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Abstract. We introduce eight new convolutions weighted by multi-dimensional Hermite func-
tions, prove two Young-type inequalities, and exhibit their applications in different subjects.
One application consists in the study of the solvability of a very general class of integral equa-
tions whose kernel depends on four different functions. Necessary and sufficient conditions for
the unique solvability of such integral equations are here obtained.

1. Introduction

We start by recalling that the classical Hermite functions satisfy the differential
equation

ψ
′′
n (x)+(2n+1− x2)ψn(x) = 0,

which is equivalent to the Schrödinger equation for a harmonic oscillator in Quan-
tum Mechanics, as these functions are their eigenfunctions. More generally, the multi-
dimensional Hermite functions are defined by

Φα(x) := (−1)|α|e
1
2 |x|

2
Dα

x e−|x|
2
, x ∈ Rn,

where α = (α1, . . . ,αn) is an n -tuple of non-negative integers αk, k = 1, . . . ,n , and
|α| := α1 + · · ·+αn . The Hermite functions form an orthonormal basis of L2(R) , and
they are closely related to the Whittaker function. Theoretically, Hermite functions
can be seen as essential particular components of Functional Analysis by which many
objects have been developed (see [12] and references therein). In practice, the Gaus-
sian functions are widely known for describing the normal distributions in Statistics,
defining Gaussian filters in image and signal processing, solving heat and diffusion
equations, generating the Weierstrass transform, etc., while the Hermite functions are
related to the parabolic cylinder and essential functions in Harmonic Analysis. All of
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those are concerned to the theory of Integral Equations. General integral equations are
key objects both in theoretical and applied research, showing a long-term steady num-
ber of publications (for instance, for the above sense, see [1, 2, 3, 4, 5, 7, 8, 11, 14, 15]
and references therein).

Motivated by the above references, the main aim of this work is to introduce new
convolutions which will help us to analyse e.g. some “classic” integral equations in a
way, or for conditions, not previously known. A very general class of integral equations,
to which we will be able to apply our new convolutions and derive new results, has the
form

λϕ(x)+
∫
Rn

∫
Rn

[
k1(u)Φα(x−u− v)+ k2(u)Φα(x−u+ v)+ k3(u)Φα(x+u− v)

+ k4(u)Φα(x+u+ v)
]
ϕ(v)dudv = h(x), (1.1)

where the kernel is formed by the sum of the just exhibited four components, λ ∈ C ,
k1,k2,k3,k4,h ∈ L1(Rn) are given, and ϕ is unknown in L1(Rn) . We stress that this
is not a convolution equation. Anyway, with respect to practical applications of such
kind of equations in image and digital signal processing, we would like to point out that
the second term in the left-hand side of (1.1) can be seen as an arbitrary combination
of convolutions and cross-correlations of the Hermite filtering Φα with the arbitrary
L1 -function coefficients k1,k2,k3,k4 . The class of such equations is enough large for
our consideration. Therefore, the main idea to treat the equation (1.1) will be based on
the use of a set of eight new convolutions associated with an integral operator (and its
inverse) and Hermite functions. In particular, this will exhibit the effective use of such
convolutions. In addition, further functional characteristics of those convolutions will
be investigated.

This work is divided into four sections and organized as follows. In the next sec-
tion – which may be seen as an auxiliary one – we recall an integral operator and its es-
sential properties which are helpful for the proofs in the forthcoming sections. Section 3
is a crucial part of the paper and there we provide two sets of convolutions presented in
Definitions 3.1 and 3.2, and prove some fundamental properties of such convolutions in
Theorems 6 and 7. Propositions 1 and 2 show that the eight constructed convolutions
are barely sufficient and helpful for our applied purposes. In this third section, we also
deal with Young-type inequalities and Wiener algebras associated with the presented
convolutions. Section 4 is devoted to the application of the introduced convolutions in
the analysis of the integral equation exhibited above. Indeed, we prove there a sufficient
and necessary condition for the solvability of the equation (1.1) in L1(Rn) and derive
the explicit solution. In particular, each one of the functional identities (4.6), (4.7), and
(4.8) in Theorem 10 can be called solvable conditions of the considered equation within
the Banach space L1(Rn) , in some sense. At the end of this section, some examples of
integral equations are investigated by the convolution approach.
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2. Auxiliary Machinery

As already explained, this section has an auxiliary nature. We will introduce here
some auxiliary objects which will help us on the forthcoming developments. Namely,
in what follows we will identify a particular oscillatory integral operator (that the au-
thors already analysed in [6] in view to obtain Heisenberg uncertainty principles) whose
properties will be intrinsically associated with the convolutions to be presented in the
next section.

DEFINITION 2.1. (see [6]) Consider the integral transform defined by

(T f )(x) =
1

(2π)
n
2

∫
Rn

[2cos(xy)+ isin(xy)] f (y)dy. (2.1)

We see that T = 2Tc + iTs , where

(Tc f )(x) =
1

(2π)
n
2

∫
Rn

cos(xy) f (y)dy, (Ts f )(x) =
1

(2π)
n
2

∫
Rn

sin(xy) f (y)dy (2.2)

are the Fourier cosine and Fourier sine integral transforms, respectively. Let us recall
the Fourier and inverse Fourier transforms:

(F±1 f )(x) =
1

(2π)
n
2

∫
Rn

e∓ixy f (y)dy. (2.3)

In fact, the operator T can also be rewritten in terms of the Fourier and inverse Fourier
transforms, as 2T = F +3F−1 .

Let us recall some lemmas and theorems by which we are able to complete some
proofs in the next sections. Namely, upper bounds for some norms of that operator and
invertibility results are already known in the following sense.

THEOREM 1. (Riemann-Lebesgue Lemma; see [6]) T is a bounded linear oper-
ator from L1(Rn) into C0(Rn). Namely, if f ∈ L1(Rn), then T f ∈C0(Rn) and

‖T f‖∞ ≤
2

(2π)
n
2
‖ f‖1, (2.4)

where ‖ · ‖∞ and ‖ · ‖1 are the usual supremum and L1 -norms, respectively.

Let S denote the Schwartz space and W the reflection operator, this is, (Wϕ)(x) :=
ϕ̃(x) = ϕ(−x) , x ∈ Rn .

THEOREM 2. (see [6]) T is a continuous linear operator of S into itself, and
fulfills the following reflection and polynomial identities:

T 2 =
3
2

I +
5
2

W, T 4−3T 2−4I = 0, (2.5)

where I is the identity operator. Moreover, it is invertible in S .
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As a remark, we point out that the above identities exhibit a significant difference
between our operator T and the Fourier transform. Indeed, for the Fourier transform it
is well-known that F2 =W and F4 = I .

COROLLARY 1. If f ∈ L1(Rn) and T f ∈ L1(Rn) , then the identities (2.5) hold.
Namely,

(T 2 f )(x) =
3
2

f (x)+
5
2

f (−x), and (T 4 f )(x)−3(T f 2)(x)−4 f (x) = 0, (2.6)

for almost every x ∈ Rn .

Corollary 1 is a direct consequence of Theorem 2 by invoking the fact that S is
dense in L1 (and also in L2 ).

THEOREM 3. (Inversion Theorem; see [6]) If f ∈ L1(Rn), and if T f ∈ L1(Rn),
then

1
(2π)

n
2

∫
Rn

[
1
2

cos(xy)− isin(xy)
]
(T f )(y)dy = f (x), (2.7)

for almost every x ∈ Rn .

We denote by T−1 the inverse operator of T .

THEOREM 4. (Riemann-Lebesgue Lemma for T−1 ) T−1 is a bounded linear
operator from L1(Rn) into C0(Rn). Namely, if f ∈ L1(Rn), then T−1 f ∈C0(Rn) and
‖T−1 f‖∞ ≤ (2π)

−n
2 ‖ f‖1.

Indeed, we have

sup
x∈Rn

∣∣(T−1 f )(x)
∣∣ = 1

(2π)
n
2

sup
x∈Rn

∣∣∣∣∫Rn

[
1
2

cos(xy)− isin(xy)
]

f (y)dy
∣∣∣∣

≤ 1
(2π)

n
2

sup
x∈Rn

∣∣∣∣12 cos(xy)− isin(xy)
∣∣∣∣‖ f‖1

=
1

(2π)
n
2

[
1
4

cos2(xy)+ sin2(xy)
] 1

2
‖ f‖1 ≤

1
(2π)

n
2
‖ f‖1.

We also have the following corollary for T−1 .

COROLLARY 2. Let f ∈ L1(Rn) be given. If T−1 f ∈ L1(Rn) , then

(T−2 f )(x) =−3
8

f (x)+
5
8

f (−x) and

4(T−4 f )(x)+3(T−2 f )(x)− f (x) = 0, (2.8)

for almost every x ∈ Rn.

Let us ignore the proof of this corollary as it is similar to the proof of Corollary 1.
An integration of Corollaries 1 and 2 is given in Remark 4.1.
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THEOREM 5. (see [6]) The Hermite functions are eigenfunctions with eigenval-
ues ±2,±i of the operator T :

T Φα =

{
(−1)

|α|
2 2Φα , i f |α| ≡ 0,2 (mod 4)

(−1)
|α|−1

2 iΦα , i f |α| ≡ 1,3 (mod 4).

We can now state the following corollary.

COROLLARY 3. The Hermite functions are eigenfunctions with eigenvalues ±1/2 ,
±i of T−1 :

T−1
Φα =

{
(−1)

|α|
2 1

2 Φα , i f |α| ≡ 0,2 (mod 4)

(−1)
|α|+1

2 iΦα , i f |α| ≡ 1,3 (mod 4).

As consequence, the identity T nΦα = Φα cannot hold true for any n ∈ Z , while
F4Φα = Φα holds for the Fourier case. As emphasized in [6], T and T−1 are not
unitary operators in the Hilbert space L2(Rn) , and satisfy ‖T‖2 = 2, ‖T−1‖2 = 1/2.

We can also write the identity of Theorem 5 as

Φα =

 (−1)
|α|
2

2 T Φα , i f |α| ≡ 0,2 (mod 4)

(−1)
|α|+1

2 iT Φα , i f |α| ≡ 1,3 (mod 4).

3. New Convolutions

In this section we present two sets of four new convolutions associated with the
operators T and T−1 , respectively, and the Hermite functions. The convolutions con-
structed here are the main objects of this work. Their applicability will be mostly
exhibited when analysing the solvability of the integral equation previously presented.

Let

C(α) :=

 (−1)
|α|
2

2 , i f |α| ≡ 0,2 (mod 4)

(−1)
|α|+1

2 i, i f |α| ≡ 1,3 (mod 4).
(3.1)

DEFINITION 3.1. We define four convolution multiplications in L1(Rn) , for any
two elements f ,g ∈ L1(Rn) , as follows:

( f ∗
(1)

g)(x) :=
C(α)

4(2π)n

∫
Rn

∫
Rn

[
(10+(−1)|α|3)Φα(x−u− v)+3Φα(x−u+ v)

+3Φα(x+u− v)− (−1)|α|3Φα(x+u+ v)
]

f (u)g(v)dudv; (3.2)

( f ∗
(2)

g)(x) :=
C(α)

32(2π)n

∫
Rn

∫
Rn

[
− (15+(−1)|α|9)Φα(x−u− v)

+(41+(−1)|α|15)Φα(x−u+ v)− (9+(−1)|α|15)Φα(x+u− v)

+(15+(−1)|α|9)Φα(x+u+ v)
]

f (u)g(v)dudv; (3.3)
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( f ∗
(3)

g)(x) :=
C(α)

16(2π)n

∫
Rn

∫
Rn

[
− (−1)|α|3Φα(x−u− v)−3Φα(x−u+ v)

−3Φα(x+u− v)+(10+(−1)|α|3)Φα(x+u+ v)
]

f (u)g(v)dudv;

(3.4)

( f ∗
(4)

g)(x) :=
C(α)

32(2π)n

∫
Rn

∫
Rn

[
− (15+(−1)|α|9)Φα(x−u− v)

− (9+(−1)|α|15)Φα(x−u+ v)+(41+(−1)|α|15)Φα(x+u− v)

+(15+(−1)|α|9)Φα(x+u+ v)
]

f (u)g(v)dudv. (3.5)

The next theorem clarifies the relation of those convolutions with the previously
considered operators.

THEOREM 6. If f ,g ∈ L1(Rn) , then each one of the multiplications introduced
in Definition 3.1 has its factorization identity associated with the integral operators T ,
T−1 and the function Φα(x) and the norm inequality:

(T ( f ∗
(1)

g))(x) = Φα(x)(T f )(x)(T g)(x), (3.6)

‖ f ∗
(1)

g‖1 ≤
11|C(α)|
2(2π)n ‖ f‖1‖g‖1‖Φα‖1;

(T ( f ∗
(2)

g))(x) = Φα(x)(T f )(x)(T−1g)(x), (3.7)

‖ f ∗
(2)

g‖1 ≤
4|C(α)|
(2π)n ‖ f‖1‖g‖1‖Φα‖1;

(T ( f ∗
(3)

g))(x) = Φα(x)(T−1 f )(x)(T−1g)(x), (3.8)

‖ f ∗
(3)

g‖1 ≤
11|C(α)|
8(2π)n ‖ f‖1‖g‖1‖Φα‖1;

(T ( f ∗
(4)

g))(x) = Φα(x)(T−1 f )(x)(T g)(x), (3.9)

‖ f ∗
(4)

g‖1 ≤
4|C(α)|
(2π)n ‖ f‖1‖g‖1‖Φα‖1.

Proof. We give a very short proof of these inequalities, and take also the opportu-
nity to introduce some notation that is needed for the next procedures. For short, let us
write:

P(x) :=
∫
Rn

∫
Rn

Φα(x−u− v) f (u)g(v)dudv; (3.10)

Q(x) :=
∫
Rn

∫
Rn

Φα(x−u+ v) f (u)g(v)dudv; (3.11)

R(x) :=
∫
Rn

∫
Rn

Φα(x+u− v) f (u)g(v)dudv; (3.12)
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S(x) :=
∫
Rn

∫
Rn

Φα(x+u+ v) f (u)g(v)dudv. (3.13)

Then, P , Q , R and S define L1 -functions. Indeed, noticing that∫
Rn

Φα(x±u± v)dx =
∫
Rn

Φα(s)ds = ‖Φα‖1, for any u,v ∈ Rn,

we have∫
Rn
|P(x)|dx≤

∫
Rn

∫
Rn

∫
Rn
|Φα(x−u− v)| | f (u)||g(v)|dxdudv

≤
∫
Rn
| f (u)|du

∫
Rn
|g(v)|dv

∫
Rn
|Φα(x−u− v)|dx≤ ‖ f‖1‖g‖1‖Φα‖1 < ∞,

which gives that P ∈ L1(Rn) and ‖P‖1 ≤ ‖ f‖1‖g‖1‖Φα‖1 . Analogously,

‖Q‖1 ≤ ‖ f‖1‖g‖1‖Φα‖1, ‖R‖1 ≤ ‖ f‖1‖g‖1‖Φα‖1, and ‖S‖1 ≤ ‖ f‖1‖g‖1‖Φα‖1

which together imply that the norms of the L1 -functions P , Q , R , S are bounded by
the same number ‖ f‖1‖g‖1‖Φα‖1 . By this and some straightforward computation, we
reach to the norm inequalities in (3.6)-(3.9).

Let us prove the identity (3.6). We perform the direct computation

Φα(x)(T f )(x)(T g)(x) =
Φα(x)
(2π)n

∫
Rn

∫
Rn

[2cos(xu)+ isin(xu)]

[2cos(xv)+ isin(xv)] f (u)g(v)dudv

=
Φα(x)
(2π)n

∫
Rn

∫
Rn

{
13
8
[
2cos(x(u+ v))+ isin(x(u+ v))

]
+

3
8
[
2cos(x(u− v))+ isin(x(u− v))

]
+

3
8
[
2cos(x(−u+ v))+ isin(x(−u+ v))

]
−3

8
[
2cos(x(−u− v))+ isin(x(−u− v))

]}
f (u)g(v)dudv. (3.14)

Using the identity (3.1), we have

Φα(x)(T f )(x)(T g)(x) =
C(α)

(2π)
3n
2

∫
Rn

∫
Rn

∫
Rn
(2cos(xt)+ isin(xt)){

13
8
[
2cos(x(u+ v))+ isin(x(u+ v))

]
+

3
8
[
2cos(x(u− v))+ isin(x(u− v))

]
+

3
8
[
2cos(x(−u+ v))+ isin(x(−u+ v))

]
−3

8
[
2cos(x(−u− v))+ isin(x(−u− v))

]}
Φα(t) f (u)g(v)dudvdt,
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that is equivalent to

Φα(x)(T f )(x)(T g)(x)

=
C(α)

4(2π)3n/2

∫
Rn

∫
Rn

∫
Rn

[10(2cos(x(t +u+ v))+ isin(x(t +u+ v)))

+3(2cos(x(−t +u+ v))+ isin(x(−t +u+ v)))

−3(2cos(x(−t−u− v))+ isin(x(−t−u− v)))

+3(2cos(x(t +u− v))+ isin(x(t +u− v)))

+3(2cos(x(t−u+ v))+ isin(x(t−u+ v)))]Φα(t) f (u)g(v)dudvdt

=
C(α)

4(2π)3n/2

∫
Rn

∫
Rn

∫
Rn

(2cos(xs)+ isin(xs)) [10Φα(s−u− v)

+3Φα(−s+u+ v)−3Φα(−s−u− v)+3Φα(s−u+ v)+3Φα(s+u− v)]

f (u)g(v)dudvds

Having in mind that Φα(−x) = (−1)|α|Φα(x) , for |α| ≡ 0,1,2,3 (mod 4) , we
have

Φα(x)(T f )(x)(T g)(x)

=
C(α)

4(2π)3n/2

∫
Rn

∫
Rn

∫
Rn

(2cos(xs)+ isin(xs))
[
(10+(−1)|α|3)Φα(s−u− v)

+3Φα(s−u+ v)+3Φα(s+u− v)− (−1)|α|3Φα(s+u+ v)
]

f (u)g(v)dudvds

=
C(α)

4(2π)n

[
T
(
(10+(−1)|α|3)P+3Q+3R− (−1)|α|3S

)]
(x) = (T ( f ∗

(1)
g))(x),

which proves identity (3.6).
To prove the factorization identities (3.7)–(3.9), we should decompose the cor-

responding kernels and use the same technique. We will not present those details in
here.

PROPOSITION 1. The convolutions presented in Definition 3.1 are linearly inde-
pendent.

Proof. As realized in the proof of Theorem 6, P , Q , R and S defined by (3.10)–
(3.13) are L1 -functions. In fact, they are linearly independent in L1(Rn). Indeed, sup-
pose that

aP(x)+bQ(x)+ cR(x)+dS(x) = 0 (in L1(Rn) for some a,b,c,d ∈ C).

Considering f̃ (x) = f (−x) and the Fourier transform f̂ (x) = (F f )(x) , for f ∈ L1(Rn) ,
we split this equality as

a(Φα ∗ f ∗g)(x)+b(Φα ∗ f ∗ g̃)(x)+ c(Φα ∗ f̃ ∗g)(x)+(Φα ∗ f̃ ∗ g̃)(x) = 0
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in L1(Rn) , where ∗ stands for the Fourier convolution. Acting the Fourier transform F
to both sides of this identity, we obtain

(−i)|α|Φα(x)
[
a f̂ (x)ĝ(x)+b f̂ (x)̂̃g(x)+ ĉ̃f (x)ĝ(x)+d̂̃f (x)̂̃g(x)]= 0.

Note that Φα is an Hermite function, and this identification is in the Wiener’s algebra
WF := F(L1(Rn)) equipped with the pointwise multiplication. It follows that

a f̂ (x)ĝ(x)+b f̂ (x)̂̃g(x)+ ĉ̃f (x)ĝ(x)+d̂̃f (x)̂̃g(x) = 0. (3.15)

In (3.15), choosing f = Φβ ,g = Φγ and using

FΦα = (−i)|α|Φα , F−1
Φα = i|α|Φα , (3.16)

Φα = i|α|FΦα , Φα = (−i)|α|F−1
Φα , (3.17)

we obtain
a+b+ c+d = 0, if |β |= 0,2 and |γ|= 0,2 (mod 4),
a−b+ c−d = 0, if |β |= 0,2 and |γ|= 1,3 (mod 4),
a+b− c−d = 0, if |β |= 1,3 and |γ|= 0,2 (mod 4),
a−b− c+d = 0, if |β |= 1,3 and |γ|= 1,3 (mod 4).

This implies a = b = c = d = 0, as desired. Now, we suppose that

θ1( f ∗
(1)

g)+θ2( f ∗
(2)

g)+θ3( f ∗
(3)

g)+θ4( f ∗
(4)

g) = 0

for some complex numbers θ1,θ2,θ3,θ4 ∈ C . This is equivalent to

[8(10+(−1)|α|3)θ1− (15+(−1)|α|9)θ2− (−1)|α|6θ3− (15+(−1)|α|9)θ4

]
P

+
[
24θ1 +(41+(−1)|α|15)θ2−6θ3− (9+(−1)|α|15)θ4

]
Q

+
[
24θ1− (9+(−1)|α|15)θ2−6θ3 +(41+(−1)|α|15)θ4

]
R

+
[
−(−1)|α|24θ1 +(15+(−1)|α|9)θ2 +2(10+(−1)|α|3)θ3

+ (15+(−1)|α|9)θ4

]
S = 0.

As proved above, we obtain the system of equations
8(10+(−1)|α|3)θ1− (15+(−1)|α|9)θ2− (−1)|α|6θ3− (15+(−1)|α|9)θ4 = 0
24θ1 +(41+(−1)|α|15)θ2−6θ3− (9+(−1)|α|15)θ4 = 0
24θ1− (9+(−1)|α|15)θ2−6θ3 +(41+(−1)|α|15)θ4 = 0
−(−1)|α|24θ1 +(15+(−1)|α|9)θ2 +2(10+(−1)|α|3)θ3 +(15+(−1)|α|9)θ4 = 0.
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To simplify the computations, we will compute the determinant of the system when
|α| ≡ 0,2 (mod 4) and |α| ≡ 1,3 (mod 4) , respectively. For the first case ( |α| ≡ 0,2
(mod 4)), the determinant is∣∣∣∣∣∣∣∣

104 −24 −6 −24
24 56 −6 −24
24 −24 −6 56
−24 24 26 24

∣∣∣∣∣∣∣∣=−10240000.

For the second case ( |α| ≡ 1,3 (mod 4)), we have∣∣∣∣∣∣∣∣
56 −6 6 −6
24 26 −6 6
24 6 −6 26
24 6 14 6

∣∣∣∣∣∣∣∣=−640000.

So, the solution is trivial, i.e., θ1 = θ2 = θ3 = θ4 = 0.

The second set of four convolutions is given by Definition 3.2.

DEFINITION 3.2. We introduce new convolution multiplications in L1(Rn) , for
any two elements f ,g ∈ L1(Rn) , as follows:

( f ?
(1)

g)(x) =
C(α)

8(2π)n

∫
Rn

∫
Rn

[
(15+(−1)|α|9)Φα(x−u− v)

+(9+(−1)|α|15)Φα(x−u+ v)+(9+(−1)|α|15)Φα(x+u− v)

+(15+(−1)|α|41)Φα(x+u+ v)
]

f (u)g(v)dudv; (3.18)

( f ?
(2)

g)(x) =
C(α)

4(2π)n

∫
Rn

∫
Rn

[
(−1)|α|3Φα(x−u− v)+3Φα(x−u+ v)

+(3+(−1)|α|10)Φα(x+u− v)

− (−1)|α|3Φα(x+u+ v)
]

f (u)g(v)dudv; (3.19)

( f ?
(3)

g)(x) =
C(α)

32(2π)n

∫
Rn

∫
Rn

[
(15+(−1)|α|41)Φα(x−u− v)

− (9+(−1)|α|15)Φα(x−u+ v)− (9+(−1)|α|15)Φα(x+u− v)

+(15+(−1)|α|9)Φα(x+u+ v)
]

f (u)g(v)dudv; (3.20)

( f ?
(4)

g)(x) =
C(α)

4(2π)n

∫
Rn

∫
Rn

[
(−1)|α|3Φα(x−u− v)

+(3+(−1)|α|10)Φα(x−u+ v)+3Φα(x+u− v)

− (−1)|α|3Φα(x+u+ v)
]

f (u)g(v)dudv. (3.21)
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THEOREM 7. If f ,g ∈ L1(Rn) , then each one of the multiplications given by
Definition 3.2 has its factorization identity associated with the transforms T and T−1 ,
and the function Φα(x) , together with the norm inequality:

(T−1( f ?
(1)

g))(x) = Φα(x)(T f )(x)(T g)(x), (3.22)

‖ f ?
(1)

g‖1 ≤
16|C(α)|
(2π)n ‖ f‖1‖g‖1‖Φα‖1;

(T−1( f ?
(2)

g))(x) = Φα(x)(T f )(x)(T−1g)(x), (3.23)

‖ f ?
(2)

g‖1 ≤
11|C(α)|
2(2π)n ‖ f‖1‖g‖1‖Φα‖1;

(T−1( f ?
(3)

g))(x) = Φα(x)(T−1 f )(x)(T−1g)(x) (3.24)

‖ f ?
(3)

g‖1 ≤
4|C(α)|
(2π)n ‖ f‖1‖g‖1‖Φα‖1;

(T−1( f ?
(4)

g))(x) = Φα(x)(T−1 f )(x)(T g)(x), (3.25)

‖ f ?
(4)

g‖1 ≤
11|C(α)|
2(2π)n ‖ f‖1‖g‖1‖Φα‖1.

Proof. The proof of this theorem is similar to that of Theorem 6 and so it is here
omitted.

PROPOSITION 2. The convolutions presented in Definition 3.2 are linearly inde-
pendent.

We also omit the proof of Proposition 2, since it can be performed similarly to that
one of Proposition 1, after realizing a consequent system. For the even case, we have
the following determinant∣∣∣∣∣∣∣∣

96 24 56 24
96 24 −24 104
96 104 −24 24

224 −24 24 −24

∣∣∣∣∣∣∣∣=−163840000.

For the odd case, we have the following determinant∣∣∣∣∣∣∣∣
24 −24 −26 −24
−24 24 6 −56
−24 −56 6 24
−104 24 6 24

∣∣∣∣∣∣∣∣=−10240000.

Although the four convolutions in Definition 3.1 as well as those in Definition 3.2
are linear independent, we still have

f ∗
(2)

g = g ∗
(4)

f and f ?
(2)

g = g ?
(4)

f .
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The presented convolutions have their Young-type inequalities, some of which are
better and more flexible than that of the Fourier case. Due to the number of convolutions
being here considered, let us use the same generic symbol ? for the convolutions (3.2)-
(3.5) and (3.18)-(3.21), just to shorten the notation.

THEOREM 8. Let
1
p
+

1
q
=

1
r
+ 1, with 1 ≤ p,q,r ≤ ∞. If f ∈ Lp(Rn), g ∈

Lq(Rn), then

‖ f ? g‖r ≤C1‖ f‖p ‖g‖q, where C1 is some positive constant. (3.26)

If p = q = 1 , then a further inequality holds

‖ f ?g‖s ≤C2‖ f‖1 ‖g‖1 for any s≥ 1 with some C2 > 0. (3.27)

Proof. In first place, we will prove (3.26). In this situation, we have two different
cases associated with the parameter r .
Case 1: 1 ≤ r < ∞ . We will consider P,Q,R,S defined in (3.10)–(3.13). Each convo-
lution has four terms P,Q,R,S and each one of those is scaled by a constant. By the
Minkowski inequality it suffices to prove the Young inequality for each term. Indeed,
if f ∈ Lp(Rn) , g ∈ Lq(Rn) and replacing x−u = u , we have

Q(x) =
∫
Rn

∫
Rn

Φα(x−u+ v) f (u)g(v)dudv

=
∫
Rn

∫
Rn

Φα(u+ v) f (x−u)g(v)dudv

=
∫
Rn

f (x−u)
[∫

Rn
Φα(u+ v)g(v)dv

]
du

=
∫
Rn

f (x−u)
[∫

Rn
Φα(u− v)g̃(v)dv

]
du

=
(

f
F∗
(

Φα

F∗ g̃
))

(x),

where (· F∗ ·) stands for the usual Fourier convolution.
Clearly, g̃ ∈ Lq(Rn) and ‖g̃‖q = ‖g‖q for any q ≥ 1. By the known Young in-

equality for the Fourier transform,

‖Q(x)‖r =‖ f
F∗
(

Φα

F∗ g̃
)
‖r ≤ ‖ f‖p‖Φα

F∗ g̃‖q (3.28)

We know that Φα ∈ L1(Rn) and so, applying again the Young inequality, we have

‖Φα

F∗ g̃‖q ≤ ‖Φα‖1‖g‖q. (3.29)

So, combining (3.28) and (3.29), we obtain that

‖Q(x)‖r ≤ ‖Φα‖1‖ f‖p‖g‖q.
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Similarly, we have

‖P(x)‖r =‖
(

f
F∗
(

Φα

F∗ g
))

(x)‖r ≤ ‖Φα‖1‖ f‖p‖g‖q;

‖R(x)‖r =‖
(

f̃
F∗
(

Φα

F∗ g
))

(x)‖r ≤ ‖Φα‖1‖ f‖p‖g‖q;

‖S(x)‖r =‖
(

f̃
F∗
(

Φα

F∗ g̃
))

(x)‖r ≤ ‖Φα‖1‖ f‖p‖g‖q;

Case 2: r = ∞ . By the Hölder’s inequality with 1/p+1/q = 1, we have

‖Q(x)‖∞ ≤esssupx∈Rn

∫
Rn

∫
Rn
|Φα(x−u+ v)|| f (u)||g(v)|dudv

≤esssupx∈Rn ‖Φα(x−u+ v)‖∞‖ f (u)‖p‖g(v)‖q = ‖Φα‖∞‖ f‖p‖g‖q.

For the function P,R,S , we proceed in a similar way.
The result follows from the Minkowski inequality.
We now prove (3.27). Remind that Φα ∈Ls(Rn) , for any s≥ 1, and the Minkowski

inequality for integrals[∫
Θ2

∣∣∣∣∫
Θ1

F(x,y)dµ1(x)
∣∣∣∣s dµ2(y)

] 1
s

≤
∫

Θ1

(∫
Θ2

|F(x,y)|s dµ2(y)
) 1

s

dµ1(x), (3.30)

where (Θ1,µ1) and (Θ2,µ2) are two measure spaces, F(·, ·) : Θ1 ×Θ2 −→ C is a
measurable function and s≥ 1.(∫

Rn
|Φα(x±u± v)|sdx

) 1
s

= ‖Φα‖s (u,v are fixed in Rn).

We apply (3.30) to receive[∫
Rn

∣∣∣∣∫Rn

∫
Rn

Φα(x±u± v) f (u)g(v)dudv
∣∣∣∣s dx

] 1
s

≤
∫
Rn

∫
Rn

(∫
Rn
|Φα(x±u± v)|s | f (u)|s |g(v)|sdx

) 1
s

dudv

=
∫
Rn

∫
Rn

(∫
Rn
|Φα(x±u± v)|s dx

) 1
s

| f (u)| |g(v)|dudv

= ‖Φα‖s

∫
Rn

∫
Rn
| f (u)| |g(v)|dudv = ‖Φα‖s‖ f‖1‖g‖1.

We thus obtain (3.27), by the Minkowski inequality (3.30).

REMARK 3.1. (i) Using a “direct” and simple notation, we may write the last
result in the form:

Lp(Rn) ? Lq(Rn)⊆ Lr(Rn), where
1
p
+

1
q
=

1
r
+1; (3.31)
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L1(Rn) ? L1(Rn)⊆ Ls(Rn), for any s≥ 1. (3.32)

Letting s = 1 in (3.32), we retrieve the norm inequalities addressed in Theorems 6 and
7 with the explicit constants shown there.

(ii) Choosing s = 2 in (3.27), we see that if f ,g ∈ L1(Rn) , then the convolution
defines a function in the space L1(Rn)∩L2(Rn) . On one side, this result is in accor-
dance with the known circumstance that a convolution f ∗g inherits the best properties
of both f and g , since a convolution can be seen as a filtering, an averaging or an inner
product which acts smoothly. On the other side, the introduced convolutions possess
a striking product feature in some sense: we need only to assume that f ,g ∈ L1(Rn) ,
that we will obtain f ?g ∈ Ls(Rn) for every s ≥ 1. Comparing with other known
corresponding situations, (3.27) exhibits a remarkable property of the proposed convo-
lutions. That inequality allows us to realize that the image spaces of the constructed
convolutions are more flexible and larger than those of previously known convolutions.
From our point of view, the contribution of Hermite functions in those convolution ker-
nels plays an important role in this issue. In fact, such Young-type inequality (3.27) can
be considered as an evidence of the very different structure of our convolutions.

THEOREM 9. The space X := L1(Rn), equipped with each one of the convolu-
tion multiplications presented in Definitions 3.1 and 3.2, becomes a normed ring having
no unit. Moreover:

(a) for the convolutions (3.2), (3.4), (3.18) and (3.20), X is commutative;

(b) for the convolutions (3.3), (3.5), (3.19) and (3.21), X is non-commutative.

Proof. The proof is divided into two steps.
Step 1: X has a normed ring structure. It is clear that X , equipped with each one
of the convolutions listed above, has a normed ring structure with the multiplicative
inequality as showed in Theorems 6 and 7.
Step 2: X has no unit. For the briefness of the proof, let us use the common symbol
? for all the above-mentioned convolutions, and the notations:

T+ := T, T− := T−1, 2±(0,1,2) ∈
{

1,2,4,
1
2
,

1
4
}
.

Suppose that there exits an element e∈X such that f = f ?e= e? f for every f ∈X .
Choosing the Hermite function Φ0 as f and applying the factorization identities of
those convolutions, we obtain T±(Φ0) = Φα T±(Φ0)T±(e) in which the signs + or
− are separated, this is, they depend on the considered convolution among (3.2)-(3.5)
and (3.18)-(3.21). By Theorem 5 and Corollary 3 we have T±Φ0 = 2±1Φ0 . Inserting
this into the above identity we find 2±1Φ0 = 2±1Φα Φ0T±(e) . Since Φ0(x) 6= 0 for
every x ∈ Rn , we derive that Φα(x)(T±(e))(x) = 2±(0,1,2) for every x ∈ Rn . But, this
contradicts Theorems 1 and 4, which state that lim

|x|→∞

Φα(x)(T±(e))(x) = 0. Hence, X

has no unit. Evidently, the convolutions (3.2), (3.4), (3.18) and (3.20) are commutative.
For instance, we have

(T ( f ∗
(1)

g))(x) = Φα(x)(T f )(x)(T g)(x)
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= Φα(x)(T g)(x)(T f )(x) = (T (g ∗
(1)

f ))(x),

which follows that f ∗
(1)

g= g ∗
(1)

f in L1(Rn) for every f ,g∈ L1(Rn) , by the uniqueness

theorem of T .
It suffices to prove the non-commutativity for (3.3), as that for the others can be

proved analogously. Suppose that ( f ∗
(2)

g)(x) = (g ∗
(2)

f )(x) , for all f ,g ∈ L1(Rn). We

have

(T ( f ∗
(2)

g))(x) = Φα(x)(T f )(x)(T−1g)(x)

= Φα(x)(T−1g)(x)(T f )(x) = (T (g ∗
(4)

f ))(x).

Due to the uniqueness theorem, g ∗
(4)

f = f ∗
(2)

g in L1(Rn) for all f ,g ∈ L1(Rn) , which

contradicts Proposition 1, that states that the convolutions (· ∗
(2)
·) and (· ∗

(4)
·) are inde-

pendent of each other. Thus, X is non-commutative when endowed with (3.3).

In comparison with the well-known Wiener’s algebra F
(
L1Rn)

)
, we may also call

T±1
(
L1(Rn)

)
Wiener’s algebras, by considering the convolutions (3.2), (3.4), (3.18)

and (3.20).

4. Application: Solvability of an Integral Equation

In this section, as an application of the convolutions introduced in the previous
section, we will work out necessary and sufficient conditions for which equation (1.1)
has a unique solution in L1(Rn) . The equation (1.1) can be equivalently rewritten in a
shorter form as:

λϕ(x) +
∫
Rn

∫
Rn

[
K1(u)Φα(x− u− v) + K2(u)Φα(x + u + v)

]
ϕ(v)dudv = h(x).

(4.1)

Indeed, by a direct substitution of the following identities:∫
Rn

∫
Rn

k3(u)Φα(x+u− v)dudv =
∫
Rn

∫
Rn

k3(−u)Φα(x−u− v)dudv,∫
Rn

∫
Rn

k2(u)Φα(x−u+ v)dudv =
∫
Rn

∫
Rn

k2(−u)Φα(x+u+ v)dudv,

we see that equation (1.1) turns out to be (4.1) with K1(u) := k1(u) + k3(−u) and
K2(u) := k4(u) + k2(−u) . In what follows, we shall consider (4.1), where λ ∈ C ,
K1,K2,h ∈ L1(Rn) are predetermined, and ϕ ∈ L1(Rn) is unknown. It is worth saying
that the inequalities in Theorems 6 and 7 are essential for our study in this section, since
by those we realize that the equation (4.1) makes sense in the space L1(Rn) . In other
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words, the left-hand side of (4.1) well defines a continuous linear operator in L1(Rn)
for any K1,K2 ∈ L1(Rn) and every Hermite function Φα .

We start by defining some functions which are needed to prove what follows.
Namely, let us write:

E(x) : = λ +
(2π)n

C(α)25(5+(−1)|α|3)
Φα(x)

[
(41+(−1)|α|15)(T K1)(x)

−24(T−1K1)(x)+3(3+(−1)|α|5)(T K2)(x)+24(T−1K2)(x)
]

;

F(x) : =
(2π)n

C(α)25(5+(−1)|α|3)
Φα(x) [−24(T K1)(x)

+12(3+(−1)|α|5)(T−1K1)(x)+24(T K2)(x)

+4(41+(−1)|α|15)(T−1K2)(x)
]

;

G(x) : =
(2π)n

C(α)25(15+(−1)|α|17)
Φα(x)

[
−3(3+(−1)|α|5)(T K1)(x)

+3(17+(−1)|α|15)(T−1K1)(x)+(59+(−1)|α|45)(T K2)(x)

−3(17+(−1)|α|15)(T−1K2)(x)
]

;

H(x) : = λ +
(2π)n

C(α)25(15+(−1)|α|17)
Φα(x)

[
3(17+(−1)|α|15)(T K1)(x)

+4(59+(−1)|α|45)(T−1K1)(x)−3(17+(−1)|α|15)(T K2)(x)

−12(3+(−1)|α|5)(T−1K2)(x)
]

;

D(x) := E(x)H(x)−F(x)G(x);

∆(x) :=
H(x)(T−1h)(x)−F(x)(T h)(x)

D(x)
;

Γ(x) :=
E(x)(T−1h)(x)−G(x)(T h)(x)

D(x)
.

We need some technical lemmas.

LEMMA 1. (a) If λ 6= 0 , then D(x) 6= 0 for every x outside a ball with a finite
radius.

(b) Let h ∈ L1(Rn) be given. Then, T h ∈ L1(Rn) if and only if T−1h ∈ L1(Rn).

(c) Assume that λ 6= 0 and D(x) 6= 0 for every x ∈Rn . If T h ∈ L1(Rn) , then ∆,Γ ∈
L1(Rn) .

Proof. (a) By hypothesis, having in mind the fact that Φα(x) is an Hermite func-
tion and by Theorems 1 and 4, we have lim|x|→∞ D(x) = λ 2 6= 0. Combining this with
the uniform continuity of the function D , we deduce that there is an R > 0 such that
D(x) 6= 0 for all x ∈ Rn such that |x| ≥ R.
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(b) Note that f ∈ L1(Rn) if and only if f̃ ∈ L1(Rn) and ‖ f‖1 = ‖ f̃‖1 . Suppose that
T h ∈ L1(Rn) . Therefore,

(T h)(x) = 2(Tch)(x)+ i(Tsh)(x) ∈ L1(Rn),

(T h)(−x) = 2(Tch)(x)− i(Tsh)(x) ∈ L1(Rn).

This implies that Tch,Tsh ∈ L1(Rn) and so, T−1h = 1
2 Tch− iTsh ∈ L1(Rn). The proof

is completed, because T and T−1 are the inverse integral operators of each other. In
fact, the conclusion of item (b) follows directly from Corollary 2.
(c) As showed above, D is a uniformly bounded and continuous function on Rn with
lim|x|→∞ D(x) = λ 2 6= 0. This implies D ∈ L∞(Rn) . Since D(x) 6= 0 for every x ∈ Rn ,
and it is uniformly continuous, we derive that inf

x∈Rn
|D(x)|= δ0 > 0, which implies that

D−1 ∈ L∞(Rn) . By the assumptions and Item (b), T h,T−1h∈ L1(Rn) . Since E,F,G,H
are uniformly bounded and continuous functions on Rn and D−1 ∈ L∞(Rn) , we deduce
that ∆,Γ ∈ L1(Rn) .

LEMMA 2. Let λ 6= 0 . Assume that D(x) 6= 0 for every x ∈ Rn , and T h ∈
L1(Rn) . Then, the following conditions are equivalent:

(a) (T−1∆)(x) = (T Γ)(x) ∈ L1(Rn) .

(b) T ∆ ∈ L1(Rn) , and ∆(x) =
3
2

Γ(x)+
5
2

Γ(−x) (in the space L1(Rn)).

(c) T Γ ∈ L1(Rn) , and Γ(x) =
−3
8

∆(x)+
5
8

∆(−x) .

Proof. By the assumptions λ 6= 0, D(x) 6= 0, and T h ∈ L1(Rn) . By using Item (c)
of Lemma 1, we have ∆,Γ ∈ L1(Rn) .

Suppose that (a) is true. By this and (b) in Lemma 1, we find that T ∆,T Γ ∈
L1(Rn) . So, the functions ∆ and Γ fulfill the assumptions of Corollary 1. The identity
in (a) implies

∆(x) = (T 2
Γ)(x) =

3
2

Γ(x)+
5
2

Γ(−x) (for almost every x ∈ Rn).

Conversely, suppose that (b) is true. Having in mind that
(
T Γ̃
)
(x) = (T Γ)(−x) , we

have 
(T ∆)(x) =

3
2
(T Γ)(x)+

5
2
(T Γ)(−x) ∈ L1(Rn);

(T ∆)(−x) =
5
2
(T Γ)(x)+

3
2
(T Γ)(−x) ∈ L1(Rn).

By this and T ∆,T ∆̃ ∈ L1(Rn) , we deduce that T Γ ∈ L1(Rn) , too. Applying Corollary
1 to the second identity in (b), it yields ∆ = T 2Γ , from which it follows condition (a)
by the inversion theorem of T .

The equivalency of (c) and (a) is proved in the same way, by using (2.8).
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REMARK 4.1. By Corollaries 1, 2 and Item (b) of Lemma 2, we can conclude
that if f ∈ L1(Rn) and if T f ∈ L1(Rn) , then the operator identities (2.6), (2.8) hold
true. Moreover, T k f ∈ L1(Rn) for every k ∈ Z , by induction. In other words, the
operation T k , with k ∈ Z , makes sense with (2.6) and (2.8), provided f ,T f ∈ L1(Rn) .

We will now investigate how to use the constructed convolutions. In particular,
we will show an essential characteristic of the pair of four convolutions (3.2)-(3.5)
and (3.18)-(3.21), which will be helpful for proving Lemma 3. With the L1 -functions
P,Q,R,S defined by (3.10)-(3.13), for f ,g ∈ L1(Rn) , let us write:

X(x) := (T P)(x); X ′(x) := (T−1P)(x);
Y (x) := (T Q)(x); Y ′(x) := (T−1Q)(x);
Z(x) := (T R)(x); Z′(x) := (T−1R)(x);

W (x) := (T S)(x); W ′(x) := (T−1S)(x).

Considering the convolutions (3.2)-(3.5), we have

(10+(−1)|α|3)P+3Q+3R− (−1)|α|3S =
4(2π)n

C(α)
( f ∗

(1)
g),

−(15+(−1)|α|9)P+(41+(−1)|α|15)Q− (9+(−1)|α|15)R+(15+(−1)|α|9)S

=
32(2π)n

C(α)
( f ∗

(2)
g),

−(−1)|α|3P−3Q−3R+(10+(−1)|α|3)S =
16(2π)n

C(α)
( f ∗

(3)
g),

−(15+(−1)|α|9)P− (9+(−1)|α|15)Q+(41+(−1)|α|15)R+(15+(−1)|α|9)S

=
32(2π)n

C(α)
( f ∗

(4)
g).

This can be considered as a system of four unknown functions P,Q,R,S whose deter-
minant is given by

det(A) :=

∣∣∣∣∣∣∣∣
13 3 3 −3
−24 56 −24 24
−3 −3 −3 13
−24 −24 56 24

∣∣∣∣∣∣∣∣=−640000,

for α ≡ 0,2 (mod 4) .
For α ≡ 1,3 (mod 4) , the determinant is given by

det(A) :=

∣∣∣∣∣∣∣∣
7 3 3 3
−6 26 6 6
3 −3 −3 7
−6 6 26 6

∣∣∣∣∣∣∣∣=−40000.

We would like to point out that, once again, we divide the computation of the
determinant in that two cases just to simplify the computations.
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Solving it, we obtain a unique solution given by

P =
(2π)n

C(α)25(5+(−1)|α|3)

[
(41+(−1)|α|15)( f ∗

(1)
g)−24( f ∗

(2)
g)

+12(3+(−1)|α|5)( f ∗
(3)

g)−24( f ∗
(4)

g)
]
,

Q =
(2π)n

C(α)25(17+(−1)|α|15)

[
(51+(−1)|α|45)( f ∗

(1)
g)+4(59+(−1)|α|45)( f ∗

(2)
g)

−4(51+(−1)|α|45)( f ∗
(3)

g)+12(3+(−1)|α|5)( f ∗
(4)

g)
]
,

R =
(2π)n

C(α)25(17+(−1)|α|15)

[
(51+(−1)|α|45)( f ∗

(1)
g)+12(3+(−1)|α|5)( f ∗

(2)
g)

−4(51+(−1)|α|45)( f ∗
(3)

g)+4(59+(−1)|α|45)( f ∗
(4)

g)
]
,

S =
(2π)n

C(α)25(5+(−1)|α|3)

[
3(3+(−1)|α|5)( f ∗

(1)
g)+24( f ∗

(2)
g)

+4(41+(−1)|α|15)( f ∗
(3)

g)+24( f ∗
(4)

g)
]
.

Applying T to both sides of these identities, and using (3.6)-(3.9), gives

X =
(2π)n

C(α)25(5+(−1)|α|3)
Φα

[
(41+(−1)|α|15)(T f )(T g)−24(T f )(T−1g)

+12(3+(−1)|α|5)(T−1 f )(T−1g)−24(T−1 f )(T g)
]
,

Y =
(2π)n

C(α)25(17+(−1)|α|15)
Φα

[
(51+(−1)|α|45)(T f )(T g)

+4(59+(−1)|α|45)(T f )(T−1g)−4(51+(−1)|α|45)(T−1 f )(T−1g)

+12(3+(−1)|α|5)(T−1 f )(T g)
]
, (4.2)

Z =
(2π)n

C(α)25(17+(−1)|α|15)
Φα

[
(51+(−1)|α|45)(T f )(T g)

+12(3+(−1)|α|5)(T f )(T−1g)−4(51+(−1)|α|45)(T−1 f )(T−1g)

+4(59+(−1)|α|45)(T−1 f )(T g)
]
,

W =
(2π)n

C(α)25(5+(−1)|α|3)
Φα

[
3(3+(−1)|α|5)(T f )(T g)+24(T f )(T−1g)

+4(41+(−1)|α|15)(T−1 f )(T−1g)+24(T−1 f )(T g)
]
.

Analogously, the four convolutions (3.18)-(3.21) can be rewritten in terms of the vector
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(P,Q,R,S) whose determinant of the associated matrix, for α ≡ 0,2 (mod 4) , is

det(B) :=

∣∣∣∣∣∣∣∣
24 24 24 56
3 3 13 −3
56 −24 −24 24
3 13 3 −3.

∣∣∣∣∣∣∣∣=−640000.

For α ≡ 1,3 (mod 4) , we have the following determinant

det(B) :=

∣∣∣∣∣∣∣∣
6 −6 −6 −26
−3 3 −7 3
−26 6 6 6
−3 −7 3 3.

∣∣∣∣∣∣∣∣=−40000.

Converting from the convolutions (3.18)-(3.21) to the vector (P,Q,R,S) , we obtain

P =
(2π)n

C(α)25(15+(−1)|α|17)

[
−3(3+(−1)|α|5)( f ?

(1)
g)

+3(17+(−1)|α|15)( f ?
(2)

g)+4(59+(−1)|α|45)( f ?
(3)

g)

+3(17+(−1)|α|15)( f ?
(4)

g)
]
,

Q =
(2π)n

C(α)25(3+(−1)|α|5)

[
6( f ?

(1)
g)−3(3+(−1)|α|5)( f ?

(2)
g)

−24( f ?
(3)

g)+(41+(−1)|α|15)( f ?
(4)

g)
]
,

R =
(2π)n

C(α)25(3+(−1)|α|5)

[
6( f ?

(1)
g)+(41+(−1)|α|15)( f ?

(2)
g)

−24( f ?
(3)

g)−3(3+(−1)|α|5)( f ?
(4)

g)
]
,

S =
(2π)n

C(α)25(15+(−1)|α|17)

[
(59+(−1)|α|45)( f ?

(1)
g)

−3(17+(−1)|α|15)( f ?
(2)

g)−12(3+(−1)|α|5)( f ?
(3)

g)

−3(17+(−1)|α|15)( f ?
(4)

g)
]
.

Applying T−1 to both sides of these identities and using (3.22)-(3.25), it follows

X ′ =
(2π)n

C(α)25(15+(−1)|α|17)
Φα

[
−3(3+(−1)|α|5)(T f )(T g)

+3(17+(−1)|α|15)(T f )(T−1g)+4(59+(−1)|α|45)(T−1 f )(T−1g)

+3(17+(−1)|α|15)(T−1 f )(T g)
]
,
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Y ′ =
(2π)n

C(α)25(3+(−1)|α|5)
Φα

[
6(T f )(T g)−3(3+(−1)|α|5)(T f )(T−1g)

−24(T−1 f )(T−1g)+(41+(−1)|α|15)(T−1 f )(T g)
]
, (4.3)

Z′ =
(2π)n

C(α)25(3+(−1)|α|5)
Φα

[
6(T f )(T g)+(41+(−1)|α|15)(T f )(T−1g)

−24(T−1 f )(T−1g)−3(3+(−1)|α|5)(T−1 f )(T g)
]
,

W ′ =
(2π)n

C(α)25(15+(−1)|α|17)
Φα

[
(59+(−1)|α|45)(T f )(T g)

−3(17+(−1)|α|15)(T f )(T−1g)−12(3+(−1)|α|5)(T−1 f )(T−1g)

−3(17+(−1)|α|15)(T−1 f )(T g)
]
.

Analysing carefully the identities (4.2) and (4.3), it is interesting to realize that each
one of X ,Y,Z,W , as well as X ′,Y ′, Z′,W ′ , satisfy a certain decomposition into some
“circle” combination of elements in the Wiener’s algebra T (L1(Rn)) (see Theorem 9
for further details). The identities (4.2) and (4.3) are key steps in the process of reducing
the initial equation to a system of linear equations, as we will see in the next lemma and
theorem.

LEMMA 3. Considering K1,K2,ϕ ∈ L1(Rn) , we have

T
(∫

Rn

∫
Rn

[K1(u)Φ(x−u− v)+K2(u)Φ(x+u+ v)]ϕ(v)dudv
)

= [E(x)−λ ] (T ϕ)(x)+F(x)(T−1
ϕ)(x), (4.4)

T−1
(∫

Rn

∫
Rn

[K1(u)Φ(x−u− v)+K2(u)Φ(x+u+ v)]ϕ(v)dudv
)

= G(x)(T ϕ)(x)+ [H(x)−λ ] (T−1
ϕ)(x). (4.5)

Proof. We first prove (4.4), which can be rewritten as

T (P+S)(x) = (E(x)−λ )(T ϕ)(x)+F(x)(T−1
ϕ)(x),

where P is given by (3.10) with f = K1 , g = ϕ , and S is determined by (3.13) with
f = K2 , g = ϕ . It is worth saying that the expressions (4.2) of X , Y , Z , W , as well
as (4.3) of X ′ , Y ′ , Z′ , W ′ hold for every pair ( f ,g) ∈ L1(Rn) . Then, from (4.2), we
will use X with f = K1 , g = ϕ , and W with f = K2 , g = ϕ . In this way, by a simple
computation, we obtain T (P+S) = X +W = (E(x)−λ )(T ϕ)(x)+F(x)(T−1ϕ)(x).
Thus, we have (4.4). Similarly, from (4.3), we will use X ′ with f = K1 , g = ϕ , and
W ′ with f = K2,g = ϕ . So, we will have

T−1 (P+S) = X ′+W ′ = G(x)(T ϕ)(x)+(H(x)−λ )(T−1
ϕ)(x),

which is (4.5).
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Now, we state the main theorem of this section.

THEOREM 10. Assume that D(x) 6= 0 , for every x∈Rn , and one of the following
conditions is satisfied:

(a) λ 6= 0 , and T h ∈ L1(Rn);

(b) λ = 0 , and T h
D , T−1h

D ∈ L1(Rn) .

Then, the equation (4.1) has a unique solution in L1(Rn) if and only if one of the three
following conditions holds:

(T−1
∆)(x) = (T Γ)(x) ∈ L1(Rn); (4.6)

T ∆ ∈ L1(Rn) and ∆(x) =
3
2

Γ(x)+
5
2

Γ(−x) (a.e. x ∈ Rn); (4.7)

T Γ ∈ L1(Rn) and Γ(x) =
−3
8

∆(x)+
5
8

∆(−x). (4.8)

If (4.6), (4.7) or (4.8) holds, then the solution is given by

ϕ(x) =
(
T−1

∆
)
(x). (4.9)

Proof. (a) Suppose that there is a ϕ0 ∈ L1(Rn) that fulfills (4.1), i.e.

λϕ0(x)+P(x)+S(x) = h(x),

where P is determined by (3.10) with f = K1 , g = ϕ0 and S is given by (3.13) with
f = K2 , g = ϕ0 . Applying T to both sides of the equation (4.1) and using Lemma 3,
we will obtain E(x)(T ϕ0)(x)+F(x)(T−1ϕ0)(x) = (T h)(x). Acting T−1 to both sides
of (4.1) and using Lemma 3, we have G(x)(T ϕ0)(x)+H(x)(T−1ϕ0)(x) = (T−1h)(x).
Combining these two equations, we obtain the following system of equations:{

E(x)(T ϕ0)(x)+F(x)(T−1ϕ0)(x) = (T h)(x)
G(x)(T ϕ0)(x)+H(x)(T−1ϕ0)(x) = (T−1h)(x).

(4.10)

Since D(x) 6= 0, for all x ∈ Rn , this system has a unique solution

(T ϕ0)(x) = ∆(x); (T−1
ϕ0)(x) = Γ(x). (4.11)

By hypothesis, T h ∈ L1(Rn) . If we apply Lemma 1, we derive that ∆,Γ ∈ L1(Rn) .
Due to the inversion formulas, we obtain ϕ0 = T−1 (∆) = T (Γ), which is (4.6), and
also (4.7) and (4.8) by Lemma 2.

Conversely, suppose that (4.6) holds. Consider the L1 -function ϕ := T−1 (∆) =
T (Γ) ∈ L1(Rn). This implies that{

(T ϕ)(x) = ∆(x)
(T−1ϕ)(x) = Γ(x),

or

{
E(x)(T ϕ)(x)+F(x)(T−1ϕ)(x) = (T h)(x)
G(x)(T ϕ)(x)+H(x)(T−1ϕ)(x) = (T−1h)(x).
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Equivalently,

T
(

λϕ(x)+
∫
Rn

∫
Rn

[
K1(u)Φα(x−u− v)

+K2(u)Φα(x+u+ v)
]
ϕ(v)dudv

)
= (T h)(x)

T−1
(

λϕ(x)+
∫
Rn

∫
Rn

[
K1(u)Φα(x−u− v)

+K2(u)Φα(x+u+ v)
]
ϕ(v)dudv

)
= (T−1h)(x).

(4.12)

By the inversion formulas, we conclude that ϕ satisfies the equation (4.1) for almost
every x ∈ Rn .

(b) We can argue similarly to the proof of Item (a) to obtain the system (4.11), but
with λ = 0. In particular, we have

T ϕ0 = ∆ = H
T−1h

D
−F

T h
D

, (4.13)

T−1
ϕ0 = Γ = E

T−1h
D
−G

T h
D

. (4.14)

Having in mind that E,F,G,H ∈ L∞(Rn) and T−1h
D , T h

D ∈ L1(Rn) , we can see that the
functions on the right-hand side of (4.13) and (4.14) are in L1(Rn) , from which it
follows that ∆,Γ ∈ L1(Rn) . Now, we can take the inverse formulas of (4.13) and (4.14)
to obtain (4.6).

The sufficiency can be proved in the same way as in the Item (a). Let us omit the
proof of it. The theorem is proved.

REMARK 4.2. We would like to point out that the equivalency of the three condi-
tions (4.6), (4.7) and (4.8), associated with the solvability of the equation (4.1), exhibits
the nature of our approach by using simultaneously T and T−1 , together with the two
sets of convolutions introduced in Definitions 3.1 and 3.2. In other words, the role of
the two functions ∆ and Γ may be interchangeable.

We shall work out some concrete cases to exemplify the power and effectiveness
of our convolution approach. Two concrete cases of application of simple integral equa-
tions with Gaussian convolution kernels were studied in [9, 10] in which the Gaussian
function is Φ0(x) = e−

1
2 x2

.

EXAMPLE 1. Let us now consider the integral equation∫
R

∫
R
[K1(u)Φ0(x−u− v)+K2(u)Φ0(x+u+ v)]ϕ(v)dudv = h(x), (4.15)

where K1(x) = e−
1
2 x2

, K2(x) = 0, h(x) = 1
2 e−

1
2 x2 ∈ L1(R) and ϕ ∈ L1(R) is unknown.

Using the above notation, we have

E(x) = 2πe−x2
, F(x) = G(x) = 0, H(x) = 2πe−x2

, D(x) = 4π
2e−2x2

.
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By Theorem 5 and Corollary 3, (T h)(x) = e−
1
2 x2

and (T−1h)(x) = 1
4 e−

1
2 x2

. Hence,

∆(x) =
1
2 πe−

3
2 x2

4π2e−2x2 =
1

8π
e

1
2 x2

, Γ(x) =
1
2 πe−

3
2 x2

4π2e−2x2 =
1

8π
e

1
2 x2

,

that do not belong to L1(R) . Proceeding similarly to the proof of Item (a) in Theo-
rem 10, we conclude that the equation (4.15) has no L1 -solution. In fact, the assump-
tion (b) in Theorem 10 is not fulfilled in this case. This reinforces both conditions of
Theorem 10. In fact, when λ = 0, the assumptions that h,T h ∈ L1(Rn) do not imply
neither ∆ ∈ L1(Rn) nor Γ ∈ L1(Rn) , while they do in the case of λ 6= 0.

EXAMPLE 2. Consider the following integral equation

λϕ(x)+
C(α)

8(2π)n

∫
Rn

∫
Rn

[
(10+(−1)|α|3)Φα(x−u− v)+3Φα(x−u+ v)

+3Φα(x+u− v)− (−1)|α|3Φα(x+u+ v)
]
k(u)ϕ(v)dudv = h(x), (4.16)

where 0 6= λ ∈ C , k,h ∈ L1(Rn) are given elements, and ϕ ∈ L1(Rn) is to find out.
Equation (4.16) is a special case of the equation (4.1) with K1(x)= (10+(−1)|α|3)k(x)+
3k(−x) and K2(x) = −(−1)|α|k(x)+ 3k(−x) for some k ∈ L1(Rn) . Hence, its solv-
ability is achieved by Item (a) of Theorem 10 and its solution can be given by (4.9).
Nevertheless, we can treat the equation (4.16) by another convolution approach, but to
obtain an L1 -series solution. In particular, the equation becomes

λϕ(x)+(k ∗
(1)

ϕ)(x) = h(x), (4.17)

which may be called an integral equation simply generated by convolution (3.2). We
thereby have a simpler and direct way to generate a series solution. Assume that λ +
Φα(x)(T k)(x) 6= 0, for every x ∈ Rn . Suppose that ϕ ∈ L1(Rn) is a solution of (4.16).
Applying the factorization identity of convolution (3.2), we obtain

λ (T ϕ)(x)+Φα(x)(T k)(x)(T ϕ)(x) = (T h)(x), (4.18)

which is equivalent to

(T ϕ)(x) =
(T h)(x)

λ +Φα(x)(T k)(x)
,

or

(T ϕ)(x) =
(T h)(x)

λ

[
1− Φα(x)(T k)(x)

λ +Φα(x)(T k)(x)

]

=
(T h)(x)

λ

1−Φα(x)(T k)(x)
1

λ

(
1+ Φα (x)(T k)(x)

λ

)
 .

Remark that the complex-valued function Φα(x)(T k)(x) is continuous and uniformly
bounded on Rn . Hence, further assuming that |Φα(x)(T k)(x)| < |λ | , for all x ∈ Rn ,

24



which ensures the absolute convergence of the below Taylor’s series, we have

(T ϕ)(x) =
(T h)(x)

λ

[
1−∑

j≥0
(−1) j Φ

j+1
α (x)(T k) j+1(x)

λ j+1

]

=
(T h)(x)

λ

1−∑
j≥0

(−1) j
Φα(x)

(
T (k)

∗
(1)

j)
(x)

λ j+1


=

(T h)(x)
λ

−∑
j≥0

(−1) j
Φα(x)

[
T
(
(k)
∗
(1)

j)]
(x)(T h)(x)

λ j+2

=
(T h)(x)

λ
−∑

j≥0
(−1) j

[
T
(
(k)
∗
(1)

j
∗
(1)

h
)]

(x)

λ j+2

= T

h(x)
λ
−∑

j≥0
(−1) j

[
(k)
∗
(1)

j
∗
(1)

h
]
(x)

λ j+2

 , (4.19)

where (k)
∗
(1)

n
means k ∗

(1)
k ∗
(1)
· · · ∗

(1)
k︸ ︷︷ ︸

n times

. By the uniqueness theorem of T , we obtain

ϕ(x) =
h(x)

λ
−∑

j≥0
(−1) j

(
(k)
∗
(1)

j
∗
(1)

h
)
(x)

λ j+2 . (4.20)

Note that ϕ given by (4.20) belongs to L1(Rn) by the assumption k,h ∈ L1(Rn) and
by Theorem 6 for the convolution (· ∗

(1)
·) . Moreover, ϕ given by (4.20) fulfills (4.19)

which is equivalent to (4.18), or equation (4.17). Thus, ϕ given by (4.20) is the L1 -
series solution of (4.16).

REMARK 4.3. (i) The assumption |Φα(x)(T k)(x)| < |λ | for all x ∈ Rn is al-
ways satisfied for L1 -functions k arbitrarily given, provided λ is large enough, since
Φα(x)(T k)(x) is a uniformly bounded and continuous function on Rn and rapidly de-
creasing at infinity. In fact, this assumption is a necessary and sufficient condition for
the analytic extension of the function (λ +Φα(x)(T k)(x))−1 , corresponding to powers
of Φα(x)(T k)(x) ∈ C , under which the series in (4.19) is convergent, for all x ∈ Rn .
In other words, that assumption ensures the existence of convergent L1 -series solution
of some specific equations like (4.16). The assumption D(x) 6= 0, for every x ∈ Rn , as
in Item (a) of Theorem 10 is essential for more general cases, such general equations
(4.1).

(ii) The integral equations simply generated by the convolutions (3.3)–(3.5) and
(3.18)–(3.21) can be solved effectively in the same way and, so, we omit the corre-
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sponding presentation. This exemplifies the practical and flexible effectiveness of the
convolution approach to integral equations here presented.
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