
Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2018

Álvaro
Rodrigues de Castro
Mendes Martins

Compressão de dados sensoriais em sistemas
robóticos

Compression of sensor data in robotic systems





Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2018

Álvaro
Rodrigues de Castro
Mendes Martins

Compressão de dados sensoriais em sistemas
robóticos

Compression of sensor data in robotic systems

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia de Com-
putadores e Telemática, realizada sob a orientação científica do Doutor An-
tónio José Ribeiro Neves, Professor auxiliar do Departamento de Eletrónica,
Telecomunicações e Informática da Universidade de Aveiro, e do Doutor
Miguel Armando Riem de Oliveira, Professor auxiliar do Departamento de
Engenharia Mecânica da Universidade de Aveiro.





Aos meus pais José Maria e Maria Gabriela, aos meus irmãos Daniel,
João e Henrique e à minha namorada Cláudia.





o júri / the jury

presidente / president Prof. Doutor Armando José Formoso de Pinho
Professor associado com agregação da Universidade de Aveiro

vogais / examiners committee Prof. Doutor Paulo José Cerqueira Gomes da Costa
Professor auxiliar da Faculdade de engenharia da Universidade do Porto (Arguente)

Prof. Doutor António José Ribeiro Neves
Professor auxiliar da Universidade de Aveiro (Orientador)





agradecimentos /
acknowledgements

Ao meu orientador, Doutor António Neves, agradeço todo o apoio, conselhos
e voto de confiança. Sem a sua ajuda e incentivo este trabalho não iria ser
possível.
Ao meu coorientador, Doutor Miguel Riem Oliveira, agradeço todos os ensi-
namentos e sugestões para que este trabalho fosse o melhor possível.
Aos meus pais e irmãos, expresso a minha profunda gratidão pelo apoio in-
condicional, ajuda e encorajamento contínuo ao longo deste percurso. Esta
conquista não teria sido possível sem eles.
À Cláudia, que sempre acreditou em mim, agradeço toda a motivação e inspi-
ração em momentos de maior necessidade.
Aos meus colegas, que sempre me apoiaram, um obrigado.





Palavras Chave ROS, Robótica, Visão por Computador, Compressão de dados.

Resumo Um dos principais problemas no desenvolvimento e depuração de sistemas
robóticos é a quantidade de dados armazenados em ficheiros contendo da-
dos sensoriais (ex. ficheiros de log proprietários de ROS - Bags). Se con-
siderarmos um robô com várias câmaras e outros sensores, que recolhem
informação do ambiente diversas vezes por segundo, obtemos rapidamente
ficheiros muito grandes. Além das preocupações com o armazenamento e,
em alguns casos, a transmissão, torna-se extremamente difícil encontrar in-
formações importantes nesses ficheiros.
Nesta dissertação, procuramos a melhor solução para os dois problemas es-
tudando e implementando soluções de compressão de dados para reduzir
os ficheiros referidos. O foco principal foi compressão de imagem/video, de
longe, os dados que consomem mais armazenamento. Além disso, real-
izamos um estudo detalhado sobre o efeito de compressão com perdas no
desempenho de alguns algoritmos de análise de imagem estado da arte.
Outra contribuição foi o desenvolvimento de um leitor de vídeo inteligente para
ajudar os roboticistas no seu trabalho enquanto avaliam os dados gravados.
Partes do vídeo que não contêm informações relevantes são aceleradas du-
rante a leitura.
Com base nos resultados, concluímos que a compressão nativa de ROS não
é suficiente. Além disso, soluções baseadas em ROS, ou de um modo geral
qualquer sistema robótico que precise de lidar com dados de imagem/vídeo,
beneficiaria com o uso de um codec H.265, uma vez que fornece o menor
número de bits por pixel sem penalização significativa da eficiência dos algo-
ritmos de análise de imagem.





Keywords ROS, Robotics, Computer Vision, Data Compression.

Abstract One of the main problems in the development and debugging of robotic sys-
tems is the amount of data stored in files containing sensor data (ex. ROS
proprietary log files - BAGS). If we consider a robot with several cameras and
other sensors that collect information from the environment several times per
second, we quickly obtain very large files. Besides the concerns regarding
storage and, in some cases, transmission, it becomes extremely hard to find
important information in these files.
In this thesis, we tried to solve both problems studying and implementing data
compression solutions to reduce the referred files. The main focus was image
and video compression, by far the most storage consuming data. Moreover,
we conducted a detailed study about the effect of lossy compression methods
in the performance of some state of the art image analysis algorithms.
Another contribution was the development of an intelligent video player to help
roboticists in their work while they evaluate the recorded data after experi-
ments. Parts of the video that do not contain relevant information are skipped
during the play.
Based on the results, we concluded that ROS native compression is not suf-
ficient. Furthermore, solutions based on ROS, or virtually any robotic system
that has to deal with image/video data, would benefit with the use of a H.265
codec, as it provides the smallest number of bits per pixel without a significant
penalty on the performance of image analysis algorithms.
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CHAPTER 1
Introduction

Robotic systems are becoming more and more common in society. Whether in supermarkets,
on the road, on the industry, etc. At the development phase, when performing real world
tests, there is a need for storing all sensor data. This stored sensor data will then be used to
simulate and operate at the laboratory, rather than on-site. However, the longer the robot
needs to operate autonomously during the testing phase, the more data needs to be recorded.
Moreover, sometimes there is the need to acquire sensor data from a remote location (remote
sensing). Not only the data has to be recorded, but it also has to be transmitted. The more
sensors the system has, the more data has to be transmitted simultaneously.

One of the main problems in the development and debugging of robotic systems is the
amount of data stored in files containing sensor data (ex. ROS proprietary log files - bags). If
we consider a robot that contains several cameras and other sensors, that collect information
from the environment several times per second, we quickly obtain very large files. Files that
can grow to several Gigabytes in a matter of minutes. Besides the concerns regarding storage
and, in some cases, transmission, it becomes extremely hard to find important information in
these files. Figure 1.1 contains such an example.

In this thesis, we try to solve both problems, studying and implementing data compression
solutions to reduce the size of the referred files. The main focus is image and video compression,
by far the most storage consuming data. We performed experiments with the native Robot
Operating System (ROS) compression standards Bzip2 [1][2], LZ4 [3][4], PNG [5], JPEG [6]
and Theora [7] to measure their effectiveness. Besides the native compression standards, several
state of the art compression standards are tested, more specifically JPEG2000 [8], JPEG-
LS [9], Better Portable Graphics (BPG) [10], H.264 [11]–[13] and H.265 [14][15]. Moreover, we
conduct a detailed study about the effect of lossy compression methods in the performance
of some state of the art image analysis algorithms, in the areas of facial recognition, face
detection, people detection, contour finding, color segmentation and feature extraction.

Another contribution of this thesis was the development of an intelligent video player
to help roboticists in their work while they evaluate the recorded data after experiments.
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Evaluating the average bitrate and the real time bitrate parts of the video that do not contain
relevant information are skipped during the play.

Figure 1.1: Example bag representation using the tool rqt_bag. On the left it shows each topic
contained in the bag. On the right it presents the streams of data associated with each
topic. The camera topic also presents thumbnails.

1.1 Robot Operating System

Throughout this thesis we make extensive use of a framework for the development of software
for robots called Robot Operating System (ROS) [16]. Despite the name, ROS is not an
operative system in the traditional sense. It provides, however, an abstraction layer on top of
the host operating system. It is a modular framework that provides roboticists with a set of
libraries, tools, and conventions to aid in the development of software for robots.

ROS promotes collaboration between roboticists due to its modular approach, with the
use of packages. A package can contain nodes (processes), libraries, datasets, configuration
files, third-party software, drivers or anything else that provides something useful.

ROS is also designed to be as distributed as possible, providing a built-in low level message
passing interface that provides inter-process communication. The most used pattern of
communication between nodes is the publisher/subscriber pattern (Figure 1.2), however, nodes
can communicate using a variety of patterns, such as: publisher/subscriber, request/response,
parameter servers and record/playback.

For recording data, ROS provides developers with a special file format and tools for dealing
with the referred files. Such files are called bags.
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Figure 1.2: Diagram with an example of a publisher subscriber pattern [17].

The ROS bag file format is a logging format that is used for storing ROS messages. It
consists of a field that indicates the bag format version number and sequences of records.
Records contain headers and the data. There are 6 types of records (since version 2.0):

• Bag header holds information about the bag;
• Chunk holds connection and message records, which may be compressed using LZ4 or

Bzip2;
• Connection holds the header of a ROS connection;
• Message data contains the serialized message data and the ID of the connection;
• Index data holds an index of messages in a single connection of the previous chunk;
• Chunk info holds information about messages in a chunk.
Figure 1.3 contains a representation of the bag file format 2.0. A detailed description of

the underlying low level format is available at [18].

Figure 1.3: Block diagram representing the bag format 2.0 structure.

1.2 Main Contributions

The main objective of this thesis is to study the issues that arise in the development and
debugging of robotic systems, associated with the amount of data that requires logging. The
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main focus is image and video compression, due to the storage needs associated with this type
of data. With this in mind, the major contributions of this thesis are:

• Study the compression standards native to ROS.
• Study the improvement introduced with state of the art compression algorithms and

measure their benefits compared to the native standards.
• Conduct a detailed study on the effects of lossy compression in the performance of

several image analysis algorithms.
• Develop an intelligent video player to help roboticists in their work while they evaluate

the recorded data after experiments.

1.3 Thesis structure

This thesis is divided into 6 chapters and 4 appendixes.

• Chapter 2 presents a study of the compression standards and compressors native to
ROS. It also provides a set of measurements to assess the efficiency of referred standards
and compressors.

• Chapter 3 introduces state of the art compression standards and compressors. The
ROS native compression standards are put to test against the state of the art standards.

• Chapter 4 we conduct a detailed study on the effects of lossy compression on several
popular image analysis algorithms

• Chapter 5 presents the concept and implementation of the intelligent video player.
• Chapter 6 summarizes the conclusions of this work and indicates possible directions for

future work.
• Appendix A presents details about the Bags used in the development of this thesis.
Appendix B contains the details about the image datasets obtained from the referred
Bags.

• Appendix C contains code samples from the code implemented during the development
phase of this thesis.

• Appendix D contains information about all the software and hardware used throughout
this thesis.
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CHAPTER 2
Native compression

The Robot Operating System (ROS) already supports some compression mechanisms and
standards, the ROS native compression. In this chapter the compression algorithms Bzip2, LZ4,
PNG, JPEG and Theora will be introduced. The compression efficiency of these mechanisms
and standards will be explored.

Bag files can contain data from a variety of sensors, each with its own type of data. As
such, ROS can’t make any assumption on the type of data stored in the bag files. Not knowing
what kind of data the compressors are dealing with, the only type of compression that can be
used is lossless compression. With the introduction of ROS bag format 2.0, the bag file is
now divided into chunks that can be individually compressed, either using LZ4 or the Bzip2
compression algorithms.

The compression of bags and the compression of bag messages are important but different
concepts. Essentially, bag files contain serialized message data. Which means that, despite
the restriction on the type of compression that can be used on bag files, all the compression
algorithms supported on messages will also affect the compression on bag files. This leads us
to different compression paradigms, because, unlike bag files, messages are not type agnostic,
i.e., a message can only contain a specific type of data, depending on the message type.
With the Compressed Image Transport [19] plugin ROS is able to send Portable Network
Graphics (PNG) or Joint Photographic Experts Group (JPEG) images on messages and
consequently store them compressed in bag files, allowing the use of image specific compression
standards. Moreover, in addition to supporting image compression standards, there is also
the Theora image transport plugin [20], that supports Theora encoded messages.

2.1 Bzip2

Bzip2 [1] is a general purpose lossless data compressor. At the core, Bzip2 uses the Burrows-
Wheeler block sorting text transform [21], which is a block-sorting lossless data compression
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algorithm that works by applying a reversible transformation to a block of input. The
block size affects both the compression ratio achieved, and the amount of memory needed
for compression and decompression. This algorithm does not itself compress the data, but
reorders it to make it easy to compress with. After the transform Bzip2 uses Huffman coding
[22], which is a lossless data encoding algorithm that generates optimal variable length prefix
codes.

Bzip2 supports block sizes from 100kilobytes to 900kilobytes. ROS uses Bzip2 with a block
size of 900kilobytes, which provides the best compression ratios, while increasing memory
usage and compression time. Moreover, Bzip2 provides a low-level programming interface
library which allows for compression/decompression of data in memory, suitable for embedding
on applications. While providing very good compression ratios Bzip2 is actually really slow
for speed sensitive systems. [2]

2.2 LZ4

LZ4 is a lossless compression algorithm based on LZ77 [23], a lossless dictionary based
compression algorithm that works by replacing repeated occurrences of data with a reference
to a single copy of the referred data. One of the main goals of LZ4 is to be simple by design.
It achieves reasonable compression ratios at really fast speeds [3]. LZ4 is often used for
compression data before transmission due to its high speed. For long term storage LZ4 is
unsuitable, as it trades compression efficiency for speed efficiency. A complete reference of the
low level LZ4 data format can be found at [4].

2.3 PNG

PNG is an open extensible image standard that supports lossless compression of images.
Developed in the mid 1990s, the project started because of patent problems surrounding the
GIF file format. Designed to be open and flexible, suitable for internet usage and support
many different types of images, PNG has three main features when compared to the older
GIF format [24]:

• transparency (alpha channel);
• gamma correction;
• two-dimensional interlacing.
PNG supports filtering, which is a pre-compression step that converts data values into

values which are easier to compress. Like predictive coding, a value is predicted for the pixel.
This value is then subtracted from the pixel value and the residual is obtained. Although in
some cases filtering does not improve compression, generally, PNG obtains much better results
by applying filtering before compressing. As a non-realistic example, take into consideration a
sequence of bytes which sequentially increments 1 from 1 to 255. By encoding this sequence,
the encoder would achieve little compression or none at all. However, with a small modification
to the sequence by replacing the bytes by the difference between them and their predecessor,
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excluding the first byte, a sequence of 1s would be obtained, which, when encoded, obtains
much better compression results [5].

PNG uses 5 types of filters.
• none;
• sub;
• up;
• average;
• Paeth filter based on the algorithm of Alan W. Paeth [25].

At the core of PNG’s compression scheme is Deflate [26], a lossless compression data format
that compresses data using a combination of the LZ77 [23] algorithm, a dictionary based
compression algorithm, with up to 32kilobytes sliding window sizes and Huffman coding [22].

2.4 JPEG

JPEG is a image compression standard for continuous-tone still images, either gray scale or
color. Its name is an acronym for Joint Photographic Experts Group (JPEG). It is a result of
a collaboration between the International Standards Organization (ISO) and CCITT. JPEG
is one of the most widely known standards for lossy image compression, and like other lossy
image compression standards, it takes advantage of the human visual system perception of
images. Figure 2.1a contains the baseline encoder block diagram of JPEG and Figure 2.1b
contains the decoder block diagram.

(a) JPEG encoder block diagram.

(b) JPEG decoder block diagram.

Figure 2.1: JPEG codec block diagram [6].

JPEG uses a transform coding approach using a Discreet Cosine Transform (DCT) with
an uniform mid-tread quantization. This process requires several steps, firstly each unsigned
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pixel in the image gets level shifted, i.e., subtracted by 2(P −1) where P is the number of bits
per pixel, for example, on a 8-bit image, each pixel gets subtracted by 128, secondly the image
gets divided into blocks of size 8 x 8, which are then transformed using an 8 x 8 forward
DCT. After the transform, the coefficients are quantized and encoded. When there is heavy
quantization some visible block artifacts will appear, like with any other block transform
coding.

Figure 2.2 contains a practical example of the transform, quantization and the inverse
process, adapted from Wallace [6].

Figure 2.2: JPEG transform, quantization and the inverse example procedure [6].

Matrix (d) on Figure 2.2 contains the quantized coefficients, which are the ones that
are encoded using Huffman codes, with a specific order [6] to ensure optimal compression
(Zig-Zag).

JPEG supports four modes of operation: sequential, progressive, lossless and hierarchical,
however, neither lossless nor hierarchical will be used throughout this thesis. Sequential
is considered the baseline mode of operation and every enCOder/DECoder (codec) should
contain this mode in order to be considered JPEG compatible. The progressive mode consists
of the same steps as the baseline. However, each image component is encoded in multiple
scans rather than in a single scan. By doing this the first scan encodes a recognizable version
of the image. The resulting image can be transmitted faster when comparing with the total
transmission time. The more scans the more refined the image gets, until it reaches the level
of image quality specified by the quantization tables.
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2.5 Theora

Theora is a patent free video compression format from the Xiph.org Foundation as part of
their Ogg project, originally derived from ON2’s VP3 [7].

Video compression can be viewed as image compression with a temporal component since
video consists of a timed sequence of images. A video codecs takes advantage of the temporal
correlation between sequential frames, removing eventual temporal redundancy. As discussed
in Section 2.3, having some sort of prediction mechanism allows for better results when
compressing images. In video compression this is taken a step further and, not only there is
spatial prediction (like in image compression), but there is also temporal prediction. This
means that previous (or even future) frames are used for prediction. The goal of this type of
prediction is to reduce the redundancy between frames, by creating a predicted frame and
subtracting this from the current frame. The output of this subtraction is a block of residuals.

The more accurate the prediction the more efficient will be the compression. The accuracy
of the process can usually be improved by accounting for motion between objects in the
reference frame and in the current frame, this is called motion compensation. The prediction
errors, or residual blocks, are then transformed before coding, using an 8x8 DCT.

Frames that use spatial compression are called intra-picture frames and frames that use
temporal compression are called inter-picture frames. There are more types of frames, however,
Theora only supports this ones.

Although plagued by some troubles derived from the original VP3 code base, which led to
bad results on comparisons [27], some updates resolved the problem and now it obtains more
favorable results when compared with H.264 [28].

2.6 Experimental results

In this section we present several experimental results to show the speed and compression
efficiency of the ROS native compression. We also present results on the usage of both
ROS native image compression codecs and the ROS native general purpose compressors
simultaneously. The results obtained are compared to the efficiency of using raw images. For
this experiment we use the P0 Small bag (Appendix A.3, Figure 2.3). This bag contains
images with a resolution of 1296x964 pixels, laser scans, odometry data and debugging system
messages recorded on a robot at IEETA.
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Figure 2.3: Example frames from the P0 Small bag.

The results are obtained by playing the pre-recorded bag and compressing a set with a
maximum of 300 images at transport time. Both the Compressed image transport and the
Theora image transport ROS plugins are used for compression. For this experiment we use
PNG with the compression levels of 1, 3 and 6. JPEG with quality levels of 99 and 95 and
Theora with quality levels of 63 and 44.

Figure 2.4 contains a block diagram of the system used to perform the experiments.

Figure 2.4: Measurement system block diagram.

Table 2.1 presents the compression results of PNG, JPEG and Theora. It also presents
the reference value when using raw images.

Analyzing the results presented in Table 2.1 it is possible to divide the data into three
major groups according to the compression performance, as expected. The first group is
the lossless image compression group, which provides compression ratios between ≈ 2, 4 and
≈ 3, 3. The second group is the lossy image compression group which provides compression
ratios up down to ≈ 7 and the last group is the lossy video compression group which provides
compression ratios down to ≈ 135.
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Size(MiB) Ratio

raw 1072,43 1
PNG 1 441,35 2,43
PNG 3 423,08 2,53
PNG 6 326,33 3,29
JPEG 99 151,42 7,08
JPEG 95 63,41 16,91
Theora 63 7,95 134,91
Theora 44 3,79 282,74

Table 2.1: Compression efficiency of PNG, JPEG and Theora during recording, and the reference
value when using raw images.

It is possible to estimate the compressed size of the full bag by multiplying the ratio of
each standard by the filtered full bag size, which means that with PNG we would be able
to obtain a filtered compressed bag with size up to ≈ 1560Mib (compression level 1), with
JPEG up to≈ 540Mib and with Theora up to ≈ 28Mib. Moreover, if the bag has 152 seconds
of record time and considering each standard obtained size, only taking images into account,
for a full hour recording it would occupy up to ≈ 37000Mib with PNG, ≈ 12800Mib with
JPEG and ≈ 660Mib with Theora.

Table 2.2 contains the results for the speed efficiency of PNG, JPEG and Theora. According
to the results presented in Table 2.2 both JPEG and Theora do not affect the frame rate
of the recording however using PNG affects the number of frames per second that can be
recorded, even at the lowest level of compression, which makes it unsuitable for systems that
require high frame rate and compression during the recording phase.

Duration(s) Fps

raw 42,7 7,03
PNG 1 49 6,12
PNG 3 68 4,41
PNG 6 152 1,70
JPEG 99 42,7 7,03
JPEG 95 42,7 7,03
Theora 63 42,4 7,08
Theora 44 42,4 7,08

Table 2.2: Speed efficiency of PNG, JPEG and Theora during recording, and the reference value
when using raw images.

Table 2.3 and Table 2.4 contain the results when compressing with the general purpose
compressors LZ4 and Bzip2. Both compressors are not only tested with raw images but also
with the other compression standards, PNG with compression level 3, JPEG with quality
level 95 and Theora with quality level 63.

Looking at Table 2.3 it is possible to conclude that despite providing very fast compression,
LZ4 provides little compression when used alone and no significant compression when used
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simultaneously with the image compression standards, in fact, it might even increase the size
of the bag file.

LZ4 Size(MiB) Duration(s) Fps Ratio

raw 944,27 42,7 7,03 1,14
JPEG 95 63,39 42,7 7,03 16,92
PNG 3 423,22 70 4,29 2,53

Theora 63 7,94 42,4 7,08 135,04

Table 2.3: Image compression and LZ4 simultaneously during recording.

Looking at Table 2.4 it is possible to conclude that using Bzip2 at recording time with raw
images, the frame rate drops by about 3 frames per second, while using Bzip2 simultaneously
while the other compression standards drops frame rate slightly compared to using only the
other compression standards.

Unlike LZ4, Bzip2 provides good compression ratios when used with raw images, however,
it still does not compete with a image compression standard like PNG, even at the lowest
compression level, and when used simultaneously with the other compression standards, like
LZ4, it provides no significant improvements and, in fact, might even aggravate the results.

BZ2 Size(MiB) time(s) Fps Ratio

raw 302,07 42,7 4,43 2,24
JPEG 95 62,57 42,7 7,03 17,14
PNG 3 424,20 74 4,05 2,53

Theora 63 7,89 47,4 6,33 135,98

Table 2.4: Image compression and Bzip2 simultaneously during recording.

It should be noted that, when recording with PNG with a compression level of 6, the end
of the bag was reached before PNG could compress the 300 images, which means that, during
the duration of the bag, using PNG, we only managed to compress 258 frames. The same
thing happened when compressing at record time with Bzip2, the difference being that, with
Bzip2, we only managed to compress 189 images for the duration of the bag.

In summary, PNG is not ideal for systems that require lossless compression as it is very
slow and provides mediocre compression. As a result, newer and improved state of the art
lossless compression standards need to be explored to overcome the weaknesses that PNG
introduces in ROS.

JPEG provide sufficient compression, whenever lossy compression is possible, at the cost
of image quality. Theora provides good compression ratios, however, like JPEG, at the cost of
image quality. Moreover, using either LZ4 or Bzip2 on systems that, for the most part, only
record images, provides no benefit as the overhead only increases size. For recording data on
systems that record more than images, Bzip2 can be used for compression after the recording
is finished, as it provides very good compression ratios on non image data, and LZ4 can be
used during recording, as it is very fast at compressing.
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CHAPTER 3
State of the art compression

algorithms

In this chapter we provide two alternatives to Bzip2 and LZ4. We also present newer and
improved state of the art image and video compression algorithms. The ROS native image
and video compression algorithms will be put to test against the state of the art algorithms.

3.1 General Purpose Compression Algorithms

Both Bzip2 and LZ4 provide good results for their specific use case. However, if there is a
need for better general purpose compressors we provide here two alternatives: Brotli [29] and
lbzip2 [30]. Brotli is a general purpose lossless compression algorithm that uses a variant
of the LZ77 algorithm [23], Huffman coding [22] and context modeling. It achieves slightly
better ratios than Bzip2 at about the same speed [31], [32]. Lbzip2 is a general purpose
multi-threaded lossless compressor that is fully compatible with Bzip2. It provides the same
ratios as Bzip2 but at a much faster speed, due to the advantage of supporting symmetric
multiprocessing [33].

3.2 JPEG2000

JPEG2000 is an image compression standard, created by the Joint Photographic Experts
Group (JPEG) committee in the year 2000, with the intention of superseding their DCT-based
image compression standard, JPEG. Based on wavelet decomposition, JPEG2000 is composed
of many parts, that deal with a variety of applications. However, for this thesis, only the basic
image compression part is relevant. Figure 3.1 contains the block diagram of a JPEG2000
encoder.
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Figure 3.1: JPEG2000 encoder block diagram.

Some of the main features of JPEG2000 are:
• Superior low bit-rate performance: when compared to the baseline JPEG;
• Continuous tone and bi-level image compression;
• Large dynamic range of the pixels: JPEG2000 allows for the (de)compression of

images with various dynamic ranges for each color component;
• Lossless and lossy compression: JPEG2000 can provide both the lossless and the

lossy mode of image compression;
• Fixed size can be preassigned: The user can select a desired size for the compressed

file;
• Region Of Interest (ROI) coding: Sometimes an image contains parts that are of
greater importance, with JPEG2000 it is possible to encode parts of an image with
higher quality(even lossless) compared to the less important parts;

• Random access and compressed domain processing:with JPEG2000 it is possible
to manipulate certain areas (or regions of interest) of the image, for example, replace
one object in the image with another.

The JPEG2000 compression system is divided into three main phases, the preprocessing
phase, the compression phase and the formation of the bitstream.

3.2.1 preprocessing

The preprocessing phase is composed of three optional operations, DC level shifting, multi-
component transformation and tilling.

DC level shifting

DC level shifting before transformation, and like in the baseline JPEG standard, the pixel
values are level-shifted by 2B−1 where B is the number of bits per value used for each
component of a pixel. DC level shifting is only applied if the pixel values are unsigned.
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Multicomponent transform

Multicomponent transform is the transformation of the image color space into another color
space. JPEG2000 supports two multicomponent transformations, a reversible color transform
and a irreversible color transform. The reversible color transform transforms the original Red,
Green and Blue (RGB) values into YUV values and allows for a lossless reversible transform
back to RGB and is done using the following formulas:


Y =

[
R+2G+B

4

]
U = B − G

V = R − G

 ,

and the inverse: 
R = V + G

G = Y −
[

U+V
4

]
B = U + G

 .

The irreversible color transform is the same used in baseline JPEG and introduces error
because it uses non integer coefficients on the transformation formulas. The formulas used
are: 

Y = 0, 299R + 0, 587G + 0, 144B

U = −0, 16875R − 0, 33126G + 0, 5B

V = 0, 5R − 0, 41869G − 0, 08131B

 ,

and the inverse: 
R = Y + 1.402V

G = Y − 0.34413U − 0.71414V

B = Y + 1.772U

 .

Tilling

Tilling consists of dividing the image into non overlapping tiles (blocks), all the tiles have
the same size, except those at the boundaries when image dimension is not a multiple of
the tiles dimension. Tile size is variable up to the size of the original image (unlike baseline
JPEG). Each image component is represented at the same tile, i.e., on a gray scale image a
tile contains one component, on a multi component image a tile contains all components. For
very low bit-rate compression some visible artifacts may appear due to heavy quantization,
like in JPEG or any other block transform coding.
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Figure 3.2: Example of the blocking artifacts [34].

3.2.2 Compression

After the preprocessing phase comes the compression, which can be divided into three
sequential phases, the Discreet Wavelet Transform (DWT), quantization and entropy encoding.
Firstly the DWT coefficients are calculated and quantized using a midtread quantizer and then
they are coded using the embedded block coding with optimized truncation (EBCOT) [35]
algorithm. According to T. Acharya and P.-S. Tsai: "The main drawback of the JPEG2000
standard compared to current JPEG is that the coding algorithm is much more complex and
the computational needs are much higher." [8].

3.3 JPEG-LS

JPEG-LS [9] is a standard for lossless and near-lossless compression of continuous tone
still images. It has been developed by the Joint Photography Experts Group(JPEG), like
JPEG and JPEG2000, with the aim of providing better compression efficiency than lossless
JPEG whilst keeping the standard with low complexity. Generally JPEG-LS provides better
compression ratios and coding speeds when compared with PNG [36], [37]. When the initial
proposals for the new lossless compression standard were requested the following requirements
were defined[38]:

1. Provide lossless and near-lossless compression.
2. Target 2 to 16 bit still images.
3. Applicable over wide variety of content.
4. Should not impose any size or depth restrictions.
5. Field of applicability include Medical, Satellite, Archival etc.
6. Implementable with reasonable complexity.
7. Significantly better than current lossless standards.
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8. Capable of working with a single pass through data.
JPEG-LS is based on the LOw COmplexity LOssless COmpression for Images (LOCO-I)

algorithm that, like PNG, relies on prediction however, unlike PNG, uses context modeling of
the residuals prior to encoding. Figure 3.3 contains the basic block diagram of JPEG-LS.

Figure 3.3: JPEG-LS block diagram [39].

3.3.1 Prediction

For prediction a fixed predictor is used , the Median Edge Detection (MED) predictor [40],
which adapts whenever it finds local edges. This predictor takes into account vertical and
horizontal edges, by examining the North, West and Northwest neighbors of the current pixel.

3.3.2 Context modeling

JPEG-LS makes use of a very simple context model where each pixel is assigned to a context.
Contexts are determined by three values based on the neighboring pixels of the pixel to be
predicted. These gradients represent an estimate of the local gradient, thus capturing the
level of activity (smoothness, edginess) allowing JPEG-LS to exploit higher-order structures
such as texture patterns and local activity in the image for further compression gains. A more
detailed look at context modeling in JPEG-LS is available at [39].

3.3.3 Coding

In JPEG-LS, prediction errors are encoded using a special case of Golomb codes [41] which is
also known as Rice coding [42]. These codes are optimal for data that follows a two-sided
geometric distribution centered at zero, in which the occurrence of small values is significantly
more likely than large values.

On low entropy images or image regions Rice codes are not optimal as the best coding
rate achievable is 1 bit per symbol. JPEG-LS uses an alphabet extension mechanism, in order
to effectively code this regions, that switches to a run-length mode when a uniform region is
encountered.
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3.3.4 Near-Lossless Compression

Besides lossless compression, JPEG-LS also provides a lossy mode of operation where the
maximum absolute error between the original and reconstructed values can be controlled by
the encoder, known as the near-lossless mode. This mode will not be used throughout this
thesis.

3.4 H.264

H.264, also known as Advanced Video Coding (AVC), is a video compression standard, created
by the Joint Video Team (JVT), consisting of VCEG (Video Coding Experts Group) of ITU-T
(International Telecommunication Union—Telecommunication standardization sector), and
MPEG (Moving Picture Experts Group) of ISO/IEC in 2003.

It is a widely used standard that originated from the need for higher compression efficiency,
when compared to the older standards, the need for support of special video applications,
like DVD storage, video conferencing, video broadcasting and streaming, but also to achieve
greater reliability. Figure 3.4a contains a typical encoder block diagram of H.264 while Figure
3.4b contains the typical decoder block diagram of H.264.

(a) Typical H.264 encoder block diagram.

(b) Typical H.264 decoder block diagram.

Figure 3.4: H.264 codec block diagrams [11].

H.264 defines four main profiles, baseline, extended, main and high. From these profiles
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several other profiles are also defined. Each profile contains a set of encoding functions, and
each is intended for different video applications. The baseline profile is designed for video
telephony, video conferencing, and wireless communication. The extended profile is intended
for streaming video and audio. The main profile is designed to handle television broadcasting
and video storage. The high profile is designed for achieving significant improvement in coding
efficiency for higher fidelity material, such as high definition TV/DVD. The main components
of each profile can be found at Figure 3.5. A more in depth description of each profile can be
found at [11], [12] and for the high profile [13].

Figure 3.5: H264 profile components [13].

In H.264 each picture is divided into a series of Macroblocks (MBs). A MB corresponds
to a block of 16x16 pixels which can be subdivided into smaller blocks and partitioned into
luma and chroma components to be processed separately. MBs can be considered the basic
coding unit in H.264.

To aid in transmission or streaming H.264 provides some high level networking headers
and flags. However, the coded video data is stored in units, known as slices. Each slice is
divided into the slice header and the slice data, which is a series of coded MBs. There are
several types of slices:

• I slices contain intra predicted macroblocks.
• P slices contain intra or inter predicted macroblocks from only one reference.
• B slices contain intra or inter predicted macroblocks from one or two references
(biprediction). Type B slices are used in the main profile.

• SP and SI slices are specially-coded slices that enable, among other things,efficient
switching between video streams and efficient random access for video decoders. They
are used in the extended profile [43].

A overview of the high level syntax architecture of H.264 is found on Figure 3.6.
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Figure 3.6: High level overview of a H.264 bitstream hierarchy [44].

3.4.1 Intra-picture prediction

As previously mentioned, intra-picture prediction exploits the spatial correlation among pixels,
like image compression.

In H.264 the image is divided into blocks, which will be subtracted by a prediction block
P, obtaining the residuals. P is based on the previously encoded block, exploiting the spatial
correlation between sequential blocks.

In H.264 intra-picture prediction is divided into three types. The luma 4x4 block, the luma
16x16 macroblock and the chroma prediction. The luma block prediction modes consist of 8
directional modes for edge detection and a mean-based method (DC prediction). The luma
macroblocks prediction modes only take into account horizontal or vertical edges, the same
mean-based method (DC prediction) available for the luma blocks and a planar method that
detects areas of smoothly varying luminance. The chroma components prediction is similar to
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the luma macroblock prediction modes. Figure 3.7a contains a graphical representation of
the 4x4 luma blocks prediction modes. Figure 3.7b contains a graphical representation of the
16x16 luma blocks and chroma blocks prediction modes.

(a) 4x4 luma block prediction modes.

(b) 16x16 luma block and chroma block prediction modes.

Figure 3.7: H.264 intra-picture prediction modes [44].

3.4.2 Inter-picture prediction

Inter-picture prediction, unlike intra-picture prediction, exploits the temporal redundancy in
a sequence of frames, the temporal correlation is reduced by the use of motion estimation
and compensation algorithms. Using a block-based motion compensation, H.264 creates a
prediction model from one or more previously encoded video frames.

The most important differences between inter-picture prediction in H.264 and the older
standards is the support for a range of block sizes (from 16x16 to 4x4) and more precise
subsample motion vectors (quarter-sample resolution for the luma component). An example
of motion estimation with integer and subpixel reference blocks can be found at Figure 3.8.
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(a) (b) (c)

Figure 3.8: H.264 inter-picture prediction motion estimation [44]. (a) contains a 4x4 block in the
current frame. (b) contains the reference block in the reference frame. (c) contains a
subpixel reference block.

3.4.3 Transform and Quantization

H.264 uses different transform methods, depending on the type of residual data to be
transformed. For the DC coefficient blocks obtained from the prediction of intra luma
macroblocks and from the prediction of chroma DC coefficients a Hadamard transform [45]
is used, for everything else a DCT-based transform is used. The output coefficients of the
transform are then quantized. Quantization reduces the precision of the transform coefficients
according to the quantization parameter (QP).

3.4.4 Deblocking filter

One of the new features that H.264 contains when compared to the older standards is the
deblocking filter. The deblocking filter consists of a filter that is applied to each decoded
macroblock to reduce blocking artifacts that are introduced after the transform is applied.
The deblocking filter is applied after the inverse transform in the encoder and in the decoder.
The filter smooths block edges, improving the appearance of decoded frames. The filtered
image is the one that is used for motion-compensated prediction of future frames which might
improve the compression efficiency, because the filtered image is often a better approximation
of the original frame than the blocky image obtained from the inverse transform. Figure 3.9
contains the effect of the deblocking filter on a grayscale image.
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(a) Without deblocking filter. (b) With deblocking filter.

Figure 3.9: Effect of the deblocking filter [12].

3.4.5 Coding

H.264 uses several coding methods depending on the profile chosen or data that is going
to be coded. For the baseline profile, high level headers and flags are encoded using Fixed
Length Codes (FLC). For the quantized coefficient values Context-Adaptive Variable Length
Coding (CAVLC) is used. For the rest of the data, such as low level flags and parameters,
exponential Golomb codes are used. For the main profile, instead of using CAVLC and
exponential Golomb codes, H.264 uses Context-Adaptive Binary Arithmetic Coding (CABAC)
[46].

3.5 H.265

H.265, also known as High Efficiency Video Coding (HEVC), is a state of the art video
compression standard, the successor of the widely used AVC standard (H.264). Like H.264
it is the result of a collaboration between the ITU-T Video Coding Experts Group (VCEG)
and the ISO/IEC Moving Picture Experts Group (MPEG). H.265 can be considered an
extension of the older H.264 standard, with improvements on the coding efficiency achieved
by further exploring existing techniques but with the cost of increasing the complexity of the
encoder. Despite having some new design aspects that improve flexibility for operation on
several applications and network environments while improving robustness to data losses, the
high level syntax architecture used in H.264 has mostly been retained in H.265. Figure 3.10
contains a typical H.265 encoder block diagram.
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Figure 3.10: Typical H.265 encoder block diagram [14].

H.265 supports a broad range of applications. This is possible due to some variation in
capabilities and functionalities in H.265. This variation is handled by specifying multiple
profiles. In many applications, it is currently neither practical nor economical to implement
a decoder capable of dealing with all hypothetical uses of the syntax within a particular
profile. In order to deal with this problem each profile is subdivided into levels. A level is a
specified set of constraints, imposed on values of the syntax elements in the bitstream. These
constraints may be simple limits on values, i.e., levels can establish a limit on the picture
resolution, frame rate, buffering capacity, and other aspects that are matters of degree rather
than basic feature sets. However, this does not solve all problems. Professional environments
often require much higher bit rates for better quality than consumer applications, for the
same level. This was solved by introducing the concept of tiers, which define the bit rate
that the level is able to handle. Several levels in H.265 have both a Main tier and a High
tier, based on the bit rates they are capable of handling. H.265 defines several profiles, levels
and tiers. For the first version of this standard only three profiles existed, the main profile,
the main still picture profile and the main 10 profile. Following the newer releases of H.265,
several other profiles were added that extend or improve upon these three profiles.

One of the new changes brought by H.265 is the discontinuation of Macroblocks (MBs)
and the introduction of Coding Tree Units (CTUs), which conceptually are similar to MBs
but with support for a wider range of sizes (16x16 up to 64x64) and improved sub-partitioning.
A CTU represents the basic coding unit in H.265. Each CTU can then be partitioned into
smaller blocks, the Coding Units (CUs).
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3.5.1 Intra-picture prediction

H.265 has two intra-picture prediction categories, the Angular prediction methods form the
first category and provide the encoder with the possibility to model structures with angular
edges, the second category is composed of planar prediction and DC prediction that provide
the possibility to estimate smooth image structures. The angular prediction methods are
similar to the directional modes from H.264 but with support to a wider range of directions
(angles). The planar prediction and the DC prediction are the same as the ones used in H.264
with the same name. The total number of intra prediction modes is thirty five, planar taking
the first slot, DC the second and angular prediction taking the remaining 33 slots. Figure
3.11 contains a graphical representation of the intra-picture prediction modes of H.265.

Figure 3.11: Intra-picture prediction in H.265 [15].

3.5.2 Inter-picture prediction

Inter-picture prediction in H.265 is an improvement from the older H.264. A significant
improvement, besides the greater flexibility in partitioning the blocks, is the ability to
encode motion vectors with much greater precision, giving a better predicted block with less
residual error. There is also the introduction of a new tool called Advanced Motion Vector
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Prediction (AMVP) that improves the predictive coding of the motion vectors. A detailed list
of all improvements in inter prediction from the older H.264 can be found at [15]. Figure 3.12
contains a block diagram of HEVC inter-picture prediction module.

Figure 3.12: Inter prediction-picture in H.265 [15] ,blocks in faded gray represent the bi-prediction
path.

3.5.3 Transform and Quantization

H.265 specifies two-dimensional transforms of various sizes from 4x4 to 32x32 that are finite
precision approximations to the DCT. In addition, H.265 also specifies an alternate 4x4
integer transform based on the Discreet Sine Transform (DST) for use with 4x4 luma Intra
prediction residual blocks. The H.265 quantizer design is similar to that of H.264.

3.5.4 Filters

Deblocking filter

The deblocking filter in H.265 is similar to the deblocking filter in H.264. However, some
changes were made to improve efficiency and support for parallel processing. At the cost of
subjective quality, the deblocking filter is only applied to the block boundaries that lie at the
luma and chroma sample positions that are multiples of eight. This reduces computational
complexity which improves efficiency. It also improves parallel processing by preventing
cascading interactions between nearby filtering operations. In H.264 the deblocking filter is
applied to vertical or horizontal edges of 4x4 blocks in a MB.

Sample Adaptive Offset filter

One of the new features introduced in H.265 is the Sample Adaptive Offset filter (SAO). The
SAO consists of a filter that is designed to remove or reduce the mean sample distortion of a
region. It works by first classifying the region samples into multiple categories with a selected
classifier, obtaining an offset for each category, and then adding the offset to each sample of
the category, where the classifier index and the offsets of the region are coded in the bitstream.
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The SAO is applied to the output of the deblocking filter. A more detailed introduction to
the Sample Adaptive Offset filter (SAO) is available at [47].

3.5.5 Coding

H.265 uses the same entropy coding method that the main profile of H.264 uses, Context-
Adaptive Binary Arithmetic Coding (CABAC) [46] , with a mixture of zero-order exponential
golomb codes [44] .

3.5.6 BPG

BPG is a file format for compressed images, based on a subset of the intra-picture mode of
H.265. H.265 contains several profiles defined for still-picture coding. These profiles use the
intra-frame encoding with various bit depths and color formats. Some of those profiles are
the Main Still Picture, Main 4:4:4 Still Picture, and Main 4:4:4 16 Still Picture profiles. BPG
is a wrapper for the Main 4:4:4 16 Still Picture Level 8.5 H.265 profile, with only up to 14
bits per sample. BPG uses a slightly different bitstream format that is based on H.265 but
strips all the unnecessary headers for image compression. A complete specification can be
found here [10].

3.6 Experimental Results

Most of the codecs used throughout this thesis provide extensive customization parameters.
The idea of testing all the possibilities is unrealistic, so a subset of the codecs functionality
was chosen for these experiments. The subset was the following:

• PNG with compression level of 1, 3, 6 and 9.
• JPEG with qualities 80, 90, 95 and 99.
• Theora with quality 10 and 7 (corresponds to qualities 63 and 44 used in the previous
chapter).

• JPEG-LS with default settings.
• JPEG2000 with compression ratios of 5x, 10x, 20x and 40x and also lossless mode.
• H.264 and H.265 with a Constant Rate Factor (CRF) of 13 and 28, the lossless mode
was also tested, each parameter was tested with two presets, medium and ultrafast.

• BPG with a quantizer parameter (similar to CRF) of 13 and 28, the lossless mode was
also tested, each parameter was tested with a compression level of 1 and 5 (fast and
medium).

To determine the efficiency of the codecs we execute a script that first compresses and
decompresses the dataset sequentially with all the combinations provided in the subset above
and lastly calculates the average Peak Signal to Noise Ratio (PSNR) for all the targets.
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Figure 3.13: Simplified block diagram of the experiment procedure.

We focus on two important metrics when determining the efficiency of the compression
standards, the speed efficiency and the compression efficiency. In order to determine the
speed efficiency of a compression standard both the compression and decompression times are
measured. All compression and decompression times are obtained with the Linux time utility.
The experiment is executed with maximum priority to avoid context switches and other
interruptions that would change the fairness of the experiment. The command to execute
with maximum priority is presented bellow:

$ sudo chrt -f 99 bash experiment.sh &> result.txt

After the compression and decompression times are recorded, the size (in MiB) is taken
into account and the average of bits per pixel (bpp) is calculated for each standard. For
obtaining the relation between the number of bits per pixel (bpp) and PSNR a broader subset
of codec qualities for each lossy standard was used:

• JPEG with a quality range of 10:100 with a step of 10.
• Theora with a quality range of 1:10 with a step of 3.
• JPEG2000 with compression ratios of 5x, 10x, 20x, 40x, 80x and 100x.
• H.264 and H.265 with a CRF range of 1:51 with a step of 5 at the ultrafast preset.
• BPG with a CRF range of 1:51 with a step of 5 and compression level 1.
The experimental results are discussed in three parts. The first part considers the results

for the lossless codecs, the second part considers the results for the lossy codecs and the third
part contains the relation between the number of bits per pixel (bpp) and the average PSNR
of the lossy codecs. For this experiment we use three image datasets: The Alboi moving
(Appendix B.1) and Alboi mixed (Appendix B.2) image datasets and the P0 Large image
dataset (Appendix B.4).

Both the Alboi moving and Alboi mixed image datasets contain image sequences from
the Alboi bag (Appendix A.1, Figure 3.14) with a resolution of 1624x1224 pixels. The P0
Large image dataset contains images from the P0 Large bag (Appendix A.2, Figure 3.15) with
a resolution of 1296x964 pixels. The Alboi moving image dataset contains image sequences
with movement. The Alboi mixed image dataset contains mixed image sequences, the first
half consists of still image sequences and the second half of motion image sequences. The P0
Large image dataset contains still image sequences.
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Figure 3.14: Example frames from the Alboi bag.

Figure 3.15: Example frames from the P0 Large bag.
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3.6.1 Lossless

Table 3.1 presents the speed efficiency results for the lossless modes of the compression
standards. According to the experimental results presented in Table 3.1 the fastest standard
is H.264, followed by PNG with low compression levels and H.265 ultrafast preset. Moreover,
JPEG2000, H.265 medium preset mode, JPEG-LS, BPG with low compression level and
PNG with medium compression levels provide mediocre speeds while BPG with medium
compression levels and PNG with high compression levels provide poor speeds.

In Chapter 3.3 it is mentioned that generally JPEG-LS provides much faster compression
speeds than PNG, while this is true for higher compression levels, our experiments show that,
with the codec that we used to represent JPEG-LS, PNG with low compression levels is much
faster that JPEG-LS.

Alboi moving Alboi mixed P0 Large
C Time(s) D Time(s) C Time(s) D Time(s) C Time(s) D Time(s)

H.264 uf 8 15 8 14 5 9
H.264 md 73 22 70 20 42 11
PNG 1 85 35 97 33 50 22
H.265 uf 127 41 106 39 51 20
PNG 3 115 34 141 33 64 22

JPEG2000 223 161 204 147 135 94
H.265 md 262 35 252 37 125 17
JPEG-LS 329 315 304 290 178 173
PNG 6 364 35 324 33 183 22

BPG fast 388 104 373 97 223 59
BPG md 506 102 493 97 296 59
PNG 9 1087 34 1824 32 732 21

Table 3.1: Speed efficiency of the lossless codecs.

Table 3.2 shows the results for the compression efficiency of the lossless standards in
size(MiB) and bits per pixel(bpp). Analyzing the results presented in Table 3.2 it is possible
to conclude that BPG is the most compression efficient, followed by JPEG-LS and H.264
medium preset. The worst results belong to PNG, that, when compared to the most efficient
standard tested, has more than double bits per pixel. JPEG2000 provides mediocre results in
all situations. As expected, both H.264 and H.265 show improvement when we transition to
datasets with little to no movement, due to the temporal prediction, which none of the image
compression standards use.
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Alboi moving Alboi mixed P0 Large
Size(MiB) bpp Size(MiB) bpp Size(MiB) bpp

BPG md 292,63 4,12 256,44 3,61 156,87 3,51
BPG fast 292,91 4,12 256,72 3,61 156,99 3,51
JPEG-LS 424,32 5,97 373,52 5,25 229,57 5,14
H.264 md 437,44 6,15 373,56 5,25 218,31 4,89
H.265 md 515,05 7,25 420,95 5,92 239,46 5,36
H.265 uf 550,40 7,74 440,59 6,20 246,70 5,52
H.264 uf 533,20 7,50 462,46 6,51 273,25 6,12
JPEG2000 551,32 7,76 495,71 6,98 307,68 6,89
PNG 9 597,41 8,40 528,07 7,43 325,34 7,28
PNG 6 606,68 8,53 546,57 7,69 332,23 7,44
PNG 3 673,02 9,47 606,73 8,53 371,90 8,32
PNG 1 708,91 9,97 644,27 9,06 391,38 8,76

Table 3.2: Compression efficiency of the lossless codecs.

3.6.2 Lossy

Table 3.3 presents the speed efficiency results for the lossy modes of the codecs used to
represent the compression standards. According to the experimental results presented in Table
3.3, and when comparing similar quality levels, the fastest lossy standard is H.264, followed
by JPEG and H.265. Theora shows little speed difference when changing quality levels. Both
BPG and JPEG2000 are slow. Looking at decompression times, all standards provide similar
results with the exception of BPG and JPEG2000 which require substantially more time to
decompress.

Table 3.4 shows the results for the compression efficiency of the lossy standards in size (MiB)
and bits per pixel (bpp). From the table we can observe, comparing similar qualities, that
video compression standards, for the most part, provide the best compression when compared
to image compression standards. Moreover, the efficiency of the video compression standards
increases whenever movement in the image datasets reduces. Of all the video compression
standards H.265 provides the best results followed by H.264 and lastly Theora. When the
dataset contains high motion, the image compression standards provide very competitive
results. BPG and JPEG2000 provide the best results of all the image compression standards,
with BPG providing slightly better results than JPEG2000.
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Alboi moving Alboi mixed P0 Large
C Time(s) D Time(s) C Time(s) D Time(s) C Time(s) D Time(s)

H.264 28 uf 5 11 4 10 2 7
H.264 13 uf 6 13 6 12 4 7
JPEG 80 15 19 13 19 10 11
JPEG 50 15 19 16 16 10 16

H.265 28 uf 28 12 17 12 6 7
JPEG 90 21 21 19 20 13 12
JPEG 95 25 22 22 22 16 13

H.264 28 md 38 12 23 11 8 7
H.265 13 uf 48 13 33 16 12 8
JPEG 99 37 27 33 26 22 15
Theora 7 62 11 53 10 31 7

H.265 28 md 83 12 55 14 21 7
Theora 10 65 11 56 11 33 7

H.264 13 md 85 14 73 13 37 8
H.265 13 md 148 15 123 19 58 9
BPG 28 fast 177 41 168 38 109 23
BPG 28 md 210 44 199 51 133 28

JPEG2000 40x 230 55 212 48 144 31
JPEG2000 20x 234 59 218 57 147 39
JPEG2000 10x 242 76 223 76 150 51
JPEG2000 5x 253 113 239 111 157 75
BPG 13 fast 300 75 271 68 174 41
BPG 13 md 381 75 339 72 220 45

Table 3.3: Speed efficiency of the lossy codecs.
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Alboi moving Alboi mixed P0 Large
Size(MiB) bpp PSNR Size(MiB) bpp PSNR Size(MiB) bpp PSNR

H.265 28 md 3,23 0,05 39,42 0,84 0,01 41,81 0,18 0,003 41,16
H.265 28 uf 2,59 0,04 38,87 1,38 0,02 41,05 0,14 0,004 40,19
H.264 28 md 6,71 0,09 40,30 2,62 0,04 42,38 0,35 0,01 41,57
H.264 28 uf 10,38 0,15 37,40 3,82 0,05 40,89 0,68 0,02 41,08
Theora 7 14,83 0,21 41,31 6,16 0,09 42,97 1,47 0,03 41,85

BPG 28 md 11,15 0,16 41,80 8,33 0,12 43,20 8,29 0,19 41,27
BPG 28 fast 11,24 0,16 41,77 8,38 0,12 43,17 8,29 0,19 41,23
Theora 10 27,44 0,39 42,40 11,6 0,17 43,56 4,34 0,10 42,93
H.265 13 uf 24,32 0,34 42,28 11,80 0,17 43,48 4,49 0,10 42,65
JPEG 50 19,74 0,28 39,74 15,1 0,22 41,15 12,97 0,29 39,21
JPEG 80 36,91 0,52 41,56 27,68 0,39 42,74 21,17 0,47 40,58

H.265 13 md 48,92 0,69 43,36 33,20 0,47 44,71 15,73 0,35 44,21
JPEG2000 40x 45,78 0,64 43,42 45,78 0,65 44,79 29,38 0,66 43,83

JPEG 90 87,26 1,23 44,55 65,83 0,93 45,54 48,23 1,08 44,30
BPG 13 md 104,28 1,47 45,23 75,38 1,06 46,18 54,74 1,23 44,19
BPG 13 fast 104,95 1,48 45,22 76,22 1,07 46,16 55,36 1,24 44,19
H.264 13 md 105,73 1,49 44,36 80,16 1,13 45,35 40,35 0,90 44,76
JPEG2000 20x 87,97 1,24 44,96 87,97 1,24 46,45 56,33 1,26 45,38

JPEG 95 143,12 2,01 45,57 115,56 1,63 46,54 80,01 1,79 45,73
H.264 13 uf 131,30 1,85 43,21 125,29 1,76 44,95 84,11 1,88 45,26

JPEG2000 10x 173,52 2,44 46,37 173,52 2,45 47,92 110,24 2,47 47,34
JPEG 99 368,17 5,18 48,47 302,79 4,26 48,91 201,38 4,51 49,19

JPEG2000 5x 344,60 4,85 50,03 344,61 4,85 51,78 217,14 4,86 51,52

Table 3.4: Compression efficiency and image quality of the lossy codecs.
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3.6.3 Relation between bits per pixel and PSNR

It is clear from the results presented in this chapter that lossy compression provides better
compression and speed efficiency when compared to lossless compression. Of all the tested
standards, in general, the video compression standards provide the best results. However, as
only a small subset of each standard is tested and in order to obtain a more detailed study on
the relation between bits per pixel and PSNR, a wider range of compression levels needs to
be chosen, going from high to low compression. For H.265, BPG and H.264 we use a range of
CRF from 1 to 51 with a step of 5, all at the fastest preset. For JPEG a range of quality from
10 to 100 with a step of 10. For Theora a quality range from 4 to 10 with a step of 3, quality
1 was omitted because when decoded a different number of frames is obtained, instead of the
300. For JPEG2000 a compression ratio between 5 and 100 with a multiplication step of 2.

Figure 3.16 presents the results for the bits per pixel/PSNR relation for the Alboi moving
image dataset (Appendix B.1). For smaller PSNR values H.265 dominates by a wide margin.
For higher PSNR values both BPG and JPEG2000 provide the best results.

Figure 3.16: Bits per pixel/PSNR relation in the Alboi moving image dataset (B.1). The X axis
represents the PSNR and the Y axis represents the bits per pixel.

Figure 3.17 contains the bits per pixel/PSNR for the Alboi mixed image dataset (Appendix
B.2). As this dataset contains a sequence of frames with little motion, it provides better
conditions for the video compression standards. As such both H.264 and H.265 provide much
better PSNR at lower bits per pixel. Moreover, Theora also significantly improves, beating
BPG at lower PSNR values. As such, the lower PSNR values are still dominated by H.265.
For higher PSNR value both BPG and JPEG2000 continue to provide the best results.
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Figure 3.17: Bits per pixel/PSNR relation in the Alboi mixed image dataset (B.2). The X axis
represents the PSNR and the Y axis represents the bits per pixel.

Figure 3.18 contains the bits per pixel/PSNR for the P0 Large image dataset (Appendix
B.4). As this dataset contains minimal motion all the video compression standards show
significant improvement compared to the other datasets. For low PSNR values H.264 beats
H.265 by a small margin and provides the best results. For higher PSNR values H.265 provides
the best compression. For the highest PSNR values, that H.265 doesn’t reach, JPEG and
JPEG2000 have similar compression efficiency.

In summary, H.265, BPG and JPEG2000, for the most part, provide the best compression
efficiency for the entire PSNR spectrum. Considering that BPG is a subset of H.265 and
BPG and JPEG2000 obtain similar results we discard JPEG2000 from further tests.. With
this in mind we conclude that ROS could benefit with the implementation of a H.265 codec.
Moreover, since H.265 provides lossless and lossy video compression, with intra-picture coding
only if necessary, ROS would also benefit from only having to deal with one code base instead
of a separate code base for each standard that is already implemented.
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Figure 3.18: Bits per pixel/PSNR relation in the P0 Large image dataset (B.4). The X axis represents
the PSNR and the Y axis represents the bits per pixel.
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CHAPTER 4
Effects of lossy compression

In the previous chapter we concluded that lossy compression standards provide optimal results
and that ROS would significantly benefit from the implementation of a H.265 codec. However, it
is known that lossy compression works by discarding information. Typically lossy compression
standards are fine tuned for discarding information based on human perception. In this chapter
we conduct a detailed study on the effects of lossy compression in the performance of several
image analysis algorithms when using H.265 or the native compression standards, JPEG and
Theora.

It is known that over compressing JPEG images may take a toll on some image analysis
algorithms [48]–[50]. In this chapter, we provide a detailed study on the effects that excessive
compression with H.265, JPEG and Theora has on several popular image analysis algorithms,
ranging from high level operations, such as facial recognition, object detection (face and
body) and color segmentation, to low level operations, such as finding contours and feature
extraction. We chose those algorithms with the intent of covering a wide range of image
analysis operations used in robotics.

Each chosen algorithm is executed as a ROS node, which allows us to take advantage of
ROS parameter passing. Each experiment is started individually with the proper parameters
set and the help of a script (Appendix C.1). In order to carry on with the experiments, we
select a range of compression levels and qualities for each standard. For the facial recognition
experiment we use H.265 with a range of CRF from 1 to 51 with a step of 5. JPEG with
range of quality from 10 to 100 with a step of 10. Theora with range of quality from 1 to 10
with a step of 3. For the rest of the experiments we divide each compression standard into
three tiers.

• High compression (low quality). For this tier we select H.265 with a CRF of 51,
JPEG with quality 10 and Theora with quality 1.

• Mid compression (mid quality). For this tier we select H.265 with a CRF of 26, JPEG
with quality 50 and Theora with quality 7.
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• Low compression (high quality). For this tier we select H.265 with a CRF of 1, JPEG
with quality 100 and Theora with quality 10.

4.1 Face recognition

For facial recognition we use the popular Local Binary Patterns Histograms (LBPH) [51]
algorithm. This method makes use of the Local Binary Patterns (LBP) [52]–[54] algorithm
which is a texture operator that labels the pixels of an image by thresholding the neighborhood
of each pixel. LBPH divides the results of the LBP into a grid and extracts the histogram
for each region of the grid. Those histograms will then be concatenated to form a new and
bigger histogram that will represent the characteristics of the face [55]. Figure 4.1 contains an
example of the procedure for one face using the LBPH algorithm.

A complete implementation is available in the OpenCV library. However, there are
also low-level hardware implementations [56], making this a very suitable method for facial
recognition in real time systems.

Figure 4.1: Example procedure for one face using the LBPH algorithm [55].

4.1.1 Procedure

This procedure is an adapted version of the older OpenCV facial recognition tutorial that uses
LBPH [57]. To identify a subject and which photos belong to the subject, each compression
configuration uses a simple Comma-separated values (CSV) file.

For this experiment we use the Database of Faces (Appendix B.7). Before creating the
face recognition models, two testing datasets are created, the compressed dataset (Ct) and
the raw dataset (Rt). Each dataset contains an image from each subject, extracted from the
orl faces dataset. Two separate facial recognition models are created. One trained with the
compressed images (Cm), and the other with the raw images (Rm). The Ct dataset is tested
with both models, the Rt dataset is tested with the compressed model.

In this experiment we record the number of correctly recognized and the number of wrongly
recognized faces for each compression level of each standard.
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4.1.2 Experimental results

Table 4.1, 4.2 and 4.3 contain the results for each compression standard. "CmCt" represents the
results for the model trained and tested with compressed data. "RmCt" represents the results
for the model trained with raw data and tested with compressed data. "CmRt" represents the
results for the model trained with compressed data and tested with raw data.

On Table 4.1 it is possible to see that if only compressed H.265 data is used the performance
is the same as when using raw data, independently of the level of compression. However, when
mixing raw and compressed data, after a certain threshold, the performance of the model
decreases while the compression increases. Moreover, after CRF 36 the models performance
plunges. We conclude that, if mixing compressed and raw data, the best CRF is 26, as it
provides the best compression/accuracy ratio.

H.265 CmCt RmCt CmRt
Rights Wrongs Rights Wrongs Rights Wrongs

1 38 2 38 2 38 2
6 38 2 38 2 38 2
11 38 2 38 2 38 2
16 38 2 38 2 38 2
21 38 2 38 2 37 3
26 38 2 38 2 37 3
31 38 2 36 4 37 3
36 39 1 35 5 33 7
41 39 1 29 11 28 12
46 38 2 14 26 20 20
51 38 2 11 29 15 25

Table 4.1: Results on the effects of lossy H.265 compression on facial recognition. "CmCt" represents
the results for the model trained and tested with compressed data. "RmCt" represents the
results for the model trained with raw data and tested with compressed data. "CmRt"
represents the results for the model trained with compressed data and tested with raw
data.

Looking at Table 4.2 we can observe that with JPEG the performance of the model is very
consistent, even at higher compression. When mixing raw and compressed data the models
performance slightly decreases after quality level 60. It is only after quality level 30 that
the performance decreases significantly. When using JPEG data for training and testing the
models performance matches that of using only raw data.

Table 4.3 shows that, when mixing raw data and Theora, after quality level 7 the models
performance quickly goes down. When using quality level of 7 we found no noticeable decreases
in performance. As such we conclude that when mixing data the best quality level for Theora
is 7. When using only Theora compressed data the models offer similar performance compared
to only using raw data, no matter the compression level.

In summary, when mixing compressed and raw data for facial recognition, high compression
should be avoided. It is possible, however, to obtain good performance while mixing compressed
and raw data, using low compression. If compressed data is used both in training and in
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JPEG CmCt RmCt CmRt
Rights Wrongs Rights Wrongs Rights Wrongs

10 38 2 35 5 34 6
20 38 2 36 4 37 3
30 38 2 36 4 37 3
40 38 2 37 3 37 3
50 38 2 37 3 37 3
60 38 2 37 3 37 3
70 38 2 38 2 37 3
80 39 1 38 2 38 2
90 38 2 38 2 38 2
100 38 2 38 2 38 2

Table 4.2: Results on the effects of JPEG compression on facial recognition. "CmCt" represents the
results for the model trained and tested with compressed data. "RmCt" represents the
results for the model trained with raw data and tested with compressed data. "CmRt"
represents the results for the model trained with compressed data and tested with raw
data.

CmCt RmCt CmRt
Theora Rights Wrongs Rights Wrongs Rights Wrongs

1 39 1 31 9 34 6
4 38 2 35 5 33 7
7 39 1 38 2 37 3
10 38 2 38 2 38 2

Table 4.3: Results on the effects of Theora compression on facial recognition. "CmCt" represents the
results for the model trained and tested with compressed data. "RmCt" represents the
results for the model trained with raw data and tested with compressed data. "CmRt"
represents the results for the model trained with compressed data and tested with raw
data.

testing, high compression can be used without toll on the accuracy of the facial recognition
models.

4.2 Face and body detection

For the detection of faces and bodies we use the popular Viola-Jones object detection method
[58], [59]. It uses a machine learning approach to object detection. It is composed by four
main stages. First it computes the integral image and then it extracts haar-like features
(image features). These features are then selected with an adaboost algorithm. Lastly the
selected features are used to train the cascading classifiers to detect the object [60].

This method provides reliable and fast object detection. It is capable of being used in real
time systems, such as robots. A complete implementation is available in the OpenCV library.
There are also pre-trained models (haar cascades) available.

There is still a lot of research going on concerning object detection, mostly through deep
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learning, such as the Faster R-CNN [61] algorithm or the You Only Look Once (YOLO)
framework [62], [63]. However, these algorithms are very computationally demanding and
thus require better hardware in order to operate smoothly.

4.2.1 Procedure

For this experiment we adapted a version from the OpenCV face detection tutorial which can
be found here [64]. This procedure makes use of the pre trained haar cascades that define
a frontal face (haar cascade frontalface alt) and a full body (haar cascade fullbody). Both
haar cascades were trained with images that come from a different sensor and use different
compression than the images contained in the dataset we tested. They can be found here
[65]. This procedure starts by converting the image into grayscale and equalizing the image
histogram. Only then will the objects be detected. The image dataset the we use in this
experiment is the People image dataset (Appendix B.5, Figure 4.2).

Figure 4.2: Images in the People image dataset.

In this experiment we record the number of detected objects in each tier of each standard
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and compare them with the raw values. We also verify if the detected objects overlap with
the raw values. We consider that the detected objects overlap if the area of the intersection
between the detected objects is larger than one fourth of the area of the detected object in
the raw image.

4.2.2 Experimental results

Tables 4.4 and 4.5 contain the results for face detection. Tables 4.6 and 4.7 contain the results
for people detection.

Looking at Table 4.4 it is possible to see that no standard provides 100% matching results
to when using raw data. Considering the lowest compression (highest quality) the closest to
raw is JPEG. Both Theora and H.265 deviate from the raw results. At mid compression (mid
quality) H.265 provides similar results to raw however at image #4 it detects less faces. Both
JPEG and Theora deviate from raw in two images. At high compression (low quality) H.265
has trouble detecting faces due to the loss of details. JPEG detects too many faces due to the
amount of noise introduced by the transform. Theora, unexpectedly, shows similar levels of
performance when compared to mid compression levels.

Detections #1 #2 #3 #4 #5 #6

raw 1 1 1 3 2 2
H 1 1 2 1 2 3 4
J 100 1 1 1 2 2 3
T 10 1 2 2 3 2 4
H 26 1 1 1 2 2 2
J 50 2 1 1 2 2 3
T 7 1 1 1 2 3 3
H 51 1 1 0 1 1 0
J 10 1 1 2 4 4 3
T 1 1 1 2 2 2 2

Table 4.4: Number of detected faces for each tier of each compression standard. The number of
detected faces when using raw images is also presented as a reference.

Table 4.5 shows how many of those detected faces actually match the faces detected using
raw data. Considering the deviation from the number of faces detected using lossy compression
and raw data, most of the detected faces with compressed data are in line with the detected
faces using raw data. With the exception of high compressed (low quality) H.265 on image
#2. The excess of detected faces that do not overlap with the raw detected faces are mostly
due to noise introduced with compression. Figure 4.3 shows one of this cases.
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Overlap #1 #2 #3 #4 #5 #6

H 1 1/1 1/2 1/1 2/2 2/3 2/4
J 100 1/1 1/1 1/1 2/2 2/2 2/3
T 10 1/1 1/2 1/2 3/3 2/2 2/4
H 26 1/1 1/1 1/1 2/2 2/2 2/2
J 50 1/2 1/1 1/1 2/2 2/2 2/3
T 7 1/1 1/1 1/1 2/2 2/3 2/3
H 51 1/1 0/1 0/0 1/1 1/1 0/0
J 10 1/1 1/1 1/2 3/4 2/4 2/3
T 1 1/1 1/1 1/2 2/2 2/2 2/2

Table 4.5: Number of overlaps between detected faces using raw images and compressed images for
each tier of each compression standard.

(a) Image compressed with H.265 and CRF
51.

(b) Image compressed with Theora quality
level 10.

Figure 4.3: Wrongly detected faces because of the noise added by the compression algorithm. Each
rectangle represents a detected face. Only two detected faces are actually correct, on
image (b).

Despite some wrongly detected faces due to compression induced noise, there are some
cases where using compression actually improved the detection accuracy. For example, on
Figure 4.4, using low compression (high quality) H.265 prevented a false positive, but using
the raw image a false positive was detected.

43



(a) H265 compressed image with best quality. (b) Raw image.

Figure 4.4: Wrongly detected faces on raw image. Each rectangle represents a detected face. The
raw image (b) contains a wrongly detected face while the compressed image (a) does not.

Considering body detection, Table 4.6 shows that on low compression (high quality) JPEG
and Theora provide the closest results to raw while H.265 deviates on image #4, detecting
one less body. At mid compression (mid quality) both JPEG and Theora deviate on one
image, detecting one more body each. H.265 provides the same results as raw.

People #1 #2 #3 #4 #5 #6

raw 1 2 1 2 2 2
H 1 1 2 1 1 2 2
J 100 1 2 1 2 2 2
T 10 1 2 1 2 2 2
H 26 1 2 1 2 2 2
J 50 1 2 1 3 2 2
T 7 1 2 1 2 2 3
H 51 1 1 1 2 2 1
J 10 1 1 1 3 2 1
T 1 2 1 1 2 2 1

Table 4.6: Number of detected bodies for each tier of each compression standard. The number of
detected faces when using raw images is also presented as a reference.

Table 4.7 shows the overlap between the detected bodies using compressed data and the
detected bodies using raw data. Considering the number of bodies detected with raw data
it is possible to see that, for the most part, low to mid compression (high to mid quality)
provides very consistent body detection. On high compression (low quality), the number of
detected bodies goes down. However, most of the detected bodies overlap with the bodies
detected using raw data.

Looking at Figure 4.5, high compressed data can provide better results than using raw
data. By using compressed data, in this example, we avoid a false positive. However, this is
not always the case. Figure 4.6 and 4.7 contain two examples where using compressed data
results in more false positives than when using raw data.

44



People #1 #2 #3 #4 #5 #6

H 1 1/1 2/2 1/1 1/1 2/2 2/2
J 100 1/1 2/2 1/1 2/2 2/2 2/2
T 10 1/1 2/2 1/1 2/2 2/2 2/2
H 26 1/1 2/2 1/1 2/2 2/2 2/2
J 50 1/1 2/2 1/1 3/3 2/2 2/2
T 7 1/1 2/2 1/1 2/2 2/2 3/3
H 51 1/1 1/1 1/1 2/2 2/2 1/1
J 10 1/1 1/1 1/1 2/3 2/2 1/1
T 1 1/2 1/1 1/1 2/2 2/2 1/1

Table 4.7: Number of overlaps between detected bodies using raw images and compressed images for
each tier of each compression standard.

(a) Highly compressed JPEG image. (b) Highly compressed H.265 image.

(c) Highly compressed Theora image. (d) Raw image.

Figure 4.5: Example where highly compressed images provide better accuracy than the raw image
on frontal body detection. The raw image contains a wrongly detected body.
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(a) Raw image. (b) Highly compressed JPEG image.

Figure 4.6: Example where the raw image provides better accuracy than the highly compressed
JPEG image on frontal body detection. Despite the raw image also having a wrongly
detected body, the JPEG image has two wrongly detected bodies.

(a) Raw image. (b) Mid quality Theora compressed image.

Figure 4.7: Example where raw image provides better accuracy than compressed (mid quality) Theora
image on frontal body detection. Despite the raw image also having a wrongly detected
body, the Theora image has two overlapped wrongly detected bodies.

4.3 Find contours

On robotic systems, detect contours on images have many use cases as a pre-processing stage,
namely on high level segmentation, object detection, among others. In this section, the effects
of lossy compression are tested on the outcome of contour calculation in images. The image
dataset that we use for this experiment is the People Dataset (Appendix B.5).

For contour calculation we use the algorithm proposed by Suzuki and Be in [66]. This
algorithm requires an input binary image. For this, we use a binary image that contains
edges found by a canny edge detector [67], a multi-stage algorithm that detects edges. Both
algorithm implementations can be found at the OpenCV library. There are two thresholds
required for the canny edge detector. The first and second thresholds for the hysteresis
procedure. These values can either be static or dynamic. However, both possibilities were
tested.
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The static values for these thresholds were 100 and 200 respectively. There are several
ways to use dynamic threshold values for canny edge detection [50], [68], [69], the one we use
in this experiment is an adaptation of the version provided by A. Rosebrock [69]. This version
uses the median of the grayscale version of the image (M), the first value (F) is obtained using
F = max(0.0, (1−0.33)∗M) and the second (S) is obtained using S = min(255, (1+0.33)∗M).

4.3.1 Procedure

This procedure is an adapted version of the OpenCV contour tutorial [70]. Some preprocessing
is applied before finding the contours. The image is first converted into grayscale and then
blurred. This will remove excess noise from the image. After we detect the edges using the
Canny edge detector. With the binary image that contains the edges we proceed to find and
draw the contours using the algorithm mentioned above.

In this experiment we record the number of contours found. Moreover, we also draw
the contours on a binary image and use that image to calculate two metrics. The first and
simpler metric is to calculate the percentage of different pixels between the binary images.
The second metric is the Baddeley error metric [71]. This metric is defined as the p-th order
mean difference between thresholded distance transforms of the two images.

4.3.2 Experimental results

Tables 4.8 and 4.9 show that, no matter the threshold, the higher the compression (lower
quality) on H.265, the less contours are found. The higher the compression (lower quality) on
JPEG, the more contours are found. Theora shows no pattern on the number of contours
found. This happens in H.265 because of the loss of details, and the bigger block size, which
may remove certain contours or merge smaller contours into a bigger contour. In JPEG, this
happens because of the smaller block sizes and the introduction of noise, which makes artifact
contours appear or breaks large contours into smaller ones. Figure 4.8 shows an example, on
the JPEG image a line is broken into separate contours whereas in the raw image this does
not happen.
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Dynamic threshold #1 #2 #3 #4 #5 #6

Raw 114 143 127 147 157 200
H 1 115 149 134 148 156 191
J 100 115 144 122 141 158 197
T 10 108 147 129 136 159 193
H 26 103 129 114 116 138 164
J 50 115 147 123 135 161 205
T 7 113 131 109 127 139 189
H 51 60 113 115 115 113 165
J 10 162 167 168 172 193 240
T 1 102 151 126 122 161 213

Table 4.8: Number of contours found for each tier of each standard using dynamic thresholds. The
number of contours found when using raw images is also presented as a reference.

Static Threshold #1 #2 #3 #4 #5 #6

Raw 72 90 87 84 100 118
H 1 75 94 93 82 101 114
J 100 75 93 87 83 103 119
T 10 75 85 90 76 97 116
H 26 72 79 81 80 93 110
J 50 80 92 84 82 106 124
T 7 74 81 75 81 93 119
H 51 36 60 72 76 65 87
J 10 84 105 96 98 114 151
T 1 58 86 81 78 108 138

Table 4.9: Number of contours found for each tier of each standard using static thresholds. The
number of contours found when using raw images is also presented as a reference.

(a) Dynamic threshold jpeg quality 10 image. (b) Dynamic threshold raw image.

Figure 4.8: Differences in contours with a JPEG and raw images. Image (a) contains the contours
found with in the JPEG with a quality level of 10. Image (b) contains the contours found
in the raw image. Both contours were found with a dynamic threshold.
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Table 4.10 shows the Baddeley errors when using dynamic thresholds. Table 4.11 shows
the Baddeley errors when using static thresholds. Table 4.10 shows that JPEG provides the
smallest Baddeley errors. H.265 comes in second and Theora provides the biggest Baddeley
errors. Naturally, the higher the compression (lower quality) the higher the errors.

Dynamic Threshold #1 #2 #3 #4 #5 #6

H 1 0,76 0,97 0,87 1,02 0,94 1,01
J 100 0,72 0,60 0,58 0,57 0,62 0,72
T 10 1,14 1,48 1,48 1,46 1,44 1,48
H 26 1,61 2,03 1,96 2,05 2,02 2,05
J 50 1,50 1,76 1,61 1,64 1,58 1,79
T 7 1,68 1,93 1,95 1,91 1,89 1,91
H 51 3,11 3,39 3,69 3,66 3,45 3,66
J 10 2,45 2,52 2,57 2,55 2,59 2,77
T 1 4,12 4,37 4,47 4,58 4,27 4,59

Table 4.10: Baddeley errors between the results of using the compressed image and the raw image
for each tier of each compression standard using dynamic thresholds.

Observing Table 4.11, for the most part, by using static thresholds we obtain slightly
smaller Baddeley errors when compared to using dynamic thresholds. This has something
to do with the fact that, when using static threshold the number of contours will be much
smaller, as seen in Table 4.9. Logically, with smaller margin for error we obtain smaller errors.
JPEG continues to provide the smallest Baddeley errors of the three tested standards. H.265
is still in between and Theora provides the biggest Baddeley errors.

Static Threshold #1 #2 #3 #4 #5 #6

H 1 0,70 0,77 0,68 0,75 0,77 0,96
J 100 0,42 0,59 0,49 0,49 0,42 0,58
T 10 0,83 1,19 1,40 1,23 1,22 1,18
H 26 1,17 2,65 1,58 1,55 1,59 1,58
J 50 1,13 1,21 1,36 1,24 1,19 1,47
T 7 2,44 1,46 1,69 1,53 1,56 1,45
H 51 2,66 2,93 3,17 3,06 2,88 3,23
J 10 2,59 1,94 2,04 2,05 2,00 2,15
T 1 3,18 3,73 3,89 3,72 3,72 3,74

Table 4.11: Baddeley errors between the results of using the compressed image and the raw image
for each tier of each compression standard using static thresholds.

Table 4.12 shows the percentage of different pixels between raw and compressed found
contours when using dynamic thresholds. Table 4.13 shows the same type of errors but when
using static thresholds instead.

At low compression (high quality) the pattern remains the same as above. JPEG provides
the smallest errors with H.265 in the middle and Theora with the highest errors. However, at
mid compression this pattern begins to change. Both Theora and H.265 provide similar results
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at mid compression while JPEG still provides the smallest errors. At high compression (low
quality) H.265 overtakes Theora as the standard with the highest error values. Theora comes in
second while JPEG still provides the smallest errors. Table 4.11 shows that the static threshold
Baddeley errors are only slightly smaller when compared to the dynamic threshold. However,
looking at Table 4.13 the percentage of different pixels with static thresholds is significantly
smaller than with dynamic thresholds, especially at high compression (low quality) levels.
Which suggests that despite having less contours and a smaller margin for the appearance of
errors, the errors that do appear are of higher significance when compared to the errors that
appear with dynamic thresholds.

Dynamic Threshold #1 #2 #3 #4 #5 #6

H 1 0,12 0,22 0,18 0,26 0,20 0,24
J 100 0,15 0,08 0,08 0,06 0,09 0,13
T 10 0,31 0,58 0,58 0,54 0,54 0,53
H 26 0,69 1,16 1,09 1,17 1,15 1,09
J 50 0,56 0,85 0,67 0,69 0,61 0,77
T 7 0,78 1,00 1,05 0,97 0,95 0,87
H 51 3,18 3,78 3,85 3,97 3,75 4,23
J 10 1,62 1,64 1,68 1,58 1,73 1,92
T 1 2,11 2,34 2,45 2,53 2,22 2,68

Table 4.12: Percentage of different pixels between the results of using the compressed image and the
raw image for each tier of each compression standard using dynamic thresholds.

Static Threshold #1 #2 #3 #4 #5 #6

H 1 0,14 0,15 0,11 0,14 0,16 0,28
J 100 0,04 0,10 0,06 0,06 0,03 0,10
T 10 0,17 0,41 0,61 0,44 0,42 0,37
H 26 0,37 0,64 0,69 0,64 0,70 0,64
J 50 0,33 0,36 0,52 0,40 0,32 0,58
T 7 0,40 0,58 0,85 0,65 0,68 0,54
H 51 1,91 2,50 2,69 2,63 2,50 2,71
J 10 0,94 0,97 1,06 1,11 0,97 1,16
T 1 1,11 1,59 1,73 1,59 1,56 1,62

Table 4.13: Percentage of different pixels between the results of using the compressed image and the
raw image for each tier of each compression standard using static thresholds.

However these number are only useful for comparing performance between standards,
as they do not give any feedback about real world usage. For that, we provide Figures 4.9,
4.10, 4.11 and 4.12. Figure 4.9 contains the worst and best case for high compression H.265.
Looking at the worst case, we can see that objects start to loose their shape and lose too much
detail. This will reduce the accuracy of the detected contours and may cripple the system.
Looking at the best case we can see that, for the most part, the detected objects keep their
shape, however, they continue to lose too much detail.

50



(a) Raw image. (b) High compression H.265.

(c) Raw image. (d) High compression H.265.

Figure 4.9: Best and worst case for high compression H.265.

Figure 4.10 contains the worst and best case for high compression Theora. Looking at the
worst case, the detected contours lose a little detail. At the best case, the detected contours
also lose a little detail, especially on very noisy areas. Both worst and best case provide good
results.
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(a) Raw image. (b) High compression Theora.

(c) Raw image. (d) High compression Theora.

Figure 4.10: Best and worst case for high compression Theora.

Figure 4.11 contains the worst case for high compression JPEG. Looking at the worst
case, high compressed JPEG provides very good results, with only minor differences.

(a) Raw image. (b) High compression JPEG.

Figure 4.11: Worst case for highly compressed JPEG images.

Figure 4.12 contains the worst cases for mid compression H.265 and Theora. Looking at
the worst case for mid compressed H.265, the only noticeable difference is at the left side of
the pillar. Other than this H.265 provided very good results. Looking at the worst case for
Theora, other than some small details, it achieved very good results too.
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(a) Raw image. (b) Mid compression H.265.

(c) Raw image. (d) Mid compression Theora.

Figure 4.12: Worst case for high compression H.265 and Theora.

Looking at the presented results, we can conclude that, high compression H.265 is not
suitable for finding contours, as it loses too much details and objects start to lose shape.
At mid compression H.265 provides good results. Theora provides good results at high
compression and even better at mid compression. JPEG provides excellent results even at
high compression.

4.4 Color Segmentation

Image segmentation in robotic vision is very important. It is the basis for many other
algorithms. Segmentation can be used for object detection, object recognition, object tracking,
and many other applications. In this section, we will study the effects of lossy compression on
high level color image segmentation. For this we set up the task of segmenting a person out of
an image. The segmentation algorithm we use is Grabcut [72]. This algorithm, for the most
part, requires user interaction. We chose this algorithm specifically because it allowed us to
manually mark what was background and what we wanted to segment. By manually inserting
the markers we reduce the error introduced pre-segmentation, allowing for more accurate
results. The image dataset we use in this experiment is the People Dataset (Appendix B.5).
Same as in Section 4.2 and 4.3.
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4.4.1 Procedure

This procedure is an adapted version of the OpenCV python grabcut tutorial [73]. Before the
experiment started we needed to manually mark what we wanted to be segmented from the
background. Figure 4.13 contains the manual markers from one of the images.

(a) Original image. (b) Image with markers.

Figure 4.13: Example of manually inserted segmentation markers. Sure foreground is marked in red.
Sure background is marked in blue.

After obtaining the markers this experiment starts with using the same algorithm tested
in section 4.2 to detect a body. This body will only be detected in the raw image to avoid
errors unrelated to the referred algorithm. With the detected body we get a region of interest.
Everything outside this region of interest will be considered as background. We also create a
mask with the manually marked image. With the region of interest and the mask we then
apply the grabcut algorithm and obtain the segmented image.

In this experiment we record the same two metrics used in the finding contours experiment.
The Baddeley error metric [71] and the percentage of different pixels metric.

4.4.2 Experimental results

Table 4.14 shows the Baddeley errors and Table 4.15 shows the percentage of different pixels,
when comparing raw with compressed images. By looking at table 4.14, for low compression
(high quality) JPEG provides, for the most part, the smallest errors. H.265 stands in between
JPEG and Theora, Theora providing the highest errors. For mid compression (mid quality),
Theora provides the smallest errors, H.265 continues to be in between and JPEG provides the
highest errors. For high compression (low quality), Theora continues to provide the smallest
errors, with JPEG taking the middle position and H.265 providing the highest errors. Table
4.15 shows similar results.
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Baddeley error #1 #2 #3 #4 #5 #6

H 1 1,00 0,94 0,73 1,13 1,88 1,17
J 100 0,59 0,90 0,91 1,10 1,01 0,90
T 10 1,34 1,37 1,07 1,47 1,48 2,01
H 26 1,58 1,71 1,39 1,84 2,44 2,19
J 50 1,99 1,95 1,32 1,91 2,48 2,26
T 7 1,63 1,63 1,22 1,63 2,22 1,96
H 51 2,38 2,23 1,79 2,93 3,08 2,69
J 10 2,26 2,06 1,62 2,11 2,62 2,61
T 1 2,31 2,19 1,61 2,19 2,39 2,46

Table 4.14: Baddeley errors between the results of using the compressed image and the raw image
for each tier of each compression standard.

percentage error #1 #2 #3 #4 #5 #6

H 1 0,06 0,07 0,04 0,15 0,97 0,11
J 100 0,02 0,07 0,04 0,15 0,11 0,06
T 10 0,12 0,14 0,08 0,32 0,26 0,77
H 26 0,18 0,21 0,19 0,36 1,20 0,46
J 50 0,27 0,26 0,11 0,37 1,23 0,57
T 7 0,29 0,18 0,10 0,29 1,08 0,32
H 51 0,74 0,48 0,42 2,08 2,06 1,01
J 10 0,65 0,34 0,29 0,59 1,31 0,98
T 1 0,65 0,48 0,23 0,66 0,79 0,67

Table 4.15: Percentage of different pixels between the results of using the compressed image and the
raw image for each tier of each compression standard.

As mentioned in Section 4.3, both the Baddeley error and the percentage of different
pixels do not provide feedback about real world usage. They are only useful for comparing
performance between standards. Figure 4.14, 4.15, 4.16 and 4.17 provide examples of the
performance of the standards at segmenting the person.

Figure 4.14 contains the worst cases for each standard at high compression (low quality).
Looking at the worst case for JPEG and Theora, we can see that, they deviate from the
segmentation using the raw image. Using morphological operations it could be possible to fix
this deviation. However, this requires pos-processing and would decrease system performance.
Looking at the worst case for H.265, it significantly deviates from the segmentation using the
raw image. At that stage fixing would be too costly.
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(a) Raw image. (b) Worst case for high compression H.265.

(c) Worst case for high compression JPEG. (d) Worst case for high compression Theora.

Figure 4.14: Worst cases for the three standards using high compression and the reference case using
raw image.

Figure 4.15 contains the worst cases for each standard at mid compression (mid quality).
Looking at the worst case for JPEG and Theora, they slightly deviate from the segmentation
using the raw image. Like mentioned above, using morphological operations it could be
possible to fix this deviation, however, this requires pos-processing and would decrease system
performance. Looking at the worst case for H.265, it manages to completely segment the
person, without flaws in the body. Furthermore, it does not segment the detached head,
contained in the other results. Although it achieves very good results, it deviates from the
results obtained using the raw image.
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(a) Raw image. (b) Worst case for mid compression H.265.

(c) Worst case for mid compression JPEG. (d) Worst case for mid compression Theora.

Figure 4.15: Worst cases for the three standards using mid compression and the reference case using
raw image.

Figure 4.16 contains the best case for H.265 high and mid compression (low and mid
quality) and the best case for highly compressed JPEG images. Looking at this figure we can
see that, H.265 was able to segment the person at both high and mid compression (low and
mid quality). JPEG was also able to segment the person, however it contains a deviation at
the person shoulder. Moreover, it also removed the noise lines found at the segmentation
using the raw image.
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(a) Raw image. (b) Best case using high compression H.265.

(c) Best case using mid compression H.265. (d) Best case using high compression JPEG.

Figure 4.16: Best cases for high and mid compression H.265 and high compression JPEG and the
reference case using raw image.

Figure 4.17 contains the best case for Theora high and mid compression (low and mid
quality) and the best case for mid compression (mid quality) JPEG. Looking at this figure,
both mid compression JPEG and high to mid compression Theora obtained similar results.
They were all able to segment the person. The only deviation, compared to the results obtained
with the raw image, was with mid compression (mid quality) JPEG and high compression
(low quality) Theora, because they both removed the noise lines. This did not happen with
mid compression (mid quality) Theora.
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(a) Raw image. (b) Best case using mid compression JPEG.

(c) Best case using high compression Theora. (d) Best case using mid compression Theora.

Figure 4.17: Best cases for high and mid compression Theora and mid compression JPEG and the
reference case using raw image.

4.5 Feature extraction

Feature extraction from images in robotic vision is used in several applications. Such ap-
plications include object recognition, robotic mapping and navigation, image stitching, 3D
modeling, gesture recognition, video tracking, among others. In this section we will test the
effects of lossy compression on two popular feature extractors. The Scale-Invariant Feature
Transform (SIFT) [74] and the Speeded Up Robust Features (SURF) [75] extractors. Both
are implemented in the OpenCV library.

4.5.1 Procedure

Unlike some previous experiments, this experiment does not require any preprocessing applied
before feature extraction. Required procedures by feature extractors are already applied
by the OpenCV library before, such as converting the image into grayscale. Each feature
extractor will be executed sequentially per image. The SURF extractor was executed with
a minHessian of 800. The larger the minHessian the fewer, but theoretically more salient,
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interest points are detected.
The image dataset we use in this experiment is the set of images that contain supermarket

products on a monotone background, the Features Dataset (Appendix B.6, Figure 4.18).

Figure 4.18: Images in the Features image dataset.

In this experiment we record the number of features extracted with each tier of each
standard and compare them with the raw reference values.

4.5.2 Experimental results

Table 4.16 shows the number of features detected for each extractor. By observing this table
it is possible to see that, when using low compression (high quality), the number of features
detected doesn’t deviate much from the reference raw values. When using mid compression
(mid quality), both H.265 and Theora show less features than the reference raw values. JPEG
shows an increase in the feature count. At high compression (low quality), H.265 shows
a significant reduction in the number of detected features. Theora shows a less significant
reduction. JPEG, on the other hand, shows a massive increase in the number of detected
features. This massive increase is attenuated when using the SURF extractor, due to the high
minHessian value.
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SIFT SURF
#1 #2 #3 #4 #1 #2 #3 #4

Raw 961 225 529 396 738 181 504 329
H 1 953 211 518 396 735 179 506 326
J 100 962 225 536 402 740 182 502 328
T 10 957 209 525 407 727 183 502 332
H 26 996 184 493 329 731 163 473 281
J 50 1071 230 537 422 742 188 504 312
T 7 937 177 465 355 726 180 471 301
H 51 535 150 336 122 539 173 385 149
J 10 1305 302 645 537 766 215 486 343
T 1 774 167 419 313 671 168 421 284

Table 4.16: Number of features extracted using SIFT and SURF for each tier of each compression
standard. The number of features extracted when using raw images is also presented as
a reference.

Figure 4.19 contains the worst and best case for H.265 high compression (low quality).
Looking at the worst case, we can see that, there are lesser features and they are more
scattered. Features also appear outside of the objects. Which means that, if we are trying
to obtain features that describe the objects, we would lose details that could be important.
Looking at the best case, several features disappeared. We can also see that, the features that
remained are mostly inside the objects. This will improve the system performance because
there are less features to process. Figure 4.20 contains the worst case for mid compression
(mid quality) H.265. This figure shows that, out of the already scarce features detected using
the raw image, a few disappeared using compressed H.265.
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(a) High compression H.265 worst case reference. (b) Worst case using high compression H.265.

(c) High compression H.265 best case reference. (d) Best case using high compression H.265.

Figure 4.19: Worst and best cases using high compression H.265 and the respective raw image
references.

(a) Mid compression H.265 worst case refer-
ence. (b) Worst case using mid compression H.265.

Figure 4.20: Worst case using mid compression H.265 and the respective raw image reference.

Figure 4.21 contains the worst and best case for highly compressed (low quality) JPEG
images. Looking at the worst case, a significant amount of features appeared. This will
negatively impact the performance of the system. However, for the most part, the detected
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features are inside the object. Apart from the performance, the system won’t be affected.
Looking at the best case, the obtained results are very similar to the results obtained when
using the raw image. Figure 4.22 contains the worst case for mid compression (mid quality)
JPEG images. This figure shows that, like highly compressed JPEG, some extra features
appeared. However, they aren’t in significant numbers. This will not significantly affect the
system performance.

(a) High compression JPEG worst case reference. (b) Worst case using high compression JPEG.

(c) High compression JPEG best case reference. (d) Best case using high compression JPEG.

Figure 4.21: Worst and best cases using high compression JPEG and the respective raw image
references.
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(a) Mid compression JPEG worst case refer-
ence. (b) Worst case using mid compression JPEG.

Figure 4.22: Worst case using mid compression JPEG and the respective raw image reference.

Figure 4.23 contains the worst case for high compression (low quality) Theora. This figure
shows that, for the most part, the results obtained are very similar to the results obtained
using the raw image. Which means that, for extracting features, using High compression
Theora provides good results.

(a) High compression Theora worst case refer-
ence. (b) Worst case using high compression Theora.

Figure 4.23: Worst case using high compression Theora and the respective raw image reference.

4.6 Final remarks

Looking at results of facial recognition, we can see that, when mixing compressed and raw
data, high compression (low quality) data should be avoided. It is, however, possible to mix
data while keeping a good performance, by using better quality (lower compression) data.
JPEG provides the best results at low compression as the models performance did not plunge
like with H.265 and Theora. Unexpectedly, if only compressed data is used, the data can be
highly compressed without toll on the facial recognition accuracy.

Looking at the results of face and body detection, if only low to mid compression (high to
mid quality) is used then we are able to obtain results similar to using raw data. If we use
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high compression (low quality), the results will be more mixed, sometimes better, sometimes
a lot worse. For face detection, the results are a bit inconsistent, which might have something
to do with the way the haar cascade was trained.

Looking at the previously presented results, high compression H.265 is not suitable
for finding contours, as it loses too much details and objects start to lose shape. At mid
compression H.265 provides good results. Theora provides good results at high compression
and even better at mid compression. JPEG provides excellent results even at high compression.

Based on the results obtained when testing color segmentation, using compressed data
is possible. We can conclude that, it is possible to segment using highly compressed (low
quality) data, however, there are cases where this is not advised. Using mid compression
allows for better results. Highly compressed H.265 provided poor results in this experiment.
The use of post processing operations might help to obtain better results if necessary.

Looking at the results of feature extraction, it is possible to use compression and obtain
good results. For this, Theora provides the best results, allowing the correct extraction of
features even when using high compression. Both H.265 and JPEG can obtain good results
using high compression. However, poor results are also possible. So we conclude that it is
best to avoid using high compression H.265 and JPEG when using feature extraction. When
using mid compression both standards provide consistently good results.

What these results show is that, except on a few cases, high compression H.265 provides
poor results. Theora and JPEG provide better results at high compression. For mid com-
pression all three standards provide very good results and can be used without any major
effects on the outcome of the image analysis algorithms. Looking at these results, and taking
into account the average number of bits per pixel required by each standard, we can see that
high compression (low quality) JPEG requires as many bits per pixel as H.265 with a CRF
between 11 and 21 (depending on the data), high compression (low quality) Theora requires as
many bits per pixel as H.265 with a CRF of about 16. All three CRF values are significantly
above what we considered mid compression (mid quality). Therefore, mid compression H.265
uses significantly less bits than high compression JPEG and Theora resulting in best lossy
compression in the experiments we conducted.

With this in mind, we conclude that it is possible to use compression without compromising
the system and ROS would benefit the most with the implementation of a H.265 codec.
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CHAPTER 5
Intelligent video player

In this chapter we discuss the development of an intelligent video player to help roboticists in
their work while they evaluate the recorded data after experiments. The first section begins by
answering the question "Why is this player necessary?". The following sections discuss the
theoretical concept and implementation of the player. Some results are also presented.

One of the main problems in the development and debugging of ROS systems is the amount
of data stored in the bag files. If we consider a robot that contains one or more cameras,
and other kinds of sensors, that record information from the environment several times per
second, the difficulty to find the required information in the bag file will increase rapidly.
Although sometimes there is a possibility to only connect the system in small time intervals(
to avoid the overflow of information), this isn’t always the case nor it is very practical for the
developer( e.g. autonomous car, surveillance camera, supermarket robot). For roboticists,
the process of finding relevant information in long videos becomes very time consuming and
tedious.

5.1 Concept

When codecs are encoding they generate a number of bits per unit of time, this is called the
bitrate. Codecs can produce files with different types of bitrate, in this section two types will
be discussed, Constant Bitrate (CBR) and Variable Bitrate (VBR).

When using a constant bitrate the codec will always generate a fixed bitrate, i.e., the
size of the encoded data per unit of time will always be the same, no matter the amount of
information. This could be useful for streaming data over a limited capacity channel. However,
when used in video compression, it may severely reduce the quality or increase the size of the
compressed video. By forcing the codec to use less bits than those required, for example on
motion heavy scenes, or forcing the codec to use more bits than those required, for example
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on a scene with no movement. Depending on the input, the use of padding may be necessary
to obtain a constant bitrate.

When using VBR the codec can decide the amount of bits that can be used per unit
of time. Either because there is too much or too little information to be encoded per unit
of time. What this means for video codecs, is that when there is little temporal or spatial
change between sequences of frames the encoder will drastically reduce the amount of bits
produced. It is possible to conclude that whenever the real time bitrate is much smaller than
the average bitrate there is little to no motion in the frame sequence. When there is little to
no motion in the frame, it is possible to speed up the play of the video without roboticists
missing important information.

5.2 Implementation

There are two basic things that the player requires in order to work. The first is a decoder for
the video. The second is a tool that allows us to output the video to the screen and handle
events (keyboard, mouse).

For the decoder we use the FFMPEG libraries, AVCodec and AVFormat. These libraries
provide a high level access to the video metadata and data. For the video user interface and
events handler we use the SDL library. This library provides a low level access to audio,
keyboard, mouse, joystick, and graphics hardware via OpenGL and Direct3D. With this two
tools we implemented a very basic video player that speeds up whenever there is little to no
motion in the video.

However, in order for the video player to be scalable, we also need to make use of a
configuration file that contains pre-processed data to avoid the overburden of processing
during play. For this pre-processing configuration file we needed to chose a lightweight data
format. For this we had three options. CSV, Extensible Markup Language (XML) and
JavaScript Object Notation (JSON). CSV was discarded because it simply did not have the
required features for the player use case. XML was discarded because it is too complex and
has too many features, making the code more complex and slower. With this in mind, we
chose JSON, as it contains the necessary features at a much faster parsing speed [76]–[78],
typically. The JSON parser we use is the cJSON parser.

On top of referred before, we also implement some important features, namely the ability
to manually speed up or slow down the play of the video and also the ability to save a sequence
of frames during play, for separate processing.

Figure 5.1 contains the basic block diagram of the architecture of the video player.
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Figure 5.1: Intelligent player block diagram. Blocks 1 and 2 represent decision paths based on
whether the JSON configuration file already exists or needs to be created. Block 3
represents a decision path based on whether the video has reached the end or not.

To test the implementation of the player, we used the Alboi Mixed dataset (Appendix B.2)
to create a video. This video lasts 42.7 seconds, 20 of which contain little movement. The
player is able to play this video in 27 seconds, taking only 4 seconds to play the parts with
little movement, which originally lasted 20 seconds. Figure 5.2 contains the frames where the
player started and stopped accelerating the play of the video. It is possible to see that the
player stopped the acceleration when the movement started.

(a) Frame where acceleration started. (b) Frame where the acceleration stopped.

Figure 5.2: Interval of frames where the player accelerated the play. Between the start and stop
frames there are 151 frames.
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CHAPTER 6
Conclusion

In this thesis we present studies on the ROS native compression and state of the art compression
standards in the context of sensor data in robotic applications. Furthermore, we studied the
effects of those standards in several popular image analysis algorithms. An intelligent video
player is also developed that may help roboticists in their work.

Chapter 2 presents a study on the ROS native compression standards and general purpose
compressors. In this chapter we conduct some measurements on the performance of Bzip2,
LZ4, JPEG, PNG and Theora. LZ4 proves to be very fast and good at compression during
recording, albeit providing poor compression ratios. Bzip2 proves to be good at compression
after recording, providing very good compression ratios. For lossless image compression PNG
proves to be unsuitable for real time systems and provides mediocre compression performance.
For lossy image compression, JPEG provides sufficient compression ratios that, for long
recording times, do not completely solve the problem at hand. For lossy video compression
Theora provides good compression ratios.

Chapter 3 presents a study on newer state of the art image/video compression standards.
Moreover, we present alternatives to the general purpose compressors Bzip2 and LZ4. In
this chapter we conduct some tests to measure both the native standards and the state of
the art standards. We also measure the benefits that using the referred state of the art
standards would bring to ROS. We conclude that H.265 could partially solve the storage and
transmission problem. Furthermore, H.265 also provides a plethora of tools and configurations
that not only allow for lossy and lossless image compression (using only intra-frames) but
also for lossy and lossless video compression. As such, ROS would benefit the most with the
implementation of a H.265 codec

Using H.265 lossy compression would significantly reduce the storage and transmission
problem. Since, lossy compression works by discarding information, it is necessary to see how
image analysis algorithm deal with lossy compressed images. Chapter 4 presents a detailed
study on the effects of lossy compression on several popular image analysis algorithms. We test
the effects of using H.265, JPEG and Theora on facial recognition, object detection (face and
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body), finding contours, high level color segmentation and feature extraction. We conclude
that, by using H.265 there would be no significant penalty on the referred image analysis
algorithms while maintaining the smallest number of bits per pixel.

Despite H.265 significantly reducing the storage needs and helping with data transmission,
it does not help directly with finding useful information. For this, we develop a intelligent video
player. Chapter 5 describes the concept and implementation of a player. This player helps
skip irrelevant information during video play, improving the problem of finding information.

6.1 Future work

At the end of this thesis, we observe that more work could be done, either in the storage and
transmission problem or in the information finding problem. Some possible directions for
future work are presented next.

• Although image/video data is one of the most consuming data, it is not the only one.
Work could be done in other types of data that also consume a lot of bits, for example,
point clouds.

• We tested several image analysis algorithms. There are many more that are relevant
to robotics. Some other algorithms, for example image analysis algorithms based on
deep learning, could be tested to provide a deeper understanding of the effects of lossy
compression.

• If the provided compression is not enough, in some cases, a semantic compression
algorithm could be developed that analyses images and discards non-relevant information.

• Improve the usability of the intelligent player, either by developing a GUI or by incorpo-
rating the concept into an open source video player, such as VLC.
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APPENDIX A
Bags

In this appendix we present a detailed description of all the bags used throughout the
development of this thesis.

A.1 Alboi

The alboi bag contains data from sensors contained in the ATLAS car from the university of
aveiro. It contains data from one color camera with a resolution of 1624x1224 and several
lasers. It contains 135379 messages for a total size of 18430MiB. If we filter the image messages,
we obtain a bag with 3194 messages and a total size of 18166MiB. This bag has a duration of
484 seconds.

A.2 P0 Large

The P0 Large bag contains data from sensors contained in a robot that is used in IEETA.
It contains images with a resolution of 1296x964, laser scans, odometry data and debugging
system messages. It contains 155337 messages for a total size of 13051MiB. If we filter the
image messages, we obtain a bag with 3387 messages and a total size of 12108MiB. This bag
has a duration of 456 seconds.
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A.3 P0 Small

The P0 Small bag contains the same type of data found in the P0 Large dataset but at different
recording times and locations. It contains 48546 messages for a total of 4120MiB. Filtering
the images we get 1065 messages and a total size of 3808MiB. This bag has a duration of 152
seconds.
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APPENDIX B
Image Datasets

In this appendix we present a detailed description of each image dataset used throughout this
thesis.

B.1 Alboi Moving

The Alboi Moving image dataset consists of 300 sequential frames contained in the Alboi bag.
The sequence of frames contained in this dataset only contains motion.

B.2 Alboi Mixed

The Alboi Mixed image dataset consists of 300 sequential frames contained in the Alboi
bag. The first half of this image dataset contains no motion. The second half only contains
sequences with motion.

B.3 P0 Small

The P0 Small image dataset consists of the first 300 sequential frames contained in the P0
Small bag. This dataset only contains data with motion.

B.4 P0 Large

The P0 Large image dataset consists of the first 300 sequential frames contained in the P0
Large bag. This dataset only contains data with no motion and small variations in the lighting
conditions.

B.5 People

The People image dataset contains 6 images. All images contain at least a body and a face.
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B.6 Features

B.7 Database of Faces

The Database of Faces (formerly ’The ORL Database of Faces) dataset from AT&T. 1

1https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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APPENDIX C
Code Samples

C.1 Lossy effects experiment launcher script

source /opt/ros/kinetic/setup.bash
source /home/alvaro/Documents/Universidade/Tese/thesis_workspace/devel/setup.bash
roscore &
sleep 3
IMAGES=’image%04d.ppm’

##FACE RECOGNITION
echo -e "\n FACE RECOGNITION \n"
for (( COUNTER=1; COUNTER<=51; COUNTER+=5 )); do
echo -e "\n h265 $COUNTER \n"
rosparam set lsy_csv "/home/alvaro/Documents/orl_faces/csv/h265_$COUNTER"
rosrun bca_effects bca_effects_facerecon_node
done

for (( COUNTER=10; COUNTER<=100; COUNTER+=10 )); do
echo -e "\n jpeg $COUNTER \n"
rosparam set lsy_csv "/home/alvaro/Documents/orl_faces/csv/jpeg_$COUNTER"
rosrun bca_effects bca_effects_facerecon_node
done

for (( COUNTER=1; COUNTER<=10; COUNTER+=3 )); do
echo -e "\n theora $COUNTER \n"
rosparam set lsy_csv "/home/alvaro/Documents/orl_faces/csv/theora_$COUNTER"
rosrun bca_effects bca_effects_facerecon_node
done
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C.2 JPEG and PNG image (de)compression methods

my_cvt() {
time(
for file in $(ls *.ppm); do
convert $file -quality $1 ${file%.*}.$2;
done
)
}

my_decvt() {
time(
for file in $(ls *.$1); do
convert $file ${file%.*}.ppm;
done
)
}

C.3 JPEG, Theora and H.265 dataset compression methods

for (( COUNTER=10; COUNTER<=100; COUNTER+=10 )); do
echo "jpeg $COUNTER quality"
mkdir -p ../jpeg_$COUNTER
my_cvt $COUNTER "jpg"
mv *.jpg ../jpeg_$COUNTER/
done

for (( COUNTER=1; COUNTER<=10; COUNTER+=3 )); do
echo "theora $COUNTER"
mkdir -p ../theora_$COUNTER
ffmpeg -framerate 7 -f image2 -i image%04d.ppm
-codec:v libtheora -qscale:v $COUNTER theora_$COUNTER.ogv
mv theora_$COUNTER.ogv ../theora_$COUNTER
done

for (( COUNTER=1; COUNTER<=51; COUNTER+=5 )); do
echo "h265 $COUNTER"
mkdir -p ../h265_$COUNTER
ffmpeg -framerate 7 -f image2 -i image%04d.ppm
-c:v libx265 -crf $COUNTER -hide_banner -loglevel panic
-preset ultrafast -pix_fmt yuv444p h265_$COUNTER.mp4
mv h265_$COUNTER.mp4 ../h265_$COUNTER
done
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APPENDIX D
Software and hardware information

D.1 Software

D.1.1 Operative system

The used operating system was Ubuntu version 16.04.4 LTS.

D.1.2 ROS

The used ROS version was ROS Kinetic Kame LTS version.

D.1.3 OpenCV

The used OpenCV version was version 3.3.1.

D.1.4 codecs

All results and benchmarks presented throughout this thesis have been obtained using open
source implementations. Their implementations and necessary steps for installation are
presented below (where applicable).

H.265

For H.265 ffmpeg static version 3.4.2 was used with the embedded codec x265 version 2.6+39-
01b685d6fa33.

H.264

For H.264 ffmpeg static version 3.4.2 was used with the embedded libx264 version.

Theora

For Theora ffmpeg static version 3.4.2 was used with libtheora version 1.1.1.
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PNG

For PNG libpng version 1.2.54 was used.

JPEG

libjpeg version 8c was used

BPG

For BPG version 0.9.7 was used. For compilation the makefile needs to be patched and
additional dependencies must be installed on ubuntu 16.04 LTS.

first install dependencies:
$ sudo apt-get install -y libsdl-image1.2-dev libsdl1.2-dev libjpeg8-dev yasm
download libpng version 1.6.34
unpack and enter directory
$ ./configure
$ make
$ sudo make install
Download BPG v0.9.7 from https://bellard.org/bpg/
unpack and enter directory
before proceding there is a need to patch the makefile.
insert the two following directives:
"CFLAGS+=-I/usr/local/include" after the line "CFLAGS+=-I."
"LDFLAGS+=-L /usr/local/lib" before the line "CFLAGS+=-g"
replace the following line:
LIBS:=-lrt
with:
LIBS:=-lrt -lnuma
$ make
$ sudo make install
$ sudo ldconfig

JPEG2000

For JPEG2000 OpenJPEG version 2.3.0. For installation the following steps where necessary:

download version v2.3.0 source code from https://github.com/uclouvain/openjpeg/releases/
unpack it and enter the unpacked directory
$ sudo apt-get install liblcms2-dev libtiff-dev libpng-dev libz-dev
$ mkdir build
$ cd build
$ cmake .. -DCMAKE_BUILD_TYPE=Release -DCMAKE_C_FLAGS="-O3 -msse4.1 -mavx2 -DNDEBUG"
$ make
$ sudo make install

JPEG-LS

For JPEG-LS a patched libjpeg that supports JPEG-LS was used. To avoid conflicts with the
already installed libjpeg, the executable obtained by this steps is not installed in the system
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but is used on the current directory. Later when doing the experiments the full path to the
executable needs to be given. For compilation the following steps where taken:

download version v2.3.0 source code from https://github.com/thorfdbg/libjpeg
unpack it and enter the unpacked directory
$ ./configure
$ make

D.2 Hardware

D.2.1 Computer

Laptop CPU RAM GPU Disk
Asus i5-5200U 12GB Intel HD 5500 Crucial Mx200 250GB

D.2.2 Camera

All images we recorded were obtained using a Chameleon CMLN-13S2C-CS camera.
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