ,ψ, Pi,ψ

)
L2
ψ(I)

=
τ∑

n=0

∆τ,n,αG(i, n), (17)

for all i = 0, 1, · · · , K − 1. Combining (16) with (17), we get

ΠK

(
Iα,ψa Pτ,ψ

)
(t) =

K−1∑
i=0

(
τ∑

n=0

∆τ,n,αG(i, n)

)
Pi,ψ(t)

=
K−1∑
i=0

Ω(τ, i)Pi,ψ(t)

=
K∑
j=1

Ω(τ, j − 1)Pj−1,ψ(t)

=
(
Mα

K×KφK,ψ
)
τ

(t)

Hence, we proved (15), and the desired result follows.
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5 Numerical scheme and convergence

Let us consider the fractional boundary value problem (6)-(7). We suppose that f ∈
L2
ψ(I;R) and (6)-(7) admits a unique solution y ∈ L2

ψ(I;R) (for existence and uniqueness
of solution results, we suggest the reader the work [2]). Under the considered assumptions,
from (6), we have Dα,ψ

a y ∈ L2
ψ(I;R).

For K ∈ N (K is supposed to be large enough), we have

ΠK

(
Dα,ψ
a y

)
=

K−1∑
i=0

(
Dα,ψ
a y, Pi,ψ

)
L2
ψ(I)

Pi,ψ(t), t ∈ I,

where ΠK is the orthogonal projection operator given by (12). Let HK,α ∈ RK be the
vector defined by

HK,α =


(
Dα,ψ
a y, P0,ψ

)
L2
ψ(I)(

Dα,ψ
a y, P1,ψ

)
L2
ψ(I)

...(
Dα,ψ
a y, PK−1,ψ

)
L2
ψ(I)

 .

Then, we have
ΠK

(
Dα,ψ
a y

)
= HT

K,αφK,ψ(t), t ∈ I,
where φK,ψ is the vector function defined by (14). Using Lemmas 2.4 and 3.2, we deduce
immediately the following convergence result.

Lemma 5.1. We have

lim
K→∞

∥∥HT
K,αφK,ψ −Dα,ψ

a y
∥∥
L2
ψ(I)

= 0.

On the other hand, since α > 1
2
, by Lemma 2.2, we know that

Iα,ψa : L2
ψ(I;R)→ L2

ψ(I;R)

is a linear and continuous operator. Therefore, by Lemma 5.1, we deduce the following
result.

Lemma 5.2. We have

lim
K→∞

∥∥HT
K,αI

α,ψ
a φK,ψ − Iα,ψa Dα,ψ

a y
∥∥
L2
ψ(I)

= 0.

Next, we shall prove the following convergence result.

Lemma 5.3. We have

lim
K→∞

∥∥HT
K,αΠK

(
Iα,ψa φK,ψ

)
− Iα,ψa Dα,ψ

a y
∥∥
L2
ψ(I)

= 0,

where ΠK is the operator defined by (13).

Proof. We have∥∥HT
K,αΠK

(
Iα,ψa φK,ψ

)
− Iα,ψa Dα,ψ

a y
∥∥
L2
ψ(I)

≤
∥∥HT

K,αΠK

(
Iα,ψa φK,ψ

)
− ΠK

(
Iα,ψa Dα,ψ

a y
)∥∥

L2
ψ(I)

+
∥∥Iα,ψa Dα,ψ

a y − ΠK

(
Iα,ψa Dα,ψ

a y
)∥∥

L2
ψ(I)

.

12



On the other hand, observe that

HT
K,αΠK

(
Iα,ψa φK,ψ

)
= ΠK

(
HT
K,αI

α,ψ
a φK,ψ

)
.

Hence, we obtain∥∥HT
K,αΠK

(
Iα,ψa φK,ψ

)
− Iα,ψa Dα,ψ

a y
∥∥
L2
ψ(I)

≤
∥∥ΠK

(
HT
K,αI

α,ψ
a φK,ψ

)
− ΠK

(
Iα,ψa Dα,ψ

a y
)∥∥

L2
ψ(I)

+
∥∥Iα,ψa Dα,ψ

a y − ΠK

(
Iα,ψa Dα,ψ

a y
)∥∥

L2
ψ(I)

. (18)

Next, using Lemma 2.4, we obtain∥∥ΠK

(
HT
K,αI

α,ψ
a φK,ψ

)
− ΠK

(
Iα,ψa Dα,ψ

a y
)∥∥

L2
ψ(I)

=
∥∥ΠK

(
HT
K,αI

α,ψ
a φK,ψ − Iα,ψa Dα,ψ

a y
)∥∥

L2
ψ(I)

≤
∥∥HT

K,αI
α,ψ
a φK,ψ − Iα,ψa Dα,ψ

a y
∥∥
L2
ψ(I)

.

Therefore, by Lemma 5.2, we deduce that

lim
K→∞

∥∥ΠK

(
HT
K,αI

α,ψ
a φK,ψ

)
− ΠK

(
Iα,ψa Dα,ψ

a y
)∥∥

L2
ψ(I)

= 0. (19)

Again, by Lemma 2.4, we have

lim
K→∞

∥∥Iα,ψa Dα,ψ
a y − ΠK

(
Iα,ψa Dα,ψ

a y
)∥∥

L2
ψ(I)

= 0. (20)

Finally, combining (18), (19) and (20), the desired result follows.

Now, using Theorem 4.1 and Lemma 5.3, we deduce the following result.

Lemma 5.4. We have

lim
K→∞

∥∥HT
K,αM

α
K×KφK,ψ − Iα,ψa Dα,ψ

a y
∥∥
L2
ψ(I)

= 0.

Next, using the property (10) and the initial conditions (7), we obtain

Iα,ψa Dα,ψ
a y(t) = y(t)−

m−1∑
i=0

yi
i!

(ψ(t))i. (21)

Let ZK ∈ RK be the (known) vector satisfying

ΠK

(
m−1∑
i=0

yi
i!

(ψ(t))i

)
= ZT

KφK,ψ(t), t ∈ I. (22)

Let {yK} ⊂ L2
ψ(I;R) be the sequence defined by

yK(t) =
(
HT
K,αM

α
K×K + ZT

K

)
φK,ψ(t), t ∈ I. (23)

Theorem 5.1. We have
lim
K→∞

‖yK − y‖L2
ψ(I)

= 0.

13



Proof. We have

‖yK − y‖L2
ψ(I)

=
∥∥(HT

K,αM
α
K×K + ZT

K

)
φK,ψ − y

∥∥
L2
ψ(I)

.

Using (21) and (22), we obtain

‖yK − y‖L2
ψ(I)

=

∥∥∥∥∥(HT
K,αM

α
K×K + ZT

K

)
φK,ψ − Iα,ψa Dα,ψ

a y −
m−1∑
i=0

yi
i!
ψi

∥∥∥∥∥
L2
ψ(I)

≤
∥∥HT

K,αM
α
K×KφK,ψ − Iα,ψa Dα,ψ

a y
∥∥
L2
ψ(I)

+

∥∥∥∥∥ΠK

(
m−1∑
i=0

yi
i!
ψi

)
−

m−1∑
i=0

yi
i!
ψi

∥∥∥∥∥
L2
ψ(I)

.

Using Lemma 5.4 and passing to the limit as K →∞, we obtain the desired result.

From Theorem 5.1, the solution y to (6)-(7) can be approximated by the sequence
{yK} defined by (23). However, this sequence depends on the unknown vector HK,α ∈
RK . Therefore, this vector should be computed before using the approximation given by
Theorem 5.1.

Lemma 5.5. For all K ∈ N, we have

yK = ΠK(y).

Proof. The result follows immediately by Lemma 2.5 and Theorem 5.1.

Let QK ∈ RK be the (known) vector satisfying

ΠK(f)(t) = QT
KφK,ψ(t), t ∈ I.

Using (6), for all K ∈ N, we have

ΠK

(
Dα,ψ
a y

)
+ λΠK(y) = ΠK(f).

Hence, by Lemma 5.5, we obtain

HT
K,α + λ

(
HT
K,αM

α
K×K + ZT

K

)
= QT

K , K ∈ N,

that is,
HT
K,α = BKA−1K , (24)

where
AK = IK×K + λMα

K×K , BK = QT
K − λZT

K

and IK×K denotes the identity matrix of size K.

Remark 5.1. Note that it is supposed in (24) that the matrix AK is invertible. If it
is not the case, then one may increase, iteratively, the number of the ψ-shifted Legendre
coefficients by one, until AK becomes invertible.

Finally, after solving (24), the desired solution can be approximated via the sequence
{yK} given by (23).
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6 Numerical results

In this section, we illustrate the proposed method with some numerical experiments.
Let us consider the fractional oscillator equation

D3/2,ψ
a y(t) +

2

Γ(3/2)
y(t) =

2

Γ(3/2)

√
ψ(t)

(
1 + (ψ(t))3/2

)
, t ∈ I, (25)

under the initial conditions
y(a) = y′(a) = 0, (26)

where I = [a, b] and ψ : I → [0, 1] is an increasing function that belongs to C2(I) such
that ψ′(t) > 0, t ∈ I and ψ(I) = [0, 1]. We remark that problem (25)-(26) has a unique
solution (cf [2]). We denote by y∗ the exact solution of (25)-(26). It can be easily seen
that

y∗(t) = (ψ(t))2, t ∈ I.

The numerical solution of (25)-(26) is denoted by y. We denote by E(t) the absolute
error at the point t ∈ I, that is,

E(t) = |y∗(t)− y(t)|, t ∈ I.

Different choices of the function ψ are considered in this example.

The case ψ(t) = t, t ∈ I = [0, 1].

In this case, (25)-(26) reduces to

CD
3/2
0 y(t) +

2

Γ(3/2)
y(t) =

2

Γ(3/2)

√
t
(
1 + t3/2

)
, 0 < t < 1, (27)

under the initial conditions
y(0) = y′(0) = 0, (28)

where CD
3/2
0 is the standard Caputo fractional derivative of order α = 3/2.

The approximate solution of (27)-(28) and the absolute error at different points t ∈
[0, 1], in the case K = 6, are shown in Table 1.

The case ψ(t) = t
2(t+ 1), t ∈ I = [0, 1]

In this case, (25)-(26) reduces to

D
3/2,ψ
0 y(t) +

2

Γ(3/2)
y(t) =

2

Γ(3/2)

√
t

2
(t+ 1)

(
1 +

(
t

2
(t+ 1)

)3/2
)
, 0 < t < 1, (29)

under the initial conditions (28).
The approximate solution of (29)-(28) and the absolute error at different points t ∈

[0, 1], in the case K = 6, are shown in Table 2.
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t y∗(t) y(t) E(t)
0 0 0.003400 0.003400
0.1 0.01 0.009870 0.000130
0.2 0.04 0.039930 0.000070
0.3 0.09 0.090070 0.000070
0.4 0.16 0.016011 0.000011
0.5 0.25 0.250030 0.000030
0.6 0.36 0.359930 0.000070
0.7 0.49 0.489910 0.000090
0.8 0.64 0.640000 0
0.9 0.81 0.810090 0.000089
1 1 0.999860 0.000140

Table 1: Comparison of exact solution and numerical solution of (27)-(28) and their
errors for K = 6

t y∗(t) y(t) E(t)
0 0 0.0006 0.0006
0.1 0.0030 0.0037 0.0006
0.2 0.0144 0.0152 0.0008
0.3 0.0380 0.0389 0.0009
0.4 0.0784 0.0795 0.0011
0.5 0.1406 0.1418 0.0011
0.6 0.2304 0.2316 0.0012
0.7 0.3540 0.3551 0.0011
0.8 0.5184 0.5194 0.0010
0.9 0.7310 0.7319 0.0009
1 1 1.0007 0.0007

Table 2: Comparison of exact solution and numerical solution of (29)-(28) and their
errors for K = 6

The case ψ(t) = ln ((e− 1)t+ 1), t ∈ I = [0, 1]

In this case, (25)-(26) reduces to

D
3/2,ψ
0 y(t)+

2

Γ(3/2)
y(t) =

2

Γ(3/2)

√
ln ((e− 1)t+ 1)

(
1 + (ln ((e− 1)t+ 1))3/2

)
, 0 < t < 1,

(30)
under the initial conditions (28).

The approximate solution of (30)-(28) and the absolute error at different points t ∈
[0, 1], in the case K = 6, are shown in Table 3.

The case ψ(t) = tan
(
πt
4

)
, t ∈ I = [0, 1]

In this case, (25)-(26) reduces to

D
3/2,ψ
0 y(t) +

2

Γ(3/2)
y(t) =

2

Γ(3/2)

√
tan

(
πt

4

)(
1 +

(
tan

(
πt

4

))3/2
)
, 0 < t < 1,

(31)
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t y∗(t) y(t) E(t)
0 0 0.0004 0.0004
0.1 0.0251 0.0258 0.0007
0.2 0.0873 0.0882 0.0009
0.3 0.1728 0.1738 0.0010
0.4 0.2737 0.2746 0.0009
0.5 0.3845 0.3854 0.0009
0.6 0.5020 0.5028 0.0008
0.7 0.6237 0.6245 0.0008
0.8 0.7479 0.7487 0.0007
0.9 0.8737 0.8743 0.0006
1 1 1.0005 0.0005

Table 3: Comparison of exact solution and numerical solution of (30)-(28) and their
errors for K = 6

under the initial conditions (28).
The approximate solution of (31)-(28) and the absolute error at different points t ∈

[0, 1], in the case K = 6, are shown in Table 4.

t y∗(t) y(t) E(t)
0 0 0.0004 0.0004
0.1 0.0062 0.0067 0.0005
0.2 0.0251 0.0258 0.0007
0.3 0.0576 0.0585 0.0009
0.4 0.1056 0.1065 0.0009
0.5 0.1716 0.1725 0.0009
0.6 0.2596 0.2606 0.0010
0.7 0.3755 0.3764 0.0009
0.8 0.5279 0.5287 0.0008
0.9 0.7295 0.7302 0.0007
1 1 1.0005 0.0005

Table 4: Comparison of exact solution and numerical solution of (31)-(28) and their
errors for K = 6

Comparison of exact solutions and numerical solutions of (25)-(26) for all the consid-
ered cases are shown in Figure 1, in the case K = 6.

7 Conclusion

A numerical approach based on operational matrix of fractional integration of a new type
of orthogonal polynomials is introduced in this paper for solving a certain class of frac-
tional differential equations involving ψ-Caputo fractional derivative. The convergence
of the method is proved and the numerical experiments presented in Section 6 confirm
the efficiency of this approach.
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Figure 1: Comparison between exact and approximate solutions for different functions
ψ, in the case K = 6
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