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Resumo

Deep Learning é uma subárea de aprendizagem automática que tenta mode-
lar estruturas complexas no dados através da aplicação de diferentes arqui-
tecturas de redes neuronais com várias camadas de processamento. Estes
métodos foram aplicados com sucesso em áreas que vão desde o reconhe-
cimento de imagem e classificação, processamento de linguagem natural e
bioinformática. Neste trabalho pretendemos criar métodos para reconheci-
mento de entidades nomeadas (NER) no texto usando técnicas de Deep Le-
arning, a fim de identificar mutações genéticas.
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Abstract

Deep learning is a sub-area of automatic learning that attempts to model com-
plex structures in the data through the application of different neural network
architectures with multiple layers of processing. These methods have been
successfully applied in areas ranging from image recognition and classifica-
tion, natural language processing, and bioinformatics. In this work we intend
to create methods for named-entity recognition (NER) in text using techniques
of deep learning in order to identify genetic mutations.





Contents

Contents i

List of Figures ii

List of Tables iv

Acronyms v

1 Introduction 1

2 Background 3
2.1 Named-Entity Recognition . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Technologies used in Deep Learning . . . . . . . . . . 8
2.2.2 Neural networks used in text classification . . . . . . . 9
2.2.3 Word embeddings . . . . . . . . . . . . . . . . . . . . 15

2.3 Deep learning for biomedical NER . . . . . . . . . . . . . . . 17

3 Implementation 31
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Character Model . . . . . . . . . . . . . . . . . . . . . 36
3.2.2 Word Model . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Conclusion 50

Bibliography 52

A Appendix 59
A.1 Public Presentations . . . . . . . . . . . . . . . . . . . . . . . 59

i



List of Figures

2.1 Fields of AI. Adapted from [1] . . . . . . . . . . . . . . . . . . 5
2.2 The way our brain processes information can be seen as a

network [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Neural Network structure . . . . . . . . . . . . . . . . . . . . 7
2.4 TensorFlow’s architecture [3] . . . . . . . . . . . . . . . . . . 8
2.5 Keras built on top of TF or Theano [4] . . . . . . . . . . . . . 9
2.6 Recurrent Neural Networks fuction as a loop [5] . . . . . . . . 10
2.7 Gates to control the cell state [6] . . . . . . . . . . . . . . . . 10
2.8 LSTM structure inside each module [5] . . . . . . . . . . . . 11
2.9 Notation used on the images describing LSTM structure [5] . 11
2.10 Line responsible for letting the information flow inside the cell

[5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.11 Forget gate [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.12 Input gate [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.13 Change the values [5] . . . . . . . . . . . . . . . . . . . . . . . 13
2.14 Output values [5] . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.15 BI-LSTM structure [7] . . . . . . . . . . . . . . . . . . . . . . 14
2.16 Words separed by rows in CNN model [8] . . . . . . . . . . . 16
2.17 Three architectures in the Wenpeng’s work [9] . . . . . . . . . 18
2.18 Best results or CNN, GRU and LSTM in NLP tasks [9] . . . 19
2.19 Example of lstm [7] . . . . . . . . . . . . . . . . . . . . . . . . 20
2.20 Example of bi-lstm [7] . . . . . . . . . . . . . . . . . . . . . . 21
2.21 Example of bi-lstm-crf [7] . . . . . . . . . . . . . . . . . . . . 21
2.22 Performance [7] . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.23 The system overview that includes three major components:

pre-processing (tokenization), mutation identification (CRF)
and post- processing (regular expression patterns) [10] . . . . 27

2.24 The 10 different labels for tokens within mutation mentions:
reference sequence (A); mutation position (P); mutation type
(T); wild-type (W); mutant (M); frame shift (F); frame shift
position (S); duplication time (D); SNP (R); other inside mu-
tation tokens (I) [10] . . . . . . . . . . . . . . . . . . . . . . . 28

ii



3.1 Example of one document from the corpus(PubMed ID 22016685).
The highlighted word corresponds to a mutation mention . . 32

3.2 Example of the labels . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Neural Network structure with BI-LSTM and CRF layer on

top of it [11] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Inputs on first model . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 Model structure with TF . . . . . . . . . . . . . . . . . . . . . 36
3.6 Diagram of the seq_to_char function . . . . . . . . . . . . . 37
3.7 The several types of input/output combinations RNNs are

capable of [12] . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.8 Code needed to put the network training with mini-batchs . . 41
3.9 Code needed to put the network training after all sequences

being padded . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.10 Function that divides the tokens in the correct way to respect

the offsets of each mutation . . . . . . . . . . . . . . . . . . . 45
3.11 Function that assigns a tag to each token . . . . . . . . . . . 45
3.12 Example of the output given by the tokenizer . . . . . . . . . 46
3.13 Example of the output given by the tokenizer - 2 . . . . . . . 47

A.1 The poster presented in the students@deti event. . . . . . . . 60

iii



List of Tables

2.1 CHEMDNER challenge team IDs are given in parenthesis in
the Model column (where available). ChemDataExtractor
performance scores reported by the authors . . . . . . . . . . 25

2.2 Results on the tmVar test set in terms of precision (P), recall
(R) and F-measure (F) . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Results on theMutationFinder corpus in terms of precision
(P), recall (R) and F-measure (F) . . . . . . . . . . . . . . . . 29

3.1 Table with the ratio of documents and mutations . . . . . . . 32
3.2 Results from both models with 10 and 20 epochs . . . . . . . 41
3.3 Results with this approach of training and testing each epoch 43
3.4 Best results for both approaches . . . . . . . . . . . . . . . . . 43
3.5 Results for word model with one BI-LSTM-CRF layer . . . . 48
3.6 Results for word model with multiple(3) BI-LSTM-CRF layers 49

4.1 Final Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

iv



Acronyms

AI Artificial Inteligence. 4–7

ANN Artificial Neural Networks. 6, 9, 14

BI-LSTM Bidirectional Long Short-Term Memory. 13, 17, 20, 21, 29, 31,
33, 34, 38, 48, 49

CNN Convolutional Neural Network. 8, 9, 14, 15, 17–20, 23, 29, 30

CPU Central Processing Unit. 7, 8

CRF Conditional Random Fields. 1, 21, 25, 27–31, 33, 34, 50

CV Computer Vision. 14

DL Deep Learning. 1, 4, 6–9, 17, 31, 43, 47, 50

GPU Graphics Processing Unit. 4, 7, 8

GRU Gated Recurrent Unit. 17, 19

HGVS Human Genome Variation Society. 1, 26, 27

IE Information Extraction. 3

LSTM Long Short-Term Memory. 9–11, 13, 17, 19–22, 24, 29, 35, 38, 39,
48, 49

ML Machine Learning. 4, 6

NER Named-Entity Recognition. 1–5, 9, 13, 17, 22, 25, 30, 49, 50

NLP Natural Language Processing. 21, 24

NLP Neuro-Linguistic Programming. 15, 17–19, 48

v



RNN Recurrent Neural Network. 9–11, 17–20, 22, 23, 29, 30, 35, 39

SGD Stochastic Gradient Descent. 43

SNLI Stanford Natural Language Inference. 18

SST Stanford Sentiment Treebank. 18

TF TensorFlow. 8, 9, 34–36, 51

VSM Vector Space Models. 16

vi



Chapter 1

Introduction

This thesis is related with the creation of an algorithm to perform a
Named-Entity Recognition (NER) task in a scientific corpus (biomedical do-
main) to find genetic mutations. This NER task is a sequence labelling prob-
lem in which is necessary to identify all the entities that are part of a genetic
mutation. To solve this problem we decided to create two Deep Learning
(DL) models, since DL excels at feature extraction and it is not necessary to
complement with extensive hand-crafted rules or external dictionaries.

TmVar is a text-mining approach based on Conditional Random Fields
(CRF) for extracting a wide range of sequences variants described at protein,
DNA and RNA levels according to a standard nomenclature developed by
the Human Genome Variation Society (HGVS). This work created a tool
that is a high-performance method for mutation extraction from biomedical
literature but it also created a dataset that contains biomedical documents
and the respective annotations that can be used for works like our own. The
dataset created by the tmVar work is the one we used in this thesis.

There are a lot of methods that can be used as an approach to text classi-
fication problems. TmVar used an approach based on CRF, another systems
consist in the creation of dictionaries to have sources of external knowledge.
There are three categories for NER systems: rule-based algorithms, machine
learning algorithms and hybrid. Yet, most NER systems rely heavily on
hand-crafted features and domain-specific knowledge in order to learn effec-
tively from the small, supervised training corpora that are available. Even
some machine learning approaches need to have some rules or features to
treat more particular types of data that are not easily learnt by the models
on its own. Our objective is to have the best possible results with the less
hand-made features. The focus of our work was to evaluate the use of DL for
this problem, comparing two types of models: one using word embeddings
and the other using character embeddings. Character level embeddings are
a common choice with biomedical corpus because of its complexity and be-
ing morphologically richer than a standard corpus. The relations between
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the characters can be useful in understanding the corpus and learn from it.
Word models also have the problem of tokenization that can introduce some
problems when treating the corpus and the fact that it is necessary to have
word vectors to represent the tokens, otherwise some tokens will be seen as
"unknown" to the model. For this reasons we believe that a character model
can not only be easier to create but also achieve better perfomance on this
sequence labelling task.

Both models created in this work were trained with the Keras framework
[13] but one achieved higher performance than the other in terms of results.
Each main model was trained in two configurations and both have a BI-
LSTM-CRF as neural network. It consists of a bi-directional layer of LSTM
cells with a CRF layer on top. This bi-directional layer allows the network
to efficiently predict a result based on both past (forward states) and future
features (backward states). The character model was trained with a mini-
batch approach, in which sentences with similar length are grouped, and with
a maximum sequence length approach. The word model was trained using
two embeddings models: the BioNPLab word2vec model [14] and the GloVe
model [15]. The best results were obtained with the character model and
the mini-batch approach with an F-Measure of 87%, while the word model
achieved 71.8%.

The first chapter contains information about the current state of the
art in Deep learning for biomedical NER, offering context about the existing
NER tasks and all the technologies surrounding the world of deep learning. It
also explains what type of architectures are used in Deep learning and more
specifically in tasks involving text classification. The second chapter will
focus on the implementation done in this work, in particular the character
and word models. It will also focus on what type of difficulties both models
faced, the pre-processing done in each one and the results achieved by all
the approaches. At last, it will be presented a conclusion that will review
and comment the results presented here and explained in more detail in the
second chapter. It will also discuss if the objective of creating a system with
less to none hand-crafted rules was successful and what lines can be followed
in future work.
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Chapter 2

Background

2.1 Named-Entity Recognition

Information Extraction (IE) is the process of extracting specific informa-
tion from any type of textual sources. The objective is to gather detailed
and structured information that can be used to tasks like classification, inte-
grated search or data-driven activities like mining for patterns or uncovering
hidden relationships[16].

Today’s technological advances have brought the possibility to access
large amounts of textual information. However, it is very difficult to digest
all the available information, especially because of its unstructured format.
For this reason, IE is concerned with structuring all the relevant information
from any given source. In other words, the goal of an IE system is to find
and link the relevant information while ignoring the extraneous and irrelevant
one[17]. Since a lot of today’s information is available in natural language,
an unstructured format, IE can help structuring the free-text information in
a way that can be used by other tasks to mine knowledge out of it[18]. Even
if the information is structured, it is necessary to create an algorithm or a
system that can process this information, understand it and classify it on its
own. This taks is a process of Named-Entity Recognition (NER).

Named-Entity Recognition (NER) is part of the process in Text Mining
used for IE. While IE is a process that extracts information from unstruc-
tured text to provide more useful information about it, NER is a task of
identifying proper names of people, locations, proteins, gene mutations, or
other entities from natural language documents[19]. A domain-specific NER
application may not be applicable for recognizing named-entities on other
specific domains. For instance, Abner [20] will not perform well in process-
ing military articles as they are designed for different domains[19]. While
designing good features for NER systems requires a great deal of expertise
and can be labour intensive, it also makes the taggers harder to adapt to
new domains and languages since resources and syntactic parsers used to
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generate the features may not be readily available.
State-of-the-art NER systems rely heavily on hand-crafted features and

domain-specific knowledge in order to learn effectively from the small, su-
pervised training corpora that are available[21]. Some NER systems are
comprised primarily of text parsers as in [22]. Another systems consists
in the construction and use of gazetteers and dictionaries in order to have
sources of external knowledge, even if they are not the core of the system
but instead help in feature detection.

Algorithms for Named-Entity Recognition systems can be classified into
three categories; rule-based, machine learning and hybrid [19]. A Rule-
Based NER algorithm detects the named entity by using a set of rules and
a list of dictionaries that are manually pre-defined by human. The patterns
are mostly made up from grammatical, syntactic and orthographic features.
Next, a machine learning NER algorithm normally involves the usage of
ML techniques and a list of dictionaries. There are two types of ML model for
the NER algorithms: supervised and unsupervised machine learning model.
Unsupervised model does not require any training data, it is more closely
aligned with what some call true artificial intelligence — the idea that a com-
puter can learn to identify complex processes and patterns without a human
to provide guidance along the way [23]. Unlike the methods before, super-
vised NER methods require a large amount of annotated data to produce a
good NER system. ML methods are applicable for different domain-specific
NER systems but it requires a large collection of annotated data. Hence,
this might require high time-complexity to preprocess the annotate data[19].
Finally, a hybrid named entity recognition algorithm implements both the
rule-based and machine learning methods [24]. Such method will produce a
better result. However, the weaknesses of the rule-based are still unavoid-
able in this hybrid system. A domain-specific NER algorithm may need to
customize the set of rules used to recognize different types of named entity
when the domain of studies is changed.

Artificial Inteligence (AI) has evolved a lot since its first steps and it is
becoming a powerful ally in NER systems. In the beginning technologies did
not have the same capabilities as of today, so it was impossible to realize
some tasks. Over the years, technology evolved, especially after 2015 due to
the expansion of the Graphics Processing Unit (GPU) market, which lead to
a faster parallel processing[25]. This expansion, together with the Big Data
movement, were the perfect stimulator to a sub-field of AI and ML: Deep
Learning (DL). In the figure 2.1 we can see a visual representation of this
fields and how they are part of the world of Artificial Inteligence.

ML is, at its basic, the use of algorithms based on statistical methods
to enable machines to learn from data and make predictions based on it[25].
ML is a subset of Artificial Inteligence but in its core is really just powerful
math & prediction. This process is very different to the typical programming
routines created by human hand, yet ML algorithms still need some guidance
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Figure 2.1: Fields of AI. Adapted from [1]

by the programmers in order to identify the features so that the model can
learn better and see how the data is related. In order to perform these tasks,
it is necessary to feed data in a format that a machine can read so that it
can be learnt by its algorithms. These algorithms/techniques include linear
regression, logistic regression, k-means clustering, decision trees, random
forests, and more, and they can all be applied to a variety of problems.
Some of these use cases are related to Data Science and can be applied in
real-life problems like employing natural language processing in chat logs at
online games to flag users that use offensive language or building any type
of predictive model. But this still was not enough to replicate the most pure
idea of Artificial Inteligence, something that was capable to process and learn
information in a much more powerfull way and on its own, replicating the
learning processes of our brain.

2.1.1 Evaluation

It is important to know if NER systems perform well enough for the task
they were created. They can be evaluated in terms of precision, recall, and
f-measure. Precision is the capability of the model not to label as positive a
sample that is negative, recall is the capability of the model to find all the
positive samples and f-measure can be interpreted as a weighted harmonic
mean of the precision and recall.

In order to achieve this metrics we needed to calculate the number of true
positives, false positives and false negatives. The true positives is the number
of correct entities the model has predicted. If the model predicted 5 entities
to be mutations, and only 3 are mutations, the number of true positives
is 3. The false positives is the number of entities that were predicted as
mutations but are not mutations. In another words, all the mutations the
model predicted wrongly. In the previous example, if 2 of the 5 predicted
mutations, are not mutations, this means that the number of false positives
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is 2. The false negatives is the subtraction between all the existing mutations
and the true positives. The correct mutations are not the ones predicted by
the model but the number of all the existing ones in the corpus. To calculate
the precision, recall and f-measure the following formulas were used, where
tp_all is the number of all the true positives, fp_all is the number of all the
false positives and fn_all is the number of all the false negatives:

Precision = tp_all / (tp_all + fp_all)
Recal = tp_all / (tp_all + fn_all)
F-measure = (2 * tp_all / (tp_all + tp_all + fp_all + fn_all))

2.2 Deep Learning

Deep Learning is a field of Machine Learning that is inspired by the way
the human brain processes information. The most important aspect are the
neurons and the interconnections between themselves, which are similar to a
network like is portrayed at fig 2.2. The idea of creating a similar structure
to the brain in order to allow Artificial Inteligence (AI) to process data and
learn it on its own has existed for a long time but the technology available
before did not allow for much. We can say that while ML needs the help of
a human to indicate the appropriate features of the data to the algorithms
and then learn from that data, DL creates an artificial neural network that
can learn and make intelligent decisions on its own[26]. With this in mind,
we can assume that Artificial Neural Networks (ANN) are the core of Deep
Learning.

Figure 2.2: The way our brain processes information can be seen as a network
[2]

In our brain, neurons are used to communicate with the rest of our body
by sending information from one neuron to another, till it reaches the desired
part of the body. ANN tries to replicate this by having at least three layers,
where in each layer there are a lot of neurons that receive and process the
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information. The first layer is called Input layer because it only receives the
initial data, and the last layer is called Output layer because it only gives
the final output after all the data being processed. The layers in the middle
are used to perform different functions on the data, in order to transform the
inputs into something that the output layer can use. This layers are called
Hidden layers. We can see a representation of this structure in the figure
2.3. The input and output layer are obligatory while the hidden layers can
vary in number, conforming to the problem and the needs of each project.

Figure 2.3: Neural Network structure

Nowadays it is easier to progress into Deep Learning because of the com-
putational power available everywhere. Even if it is necessary a lot of GPUs
to process really large amounts of data, anyone can try it at home and get
decent results with the common GPUs of our machines or even with the
CPU. Another reason why DL is so important is because the performance
improves as the data increases, and today there’s lots and lots of data. Neu-
ral Networks behave better when they have a lot of data so that they can
understand it better [27]. The downside of this aspect is that the more data
the more computation power is needed to train it, therefore needing also
more time.

Deep Learning has a lot of uses nowadays, from image recognition or nat-
ural language generation, to recommendations in social media like Youtube
or Netflix. At Google, it all started with the Deep Mind work, which was
responsible for the creation of the Alpha Go, a famous game where the AI
behind it was capable of defeating the world’s best players [28]. Another
one of Google’s latest breakthrough involving DL is in the field of image
analytics, more specifically in image enhancement [29]. This involves restor-
ing or filling in detail missing from images, by extrapolating for data that
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is present, as well as using what it knows about other similar images. This
examples are more specific and related to situations that are not dealt by
the majority of the population. Yet, DL can be very important when deal-
ing with the most famous social media networks that reach to millions, or
even billions of users. Google uses it to provide useful recommendations on
Youtube. The system monitors and records the viewing habits of the users
as they stream content from their servers. Then the neural networks are
put to work studying and learning everything about the users so that they
can give betters suggestions to each user in order to keep them glued to the
screen[30].

Deep Learning is particularly effective in feature detection [31]. Feature
detection is a process of transforming all the learned knowledged into the cre-
ation of feature extractions to reduce the complexity of the data and make
patterns more visible to learning algorithms to work. Deep Learning algo-
rithms try to learn high-level features from its data like in image recognition
where the neural network will try to learn the low-level features like nose,
eyes, mouth, and then the high-level representation of a face[27]. Convolu-
tional Neural Network (CNN) are used to perform this task and are very
common.

2.2.1 Technologies used in Deep Learning

DL is a world on its own and is full of a technologies that can implement
neural networks. The most famous are TF and Keras.

TensorFlow is an open source software library for numerical compu-
tation using data-flow graphs. It was originally developed by the Google
Brain Team within Google’s Machine Intelligence research organization for
machine learning and deep neural networks research. As it is possible to see
on the image 2.4, TF is supported in a lot of devices as CPU, GPU, and
even mobile devices.

Figure 2.4: TensorFlow’s architecture [3]

Its core is C++ but it offers more Frontends like Python. The Layers API
provides a simpler interface for commonly used layers in DL models while
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the Estimator API makes training and evaluating distributed models easier.
With TF the user has full freedom to create the ANN from scratch, but this
is very difficult for users with low experience. TF is very low-level and the
network needs to be all connected by the user, which means that in complex
networks that involve lots of layers, users with low experience can have lots
of difficulties.

On the other hand, Keras is a high level API written in Python and can
be deployed on top of other AI technologies such as TensorFlow, Microsoft
Cognitive Toolkit (CNTK), and Theano, as it is possible to see in fig fig 2.5.
Keras is more user friendly than TF and offers more modularity and ease of
extensibility. It is more suitable for users with less knowledge or if they need
faster prototyping.

Figure 2.5: Keras built on top of TF or Theano [4]

2.2.2 Neural networks used in text classification

It was stated before that Deep Learning creates an ANN that can learn
and make intelligent decisions on its own. This is very important because
when we think that creating domain-specific NER algorithms is a very la-
borious process, it becomes obvious that the use of DL can help reduce the
linguistic analysis knowledge required in the traditional NER models. There
are various models that can be used in DL. We are going to talk about
two: Recurrent Neural Network (RNN) and Convolutional Neural Network
(CNN).

Recurrent Neural Network

RNN are networks with loops, allowing information to persist. In an-
other words, this networks have "memory" [32]. These loops make RNN
seem kind of mysterious. However, a RNN can be thought of as multiple
copies of the same network, each passing a message to a successor [32] like
in the following figure 2.6. This type of network is very successfull in a vari-
ety of problems: speech recognition, language modeling, translation, image
captioning. . . However, the use of LSTM, a special type of RNN leads these
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tasks to much better results than the standard version(RNN). The use of
LSTMs is very important because it has a long term memory while the tra-
ditional neural networks can’t retain information. The problem with RNN is
that they can only retain recent information which can be a serious problem
when it is necessary to have past context to predict what is desired. That
way to have a long term memory it is necessary to use LSTMs and not just
the standard versions of RNNs.

Figure 2.6: Recurrent Neural Networks fuction as a loop [5]

LSTMs contain information outside the normal flow of the RNN in a gated
cell. Information can be stored in, written to or read from a cell. Those cells
make decisions about when to store, write or read the information via gates
that open and close as seen in 2.7. The gates act on signals they receive,
blocking or passing information based on its strenght, which they filter with
their own sets of weights. Those weights, like the weights that modulate
input and hidden states, are adjusted via the recurrent networks learning
process. That is, the cells learn when to allow data to enter, leave or be
deleted through the iterative process of making guesses, backpropagating
error, and adjusting weights via gradient descent [33].

Figure 2.7: Gates to control the cell state [6]

Long Short-Term Memory are explicitly designed to overcome the long-
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term dependency problem. Their objective is to remember information for
long periods of time and we are going to see in more detail how they achieve
that. While RNNs only have a single tanh layer insider their modules, there
are four as can be seen in image 2.8.

Figure 2.8: LSTM structure inside each module [5]

In the above diagram, each line carries an entire vector, from the output
of one node to the inputs of others. The pink circles represent pointwise
operations, like vector addition, while the yellow boxes are learned neural
network layers. Lines merging denote concatenation, while a line forking
denote its content being copied and the copies going to different locations.
For a visual representation we can observe image 2.9

Figure 2.9: Notation used on the images describing LSTM structure [5]

The principal element of LSTM is the horizontal line running through the
top of the diagram 2.10. This line is responsible for letting information just
flow along it. Yet, this information can be changed, in particularly removed
or added to the cell state, carefully regulated by structures we referenced
before: the cell gates. This gates are responsible for blocking or letting
the information go through. They are composed by a sigmoid neural net
layer and a pointwise multiplication operation. The sigmoid layer can have
output values between zero and one, where a value of zero means to block
all the information/let nothing through and a value of one means to let the
information pass the gate. As it was stated before, each LSTM has three
gates, one to read, one to write and one to keep the information in the cell.

The first step in a cell is to decide what information it is going to be
thrown away from the cell. This decision is made by the sigmoid layer called
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Figure 2.10: Line responsible for letting the information flow inside the cell
[5]

forget gate. It looks at ht-1 and xt, and outputs a number between 0 and
1 for each number in the cell state Ct-1. The output 1 represents completely
keep this while 0 represents“completely get rid of this 2.11.

Figure 2.11: Forget gate [5]

After deciding what information to forget, it is necessary to decide what
new information is going to be stored in the cell. There are two parts in this
step. First, a sigmoid layer called input gate decides which values will be
updated. Second, a tanh layer creates a vector of new candidate values, C̃t,
that could be added to the state 2.12.

Figure 2.12: Input gate [5]

Now it is necessary to update the old cell state, Ct-1, into the new cell
state Ct. The previous steps at the gates already decided what is necessary
to do, now it is just necessary to actually do it. The old state is multiplied
by ft, forgetting the things that were decided to forget. Then it*C̃t is added
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and this is the new value, scaled by how much we decided to update each
state value 2.13.

Figure 2.13: Change the values [5]

Finally, it is necessary to decide what the cell is going to output. The
output will be based on the cell state, but will be a filtered version. First,
it is run a sigmoid layer which decides what parts of the cell state are going
to output. Then, the cell state is put through tanh (to push the values to
be between -1 and 1) and multiply it by the output of the sigmoid gate, so
that it only outputs the parts that were decided to 2.14.

Figure 2.14: Output values [5]

There is a variant of LSTM neural networks, the Bidirectional Long
Short-Term Memory (BI-LSTM). BI-LSTM simultaneously models each se-
quence in both the forward and backward directions while traditional LSTM
only models in one direction. This enables a richer representation of data,
since each token’s encoding contains context information from the past and
the future. The first LSTM learns the effect of previous words and the
second learns the effect of future words. Since this type o network takes
the context of the information in consideration by having context from the
past and the present, it is very useful in NER tasks related to word classi-
fication/prediction. In the figure 2.15 it is possible to see the structure of
a BI-LSTM network and how they have information propagation in both
forward and backward directions in order for the network to gain past and
future information about each word.
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Figure 2.15: BI-LSTM structure [7]

Convolutional Neural Network

CNNs are a category of Neural Networks that have proven to be very
effective in areas related to Computer Vision (CV), more specifically image
recognition and classification. CNNs have been successful in identifying all
types of objects, like faces and animals, and distinguish objects apart like
traffic signals[34]. CNNs are just like the other Neural Networks. They are
made up of neurons with learnable weights and biases. Each neuron receives
several inputs, takes a weighted sum over them, pass it through an activa-
tion function and responds with an output. The whole network has a loss
function [35]. CNN its a deep, feed-forward Artificial Neural Networks be-
cause information flows right through the model and there are no feedback
connections in which outputs of the model are fed back into itself[36]. Each
neuron in a layer receives input from a neighborhood of the neurons in the
previous layer. Those neighborhoods, or local receptive fields, allow CNNs to
recognize more and more complex patterns in a hierarchical way, by combin-
ing lower-level, elementary features into higher-level features. This property
is called compositionality. For instance, edges can be inferred from raw
pixels, edges can in turn be used to detect simple shapes, and finally shapes
can be used to recognize objects[37]. Furthermore, the absolute positions
of the features in the image do not matter. Only capturing their respective
positions is useful for composing higher-level patterns. So, the model should
be able to detect a feature regardless of its position in the image. This prop-
erty is called local invariance. Both compositionality and local invariance
are the two key concepts of CNNs.

CNNs operate over volumes. Unlike some neural networks, where the
input is a vector, in CNNs the input is a multi-channeled image(3 channels).
The inputs are related to the main building block of a CNN: the convo-
lution layer. It computes the output of the neurons that are connected to
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local regions or receptive fields in the input, each computing a dot product
between their weights and a small receptive field to which they are connected
to in the input volume. Each computation leads to extraction of a feature
map from the input image. As example, imagine having an image repre-
sented as a 5x5 matrix of values, and to take a 3x3 matrix and slide that
3x3 window or kernel around the image. At each position of that matrix, we
multiply the values of your 3x3 window by the values in the image that are
currently being covered by the window. As a result, we get a single number
that represents all the values in that window of the images. This layer is
used to filter: as the window moves over the image, it checks for patterns in
that section of the image. This works because of filters, which are multiplied
by the values outputted by the convolution[36]. Pooling or Sub Sampling
is another important block in CNNs. The objective of subsampling is to get
an input representation by reducing its dimensions, which helps in reducing
overfitting. One of the techniques of subsampling is max pooling. With this
technique, we select the highest pixel value from a region depending on its
size. In other words, max pooling takes the largest value from the window
of the image currently covered by the kernel. For example, we can have a
max-pooling layer of size 2 x 2 and it will select the maximum pixel intensity
value from 2 x 2 region. Finally, the classification is the last thing to be
done and the objective is to flatten the high-level features that are learned
by convolutional layers and combine all the features. It passes the flattened
output to the output layer where it is used a softmax classifier or a sigmoid
to predict the output classification label [36].

CNNs are mostly common in Image Classification but they also have a
good performance when it comes to Neuro-Linguistic Programming (NLP)
tasks. Instead of image pixels, the input for this type of tasks are sentences
or documents represented as matrix[8] since the input in CNNs is a multi-
channeled image(3 channels). Each row of the matrix corresponds to one
token, typically a word, or a character. Each row is a vector that represents
a word like in the figure 2.16. This vectors can be word embeddings like
word2vec or Glove, but they can also be one-hot vectors that index the
word into a vocabulary[8]. For example, for a sentence with 10 words using
a 100-dimensional embedding the matrix would be 10x100.

2.2.3 Word embeddings

Neural networks do not recognize any input that is non-numerical such
as words. In order to overcome this particularity it is necessary to convert
words to vectors of values. However, it is not possible to convert to a random
value. If words are treated as discrete atomic symbols, they will provide
no useful information to the model regarding the relationships that exist
between some of the words [38]. Using vector representations it is possible
to overcome some of these obstacles.
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Figure 2.16: Words separed by rows in CNN model [8]

Vector Space Models (VSM) represent words in a continuous vector space
where semantically similar words are mapped to nearby points (embedded
nearby each other). The different approaches that leverage this principle can
be divided into two categories: count-based methods and predictive methods.
Succinctly, count-based methods compute the statistics of how often some
word co-occurs with its neighbor words in a large text corpus, and then map
these count-statistics down to a small, dense vector for each word. Predictive
models directly try to predict a word from its neighbors in terms of learned
small, dense embedding vectors (considered parameters of the model). Two
of the most popular word embedding models are part of this categories.
GloVe [15] is a count-based method as described in the article: "Training
is performed on aggregated global word-word co-occurrence statistics from
a corpus, and the resulting representations showcase interesting linear sub-
structures of the word vector space". On the other hand, word2vec is a
predictive model. The Bio NLPlab is a word2vec approach were the vec-
tors were induced from PubMed and PMC texts and their combination using
the word2vec tool [14].

Word2vec is a particularly computationally-efficient predictive model
for learning word embeddings from raw text. It comes in two flavors, the
Continuous Bag-of-Words model (CBOW) and the Skip-Gram model. Al-
gorithmically, these models are similar, except that CBOW predicts target
words (e.g. ’mat’) from source context words (’the cat sits on the’), while
the skip-gram does the inverse and predicts source context-words from the
target words. This inversion might seem like an arbitrary choice, but statis-
tically it has the effect that CBOW smoothes over a lot of the distributional
information (by treating an entire context as one observation).

GloVe focus on the statistics of word occurrences in a corpus. Count-
based models learn their vectors by essentially doing dimensionality reduc-
tion on the co-occurrence counts matrix. First it is construct a large matrix
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of (words x context) co-occurrence information. For each word/row it is
counted how frequently the word is saw in some context/column in a large
corpus. In the specific case of GloVe, the counts matrix is preprocessed by
normalizing the counts and log-smoothing them.

2.3 Deep learning for biomedical NER

In this section we are going to describe and comment on four articles
that talk about DL for biomedical NER. These articles are related to the
use of neural networks to perform NER tasks and they explain what archi-
tecture was choosen and why. We also are going to talk about the tmVar[10]
work and how it was done in order to understand how our results stand
in comparison to the ones of the tmVar. The first article compares results
between CNNs and RNNs neural networks. The objective is to compare the
performance of both models in a serie of NLP tasks and to draw conclusions
about when each model should be used and to what type of task. The sec-
ond article is only about the performance of RNNs, in particular different
types of LSTMs: there are LSTM, BI-LSTM and BI-LSTM-CRF models.
Each model has its own characteristics and the objective is to understand
which model performs well. The third article is about the CHEMDNER
challenge [39] and the NER systems created to train on this dataset. The
fourth article is about tmVar [10], a text-mining approach based on condi-
tional random field (CRF) for extracting awide range of sequence variants
described at protein, DNA and RNA levels(genetic mutations) according to a
standard nomenclature developed by the Human Genome Variation Society.
The tmVar dataset is also the dataset used in our models.

Comparison between CNNs and RNNs for NLP tasks

The first article[9] focuses on the differences between CNNs and RNNs,
where the authors decided to compare both approaches in a various number
of NLP tasks. CNNs are hierarchical and RNNs are sequential architectures.
Since, by characterization one is hierarchical and another is sequential, it is
tempting to choose CNNs for classification tasks like sentiment classification
since sentiment is usually determined by some key phrases; and to choose
RNNs for a sequence modeling task like language modeling as it requires
flexible modeling of context dependencies. Yet, the current work in NLP
literature does not support this clear division to choose one of the models.
For example, RNNs perform well on document-level sentiment classification
[40]; and this work [41] recently showed that gated CNNs outperform LSTMs
on language modeling tasks, even though LSTMs had long been seen as
better suited. In summary, there is no consensus in which type of deep
neural network should be choosen for any particular NLP problem.
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The three architectures tested were the following: one CNN, one LSTM
and one Gated Recurrent Unit (GRU). GRU is a variant of LSTM that
retains its resistance to the vanishing gradient problem, but the internal
structure is simpler, and therefore is faster to train, since fewer computa-
tions are needed to make updates to its hidden states. The NLP tasks to
be executed are the following: sentiment/relation classification, textual en-
tailment, answer selection, question-relation matching in Freebase, Freebase
path query answering and part-of-speech tagging. The three architectures
can be seen in the following image 2.17.

Figure 2.17: Three architectures in the Wenpeng’s work [9]

There were seven tasks that served as comparison between the architec-
tures:

• Sentiment classification task(SentiC) on Stanford Sentiment Treebank
(SST)[42]

• Relation classification(RC) on SemEval 2010 task 8[43]

• Textual Entailment(TE) on Stanford Natural Language Inference
(SNLI)[44]

• Answer selection (AS) on WikiQA[45]

• Question relation match (QRM) with WebQSP

• Path query answering (PQA) on the path query dataset released by
[46]

• Part-of-speech tagging on WSJ

The tasks were organized in four categories. (i) TextC. Text classifi-
cation, including SentiC and RC. (ii) SemMatch including TE, AS and
QRM. (iii) SeqOrder. Sequence order, i.e., PQA. (iv) ContextDep. Con-
text dependency, i.e., POS tagging. By investigating these four categories,

18



the authors aimed to discover some basic principles involved in utilizing
CNNs and RNNs. In order for this study to be fair, considering that the
three architectures have different aspects and work in different ways, the
experiments developed by the authors have the following desing: (i) Always
train from scratch, no extra knowledge, no pretrained word embeddings. (ii)
Always train using a basic setup without complex tricks such as batch nor-
malization. (iii) Search for optimal hyperparameters for each task and each
model separately, so that all results are based on optimal hyperparameters.
(iv) Investigate the basic architecture and utilization of each model: CNN
consists of a convolution layer and a max-pooling layer; GRU and LSTM
model the input from left to right and always use the last hidden state as
the final representation of the input. An exception is for POS tagging, were
the authors also report bi-directional RNNs as this can make sure each
word’s representation can encode the words context of both sides, like the
CNN does. Hyperparameters are tuned on dev: hidden size, minibatch
size, learning rate, maximal sentence length, filter size (for CNN only) and
margin in ranking loss in AS, QRM and PQA tasks.

The following table 2.18 shows the experimental results for all the tasks,
models and corresponding hyperparameters. For TextC, GRU performs
best on SentiC and similar to CNN in RC. For SemMatch, CNN performs
best on AS and QRM, while GRU and LSTM outperforms CNN on TE.
For SeqOrder (PQA), both GRU and LSTM outperform CNN. For Con-
textDep (POS tagging), CNN outperforms one-directional RNNs, but lags
behind bi-directional RNNs.

Figure 2.18: Best results or CNN, GRU and LSTM in NLP tasks [9]
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This work pretended to compare the three most used deep neural net-
works(CNN, GRU and LSTM) in some NLP tasks. The authors found that
RNNs perform well and are robust in a broad range of tasks except when
the task is essentially a keyphrase recognition as in some sentiment detection
and question-answer matching settings. In addition, hidden size and batch
size can make neural networls performance vary dramatically. This suggests
that optimization of these two parameters is crucial to good performance
of both CNNs and RNNs. The results achieved with RNNs were satisfac-
tory and led us to choose the use of this type of architecture in our work,
yet it is also possible to see that CNNs achieve good perfomances and have
close results to the RNNs which indicates that they can also be used for text
classification tasks.

Bidirectional LSTM-CRF Models for Sequence Tagging

In the second article[7] the objective is to analyze different neural net-
work based models to sequence tagging task(like our own task). In this
case the authors decided to use RNN and tested different models to analyze
the results: LSTM networks; BI-LSTM networks; LSTM networks with a
CRF layer (LSTM-CRF), 4) and BI-LSTM networks with a CRF layer (BI-
LSTM-CRF).

Figure 2.19: Example of lstm [7]

This article is very important because it gives a lot of insight about neural
networks composed by all types of LSTM. Like it has been said before in
this thesis, RNN have been producing promising results in a great variety
of tasks, but more concrete in tasks including language models and speech
recognition. LSTM allows the network to predict the current output making
use of past features because of its forward states as seen in 2.19. Yet, the
use of BI-LSTM allows the network to efficiently predict a result basing on
both past features and future features(backward states) as seen in 2.20.

It is possible to observe in both pictures the major differences between
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Figure 2.20: Example of bi-lstm [7]

both models: 1) a LSTM model will only forward the information and it is
only possible to predict the output based on past features. 2) in a BI-LSTM
model the information flows forward and backwards, allowing the model to
predict the output based on past and future features. Theoretically this
makes the BI-LSTM a better model than just an LSTM. In addition to a BI-
LSTM model it is more and more standard to see the use of a Conditional
Random Fields (CRF) layer. CRFs are a class of Statistical Model very
used in pattern recognition. While another classifiers predict a label for a
single sample without any consideration for its "neighbors", a CRF takes
the context of the whole samples into consideration. For this reason its use
became very widespread in Natural Language Processing (NLP) to predict
sequences of labels for sequences of input samples. In the figure 2.21 it is
possible to see that it is a BI-LSTM network with a CRF layer at the top.
This CRF layer exists to predict the label of each input sample, but each
output sample is connected, which means that the CRF layers takes the
whole context into consideration when classifying a sample.

Figure 2.21: Example of bi-lstm-crf [7]
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The datasets used to train the models were the following: Penn Tree-
Bank (PTB) POS tagging, CoNLL 2000 chunking, and CoNLL 2003 named
entity tagging. In order to use word embedding, the authors used Senna
embedding[47] which has 130K vocabulary size and each word corresponds
to a 50-dimensional embedding vector. They initialized the word embeddings
in two different ways: Random and Senna. The feature sets are identical for
each way, which means that the results will be solely dependent on the dif-
ferent networks, which help us to understand which LSTM architecture is
better.

It is possible to analyze the results in the following figure 2.22: 1) LSTM
is the weakest baseline for all three data sets. 2) LSTM-CRF models outper-
form CRF models for all data sets in both random and senna categories. This
shows the effectiveness of the forward state LSTM component in modeling
sequence data. 3) The BI-LSTM-CRF models further improve LSTM-CRF
models and they lead to the best tagging performance for all cases except
for POS data at random category. This results lead us to believe that BI-
LSTM-CRF is the best architecture when dealing with RNNs.

Figure 2.22: Performance [7]

Putting hands to rest: efficient deep CNN-RNN architecture for
chemical named entity recognition with no hand-crafted rules

This article[48] is about a work closer to ours. The authors know that
most systems that perform NER tasks rely on hand-crafted rules or curated
databases for data preprocessing, feature extraction and output postpro-
cessing even if modern machine learning algorithms, such as deep neural
networks, can automatically design the rules with little to none human in-
tervention. Following this thinking, the authors created a model based on a
combination of convolutional and stateful recurrent neural netwroks, without
manually asserted rules, to perform NER tasks.

To facilitate the development of new and superior NER systems, BioCre-
ative announced the CHEMDNER challenge[39], which ended in 2015. To
create this dataset a team of experts has produced an extensive manually
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annotated corpus covering various chemical entity types, including system-
atic and trivial names, abbreviations and identifiers, formulae and phrases.
Due to many difficulties inherent to chemical entity detection and normalisa-
tion, manual annotation yields the inter-annotator agreement score of 91%,
which is regarded as the theoretical limit for any system trained on this cor-
pus(the work here presented achieve results near this level). The dataset
is the CHEMDNER corpus and it contains ten thousand abstracts from
eleven chemistry-related fields of science with over 84k manually annotated
chemical entities (20k unique) of eight types:

• ABBREVIATION (15.55%)

• FAMILY (14.15%)

• FORMULA (14.26%)

• IDENTIFIER (2.16%)

• MULTIPLE (0.70%)

• SYSTEMATIC (22.69%)

• TRIVIAL (30.36%)

• NO CLASS (0.13%)

The authors decided to use three types of neural networks: 1) One-
dimensional (1D) convolutional neural networks; 2) recurrent neural net-
works; 3) time-distributed dense (fully-connected) networks. The 1D CNNs
are trainable feature extractors applied along a sequence evolving in time.
The RNNs were used because they are highly powerful trainable state ma-
chines theoretically capable of modelling relationships of arbitrary depth to
process CNN extracted features. In order to improve performance, it is
common to use bidirectional RNNs that process sequences in both direc-
tions(forward and backwards). Finally, the use of a time-distributed fully
connected network with the sigmoid activation function to generate label
probabilities.

The authors have two ways to treat the data that influencied our work:
the first is the most natural solution and implies grouping and encoding
(i.e. representing as numeric tensors) equally sized texts together; the sec-
ond uses zero-padding (artificially increasing length by appending zeros to
numerically encoded sequences) but this method is less flexible, because it in-
troduces a sentence length limit and requires a sentence segmentation model.
In terms of tokenization the authors cleary indicate how important this task
is. Yet, tokenization can introduce severe merged/overlapping entities and
it is very important to use an adequate tokenizer with rules finely adjusted
for the task at hand. After having the model structured the authors needed
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to take care of the most important aspect in NLP tasks: tokenization. To-
kenization can introduce severe merged/overlapping entities and it is very
important to use an adequate tokenizer with rules finely adjusted for the
task at hand. There are two major groups of token encoding strategies:
morphology aware (character-level) and unaware (word-level). While word-
level encodings are efficient for morphologically rigd corpora (e.g. standard
English texts), morphologically rich biomedical and chemical literature in-
troduces many infrequent words and word-forms, resulting in high out-of-
vocabulary (OOV) rates. Consequently, most CHEMNDER participants
have additionally (or exclusively) used morphology aware-encodings, target-
ing various manually designed character-level features. This happens because
it is very hard to create an optimal tokeniser equally adequate for recovering
standard vocabulary and diverse chemical entities, since they have different
underlying morphology - a tokenizer has to be context-aware. Because of
this, the authors developed their own model based on a "break and stitch"
strategy: a primary extra-fine segmentation followed by a refinement step
trying to recover target entities.

The models trained by the authors had two input nodes: one for pre-
trained word-level embeddings and another for encoded token strings. The
strings were encoded as integer vectors containing character identifiers. They
trained 300-dimensional Glove embeddings with default configurations on
a corpus of random PubMed abstracts from the same categories as the
CHEMDNER abstracts. Character-level embeddings were optimised during
training. It consists of a trainable linear character-embedding layer trans-
forming vectors of character codes into matrices of 32-dimensional character
embeddings. These word matrices are then processed by a standard biGRU
(16 cells) layer producing a 32-dimensional vector per token. Instead of con-
catenating word- and character-level embeddings before feeding them into a
single CNN or RNN block, the authors used two separated layers of deep 1D
CNNs for each embedding type to increase the number of degrees of freedom
without using too many convolutional filters. Features extracted by these
independent blocks were subsequently concatenated and fed into a two-layers
deep HS-biGRU. At the output, the labelling method resembles the widely
used IOB scheme with three mutually exclusive labels: Inside/Outside/ Be-
ginning (of an entity).

The networks were trained for 40 epochs with a callback saving weights
upon improvements in performance on the validation dataset. During test-
ing, the CHEMDNER chemical entity mention (CEM) subtask was the tar-
get. The results from the tokenizer were very satisfactory: out of 25347
annotated entities in the testing dataset less than 0.19% spanned the same
token; at the same time the tokeniser had a recall of 91.75% and precision
of 93.32%. Therefore, it was able to accurately recover most of the anno-
tated entities. In terms of performance GRUs trained and converged faster
and showed slightly better performance on the testing dataset than LSTMs.
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Convolutional layers were crucial for good performance. On average, replac-
ing the CNN-layers with one or two hs-biGRU layers reduced the F-score
by 1.5-2.3% and hampered the training process. On the CHEMDNER
CEM subtask the fully-featured network has gained the F-score of 88.7%.
Therefore, it outperforms all models submitted for the CHEMDNER task
by a significant margin, though the edge over ChemDataExtractor is less
impressive as it is possible to see in 2.1. Considering the inter-annotator
agreement score of 91%, the model demonstrates near human performance.

Model Precision % Recall % F1-Score %

model in study 88.6 88.8 88.7
ChemDataExtractor 89.1 86.6 87.8
tmChem(173) 89.2 85.8 87.4
(231) 89.1 85.2 87.1
LeadMine(179) 88.7 85.1 86.9
(184) 92.7 81.2 86.6
Chemspot(198) 91.2 82.3 86.7
Becas(197) 86.5 85.7 86.1
(192) 89.4 81.1 85.1
BANNER-CHEMDNER(233) 88.7 81.2 84.8
(185) 84.5 80.1 82.2

Table 2.1: CHEMDNER challenge team IDs are given in parenthesis in the
Model column (where available). ChemDataExtractor performance scores
reported by the authors

The model presented in this article for chemical NER in biomedical texts
was trained and evaluated on the CHEMDNER corpus and achieved high
values in performance, proving that chemical NER can be done efficiently
with no manually created rules or curated databases whatsoever. Yet, the
authors advocate the use of specialised trainable tokenizers to make sure that
all the words and word-forms are found since the biomedical and chemical lit-
erature is morphologically very rich, which results in high out-of-vocabulary
rates. In particular, the use of specialised trainable tokenizers and stateful
recurrent neural networks.

tmVar: a text mining approach for extracting sequence variants in
biomedical literature

tmVar is a text-mining approach based on Conditional Random Fields for
extracting a wide range of sequence variants described at protein, DNA and
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RNA levels(genetic mutations) according to a standard nomenclature devel-
oped by the Human Genome Variation Society (HGVS). One of the most
important research issues is gene/protein and disease relationship analysis.
Sequence variation plays the key role between gene and disease. Therefore,
identifying sequence variation is one of the major approaches for charac-
terizing gene–disease relationships, with many study results subsequently
reported in scientific publications. As such, text mining mutation-related
information from the literature has become an increasingly important task
in many downstream bioinformatics applications. Despite some reported
success in identifying specific mutation types or identifiers, such as dbSNP
RS numbers, mutation identification from free text in general remains a
challenge because most mutations are not described in accordance with stan-
dard nomenclature (<25%in tmVar corpus) and only few are mentioned with
standard database identifiers, such as dbSNP RS numbers (<10% in tmVar
corpus). To the opposite, it is common to see the same mutation described
in many different non-standard ways in the literature. Despite different
scopes, with regard to methods for mutation detection, most systems rely
on manually derived regular expressions. For instance, for detecting protein
point mutations (e.g. A42G) from text, MutationFinder [49] was developed,
which contains >700 regular expression patterns and achieves state-of-the-
art performance of 90% in F-measure.

TmVar is unique in extracting mutations of many types that are not
considered by previous methods. Existing methods, such as MutationFinder
either exclusively aim for extracting point mutations in proteins or are lim-
ited to a few mutation types, such as substitution and deletion in both
proteins and genes. To the knowledge in hand, tmVar is the first attempt
to identify various mutation types according to a standard nomenclature en-
dorsed by the HGVS for the description of sequence variants (mutations).
Similar to MutationFinder, tmVar also contributes to the text-mining com-
munity a large corpus (500 PubMed abstracts) of manually annotated raw
and normalized mutation mentions. A raw mutation extraction is normal-
ized when individual mutation components are identified and standardized
when applicable. For instance, ’Arg987Ter’ (PMID: 22188495) is normalized
as ‘pjRj987jX’ to denote the replacement of an arginine residue at position
573 by termination codon, where a single letter ‘p’ is added to indicate the
mutation type, and the standard one-letter codes are used (with their re-
spective positions in the normalized notation) to represent the wild-type
and mutant residue. The tmVar corpus covers many kinds of mutations not
previously considered, such as ‘p.Pro246HisfsX13’ (PMID: 21738389) and
‘IVS3+1G/A’ (PMID: 15111599).

As shown in figure 2.23, the system first performs tokenization on the
input text as pre-processing. Next, the system extracts mutation mentions
from text using a CRF-based approach, followed by some post-processing
steps. As illustrated in the figure, instead of extracting a mutation mention
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such as c.2708_2711delTTAG as a whole, the CRF module identifies each
mutation component (e.g. ‘del’ as the mutation type) individually. Finally,
it is implemented a post-processing module to handle some rare mutation
formulas and nature language mentions that are not curated in the corpus.

Figure 2.23: The system overview that includes three major components:
pre-processing (tokenization), mutation identification (CRF) and post- pro-
cessing (regular expression patterns) [10]

The pre-processing consists in a tokenizer that divides text input into
a sequence of tokens, which generally correspond to ‘words’. However, to
capture individual components within a mutation mention, it is performed
tokenization on a finer level than traditional methods [50] that separate input
text by space or punctuation. Special characters (e.g. ‘-’, ‘*’), numbers,
lowercase letters and uppercase letters are divided as separate tokens. For
instance, instead of regarding the mention ‘c.2708_2711delTTAG’ as one
token, it is split into seven pieces. The CRF module that takes care of
the mutation identification is the more complex. As forementioned, the
mutation identification problem was seen as a sequence-labeling task. In
particular, each mutation component was considered as an individual label,
such that every mutation mention becomes a sequence of labels. Accordingly,
was adapted a probability-based sequence detection CRF model [51], which
defines the conditional probability distribution P (Y |X) of label sequence Y
given observation sequence X. Unlike the traditional BIO labeling models,
which labels each token as being the beginning of (B), the inside of (I)
or entirely outside (O) of a span of interest, it is used 10 different labels
(fig 2.24) for describing mutation elements (i.e. tokens within the mutation
mentions) based on the HGVS nomenclature, and one additional label (O)
for all tokens outside a mention.

The CRF module contains six different types of features to help achieve
better performance: 1) dictionary features; 2) general linguistic features; 3)
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Figure 2.24: The 10 different labels for tokens within mutation mentions:
reference sequence (A); mutation position (P); mutation type (T); wild-type
(W); mutant (M); frame shift (F); frame shift position (S); duplication time
(D); SNP (R); other inside mutation tokens (I) [10]

character features; 4) semantic features; 5) case pattern features; 6) contex-
tual features. Yet, the CRF model still misses a few mentions. To minimize
the number of false negatives, the model takes the mentions extracted by the
CRF module and translates them into regular expression patterns to find ad-
ditional mentions of similar kind(post-processing). Two rules were applied
to make the translated pattersn more generalizable: (i) all numerical digitals
become ‘[0-9]+’; (ii) all lowercase and uppercase letters become ‘[a-z]’ and
‘[A-Z]’, respectively, except three special tokens IVS, EX and RS. As a result,
‘c.IVS64þ5C4G’ is translated to ‘[a-z]\.IVS[0-9]+\+[0-9]+[A-Z]\>[A-Z]’.

The methods developed in tmVar were compared to MutationFinder.
In addition to the public software, MutationFinder also has a large corpus
where both raw mentions and normalized annotations are available, which
allowed to perform cross-comparisons between tmVar and MutationFinder
on two different gold-stardand datasets. The methods developed in tmVar
were compared with MutationFinder for precision, recall and F-measure.
MutationFinder was designed exclusively for detecting protein point muta-
tion, yet the table reports its performance on all mutations, as well as just
protein point mutations, when using the tmVar test corpus. As such, there
are two rows of results in table 2.2 for MutationFinder.

As can been seen in table 2.2 and 2.3, tmVar method achieved consis-
tently higher F-measures than MutationFinder on two independent datasets.
On the other hand, when benchmarked on the tmVar corpus, Mutation-
Finder’s results (2.2) dropped significantly from the performance on its own
corpus (2.3), especially in recall, even though the evaluation was limited to
its extraction scope (protein point mutation). The results achieved at tmVar
suggest that it is a high-performance method for mutation extraction from
biomedical literature.

The authors created a CRF-based machine-learning method for muta-
tion extraction from biomedical text with high performance. The method
complements and extends existing methods in extracting a wide range of dif-
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Methods P(%) R(%) F(%)

All mutations MutationFinder 91.66 33.21 48.76
MutationFindera 89.66 69.15 78.08
tmVar 91.38 91.40 91.39

Normalized
mutations MutationFinder 84.21 25.29 38.90

MutationFindera 84.09 63.25 72.20
tmVar 87.74 87.46 87.60

Table 2.2: Results on the tmVar test set in terms of precision (P), recall (R)
and F-measure (F)

Methods P(%) R(%) F(%)

All mutations MutationFinder 98.41 81.92 89.41
tmVar 98.80 89.62 93.98

Normalized
mutations MutationFinder 98.47 80.63 88.66

tmVar 97.58 83.96 90.26

Table 2.3: Results on theMutationFinder corpus in terms of precision (P),
recall (R) and F-measure (F)

ferent types of sequence variants in scientific publications. This work showed
how tmVar can compete with another mutations extraction tools like Muta-
tionFinder and achieve great performance on PubMed abstracts. The corpus
created for this work contained 500 documents that are now at the disposal
of the community. In our case, this 500 documents became our dataset and
we will compare the results obtained with the ones of tmVar. It is also
important to note that the tmVar work contains a CRF approach that is
complemented with hand-crafted features and even uses regular expressions
as post-processing method to achieve this results while our work will try to
rely only on neural networks.

General Conclusions

The first article was important to help us understand the different neural
networks architectures and when they should be used. Even if both RNNs
and CNNs have good performance in the various task tested, RNNs seem to
have advantage on text classification tasks and because of that we decided
to go with that architecture even if both can be used as the article stated.
The second article compared different types of RNNs architecture based on
LSTMs. They tested normal LSTMs, BI-LSTM, LSTMs with CRF layer
and BI-LSMT-CRF. The results cleary showed that having a bi-lstm neural
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network instead of just a lstm one achieves a better performance and should
be the used in any sequence classification task. But when adding a CRF
layer on top of a bi-lstm neural network the results are even better and were
the best in all but one of the tasks tested. This article set our mind in de-
ciding to use a BI-LSTM-CRF model for our task. The third and fourth are
articles that talk about works similar to ours and helped us understand the
process of creating NER models based on machine learning approaches. On
the third article the authors claim that no hand-crafted rules were used in
the model and the results are all based in the features extracted by the theirs
neural network. The model relies in both CNNs and RNNs and achieve very
good results in the challenge they participated showing that neural networks
can achieve top performances without hand-crafted rules or hand extracted
features. The last article does not contain a machine learning approach,
yet the tmVar work created the dataset we are going to use. The fact that
they have a CRF approach with features extraction and post-processing is
good because we can compare this type of approach with our neural network
model free of hand-crafted rules. If our model can achieve a close or better
performance than tmVar it is very good because tmVar is one of the best
methods for mutation extraction as the results in comparison to Mutation-
Finder show.
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Chapter 3

Implementation

3.1 Introduction

The problem of this thesis is focused in the recognition of genetic mu-
tations in biomedical corpus. Mutations have a very distinct way of being
represented, as happens with most biomedical literature, which leads to be-
ing very difficult to create hand-crafted rules to detect them. For this reason,
the use of Deep Learning becames important since it excels in pattern recog-
nition, leading to a good performance in detecting mutations with little to
none hand-crafted rules.

Our model focus on the creation of Deep Learning models based on char-
acters and word embeddings. BI-LSTM-CRF is the type of neural network
used to create the models and both have three BI-LSTM layers with a CRF
on top. The bi-directional layer allows the network to efficiently predict a
result based on both past (forward states) and future features (backward
states), and the CRF layer takes the context of the whole results into con-
sideration before predicting a final output for each input sample. Both our
models rely only on the neural network to extract features from the data and
there are no hand-crafted rules.

3.1.1 Dataset

The dataset used was the one from tmVar[10]. The full corpus contains
500 documents and 1410 identified mutations (all other words are considered
non-mutations). The dataset already comes divided in train and test dataset:
334 documents and 967 mutations as training dataset, and 166 documents
and 464 mutations as test dataset to evalute the model as it is possible to
see in 3.1.

As we can see in figure 3.1 the corpus can be divided into two parts.
The first are the sentences that contains the title and abstract from the
corpus, together with the id to facilitate the identification. The second part
consists in all the genetic mutations that are presented in the sentences, its
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Dataset No Docs No Mut
Train 334 967
Test 166 464

Table 3.1: Table with the ratio of documents and mutations

position(offset) in the sentence and what type of mutation it is. As we can
see, the mutations format is very distinct to standard words, as they can
have letters and digits, or even pontuaction marks, which makes them very
difficult to identify just by following semantic rules.

Figure 3.1: Example of one document from the corpus(PubMed ID
22016685). The highlighted word corresponds to a mutation mention

The objective is to create two models, one based on character and an-
other on word level embeddings, that can successfully predict all the labels
in a sequence of inputs(sentences from the corpus). Both models need pre-
processing in the corpus in order to convert it to a proper input that a
neural network can recognize. The word model needs a tokenizer to split
the corpus of each document into a set of words and word-forms(tokens).
Yet, the tokenization can introduce problems like the place of the splitting
and it can consider some tokens as not part of words or even introduce
severe merged/overlapping entities. If we were dealing with a corpus that
only had english words and correct pontuation, a tokenizer could be use-
ful and perform close to perfection tokenization of the corpus. But in this
case, the corpus is very complex because of the mutations structure and the
morphologically rich biomedical corpus, which is very dificult for a standard
tokenizer to properly understand. Tokenization is a very difficult task in
corpus as this one and because of that it is very usual to choose models
with character level embeddins so that it is not necessary to deal with the
tokenization.

The tmVar dataset helps with the mutations labelling because of the
offsets presented at each mutation. In the figure 3.2 it is present an example
where it is possible to see all the mutations that belong to a document and
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their attributes like the offset and type.

Figure 3.2: Example of the labels

The offsets present in the example are the following: (1130-1138; 1236-
1244; 1260-1267; 1315-1323). This offsets are the positions of the first and
last characters of that mutation in the document and all the characters be-
tween this positions belong to that mutation. With this information it is sim-
pler to label all the tokens or characters in the corpus. The tokens/characters
between this positions will be tagged as mutations, while the others will be
tagged as non-mutations. The characters are correctly marked with the BIO
tags. The tag "B" stands for the first character of the mutation, marking it
beginning. The tag "I" stands for a character inside the mutation but not
the first one. For last, the tag "O" stands for a character non-belonging to
a mutation. In the tokenization (word model), it is used the SOBIE (some-
times known as BIOES) tags, where "O" marks a token that is not part of
an entity, "S" marks a token that is the whole of an entity (a "singleton"),
"B" marks a token at the beginning of an entity, "I" marks one inside an
entity, and "E" marks one at the end.

3.2 Models

The primary objective of this thesis is the creation of a word and a char-
acter based model, in order to compare the performance of both models. The
models are very similar because they both have Bidirectional Long Short-
Term Memory (BI-LSTM) layers with a Conditional Random Fields (CRF)
layer on top like it is described in the figure 3.3. Each cell of the input layer
contains a token or a character since this is a sequence labelling problem and
it is necessary to classify all the inputs.

In theory it is rather plausible to predict that the character model can
present better results since the mutation’s syntax and the composition of a
biomedical corpus are very complex. To create a good word based model it is
necessary to have a very good tokenizer and a good word embedding model.
Since the tokenization can be a stressful task, the creation of character based
model that uses the characters and their surrounding ones to understand
the corpus can be an easier task and can achieve good results in successfully
labelling the biomedical corpus.

At first, we used two tokenizers: the Keras Tokenizer [52] and NLTK To-
kenizer [53]. The Keras Tokenizer produced better results in tokenizing the
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Figure 3.3: Neural Network structure with BI-LSTM and CRF layer on top
of it [11]

sentences in order to get the mutations properly splitted into tokens, yet, the
accuracy of this tokenizer was very low. From the 1692 total existing mu-
tations, the keras tokenizer only found around 400 mutations, which mean
that all other existing mutations would be considered as non-mutations when
assigning labels to the tokens. Continuing with this tokenizer would lead to
give false negatives to the model, which would be a problem when classifying
values. For example, a mutation that the tokenizer failed to isolate, would
be considered as a non-mutation, but when the same word would be given
by a user to the model it would be incorrectly classified and therefore giving
a incorrect prediction to the user. The second tokenizer used was the NLTK
Tokenizer with Keyphrase Extraction. The idea was that if the tokenizer
had the existing mutations as keyphrases that need to be isolated, it would
achieve more accuracy. Yet, as stated before, the syntax of mutations is very
complex and because of all the special characters it contains, even a tokenizer
with keyphrases would achieve low results and not be able to extract all the
mutations available in the documents. After finishing the character based
model there was some time dedicated to see how other models from differ-
ent tasks/problems dealt with the tokenization to sucessfully create a word
based model and we came in contact with a python version of the OSCAR4
tokenizer [54]. This tokenizer is very important because the process of tok-
enization is based on biomedical corpus to deal better with its characteristics
like punctuation and combinations of numbers and letters. It also considers
the offsets of each mutation in the corpus, and after the tokenization it is
able to indicate which tokens were related to the same entity.

The final models in this thesis were done with the Keras library because
of its simplicity and being more user friendly. But in a first approach the
TensorFlow technology was used in order to gain more insigh about neural
networks and how they work since Keras decreases the complexity but also
leaves the users with less knowledge about neural networks. The experiments
done can be divided in two parts: 1) in the first part the experiments were
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made using the TensorFlow (TF) library to create the model; 2) in the
second part the models were done with the Keras library because of its
reduced complexity and faster prototyping.

In this project the models done in TF served the purpose of giving more
insight about neural networks in order to understand how to create one from
scratch and not just connecting layers like if they were legos as it happens
with Keras. Some of the small models in TF were done with this corpus but
with different tasks than the one of the final model (sequence labelling). The
first TF model only trained with a mutation as input and its classification
as label. There was no sequence labelling, but only a single input and the
corresponding classification as output.

Figure 3.4: Inputs on first model

This type of model gave more insight in how the data needs to be correctly
fetch in each batch and then passed into the model. The data is stored in
vectors and matrixes in TF and it is necessary to have a clear understanding
of this structures. In the following figure 3.5 it is possible to see the number
of lines needed to create a neural network structure. In this figure it is
being create an RNN with LSTM as cells. It is also necessary to define
the embeddings, weight, accuracy, optimizer while in Keras all this fields are
passed as arguments to the fuction that creates the neural network. In Keras
the same structure could be defined with just two or three lines. With this
example it is easier to understand why Keras offers faster prototyping.

With the knowledge gained from the first project in TF it was possible to
start a second project and go a little further in terms of complexity. It was
possible to use the whole dataset and the corpus of each document as input
together with information saying if that corpus contained mutations or not
(1 or 0 to identify if the corpus contained any mutation or not, respectively).
After the training phase, when giving a new corpus to the network, it would
give as output a ’1’ or ’0’ response in case that corpus had a mutation or
not. With this project it became very clear that dealing with more complex
inputs and building more complex networks was a difficult task for the be-
ginner skills and because of that the technology used changed to the Keras
library. Even if the final model is all done in Keras, the use of TF was very
important and it gave more insight about neural networks, how they work,
what they need and how each block connects to the others. TF also offers
more flexibility and total control of the neural network. It is recommended
to learn TF because in the long term it becames more powerfull than Keras
and offers more. It is also important to gain this little knowledge of how

35



Figure 3.5: Model structure with TF

neural networks work because it is easier and better to learn the basics in
TF and then switch to Keras to faster and simpler production, than starting
with Keras and then being very difficult to make the bridge and understand
the complexity of TF.

3.2.1 Character Model

The first step in the creation of a character model is the pre-processing.
First it is necessary to read all the corpus and labels; the corpus will go to
a dictionary where the key is the document id and the value is the corpus,
and the mutations will go to a dictionary where the key is the document
id and a list of values contains all the mutations in that document. Then,
after having all the corpus and mutations in dictionaries it is necessary to
transform the corpus of each document to a list of characters. Since both
dictionaries have the doc id as key, it is possible to transform the corpus
into a list of characters and at the same time to create a list based on that
characters, but with the labels associated. In order to do so, it is necessary
to get the position of each mutation in the document, which are stored in the
dictionary of mutations. Then, it is necessary to get the list of characters and
to create a list of the same size and fill it with 0’s. Since our tags are BIO,
the ’0’ will stand for a character that does not belong to any mutation.
After the list being full, it is necessary to check all the positions of the
mutations, and to go to the list and change the values in that positions. The
first character of each mutation will always have a ’B’ to indicate that a
mutation starts in that character, and the other characters will have a ’I’ to
indicate that they are inside the mutation. To a list of characters like this:
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[r,e,f, ,t,o, ,A,s,p,5,0,6,G,l,y] the function would return also a list of labels
like this:[0,0,0,0,0,0,0,B,I,I,I,I,I,I,I,I], where Asp506Gly is a mutation and the
other entities are non-mutations.

The corpus needs to be splited into sentences so that the inputs feed to the
network are not to big. After labelling each character, there is an algorithm
that fetches the corpus and labels from the same document and will search(in
the corpus) for all the sequences of ". ". This sequence indicates the end of
a sentence and the beginning of another. The algorithm saves the positions
where these sequences happens, and with them it is possible to know all
the sentences of the corpus. Then the same positions are used in the labels
dictionary and the list is split in the same positons. To finalize, the structure
of the dictionaries is changed, instead of having a list of characters as value,
the dictionaries will have a list of lists of characters has values, where each
list of characters is a sentence of that corpus.

To finalize the pre-processing, both dictionaries are merged into one list
of dictionaries. Having all the information in one list make it easier to
fetch data into the neural network inputs because at this point, since all the
corpus and labels have been treated, there is no need for other attributes like
document id. The new list has at each element a new dictionary and this
dictionary will have under the field "corpus" the list of lists of chars from
the corpus, and under the field "labels" the list of lists of labels for each
character.

The flow of this function can be seen in the following fig 3.6.

Figure 3.6: Diagram of the seq_to_char function
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Architecture

Now it is time to talk about the model’s architecture. After receiving
the list of dictionaries with all the information (both corpus and labels in
characters) the model can start to organize the data and all the dependencies
to feed the model. After receiving the training dataset, it is necessary to take
in consideration that the model does not receive characters as inputs. It is
necessary to transform each character in a numeric value. To make this
transformation our model has an alphabet of all the characters presented in
the dataset, which is the following:

abcdefghijklmopqrstuvwxyz
ABCDEFGHIJKLMOPQRSTUVWXYZ
0123456789
~ { } [ ] % + . \\ ; > < - \# , ’ " = ( ) ? / : _ *

It contains all the letters in lower and upper case, all the digits and the
symbols here present. It is very important that in such scenario there is a
distinction between letters in lower and upper case because mutations have
a very particular distinct and complex way of being represented and the
use of different case letters in a specific context can be the very useful to
identify a mutation. After the alphabet being defined it is very import to
assign a number to each character in the alphabet so that the neural network
can recognize the inputs. If we were to follow the sequence in the alphabet
presented earlier, the character ’a’ would have the value 1, the character ’b’
would have the value 2, etc...

After having the alphabet and the numbers attributed to each character,
it is time to create the model. The structure have been described in the
beginning and consists on one input layer that can have a fixed shape (in
case where each sentence has the same length) or can have a shape that
will change at each input(differente lengths for the sentences). The input
layer connects to an Embedding Layer that will turn positive integers
(the number that each character has been mapped to) into dense vectors of
fixed size. The objective is that the embedding layer will map characters
that are related to similar regions and with this particularity the neural
network can learn the data better. After the embedding layer, the network
will have three BI-LSTM layers, the first one with 128 units and the other
two with 64 units. Each LSTM returns full sequences between units and
not just the last output, the dropout is 0.5 and the merge mode between
the three layers is concatenation. After this layers, it is necessary to have a
Time Distributed layer in order to keep a many-to-many relation between
the inputs and the outputs. In another words, the objective of this model is
to label all the input sequence and in order to do so, it is necessary to have
the LSTM layers returning the full sequence of input and to have a Time
Distributed layer to make sure that each input will have the correct output
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presented in the same sequential order. For example, considering the inputs
(a1,a2,a3,a4...aN) and the outputs (b1,b2,b3,b4...bN): the Time Distributed
layer receives the full sequence from the LSTM layers and guarantee that the
outputs will be presented in the same sequential order that the inputs were
given to the network. Otherwise, the only output would be the last label
"bN". Time Distributed layers are very useful in labelling sequence models.
It is possible to see in fig 3.7 the different type of input/output combinations
possible for RNNs networks (LSTMs make part of this type of networks as
said before). The Time Distributed layer allows us to build models that do
the one-to-many and many-to-many architectures. In the case of our model,
it is necessary to do the many-to-many architecture. To finish the network
it is necessary the use of a CRF layer.

Figure 3.7: The several types of input/output combinations RNNs are capa-
ble of [12]

In order to get the inputs ready for the neural network, it is necessary
to convert all the sequences of characters and labels into sequences of num-
bers. The sequences of characters from the corpus need to be mapped to
the respective numeric value of each character (the dictionary based on the
alphabet) and the sequences of characters from the labels need to be mapped
to numeric values, and to do so there are two new dictionaries that are going
to help in the mapping.

{’O’: 1, ’B’: 2, ’I’: 3, ’X’: 0}

{’O’: 0, ’B’: 1, ’I’: 2}

The first dictionary is used with an approach that uses padding in all
sequences so that all have the same length and the second dictionary is used
in an approach named as "mini-batch approach" because it groups sequences
with the same length together. Since the labelling system is BIO as discussed
before, it is easy to notice that the first dictionary contains one more label
than it should. This happens because the first approach is based in finding
the biggest sequence (the sequence with the biggest lenght of characters)
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and to pad all the others to that lenght. This approach is very usual and it
is better than finding an intermediate value that would require to truncate
some sequences and it would result in loss of information. The downside
of this method is that the model takes much more time to train because
of the big dimensions of its inputs. For example, if the dataset had 200
sentences and the biggest sentence contained 300 characters while the others
sequences are mostly around 100 characters, all the 200 sequences would be
padded to the 300 characters. Because of this padding it is necessary to make
a distinction between the labels that are part of the original sequence and
the labels that are being added. Since the padding adds 0’s to the sequence,
the dictionary will map the value 0 to an ’X’ in order to not confuse the
model with this new label and the label that indicate that a character does
not belong to a mutation. While in the first dictionary the label to indicate
that is the number 1, in the second dictionary the same label corresponds to
the value 0.

The second dictionary is used in the second approach. This approach
relies on using groups of inputs with the same length as inputs to the neural
network and it is called mini-batchs. In this approach, sentences with
similar length are grouped and fed together as inputs to the network. If the
dataset is composed by 5 sentences with 65, 82, 120, 200 and 120 characters
we are going to create 4 groups: one for the sentence with 65 characters,
another for the sentence with 82 characters, another for the sentence with
200 characters and the last one with the two sentences with 120 characters.
By doing this, the neural network will have inputs with multiple dimensions
and will not be necessary to pad or truncate any sentence in order to respect
the sequence length established. This means that the batch size will vary at
each length. If one length is 40 and there are 32 sequences with that lenght,
those 32 sequences are fed at the same time to the neural network. The
sentences of each batch can be fed in any order. This is done in our model to
prevent the model from receiving always the data in the same order, which
could influence the training.

In order to create this two approaches it is necessary to change the code
and the way the train is done in each approach. It is possible to see in fig 3.8
that to reach the most important function model.fit it is necessary to do a
little bit of coding. First of all, since we only want to feed the network with
sequences of the same length, it is necessary to create a cycle to represent
all the epochs wanted ( epoch is a full passage on the dataset) because the
objective is to first give all the sequences in groups and only then repeat
them again for the number of times necessary. In the first three epochs the
order in which the sequences are given is always the same, but after these
three epochs it is made a shuffle in order to change the order of the sequences
so that the model do not get used to always seeing the same data in the same
order and this way try to maximize the learning process.

In the approach with the maximum length of the sequences as the input
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Figure 3.8: Code needed to put the network training with mini-batchs

length, all the data is first padded to the same lenght and then it is only
necessary to put the model training with the correct batch size and number
of epochs as can be seen in fig 3.9. The complexity and quantity of code
necessary is smaller then when using mini-batchs.

Figure 3.9: Code needed to put the network training after all sequences being
padded

Results

In order to understand if the approaches were identical in terms of results,
both were trained with 10 epochs and 20 epochs at first like it is possible to
see in table 3.2.

10 epochs 20 epochs

Precision Recall F Precision Recal F

Mini-Batch 0.8392 0.6185 0.7122 0.8202 0.8556 0.8375

Max Seq 0.5344 0.5517 0.5429 0.8304 0.8125 0.8214

Table 3.2: Results from both models with 10 and 20 epochs

The results are divided in 3 metrics: Precision,Recall and F-Measure.
In this work, they were calculated by hand and no external library was used
to measure the results. Analyzing the results it is possible to see that the
mini-batch approach had better results both on the training with 10 epochs
and 20 epochs. The maximum sequence length produces very bad results
with a train of 10 epochs and it can be derived to the model dealing with
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more complexity because of all the sequences that are padded and need to
produce extra labels that are "rubish". Maybe 10 epochs are a small num-
ber for the model to figure out what characters are part of the corpus and
what characters were added because of the padding. Yet, for 20 epochs the
maximum sequence approach produces results closer to the values of the
mini-batch approach with a little more precison but the recal being sub-
stantially lower. A very important and transverse conclusion is that both
approachs are dealing with a small dataset that only contains 334 documents
(there are other similar studies with datasets containing around hundreds of
thousands documents) which means that one epoch contains few information
and it is necessary to increase the number of epochs in order to maximize
the learning process of the neural network.

The previous approach was based on training the model for a number of
epochs and then use the test dataset to see the results, in this case the f-
measure, precision and recall. While this is a valid method to analyze the
model’s performance, it was created another method to train and test the
data at each epoch but it is only valid for the mini-batch model. Since the
mini-batch model trains in batchs of different sizes and the epoch cycle is
"hand made", at the end of each epoch, it is possible to test the model with
the test dataset to see the values of each metric for the current epoch. Each
value is stored and only replaced when a better value is achieved. In another
words, we can run the model for 40 epochs, but if the epoch that produced
better results is the epoch number 32, the model in that epoch is the one
that is going to be saved. This is inspired by the model checkpoint callback
offered by Keras, that saves the better epoch. Yet, since our model needs to
have these methods implemented by hand, it is necessary to save only the
best epoch when the values are the best, and then replace it if another epoch
produces better results. This approach saves a lot of time in finding the best
model, because it compares the results from all the epochs, while training
the model for a number of epochs and saving the final results and weights
would force us to run the model more times for different number of epochs
in order to compare results.

The following table 3.3 contains the best results from a mini-batch model
trained for 40 epochs with the described approach. It is possible to see that
best epoch was the epoch number 37, with a f-measure of 0.874 while the
more close was epoch number 30, with a f-measure of 0.851. Between these
two epochs, the precision is lower in the last one by a small margin, yet the
recal is higher by a far superior margin than the one between the precision
of both epochs. In fact, this was the epoch with the highest recal and the
second highest precision. Yet, this is epoch number 37 and in case we had
not used this approach, the model saved would have had 40 epochs and the
results would be inferior to the ones registered by this epoch.
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Epoch No Precision Recal F

23 0.785 0.834 0.809
25 0.861 0.838 0.849
30 0.884 0.821 0.851
37 0.881 0.866 0.874

Table 3.3: Results with this approach of training and testing each epoch

Choosing the correct batch size(hyperparameter) for a model is a matter
of trying and watch the results even if some guidelines can be followed. A
larger number of batch size will increase the available computational paral-
lelism, but a small number of batches has been shown to provide improved
generalization performance [55]. Deep Learning optimization is typically
based on Stochastic Gradient Descent (SGD). The use of larger batch sizes
is to improve the parellelism of SGD in order to increase both the efficiency of
current processors and to allow the distributed processing on a larger number
of nodes. This is important because of the training of huge datasets where it
is very important to use the hardware to the maximum and to take the less
time possible. But, the use of small batch sizes has been shown to improve
generalization performance and optimization convergence [56] and overral,
the experiments conducted in [55] support the conclusion that using small
batch sizes for training benefits in terms of range of learning rates that pro-
vide a stable convergence of the model and achieve bet test performance for
a given number of epochs. This information helped us establish the number
of batch sizes as 32.

Mini-Batch Max-Seq

Precision Recal F Precision Recal F
0.881 0.866 0.874 0.844 0.868 0.856

Table 3.4: Best results for both approaches

Comparing the results in both approaches, it is possible to see that the
results for the mini-batch model are better in all the measures, except the
recall, but it is almost the same there. But it is important to note that
when training a mini-batch model, we can train for 40 or 60 batches, but it
is possible to save the model with the best epoch. This is very important
because allow us to always have the best possible model in that range of
epochs. This is also possible to realize with Keras for the second approach
with one of their callbacks ’EarlyStopping’. This callback stops training when
a monitored quantity has stopped improving (loss or accuracy), yet the usage
of this callback with our model was very difficult to conciliate because our
accuracy and loss values in training are quickly to converge due to the small
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dataset and the fact that the number of characters that have the tag ’0’ is
the majority of all the characters it is very easy for the network in its earlier
stages to predict almost everything as ’0’ and still achieve a great accuracy
which would activate the callback and would stop the training. The dowside
of one aspect in relation to the other is the times both take to train. A model
with a padding so big as 751 takes a lot of time to train in comparison to the
mini-batch approach where each sequence is trained with its natural lenght
and because of that it is faster.

3.2.2 Word Model

All of the architectural aspects described in the character model are the
same for this one, except the use of tokenization(pre-processing) and word
embedding models. The tokenization was a big problem in the creation of
a proper word model because of the difficulties in parsing the scientific text
due to it is particularities and complex words that contain a mix of letters in
lower and uppercase, together with numbers and pontuaction. Due to this
particularity the use of standard tokenizers like NLTK Tokenizer and even
the Keras Tokenizer were insufficient to successfully tokenize the scientific
corpus. With this problems in mind, there was an article that was helpful
in understanding how to perform a proper tokenization based on a scientific
corpus and the locations of some of the keywords that needed to be treated
as proper tokens [57].

This tokenizer is responsible for finding the entities that are mutations in
the corpus and to tokenize the corpus but keep all the tokens that are part or
are a mutation properly marked with the correct tags. The tokenizer scroll
through all the documents and in each document it saves the corpus/string
which needs to be tokenize but it also saves all the mutations and it is
location/offset where the mutation starts and ends. With this information
the tokenizer knows which words or group of words need to be properly
tagged after being tokenized. This is importance because with a normal
tokenizer would be impossible to tokenize the text and then know which
tokens belong to which mutations since stardand tokenizers only care about
tokenize the text and do not pay attention to the tokenization of words
that once are in tokens need to be presented together to make sense of the
information. What this tokenizer does in detail is to use the ChemTokenizer
that is specialized in tokenization for chemistry and related text (in our case
the mutation text fits this expertise) to tokenize the corpus in tokens with
the knowledge it has of scientific text structure and returns a list of all the
tokens of the corpus and their offsets. Then, this tokens and their locations
are confronted with the offsets of each mutation in order to properly organize
the tokens and to make sure the tokens that form a mutation are divided in
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a way that they are not joined with another tokens that do not make part
of the mutation. This is done in the following function 3.10.

Figure 3.10: Function that divides the tokens in the correct way to respect
the offsets of each mutation

Yet, in this part the tokenizer is only worried in making sure that the
tokens are at their correct locations and that the tokens that make part of
mutation are properly isolated. Because of this, it is possible to see that all
the labels contain the tag ’O’, which means that the tokens do not have their
correct tags. This is only done after the corpus being properly tokenized to
make sure that the tags attributed to each token are final and that the tokens
offsets will not suffer modifications. The assignment of a tag to each token
is done in the following code 3.11.

Figure 3.11: Function that assigns a tag to each token

In the dataset used in these models, it is possible to see how the tokens
that identify mutations have the locations of the first character of the token
and the last character of the token in the corpus like it was exemplified in
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figure 3.1. It is then necessary to have a tokenizer that will respect the
locations of the tokens identifying the mutations. The tokenizer used in
the work done by [57] is a modified version of a Python translation of the
Oscar4 Tokenizer [54]. This tokenizer takes in consideration the locations of
the mutations when tokenizing the corpus and it will save the location/index
of the first character of each token, and classifies each token in the following
notation: SOBIE (sometimes known as BIOES) tags, where ’O’ marks a
token that is not part of an entity, ’S’ marks a token that is the whole of an
entity (a "singleton"), ’B’ marks a token at the beginning of an entity, ’I’
marks one inside an entity, and ’E’ marks one at the end.

In the following figure 3.12 it is possible to see all the fields returned by
the tokenizer. In this example it is assumed that the corpus is only those 5
words and is represented under the field "ss". The field "tokens" contains
the tokens the tokenizer processed from the corpus and the fields "tokstart"
and "tokend" represent the index of the the first character and the index
of the last character of each token in the corpus and it is possible to see in
this example that the index of the characters are exactly the same of the
ones in the field "ents" that is the exactly information(tokens and indices)
presented in the training dataset. The tokenizer takes this inputs from the
dataset in order to know each tokens make part of a mutation token. In this
example this is not cleary because the only mutation was divided in a single
token ("singleton"). The field "bio" contains the tags of each token present.

Figure 3.12: Example of the output given by the tokenizer

This following example 3.13 contains a specific mutation that is divided
in 5 tokens. This mutation starts in the index 1044 and ends in the index
1056, yet it contains more than just one token in this range. The mutation
"c.387+107A>T" is divided in the following tokens: ’c.387’, ’+’, ’107A’,
’>’ and ’T’. The first token has the tag ’B-E’ because it is the first token
of the mutation and the last token has ’E-E’ because it is the last. All
the intermediate tokens have the tags ’I-E’. With this example it is possible
to see how the tokenizer saves all the tokens related to the same mutation,
eliminating the problems of the others tokenizers that were not capable to
save information that would relate a set of tokens to the same mutation.
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Figure 3.13: Example of the output given by the tokenizer - 2

Architecure

The tokens are words or parts of words, or even pontuaction and as de-
scribed before neural networks do not recognize inputs of words/characters.
It is necessary in the characters case to create a map that converts the char-
acter to a number and in case of words it is possible to use word embeddings.
Word embeddings are a type of word representation that allows words with
similar meaning to have a similar representation. Word embeddings are a
class of techniques where words are represented as vectors. Each word is
mapped to one vector and the vectors are learned in a way that resembles
a neural network, and this is why this technique is used in the DL. The key
aspect of this approach is the idea of using a dense distributed representation
for each word. This distributed representation is learned based on the usage
of words. This means that words that are used in similar ways/contexts have
similar representations.

This model was tested with two types of word embeddings to see which
one achieved better results. The first group of word embeddings were in-
duced from a combination of PubMed and PMC texts with texts extracted
from a English Wikipedia dump [14]. The second group of word embeddings
were from Global Vectors for Word Representation, or GloVe, algorithm that
is an extension to the word2vec method for efficiently learning word vectors.
Classical vector space model representations of words were developed using
matrix factorization techniques such as Latent Semantic Analysis (LSA) that
do a good job of using global text statistics but are not as good as the learned
methods like word2vec at capturing meaning and demonstrating it. GloVe
is an approach that marries both the global statistics of matrix factoriza-
tion techniques like LSA with the local context-based learning in word2vec.
Rather than using a window to define local context, GloVe constructs an
explicit word-context or word co-occurrence matrix using statistics across
the whole text corpus. The result is a learning model that may result in
generally better word embeddings. The objective in using both these models
is to understand if the use of word embeddings that were induced from docu-
ments with scientific language produces better results than using the GloVe
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embeddings which are induced from a ample type of documents. With the
embeddings from Bio Nlplab [14] it was possible to convert 94639 words to
word embeddings, while only 1437 words were unknow to the embeddings.

Results

With a word model, the words are already formed and the neural net-
work does not need to understand how the characters are related between
themselves to form words. Because of this, it is interesting to compare the
results between a neural network with multiple BI-LSTM-CRF layers and
one with just one BI-LSTM-CRF layer. In the character model is very im-
portant to have multiple BI-LSTM layers with CRF in order for the network
to understand the features internally. To train the network was used the
same approach of using mini-batchs when training the network for charac-
ters. This approach will train in batches all the sequences with the same
lenght and it allow us to at the end of each epoch to test the results for
the test dataset in order to see which epoch produces the best results. The
following results 3.5 were achieved when training a neural network for the
maximum number of 40 epochs and with just one LSTM-CRF layer.

It is possible to see that the results are much better for the model using
the Bio NPLAB word vectors. One of the reasons is the quantity of words
presented in each model. The Bio NPLAB word vectors contain around
5M of words while the GloVe word vectors used (glove 6B) contains aroud
400K of words. Yet, the biggest model from GloVe contains 2.2M, still less
than half of the quantity from Bio NPLAB. The quantities in each model
may affect the outcome, yet theGloVe word vectors are the standard for the
NLP tasks. This shows how difficult it is to tokenize and process scientific
text and that the Bio NPLAB word vectors contain more words related
with the dataset used.

Bio NPLAB GloVe

Epoch Precision Recal F Epoch Precision Recal F
19 0.753 0.642 0.693 23 0.5666 0.513 0.538

Table 3.5: Results for word model with one BI-LSTM-CRF layer

After getting the results with just one BI-LSTM-CRF layer was impor-
tant to see how they would improve with multiple layers. As explained before
in the character model was important to use multiple BI-LSTM-CRF layers
to make sure that the network would cleary understand how the characters
are related. Since the results on the word model with just one BI-LSTM-
CR layer were lower, it was important to see if more layers would improve
or if the tokenization of scientific text was a problem that would require
another approach. In the following picture it is possible to see the results
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in the following 3.6. The results improved a bit, in particular in the recall
measure. With this results it is not possible to conclude that it is better to
have a multiple LSTM layer if we aim to have better results in a case where
the tokenization is particularly difficult and most tokens contain words or
part of words that are very specific to the scientific context and do not have
representation on the word embedding models.

Bio NPLAB GloVe

Epoch Precision Recal F Epoch Precision Recal F
39 0.672 0.772 0.718 31 0.564 0.526 0.544

Table 3.6: Results for word model with multiple(3) BI-LSTM-CRF layers

The architecture of the word model is exactly the same as the one of
the character model. Both have three BI-LSTM layers with a CRF on top
to predict the final output of each sample. The best results in each model
were trained with a mini-batch approach that allowed us to save the best
epoch. Yet, the results are far superior in the character model. The only big
difference between these two models are the pre-processing. In this case, the
word model relies on tokenization to create tokens and a word embedding
model to represent those tokens in a way the neural network can understand.
The embedding model with best results was Bio NPLAB that contains em-
beddings extracted from biomedical corpus and contains around five million
embeddings. The fact that tokenization is the biggest issue in this model
confirms the concerns of [48] in regard to the creation of proper tokenizers
to NER tasks in biomedical corpus. In this case, would be interesting to
see in the future if another tokenizer could achieve better results or if it was
necessary to introduce hand-crafted rules in this model to achieve the same
performance of the character model.
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Chapter 4

Conclusion

The objective of the work described in this thesis was to create a NER sys-
tem/algorithm that could performe a sequence labelling task in the tmVar[10]
dataset. To perform this task we have chosen to create two Deep Learning
models and compare the performance of both. The main objective in using
Deep Learning was to create a system that had none to minimal hand-crafted
rules/features to help understanding the data, since Deep Learning excels
other technologies in feature detection. We created two models, one with
character and another with word embeddings. Each main model was trained
in two configurations. The character model was trained with a mini-batch
approach, in which sentences with similar length are grouped, and with a
maximum sequence length approach. The word model was only trained with
a mini-batch approach. While the character embeddings were created during
the training, the word embeddings used came from two different models: the
BioNPLab word2vec models[14] and the GloVe model[15].

The results obtained show that it is possible to achieve good perfomance
without the presence of hand-crafted rules. The tmVar system produced
a F-measure of 0.914 with CRF methods and the help of post-processing
methods. In this work, we relied only in a neural network to understand
the dataset and achieved as best result 0.874 of F-measure as can be seen
in table 4.1. Our best result was achieved in the character model and we
believe that such results are because of the biomedical corpus being mor-
phologically richer than a standard corpus. The mini-batch approach is the
suggested one because it trains in lower time, since there is no padding in
the sentences. The fact that the word model could not find embeddings
for all the tokens could be determinant in the lower results presented by
the word model, but it is possible to see that the model using the BioNPL
embeddings(trained on biomedical corpura) achieved higher results that the
GloVe embeddings(trained on standard corpura). Another problem for the
word model could be the tokenization that is a very important aspect in the
creation of any word model. Remais to be seen if another tokenizer could
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increase the performance of this model.

Model Precision Recal F-Measure

tmVar [10] 0.914 0.914 0.914
Char-Mini-Batch 0.881 0.866 0.874
Char-Max-Seq 0.844 0.868 0.856
Words-BioNLP 0.672 0.77 0.718
Words-Glove 0.564 0.526 0.544

Table 4.1: Final Results

In this thesis our objective was to create the models using TF as the
technology but to do so was necessary a longer time than the one we had at
our disposal. TF is more complete and allows to do more than Keras, yet
it also requires more knowledge and more time to learn it, which lead us to
change the technology to Keras in order to have faster prototyping. Ideally
we would have wanted to train our models with another datasets and to see
if the results sustained or if it was necessary to make introduce hand-made
rules to achieve similar results to the ones obtained before. Yet, training
a neural network takes a lot of time and due to the shared access of the
machine used for training, it was not possible to train another datasets and
models. The word model also had a worst performance than the character
model and it would be interesting to see if with a few hand-made rules it
could be possible to increase the performance. But as said before, this models
take a lot of time to train and to debug when something goes wrong, which
prevented us to do everything we wanted.

With all of this in mind, it would be interesting to see if with very few
hand-crafted rules the character model could overcome the tmVar in terms
of perfomance, showing the power of neural networks in text classification
and complex corpuras like the biomedical one. It would also be important to
see what is needed to increase the performance of the word model and how
much more complexity it would need to reach closer levels to the character
one. It would also be important to see how the current model performs
with another specific datasets to deduce that neural networks are powerfull
enough in feature extraction and can help creating systems that rely less
and less in rules created by the programmers and that are different for each
problem.
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Appendix A

Appendix

A.1 Public Presentations

The project developed in this dissertation was presented in a public event,
during 2018, called students@deti in the DETI department of UA. The
following poster A.1 was created to present the project in the event.
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Abstract
Deep learning is a sub-area of automatic learning 
that attempts to model complex structures in the 
data through the application of different neural 
network architectures with multiple layers of 
processing.
These methods have been successfully applied in 
areas ranging from image recognition and 
classification, natural language processing, and 
bioinformatics.
In this work we intend to create methods for 
named-entity recognition (NER) in text using 
techniques of deep learning in order to identify 
genetic mutations and chemical compounds.

Results
We compared the performance of two deep learning
models: one using character embeddings and another
using word embeddings. Both models were trained with
the Keras framework [2].
Each main model was trained in two configurations. The
character model was trained with a mini-batch approach, 
in which sentences with similar length are grouped, and
with a maximum sequence length approach. The word
model was trained using two embeddings models: the
BioNPLab word2vec models [3] and the GloVe model [4].
The best results were obtained with the character 
models (see Table 3) with an F-Measure of 87%.
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Methods
The objective is to create a NER system that can learn 
from the corpora available without relying on hand-
crafted features. To perform this task we used a sub-field
of Machine Learning: Deep Learning.
To train and evaluate our methods, we used the tmVar
corpus [1], which consists of 334 documents containing
967 annotations for training, and 166 documents with
464 annotations for testing. Fig. 1 shows an example
sentence from this corpus.
BI-LSTM-CRF is the type of neural network used to create 
the system. It consists in a bi-directional layer of LSTM 
cells with a CRF layer on top. This bi-directional layer 
allows the network to efficiently predict a result based on 
both past (forward states) and future features (backward 
states).
The system consists in two deep learning models: one 
with character level embeddings and another with word 
level embeddings.

Table 2-Results for the different models

Recognition of genetic mutations in text using
Deep Learning
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Fig 1- Example sentence from the tmVar corpus (PubMed ID 
22016685). The highlighted word corresponds to a mutation mention.

Conclusion
Biomedical corpora are morphologically richer than 
standard English corpora which leads to difficulties in 
tokenization. The creation of a proper tokenizer is very 
important but it is also a difficult task which may be 
one of the problems why the word model performance 
was worst. Besides that, genetic mutations also have a 
particular syntax that may be better understood 
character by character and not with words.
The use of word embeddings trained on biomedical 
corpus also helped achieving better performance than 
the traditional GloVe embeddings (normal English 
documents). 
The models only take into consideration
characters/tokens and their labelling, which means
that they can be trained on any corpus that contains
the offsets of each entity. The results show that such
models can achieve very strong performance without
relying on carefully engineered features and domain
knowledge.

Figure A.1: The poster presented in the students@deti event.
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