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resumo

Alcenos leves, aluminossilicatos mesoporosos, 1-buteno, catélise heterogénea,
combustiveis liquidos, desenho fatorial de experiéncias, diesel, oligomerizacao,
otimizacao, reator continuo, zeélitos

Com o aumento global do consumo de combustiveis para o setor dos
transportes e as crescentes preocupacdes ambientais, a oligomerizacdo de
alcenos leves provenientes de fontes fésseis ou renovéaveis, ou de efluentes de
refinarias, representa uma via de valorizagdo promissora para produzir
combustiveis limpos com reduzidos teores de compostos aromaticos e enxofre,
e outros produtos quimicos de valor acrescentado. Esta tese incide na
oligomerizagdo do 1-buteno em produtos do tipo diesel sintético, em reator
continuo, a alta pressao, usando catalisadores heterogéneos acidos.

A oligomerizacéo de alcenos leves envolve mecanismos reacionais complexos.
Os rendimentos e as caracteristicas dos produtos dependem das propriedades
dos materiais cataliticos e das condi¢cbes de operacdo. Estes aspetos foram
investigados com o objetivo pratico de produzir diesel limpo, usando
catalisadores 4cidos inorganicos porosos a base de 6xidos de silicio e aluminio.
Os materiais foram preparados por diversas metodologias e caracterizados por
técnicas complementares, com especial atengdo dada as propriedades
morfolégicas, texturais e acidas. Os desempenhos cataliticos foram avaliados
em termos de atividade, seletividade para produtos do tipo diesel e estabilidade,
com base em estudos experimentais e o recurso a ferramentas estatisticas de
analise multivariada. As misturas de produtos reacionais foram caracterizadas
com base em cromatografia de gas bidimensional abrangente acoplada a
espectrometria de massa com analisador por tempo de voo (GCxGC-ToFMS) e
espectroscopia por ressonancia magnética nuclear (RMN).

A descoberta de catalisadores promissores, o trabalho de investigag&o evoluiu
de aluminossilicatos mesoporosos do tipo TUD-1 sintetizados por metodologias
relativamente limpas (sem agentes tensoativos) e um compésito de nanocristais
de zedlito Beta dispersos numa matriz do tipo TUD-1, até zedtipos micro- e
mesoporosos possuindo diferentes topologias (BEA, MFI) e preparados por
estratégias bottom-up (ndo destrutivas) ou top-down. Os desempenhos dos
catalisadores preparados foram comparados com zeélitos comerciais e um
catalisador que foi desenvolvido para processos comerciais de oligomerizacao,
nomeadamente o COD-9 (baseado na topologia MFI).

Os zeo6tipos micro/mesoporosos apresentaram melhores desempenhos do que
os zedlitos comerciais (Beta, ZSM-5, COD-9), obtendo-se conversfes de
butenos até 86 % e seletividades para produtos do tipo diesel até 71 % (m/m),
a 200 °C, 30 bar e 2.2 g geat! hl. Com base em analise estatistica de
componentes principais (PCA) foram estabelecidas relagBes de atividade-
estrutura que apontaram para a necessidade de haver compromissos entre as
propriedades texturais e 4cidas para maximizar os rendimentos em diesel limpo
— concentracdes intermédias de centros acidos e elevada mesoporosidade
resultaram em melhores desempenhos cataliticos.

Um dos catalisadores mais promissores foi o MZS-0.4-Cl preparado pela
abordagem top-down a partir do zedlito comercial ZSM-5. Foram realizados
estudos de otimizacdo para a oligomerizacdo do 1-buteno usando este tipo de
catalisador. A otimizacdo baseou-se no desenho fatorial de experiéncias (DoE,
com uma matriz Box-Behnken) e a metodologia da superficie de resposta
(RSM), contemplando os rendimentos em produtos do tipo diesel, assim como
aspetos da qualidade dos produtos (teor de compostos aromaticos). Estes
estudos indicaram as seguintes gamas de condicdes de operacdo mais
favoraveis: 220-250 °C de temperatura de reacao, 30-40 bar de presséo e 2.5-
3.5 gica geat* Wt de velocidade espacial por unidade de massa de catalisador.
Por fim, estudos de PCA com todos os materiais estudados nesta tese
mostraram que a influéncia das propriedades dos materiais nos desempenhos
nao é trivial.
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With the global growth in fuel demand for transportation and increasing
environmental concerns, the oligomerization of light olefins obtainable from fossil
or renewable sources and refinery streams, represents a promising route for
producing clean synthetic fuels with low aromatics and sulphur contents, and
other added-value chemicals. This thesis deals with the oligomerization of 1-
butene to produce diesel range products, under high pressure and continuous
operation, in the presence of heterogeneous acid catalysts.

The oligomerization of light olefins is a complex reaction system. The yields and
characteristics of the products are governed by the properties of the catalytic
materials and the operating conditions. These aspects were investigated with the
practical goal of producing clean diesel range products, using porous inorganic
acid catalysts based on silicon and aluminium oxides. The materials were
prepared via different methodologies and characterized by complementary
techniques, with special attention given to morphological, textural and acid
properties. The catalytic performances were evaluated in terms of activity,
selectivity to clean diesel type products and stability, based on experimental
studies and multivariate statistical tools. The characteristics of the catalytic
reaction products were studied based on comprehensive two-dimensional gas
chromatography coupled to time-of-flight mass spectrometry (GCxGC-ToFMS)
and nuclear magnetic resonance (NMR) spectroscopy.

In the search for promising catalysts, the research work evolved from eco-friendly
mesoporous aluminosilicate of the type TUD-1 prepared via one-pot or stepwise
approaches, and a composite material comprising BEA nanocrystallites
embedded in a TUD-1 siliceous matrix, to micro/mesoporous zeotypes
possessing different topologies (BEA, MFI) prepared via bottom-up or top-down
approaches. The catalysts were benchmarked with commercially available
zeolites and a catalyst based on the MFI topology which was developed for
commercial oligomerization processes, namely COD-9.

The micro/mesoporous zeotypes outperformed the commercial zeolites (Beta,
ZSM-5, COD-9), leading to conversions of butenes of up to 86 % and selectivity
to diesel ranged products of up to 71 wt.%, at 200 °C, 30 bar and 2.2 g gcatr? ht.
Based on principal component analysis (PCA), structure-activity relationships
were established that pointed to the importance of good compromises between
textural and acid properties for maximizing the yields of clean diesel range
products - intermediate concentrations of acid sites and enhanced mesoporosity
resulted in superior catalytic performances.

One of the best-performing catalysts was MZS-0.4-Cl prepared via top-down
approach from commercial ZSM-5. Optimization studies were carried out for 1-
butene oligomerization over this type of catalyst. The optimization was based on
a Box-Behnken design of experiments (DoE) and response surface methodology
(RSM), contemplating the yields of the diesel range products, as well as the
product quality (reduced aromatics content). These studies indicated that the
favourable operating conditions were in the ranges 220-250 °C of reaction
temperature, 30-40 bar and 2.5-3.5 gica gear® ht weight hourly space velocity.
Finally, PCA studies were conducted for all materials studied in this thesis, to
show the complex interplay of material properties influencing the catalytic
performances.
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Chapter 1

1.1. Motivation

In face of the high demand for middle distillates in comparison to gasoline fractions,
particularly in Europe, it is important to develop and implement efficient and clean processes
for middle distillates production. The catalytic oligomerization of light olefins (e.g., propene
and butenes) is growing interest in chemical and oil refining industries for the production of
ecofriendly synthetic fuels, or other important chemicals like detergents, resins, plasticizers,

drugs, flavours, dyes, etc..[!!

Light olefins have long been key industrial building blocks partly due to their
availability and relative cheapness, and may be obtained as by-products from petrochemical
processes or from renewable sources of organic carbon.[>5! Over the years, commercialized
olefin oligomerization technologies have been strategically developed for the transportation
fuels sector, and some refineries worldwide have implemented olefin oligomerization
processes, using conventional porous solid acids catalysts, such as the solid phosphoric acid
and medium-pore MFI zeolite.[>®"] Despite the important improvements which have been
accomplished in oligomerization technologies, there are continued research efforts to
develop catalysts with superior performances, e.g., in terms of stability and selectivity to
diesel type products. Different types of inorganic solid acid catalysts have been investigated
for the oligomerization of light alkenes,!® such as solid phosphoric acid, 2% zeolites, [*>-

171 amorphous silica-alumina, 8% and other metal oxide catalysts.[2%2!]

In order to obtain high quality diesel (e.g., high cetane number) with high yields, the
formation of long chains hydrocarbons with reduced branching degree should be maximized
and the aromatics should be avoided, albeit this is challenging. An important factor
influencing the average branching degree of the products is the catalysts® pore sizes.[??
Zeolites and zeotypes show great potential as solid acids for olefin oligomerization, since
they are microporous materials, relatively robust, versatile (tunable properties), with strong
acidity, which may withstand the catalytic reaction conditions and catalyst regeneration
treatments, and some are readily available and reached industrial application (e.g., MFI,
FAU, BEA topologies). Their ordered microporous systems can function as molecular sieves
inducing shape selectivity towards products with lower branching degree.[*-?°l However,

internal mass transfer limitations may be considerable in the micropores, defaulting the
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active sites accessibility and leading to pore blockage and fast catalyst deactivation,
especially in reactions with relatively bulky molecules such as intermediates leading to
oligomers.*”%1 Hence, compromises between structure, morphology, texture and acid
properties of materials are important in order to meet superior catalytic performances. The
materials’ versatility is also important because the olefinic feedstocks may possess different
compositions and chemical features, and thus tuning of the material properties may be

important to meet superior performances.

During the last decade, important advancements have been made in materials science
to minimize steric hindrance and diffusion limitations inside the microporous structures of
zeolite/zeotype materials, and enhance the active site accessibility and stability for catalytic
applications.?”-?°l The introduction of mesoporosity via synthesis with templates or via post-
synthesis (e.g., desilication, dealumination), may facilitate the diffusion of
reactants/products inside the pores. On the other hand, mesoporous aluminosilicates
possessing high mesoporous specific surface area, defined pore size distributions and
moderate acid strength, may be promising in terms of enhanced catalyst stability with time-
on-stream. Last, but not least, in selecting the catalysts it is important to consider aspects of
up-scalability and eco-friendliness of the synthesis methodologies and conditions.

1.2. Objectives

The present work focuses on the oligomerization of 1-butene to produce diesel range
products, in the presence of heterogeneous acid catalysts, based on crystalline porous
inorganic (Al, Si) oxides, under high pressure and continuous flow operation. A practical
goal is to repurpose light olefins-containing industrial streams and/or valorize bio-based light
olefins, to achieve economical and environmentally sustainable production of clean fuels
and useful chemicals. The choice of the (i) catalysts and (ii) oligomerization reaction
conditions are fundamental to reach high yields of the desired products. In this thesis, the

two approaches were addressed in targeting clean diesel range products.

Regarding (i) the choice of the catalysts, the thermal stability is fundamental not only

for the catalytic reaction, but also for the catalyst regeneration, since coking is an expected
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catalyst deactivation phenomenon. Crystalline porous inorganic (Al, Si) oxides may possess
relatively high thermal stability (>200 °C) in relation to organic or hybrid inorganic-organic
materials. On the other hand, they are versatile with respect to crystalline and porous

structures, and acid properties, making them interesting for flexible technologies.

The catalytic potentialities of mesoporous aluminosilicates of the type TUD-1 and
modified versions of zeolites/zeotypes of BEA and MFI types were explored for 1-butene
oligomerization. The catalytic performances were investigated in terms of activity,
selectivity to diesel range products, and stability. Due to the complex nature of the reaction
product mixtures, comprehensive two-dimensional gas chromatography coupled to time-of-
flight mass spectrometry (GCxGC-ToFMS) and nuclear magnetic resonance (NMR)
spectroscopy were used for characterizing the product mixtures. The catalyst
characterization and catalytic studies were essentially to evaluate the catalytic performances
and establish structure-activity relationships. Principal component analysis helped
categorize the differently prepared catalysts, and gain insights into complex interplay of

material properties influencing the catalytic reaction.

Regarding (ii) the operating conditions, the influence of the reaction pressure,
temperature and weight hourly space velocity (WHSV) was investigated for the different
catalytic materials, in order to meet superior performances and identify best-performing
catalysts. For one of the best-performing catalysts, catalytic experiments were planned
according to a Box-Behnken design of experiments (DoE), which together with response
surface methodology (RSM) allowed the optimization of 1-butene oligomerization to clean

diesel range products.

1.3. Thesis plan

The thesis is divided into ten chapters, of which chapters 2 to 10 are briefly described

in this section.

Chapter 2 contemplates a contextualization of the global energetic consumption,

particularly focused on transportation fuels; a literature review of light olefin
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oligomerization over acid catalysts, comprising an overview of the industrial
oligomerization technologies, and the state of art of the research made in this field in the
recent years. A more directed literature review concerning zeolites and zeotypes is presented,
highlighting the promising characteristics of these types of materials for catalysis and, in

particular, olefin oligomerization.

Chapter 3 describes the experimental work, which involved the design and
implementation of a new laboratory setup to carry out the catalytic oligomerization reactions
at high pressure, temperature and continuous flow operation; the experimental procedure of
the setup; the analytic methods for identification and quantification of the reaction products;

and description of the catalysts characterization techniques.

Chapter 4 presents some general considerations of the work, regarding
reproducibility of the catalytic tests, assessment of internal and external mass transfer

limitations and thermodynamics aspects of butene isomerization.

Chapter 5 to Chapter 8 cover the study of 1-butene oligomerization at high pressure
and continuous flow operation, over different inorganic porous solid acid catalysts which
were synthesized and characterized via complementary techniques. Each chapter starts with
a lead-in to the specific topic, followed by the synthesis of the materials, discussion of the
characterization results, and discussion of the catalytic performance of the materials.

Chapter 5 deals with the oligomerization of 1-butene over TUD-1 type mesoporous
aluminosilicates, synthesized via one-pot synthesis or a stepwise approach, without using
surfactants as templates (eco-friendly). The products were analyzed by GCxGC-ToFMS.
The influence of the properties and process parameters on the catalytic reaction, and catalyst
stability were investigated. The catalytic performances were benchmarked with ZSM-5
(zeolite used in commercial oligomerization processes) and were compared to an ordered
mesoporous aluminosilicate synthesized via the stepwise approach using surfactants as
templates. This chapter regards the article entitled “TUD-1 type aluminosilicate acid

catalysts for 1-butene oligomerisation”.l*"]

Chapter 6 focuses on several mesostructured solid acid catalysts based on the BEA
topology, namely hierarchical BEA zeolite prepared via one-pot approach using a dual

function template, a composite (BEA/TUD) possessing BEA zeolite nanocrystallites
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embedded in a mesoporous matrix synthesized under hydrothermal conditions. The
influence of the material properties, catalyst activation temperature, reaction parameters and
catalyst stability were investigated combining characterization, GCxGC-ToFMS and
catalytic experiments. The catalytic performances were compared to commercial
nano/microcrystalline zeolites of different topologies (BEA, MFI), and COD-900 (type of
catalyst for the Conversion of Olefins to Distillates industrial process). This chapter
corresponds to the article entitled “Mesostructured Catalysts Based on the BEA Topology

for Olefin Oligomerisation”.[3!

Chapter 7 comprises the oligomerization study over micro/mesoporous zeotypes
based on the MFI topology, prepared via different non-destructive bottom-up strategies, such
as crystallization of silanized protozeolitic units, co-templating with a dual function
template, or using a sole structure directing agent (non-surfactant and non-polymeric) to
generate mesoporosity. The influence of the material properties, reaction parameters on the
catalytic reaction were investigated, along with the catalyst stability. This chapter
corresponds to an article entitled “Olefin oligomerisation over nanocrystalline MFI-based

micro/mesoporous zeotypes synthesised via bottom-up approaches”.[*2

Chapter 8 discusses the potentialities of modified versions of zeolite ZSM-5,
prepared by top-down strategies involving base-acid treatments of commercial available
ZSM-5 with low Si/Al ratio. Characterization studies and multivariate/principal component
analysis (PCA) were employed to help categorize the differently prepared catalysts and to
gain insights into the complex interplay of material properties influencing the catalytic
reaction. This chapter corresponds to the article entitled “Catalytic conversion of 1-butene

over modified versions of commercial ZSM-5 to produce clean fuels and chemicals”.l!

Chapter 9 presents an optimization of the reaction conditions of 1-butene
oligomerization, by applying the Box-Behnken design of experiments (DoE) and response
surface methodology (RSM), with the aim of targeting diesel range products with low
aromatics content. GCxGC-ToFMS was valuably used for characterizing the complex
reaction product mixtures. This chapter corresponds to a manuscript entitled “Optimization
of continuous-flow heterogeneous catalytic oligomerization of 1-butene by design of

experiments and response surface methodology”.[*4

In Chapter 10 is presented the main conclusions and suggestion for future work.
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2.1. Transportation fuels

2.1.1. Global and European demand

The world is in constant change and modern society is greatly dependent on sources
of energy. The social and economic progresses call for the need to meet the growing demand
for energy in sustainable and secure fashions. According to the International Energy Outlook
2017 (IEO2017), the worldwide energy consumption increased from 575 quadrillion Btu in
2015 to 736 quadrillion Btu in 2040, corresponding to 28 % increase in energy consumption,
partly due to the strong economic and population growths of the non-OECD (Organization
for Economic Co-operation and Development) countries, mostly India and China.l*! In 2015,
the global largest share of energy consumption of ca. 54 % regarded the industrial sector
(including mining, agriculture and construction), followed by ca. 26 % due to the
transportation sector and ca. 20 % due to buildings.™ Until 2040, it is expected higher energy
consumption rise for transportation and buildings (1.0 %/year and 1.1 %/year, respectively)
than for the industrial sector (0.7 %/year).™!

The increasing energy demand cause great environmental concerns with global
warming. The main contributors to global greenhouse gas (GHG) emissions by economic
sector were power generation (42 %), transportation (22 %), industry (20 %), followed by
buildings (10 %) and others (agriculture, non-energy use, oil and gas extraction and energy
transformation) (6 %) (year 2014, Figure 2.1).[4 According to the OECD Environmental
Outlook Baseline, transport emissions may double between 2010 and 2050, partly due to a
considerable increase of vehicles ownership and growth in aviation transportation. !

The transportation sector accounts for the main share of the total end-use of liquid
fuels consumed; ca. 54 % in 2015 and expectedly 56 % by 2040. Gasoline and diesel fuels
are the most consumed transportation fuels (ca. 36 % and ca. 30 %, respectively, based on
projections for 2040) followed by jet fuel, natural gas, liquefied petroleum gas (LPG) and
electricity (Figure 2.2).1 The consumption of gasoline and diesel may not suffer major
changes between 2015 and 2040, due to improvements in vehicles efficiency and increased
preference for electric and shared vehicles, counterbalancing the growing travel demand.
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Despite the improvements in energy efficiency, jet fuel consumption may double due to
growth of air travel demand. Natural gas and electricity consumption showed faster growth

associated with the increasing sales of electric cars.[*4]

According to the European Union (EU) Reference Scenario 2016, the transport sector
will account for 33 % of the EU energy consumption by 2050, which is roughly comparable
to 31 % in 2005.51 Diesel fuel may remain the largest transportation fuel consumed in 2050
(51 %), as the predominant fuel for passenger cars and continuing to be the primary fuel for
heavy-duty vehicles (Figure 2.2). Gasoline demand may suffer the most pronounced drop,
from 26 % in 2015 to 15 % by 2050, mainly based on expected higher taxes and prices
compared to diesel fuel (Figure 2.2).181 Jet fuel, gas, biofuels and electricity demand are
expected to increase. The use of hydrogen continues limited partly due to the lack of

favorable policies.[

The prospects of fuel demand in the transport sector depend on many factors, such
as economic growth, especially of non-OCDE countries, population growth, urbanization,
geopolitics, global oil reserves and supply, environmental and health concerns, government
policy, technological improvements, vehicles efficiencies and social preferences.[’l Hence,
it is important for refineries worldwide to be flexible, able to make the adjustments to shift

their fuels production in line with market demand.

Global energy consumption Global greenhouse gas
by sector (2040) emissions by sector (2014)

Buildings
21%
Buildings

Transport 10%
26% Power
generation

42% Transport
22%

Industry
53% Industry

20%

Figure 2.1. Projections for 2040 of the global energy consumption by sector and global
greenhouse gas emission by sector in 2014. Adapted from refs. [1,2].
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Global energy consumption EU energy demand by
by transportation fuel (2040) transportation fuel

6 7 6
e - .
6

LPG
Natural 4%
gas
8%

Others
m Eletricity
Gaseous
m Jet fuel
m Diesel

m Gasoline

2010 2020 2030 2050

Figure 2.2. Projections for 2040 of the global energy consumption by transportation fuel and
EU energy demand by transportation fuel (2010-2050) (others include biodiesel and
hydrogen). Adapted from refs. [1,5].

2.1.2. Production processes

Currently, conventional transportation fuels such as gasoline, jet fuel (kerosene) and
diesel are mainly produced via distillation of crude oil and subsequent refining, along with
other important products in petroleum refineries, as schematically represented in Figure 2.3
(Table 2.1). Some of the world’s largest refineries are Jamnagar Refinery (Reliance
Industries, India, 1240 kilo-barrels per day (kbbl/d)) and Paraguana Refinery Complex
(Petroleos de Venezuela SA, Venezuela, 940 kbbl/d).]

The gasoline pool produced from petroleum derives from different refining units,
such as isomerate of light naphtha, reformate of heavy naphtha, hydrocracked gasoline, Fluid
Catalytic Cracking (FCC) gasoline, alkylate of butenes/pentenes, and coker naphtha. (Figure
2.3). Jet fuel and diesel fuel are obtained by atmospheric distillation of crude oil, followed
by merox treatment and hydrotreatment, respectively, with the aim of reducing the sulphur
content (e.g., mercaptans) in jet fuel and reducing the contents of sulphur, nitrogen, oxygen,
aromatics and metals in diesel in order to meet fuel specifications. Diesel may be obtained

by catalytic hydrocracking of vacuum gas oil (VGO), and by oligomerization of light-
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cracked naphtha (LCN) or coker naphtha coming from FCC unit or delayed coker,
respectively (Figure 2.3).°1% However, oligomerization units are not implemented in

petroleum refineries for diesel production.

Gas > ~
Gas processing < | Merox treaters LPG
) Butanes
Gas H,
f \ Licht \l/ /'\ Isomerate
18 Hydrotreater Tomerization plant
naphtha
o Gas H, Gas H,
S v A v_A
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= naphtha
2
E Tet fuel Jet fuel Gas H,
g — Merox treater | ——>> and/or v A
_Ué:) Kerosene Kerosene 5 Hydrocracked gasoline
% Gas H, %
= . 8
g Diesel oil v_A 7| g ]
1esel 01 =
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| G E
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= VGO Hydrotreater g 2z
I=
e O & . .
e = = G Z| Oligomerization
E = FCC
g Heavy = gas oil \l/
2 VGO Gas Diesel oil
> A
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2
S
A [ Coker gas oil
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5 % Petroleum coke

Asphalt
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Figure 2.3. Scheme of a petroleum refinery process to obtain liquid hydrocarbons. Adapted
from refs. [9,11].
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Table 2.1. Specifications of the products of petroleum distillation and refining.[®*?]

Number

Petrol Boili :
etrq eum Product of.C 0.' 'ng Final use
fraction point (°C)
atoms
Methane 1 -161.6 Heating, electricity
Petroleum  Eyhane 2 -88.6 Plastics, petrochemicals
ges Propane/Butane  3-4 -42--12  LPG, transport, domestic
| Naphtha 5.17 36-302 Petrophemlcals, solvents,
Light ends gasoline
Gasoline 4-12 -1-216 Transport
Middle Kerosene/diesel 8-18 126-258 Jet fuel, transport, heating
distillates®™  Jet fuel 11-18  126-287  Transport
Fuel oil 1220 216421 Aot
Heavy ends domestic/industrial use
Lubricating oil >20 >343 Motor oil, lubricants
) Wax 17->20 302 ->343 Lubricants
Solid heavy  asppalt >20 >343 Roads, roofing
ends Coke 50 >1000 Steel production

2] | this thesis, distillate fuel or distillate is generally used to denote products with similar properties
to middle distillates (not necessarily obtained via petroleum distillation).

For countries with only a few crude oil reserves or not self-sufficient in terms of oil
production and refining capacity, transport fuels are obtained in a Fischer-Tropsch (FT)
refinery from organic carbon sources such as natural gas, coal or biomass (gas to liquid
(GTL), coal to liquid (CTL) or biomass to liquid (BTL), respectively);1*®l for example,
Secunda CTL plant (Sasol, South Africa, 160 kbbl/d), Pearl GTL plant (Shell, Qatar, 140
kbbl/d), Mossel Bay GTL plant (PetroSA, South Africa, 54 kbbl/d). Presently, there are no
BTL industrial scale plants in operation.®#! Figure 2.4 shows a simplified flow diagram of
a FT based facility. The carbon source is firstly pre-treated and gasified (or reformed in the
case of gaseous carbon sources) to produce synthesis gas (or syngas, which consists of a
mixture of hydrogen and carbon monoxide), followed by purification. The CO by-product
of the gasification can be removed from the syngas stream prior to feeding the FT synthesis
reactor, allowing the capture of CO, for sequestration. The FT synthesis reaction occurs in

the presence of a cobalt or iron catalyst, where the syngas is converted to water, CO> and
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synthetic crude (syncrude), composed of a wide range of hydrocarbons (mainly paraffins,
and oxygenated hydrocarbons). The syncrude is further refined to produce the desired
products (chemicals, fuels). The nature of the selected carbon source affects the carbon
efficiency (and CO; footprint) of the FT technology. In this respect, natural gas and waste
plastic are preferred to biomass or coal sources, since hydrogen-rich and heteroatom-poor
feedstocks are preferable.[*>6] The refining processes in FT plants share similar types of
processes to petroleum plants such as atmospheric distillation, hydrotreating, hydrocracking
and oligomerization (Figure 2.5). Currently, oligomerization units (technology emerged in
the early 1930s) are only implemented in some FT refineries for the production of
transportation fuelst*”), such as Mossel Bay GTL!® and Secunda CTLI plants .

Syngas
production and
(e.g. natural gas, purification

coal, biomass, T

Air/O,

Carbon source

Syncrude

waste, etc.)

> CO,/H,0

Chemicals
Steam
Fuels

Figure 2.4. Simplified flow diagram of a Fischer-Tropsch (FT) based facility. Adapted from
ref. [15].

0,
Aqueous <100°C
@ . —
.g Oligomerization Wastewater
E ’—,
c
>
(7)
m LPG
=
I
— Naphtha
v — Distillate
Residue

Figure 2.5. Simplified representation of high temperature (HT) FT syncrude refining coupled
with an oligomerization unit. Adapted from ref. [20].
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Electricity and transportation fuels alternative to diesel and gasoline, such as
biodiesel, bioethanol, biogas, natural gas, and dimethyl ether, account for a small percentage
of the global demand, albeit they are important, and their market is growing very fast. For
instance, the biofuels (biodiesel, bioethanol, biogas) consumption is expected to grow at an
average rate of 5 %/year (2004-2030), being the US the main producer, followed by Brazil.[")
These fuels may be used directly or blended with conventional gasoline or diesel. In
particular biomass is a renewable source of organic carbon that may contribute to enhanced
energy security, since it is independent of fluctuations of oil prices. Biomass should be
complemented with other sources to meet the high fuel demand, and the sustainable
intensification of biomass cultivation is important for GHG emissions mitigation and avoid
negative impacts on biodiversity, soil quality, food chain and natural resources. Moreover,
the production, processing and transportation of biomass should preferably not require non-
renewable energy.l”l Table 2.2 summarizes the main advantages and disadvantages of the
different production processes for each transportation fuel (conventional or alternative).
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Table 2.2. Main advantages and disadvantages of conventional and alternative fuels and respective production technologies.[®0:1321-25]

Advantages

Disadvantages

Petroleum refineries

- Extraction/exploration of crude oil is a easy and economic process;
- The refining technologies are well developed, making it easier to
get valuable products;

- Petroleum has high energy density (energy generated per volume).

- Petroleum is a non-renewable source and its extraction and burning
lead to GHG emissions harmful to the environment;

- Refining of petroleum produces toxic products (e.g., CO);

- Sustains growth of terrorism and violence;

- Low energy ratio® of 0.83-0.95.

Fischer-Tropsch (CTL, GTL)

- Abundant coal and natural gas reserves;

- Flexibility in terms of variety of products produced by easily
adjusting the FT reaction conditions;

- Products with ultra-low sulphur, very few aromatics, N, Ni and V
concentrations, and diesel with high cetane number (up to 75);

- Feasible separation of CO. during syngas production;

- Waste heat is available for electricity co-generation;

- GTL generates reduced amounts of COy;

- Similar combustion properties as the petroleum derived fuels.

- Competition of coal and natural gas in electric power generation
and domestic use;

- CTL generates significant amounts of CO;

- Produces diesel with low density;

- Produces gasoline and naphtha with low octane number;

- FT diesel vehicles use 1.3-2.9 MJ of additional energy per
kilometer compared to a fossil fuel derived diesel.

Fischer-Tropsch (BTL)

- Biomass is a renewable and low-cost source of carbon;

- Zero carbon footprint for some feedstocks (e.g., industrial waste
and residues);

- Relatively high energy ratiol® of 3-9.5 (depending on the biomass);
- Produces electricity as sub-product.

- Competition of biomass for the food chain versus biofuels
production;

- Emission of matter that contribute to the eutrophication and
acidification (when using energy crops as biomass).

- Requires non-renewable energy for producing/handling biomass,
which may have GHG emissions associated.

- Few or none BTL commercial scale plants;
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Advantages

Disadvantages

Transesterification of vegetable oils to biodiesel

- Can be manufactured from a wide range of feedstocks;

- Biodiesel is easy to use (no vehicle modification needed);

- Biodiesel is safer to handle and to store than petroleum, because it
is less toxic and flammable;

- Biodiesel improves fuel lubricity and increases the cetane number
when mixed in fossil fuel derived diesel;

- High energy ratiol® of 5-6 (vegetables waste) or 8.5-9.5 (palm oil);
- Good performance and cost efficiency;

- The presence of oxygen in biodiesel can reduce the ignition delay
time, and the fuel may burn more completely, which reduces CO,
particulate matter, and other exhaust emissions.

- More expensive than petroleum diesel fuel;

- Needs fossil fuel derived methanol;

- Produces high amounts of glycerol as co-product;

- Less suitable for use at low temperature;

- Low concentration blends with conventional diesel;

- Lower energy density;

- The high oxygen content of biodiesel increases the probability of
combination with nitrogen, at high temperature, leading to an
increase in NOx emissions.

Fermentation of biomass to bioethanol

- Can be manufactured from a wide range of feedstocks;

- Can be used directly as pure ethanol or blended with gasoline,
enhancing the octane number and heats of vaporization;

- Less toxic and biodegradable;

- Cleaner emissions;

- Reduced GHG emissions.

- Crops grow slowly in countries with low levels of sunlight and
temperatures;

- Expensive energy-consuming distillation step;

- Bioethanol has lower energy density than gasoline;

- Bioethanol has high miscibility with water;

- Low concentration blends with gasoline;

- Low flame luminosity, lower vapor pressure;

- Toxic for the ecosystems;

- Bioethanol can only be used in Flexible-Fuel Vehicles (FFV),
which have a very small share in the market.

8l Ratio of the energy output of the end product to the fossil energy required for producing the desired fuel.
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2.1.3. Gasoline and diesel quality properties

Gasoline and diesel are very complex mixtures composed of hydrocarbons
(comprising linear, branched and cyclic paraffins, olefins, and aromatics) in the range of
approximately C4-C12 and C8-C18, respectively.[®] Besides the need to increase gasoline
and diesel production in relation to present and future demand, the fuel properties need to
meet standard and restricted requirements (Table 2.3) to allow efficient atomization in the

internal combustion engine (ICE), avoid engine damage and minimize air pollution.

Table 2.3. Some quality properties of most fuels used in the EU, and their normative values
(EN 228:2012 for gasoline and EN 590:2013 for diesel).[?6-28]

. Diesel
Quality propert Gasoline (values for temperate
y property (Unleaded Petrol grade) P
weather)
RON/MON, min 95/85 -
CN, min - 51
Density @ 15°C (Kgm~ 720to 775 820 to 845
%), min-max
Viscosity @ 37.8°C (cSt), - 20to 4.5
min-max
RVPE @ 37.8°C (KPa), 45 to 60 (Class A) -
min-max 70 to 100 (Class F1)
Sulfur (ppm), max 10 10
Lead (mg/L), max 5 -
Aromatics (Vol %), max 35 -
Flash point (°C), min - 55
Cloud Point (°C), max - -10 to -34[°!

8l RvP=reid vapor pressure. "l Only applicable to countries with arctic or severe winter conditions.
The fuel properties may be divided into 3 groups: (i) operational properties (e.g.,

octane number, cetane number, heating value) or properties related to the durability,
chemical stability and chemical composition (e.g., volatility, density, viscosity); (ii)
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properties related to the transportation and storage safety of fuels (e.g., flash point); and (iii)
properties related to environmental legislation (e.g., acidity, sulphur and aromatic

contents).[?’]

The combustion performance of gasoline is given by the octane number (ON).
Gasoline with high ON tolerates higher compression ratios before igniting and thus, may be
used in high performance gasoline engines. Gasoline with low ON may cause engine
knocking problems. Conventionally, the Research Octane Number (RON, measured
according to ASTM D2699), and the Motor Octane Number (MON, measured according to
ASTM D2700) describe the antiknock performance under different conditions. The tests are
performed in Cooperative Fuel Research (CFR) engines operating at low (RON) or high
speed (MON), by comparing the gasoline with standard mixtures of 2,2,4-trimethylpentane
(isooctane) and n-heptane.l*! Thus, the octane number and isoparaffinic index (I, which is a
measure of the amount of branching, determined as the ratio CHs:CHz in the paraffins) of
gasoline vary between the values for isooctane (ON=100; 1=5.0) and those for n-heptane
(ON=0; 1=0.4).3332 The ON (for gasoline) is greatly influenced by the isoparaffinic and
aromatic contents. Isoparaffins with higher values of isoparaffinic index are more resistant
to self-ignition, thus presenting higher ON. Conversely, longer chain paraffins and olefins
are more susceptible to self-ignition, presenting lower ON. Aromatic compounds increase
the ON of gasoline, since they, per se, present high RON (typically 110) and MON (typically
100).2 Additives (e.g., alcohols, organic compounds, etc.) may be added to gasoline to
increase the ON.[32-34

The CN is a measure of the ignition delay of a diesel fuel. Diesel with high CN has
a small ignition delay and can burn completely, allowing the engine to run more smoothly
and powerfully, while producing less emissions of black and white smoke and noise. On the
other hand, diesel with low CN has a significant delay that may cause starting difficulties,
engine knocking, leading to poor fuel economy, power loss and sometimes engine damage.
Most diesel fuels for standard ICE vehicles possess CN between 45 and 55.1%1 The CN
depends essentially on the molecular composition of the diesel product. Figure 2.6 shows
the CN for pure compounds as function of the number of carbon atoms for different classes
of hydrocarbons. The CN increases with the number of carbon atoms, and is higher for n-
paraffins, followed by olefins, cycloparaffins, isoparaffins and aromatics. Diaromatics have
lower CN due to their high chemical stability. CN may be measured according to the ASTM
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D613 standard engine test, where CN is defined as the percentage by volume of normal
cetane (Ci6Ha34) in a blend with isocetane (2,2,4,4,6,8,8-heptamethylnonane), which matches
the ignition quality of the diesel fuel being rated under the specified test conditions. This test
requires 1 L of diesel, which is a large amount for performing catalyst evaluation tests in
laboratory-scale reactors for research purposes. Therefore, some models, e.g., Ghosh and
Jaffe (2006),*°! Kapur et al. (2001)E7 and O’Connor et al. (1992)28 were developed to
estimate the CN based on the diesel chemical composition determined by GC-MS analysis

or *H NMR spectroscopy.
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Figure 2.6. Pure component CN as function of the number of carbon atoms for different
classes of hydrocarbons. Adapted from ref. [36].

The quality of fuels depends on various properties, besides ON and CN. The heating
value is the amount of heat released per mass or volume of fuel via complete combustion,
which affects the fuel economy. The higher the heating value of the fuel, the more power the
engine may generate. Fuel volatility affects the vehicle performance and emissions. Fuels
should preferably possess an optimum proportion of low boiling compounds for easy cold
starting and fast warm-up, and high boiling point compounds for providing power and fuel
economy. Too high or too low volatility may favor smoking and carbon deposits. On the
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other hand, fuel viscosity affects the atomization and fuel delivery rate. Too high viscosity
may deteriorate the injection system and cause engine starting difficulties, whereas too low
viscosity causes poor lubricity of the plungers and injectors. The fuel density influences of
the fuel-air mixture and, consequently, the engine output power, whereas high fuel density
may cause smoke formation and starting difficulties.®™® Flash point is the minimum
temperature at which the fuel needs to be heated before a flammable vapor is produced
(which may undesirably ignite). The lower the flash point, the higher the risk of explosion
during transportation or storage. Legislation is increasingly stringent with respect to sulphur
and aromatics contents of fuels. High sulphur leads to corrosion and wear of the engine
components and contributes to air pollution, and, on the other hand, high content of heavier

aromatics may lead to combustion chamber deposits.[*®!

Table 2.4 shows the relationship between the main classes of hydrocarbons and some
fuel properties.[10%%1 While n-paraffins contribute for low ON and good CN, aromatics
have the opposite effect leading to good ON and poor CN. On the other hand, the presence
of n-paraffins is responsible for low heating value, density, cold-flow properties and
smoking tendency, whereas the aromatics provide good values for these properties.
Isoparaffins and olefins have a similar effect on fuel properties, leading to moderate-good
ON and low CN, heating value, density, cold-flow properties and smoking tendency. Cyclic
paraffins have moderate effects on fuel properties. Aromatics and olefins may increase
engine deposits (worsen engine cleanliness), and lead to carcinogenic compounds (benzene,
polyaromatic compounds) in exhaust gases. Olefins in gasoline may lead to enhanced
concentration of reactive olefins in exhaust gases, some of which may be carcinogenic and
toxic.l!%% The goal is to have the optimum distribution of hydrocarbons that satisfies
established regulations and performance needs. In summary, all fuel properties should be
considered in the evaluation of the fuel quality. Additives may be needed to meet the good

requirements for gasoline and diesel.

Fuels obtained via olefin oligomerization can be analyzed by different techniques:
simulated distillation analysis (SDA, ASTM-D2887) to determine the boiling point ranges;
differential scanning calorimetry (DSC) to determine the n-paraffin content; gel permeation
chromatography (GPC) and gas chromatography-mass spectrometry (GC-MS) to determine
the molecular weight distribution and identify the chemical compounds, respectively; and
proton nuclear magnetic resonance (*H NMR) spectroscopy to determine the CN.[]
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Table 2.4. Influence of the fuel composition on fuel properties.53

Type of Heating . Smoking
N N D

hydrocarbon o ¢ value ensity tendency

n-Paraffins Low Good Poor Low Low

Isoparaffins Good Low Poor Low Low

Cyclic paraffins Moderate Moderate  Moderate ~ Moderate Moderate

Olefins Moderate Low Poor Low Moderate
Aromatics Good Poor Good High High

2.2. Catalytic olefin oligomerization of light olefins

2.2.1. Industrial technologies

The oligomerization of light olefins (C3-C6) is an important topic to refineries (e.g.,
petroleum), and several patents were published since the 80°s.3%41-4él |t represents a
promising and sustainable route to produce sulphur-free synthetic fuels (gasoline, diesel, jet
fuel) and reduced aromatics content. The fuel products may have wide applications profile:
land/sea/air  transportation,  domestic/commercial  heating, power  generation,
construction/agricultural machinery; or for producing intermediates for lubricants,
surfactants, heavy oils, plasticizers, pharmaceuticals, dyes, resins, detergents and
additives.1747-# Light olefins (C3-C6) are by-products (in considerable quantities) of
petrochemical processes, such as FCC, SC, delayed coking, and FT synthesis,[1%20:4250-53] gp
may be obtained from renewable sources of carbon, e.g., carbohydrate biomass and biobased

ethanol/butanol [>9I

Olefin oligomerization technologies for the production of gasoline and/or middle
distillates have been improving along decades (Table 2.5). In 1935, Universal Oil Products
(UOP) implemented the Catalytic Polymerization (CatPoly) technology to convert propene
and butene compounds to distillate fuels, in the presence of a solid phosphoric acid
catalyst.l*®) However, this technology presented several drawbacks (specified ahead in
subsection: Catpoly). Later, in the 1980s Mobil Oil (now ExxonMobil) developed the Mobil
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Olefins to Gasoline and Distillate (MOGD) technology using zeolite H-ZSM-5 (MFI
topology) as catalyst to produce high-quality distillate fuels, gasoline and lubricating oils [¢°]
The same type of catalyst, namely COD-9 (MFI topology), was employed in the Conversion
of Olefins to Distillate (COD) technology developed by Mossgas (presently, PetroSA) in
1992, to produce high-quality distillate fuels.’®™) Axens developed new flexible technologies
(Polynaphtha, PolyFuel and FlexEne) to be licensed by other companies; the processes used
an amorphous silica-alumina catalyst and allow to easily swift production according to the
market demand, without requiring significant investments and plant modifications.[626
Petron Corp. (Philippines) selected in 2011 Axens’ technologies for processing heavier
crudes into higher quality products and propene production, including C4 olefins
oligomerization unit (Polynaptha).®¥ OMV Petrom (Romania) selected in 2016 Axens’
PolyFuel technology in order to maximize diesel production by converting olefins present
in LPGs and LCN from the FCC unit into distillates, while targeting Euro V specifications

for gasoline and diesel pools. 53

Table 2.5. Olefins oligomerization technologies mainly for middle distillates production.t"]

Technology Development Operation Catalyst
1930-1935 Sasol Synfuels HTFT . .
. : o Solid phosphoric
CatPoly Universal Oil refineries, South acid (SPA)
Products Africa
1970 - Zeolite Socony
MOGD Exxon Mobil Not commercialized Mobil_5 (ZSM-5)
COD 1992 PetroSA at Mossel MFI type zeolite:
Mossgas refinery Bay, South Africa COD-9

PolyNaphtha 1986
Polyfuel 2008
FlexEne Axens

Licensed to different Amorphous silica-
companies alumina: IP 811

Catalytic Polymerization (CatPoly). The CatPoly technology employs solid phosphoric
acid (SPA, discovered by Ipatieff(®567]) as catalyst to convert olefins, usually propene/butene
mixtures, in the gas-phase, to gasoline and diesel range iso-olefins.[%81 The reaction process

involves dimerization and trimerization reactions, via an ester mechanism,® whereby a
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phosphoric acid ester stabilizes the polarized hydrocarbon intermediates. SPA is a cheap
catalyst consisting of a mixture of orthophosphoric acid with kieselguhr (also known as
diatomaceous earth, a natural form of highly pure silica), followed by extrusion and
calcination at high temperature to form a composite material.[%81 The final catalyst is
composed of ca. 60 wt.% phosphorus pentoxide (P4O10 or P20s) and ca. 40 wt.%
kieselguhr.[™™ The active phase is a viscous layer of phosphoric acid on the inactive
kieselguhr support.’*] The CatPoly process presents several disadvantages,!*>#"%1 mainly

associated with the SPA catalyst, such as:

e Reduced catalyst lifetime as a result of the collapse of the catalyst particles (related
to catalyst crushing strength), causing high pressure drops in the catalytic bed and,

ultimately, premature shut-downs;

e Very limited possibilities to tailor the catalyst properties to product
specifications/demand;

e Above certain amounts of water and oxygenates, the catalyst may suffer structural

collapse and deactivation;

e The spent catalyst is not regenerable, and there exist environmental issues related to
catalyst disposal (though the spent catalyst may be repurposed if neutralized with

ammonia to produce ammonium phosphate, commonly used as plant fertilizer).

Moreover, the CatPoly diesel has poor self-ignition properties and is highly
branched, partly due to the absence of microporosity and steric constraints on the SPA
catalyst. Therefore, CatPoly diesel has a low CN of 30 (raw) or 34 (after hydrogenation),
whereas current and future European standards require CN of at least 51.1*6.721 Nevertheless,
the CatPoly diesel has low viscosity of 1.8 cP at 40 °C and excellent cold-flow properties
7% Therefore, CatPoly process is more suitable for high-quality gasoline production
(RON=95-97 and MON=81-82), since it leads to highly branched products with good octane
quality.[’”¥ The Catpoly technology continues to be in operation in Secunda Sasol refinery
nowadays, and in the recent years there has been new research on olefin oligomerization

over SPA catalyst, in order to improve the catalyst and the technology.**7>-771
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Mobil olefins to gasoline and distillate (MOGD). In the MOGD process, methanol is first
converted to light olefins (MTQO) over H-ZSM-5 as catalyst and, in a second stage, the olefins
are converted to gasoline and diesel fuel over the same type of catalyst.[*>¢% The catalyst
possesses a molar ratio Si/Al of approximately 70, and is extruded with 35 wt.% of
alumina.[’®7! The MOGD process is highly flexible in terms of feedstock and operability
design. It is adequate for a variety of feed streams, ranging from ethene to 200 °C-end boiling
point olefinic naphtha coming from FCC units.[®! Propene/butene and pentene/hexene feeds
led to the best distillate selectivity, partly due to the relatively high reactivity of these olefins.
The process may operate under Gasoline mode (230-375 °C, 4-30 bar, 0.5-2 golefin geat * h™Y)
or Distillate mode (190-310 °C, 42-70 bar, 0.5-1.5 Qolefin gcat = %), allowing a wide range of
operating conditions in order to meet the desired product yields.[*? Figure 2.7 represents the
process flow for a commercial MOGD plant operating under Distillate mode, which consists
of four fixed-bed reactors: three in a series configuration, with inter-reactor coolers and
liquid recycle to control the reaction heat, and a fourth reactor for catalyst regeneration. The
olefinic feed is mixed with the recycle and passes through the three reactors. The reactor
efluent is fractionated to produce distillate-rich and gasoline-rich streams. Part of the
gasoline-rich stream is used for reactor recycle to help control the reaction heat and
maximize the distillate selectivity. The distillate is subjected to a deep hydrotreatment in
order to saturate the olefin oligomers and reduce the amount of aromatics. The product, after
hydrogenation, consists essentially of a mixture of moderately branched paraffins in the
diesel range (C10-C20).16]

ZSM-5 is an established catalyst in the petroleum industry, for hydrocarbon
isomerization reactions. This material is a medium pore zeolite possessing high thermal
stability, specific surface area, strong acidity and may impose shape-selectivity (discussed
in section 2.3).[®81 The degree of branching of the MOGD products is influenced by the
shape-selective constraints imposed by the microporous system of zeolite ZSM-5. The
structure of the longer carbon chain products consists mainly of moderately methyl-branched
olefins with an average of one methyl side chain per chain of five carbon atoms.["® After
hydrogenation, these products are converted to iso-paraffins, which have very good distillate
properties, low sulphur, nitrogen and aromatic contents, very low pour and cloud points, and

high CN (>55). These outstanding distillate fuel properties account for the high potential of
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the MOGD process in meeting future demand for cleaner, low aromatics transportation
fuels.l®2
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Figure 2.7. MOGD process flow for operation in Distillate mode. Adapted from ref. [60].

In summary, the MOGD process has a great potential for refinery, petrochemical and
synthetic fuel applications. The first application of the MODG process occurred in 1982 in
the former Mobil refinery in Paulsboro (New Jersey), in which the process was tested using
a commercially produced catalyst, giving good results in terms of controllability in large
scale, catalyst regeneration, product yields and selectivity, demonstrating that the MOGD
process could be scaled-up for industrial production.®®! However, it is not yet
commercialized. It is worth mentioning that ZSM-5 catalysts show good activity for olefin

oligomerization, but they may suffer from relatively fast deactivation.[8384

Conversion of Olefins to Distillate (COD). The COD process is only operated by PetroSA
at Mossel Bay, one of the world’s largest GTL complexes producing high-quality fuels
compared to conventional oil refiners.[Y1 This process is a modification of the MOGD
process, which was developed specifically for the conversion (oligomerization and
isomerization) of olefins (Cz to Ce) derived from FT synthesis, over COD-9 (H-ZSM-5 type)
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catalyst supplied by Siid-Chemie.[*88 In a similar fashion to the MOGD, the COD process

may operate under Gasoline mode (223-350 °C, 58 bar, 0.5 golefin gcat - h™2) or Distillate mode

(233-375 °C, 4-58 bar, 0.5 g olefin Geat * 2.1 The catalyst regeneration is performed in-situ

under a flow of nitrogen mixed with small amounts of oxygen, in order to remove coke. The

COD process may lead to gasoline, propane and distillates (Figure 2.8). The gasoline and

propane produced may be included in the gasoline or liquefied petroleum gas blend pool,

respectively; the distillates may be further processed to specialty distillate products by

hydrotreating processes giving low aromatic kerosene (LAK) and low aromatic diesel

(LAD).BV If required, fractionation may be carried out after hydrotreatment in order to

obtain a range of finer cut distillates for special applications.”] These are amongst the

cleanest marketed fuels.
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Figure 2.8. COD process with indication of the feed and products compositions. Adapted

from refs. [86,87].

Overall, the COD process is very advantageous to increase diesel yield and product

value, since it converts mixed olefins (generally used for gasoline products) to higher value
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distillates with low sulphur and aromatics contents. These fuels have better exhaust emission
and cold-flow properties than conventional fuels, making them particularly suitable as
blends for fossil or bio-derived fuels, and very attractive transportation fuels for countries
with colder winter seasons. After deep hydrotreatment, the LAD and LAK may be used as
indoor fuels and solvents. LAD may be used for lubricants, rolling oils, eco-diesel and
copper extraction fuels.®”] Due to the above advantages, the COD process is considered a

very promising fuel technology.

Polynaphtha, Polyfuel and FlexEne. Axens developed several technologies to enhance
middle distillates production.l The Polynaphtha technology!®! allows a wide choice of
feedstocks (propene and mixed-butene fractions present in Cz/C4 cuts from LPG, FCC or
SC, and Cs olefins from the FCC unit) and a wide range of products (high octane blending
components for gasoline; high smoke point blending components for kerosene, jet fuel and
diesel). Moreover, the Polynaphtha technology is well suited for revamping existing
phosphoric acid polymerization units. When gasoline demand falls, the co-produced Ca
olefins (normally used for alkylate production) and light gasoline olefins may be converted
to distillate fuel via oligomerization.!®!

The PolyFuel technology!® appeared later as an improved technology to maximize
the middle distillates production via the conversion of light olefins from gasoline, at
minimum cost while fulfilling more stringent product requirements. The feedstock for this
process may be pre-treated olefin-rich components derived from cracking processes (e.g.,
FCC, SC) or other olefin sources (e.g., effluent from paraffin dehydrogenation processes).
Nevertheless, the preferred feed is the Cs-Cs olefinic cut from the Prime-G™ process; Prime
G is an ideal feed pre-treatment process to lower the contents of dienes and sulphur in light
Cs-Cs fractions.® In the Polyfuel process (Figure 2.9), light olefins are oligomerized using
two fixed-bed reactors (one swing reactor), with on-stream catalyst regeneration. The
operation of the reactors is optimized to maximize catalyst on-stream lifetime. Conversion
and selectivity are controlled by reactor temperature adjustment, while the heat of reaction
is simply removed by heat exchange between the feed and effluent. The reactor effluent is
fractionated, producing gasoline depleted in olefins, and middle distillates. The gasoline

fraction is partly recycled to the reactor aiming at enhanced distillate production; on the other
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hand, the middle distillate stream is typically sent to existing kerosene and diesel
hydrotreatment units.[®!

Recycle for
maximum distillates Gasoline
Fixed-bed swing|  [4========= |
reactors

IP811:
in-situ or ex-situ
regeneration

Middle
Distillate

Olefinic feed

Figure 2.9. Polyfuel process using the IP 811 (amorphous silica-alumina) catalyst. Adapted
from ref. [92].

The type of catalyst used in the Polynaphtha and PolyFuel technologies consists of
amorphous silica-alumina (IP 811) with a trilobe extrudate shape. This material is considered
an environmentally friendly catalyst that does not lead to acidic waste effluents and presents
long on-stream lifetime, besides high activity. The catalytic material possesses high
mechanical strength, may be regenerated multiple times (in-situ or ex-situ) and is stable in
the presence of water and other impurities.[* These characteristics of the catalyst avoid
pressure drop problems and allow operation under severe reaction conditions to maximize

the middle distillate production.

The FlexEne technology®! was developed in 2008 to provide refineries the
flexibility in face of fluctuating demand. It is an innovative combination of two well-proven
technologies: FCC and oligomerization (Polynaphtha/PolyFuel), designed to process light
FCC olefins and recycle valuable feed coming from the oligomerization unit, back to the
FCC unit (without any reactor modification) to maximize gasoline or distillate yields. Figure
2.10 shows the Polynaphta oligomerization process in a FlexEne configuration. Depending
on the operating conditions, types of light olefins feed, catalyst formulation, and product cut

to recycle, the FCC process operates in different modes, providing product based flexibility
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according to the market trends: “Maxi Distillate”, “Maxi Gasoline” and “High Propylene”.
In the Maxi Distillate mode, selected olefins in the C3-Cg range are converted to distillate
range products in the oligomerization unit. The gasoline olefin oligomers are highly reactive
and may be selectively cracked to propene and butenes in the FCC unit under normal
cracking conditions, thereby producing higher amounts of feed for the oligomerization unit,
leading to enhanced distillate production. In this fashion, the refinery is recovering the
desired product, and recycling the undesired product. Overall, FlexEne may be easily
implemented in an existing refinery, while providing product based flexibility to help the

refiner respond to the market needs and maximize returns.[®4
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Figure 2.10. Polynaphtha in a FlexEne configuration for gasoline (red arrows) and distillates
(purple arrows) production. Adapted from ref. [95].

2.2.2. Emerging bio-based processes

Besides the “traditional” technologies, new processes involving olefin
oligomerization to produce synthetic fuels from cellulosic biomass were proposed in the
literature. Figure 2.11 exemplifies a case, specifically a technology proposed by Bond et
al.%%1 where lignocellulose is firstly pre-treated using hot water extraction to obtain (i) an

aqueous solution of xylo-oligomers for producing furfural, and (ii) cellulose and lignin that
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are subsequently treated with diluted sulfuric acid in a CSTR reactor or steam-gun for
producing levulinic acid (LA) and formic acid (FA) in aqueous solution. Lignin and humins
are recovered by filtration and sent to a boiler generator to produce heat and power. LA is
recovered from the hydrolysate via extraction using 2-sec-butylphenol (SBP), and
subsequently converted (without separation) to y-valerolactone (GVL) via hydrogenation
over a RuSn/C catalyst. Then, GVL undergoes decarboxylation over SiO2/Al,O3 catalyst to
form butene isomers and CO. The butene products can be directly used as feedstock for an
oligomerization conversion unit to produce liquid fuels which will be subsequently refined

(hydrotreatment, distillation) to increase the desired product quality.[
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Figure 2.11. Production of synthetic liquid fuels from lignocellulose (LA=levulinic acid,
FA=formic acid, SBP=2-sec-butylphenol, GVL=y-valerolactone). Adapted from ref. [55].

2.2.3. Mechanistic considerations

Olefin oligomerization involves consecutive reactions between light olefins to
produce higher molecular weight products composed of 2-100 repeating units (monomers),
I.e. oligomers. If the number of repeating units (n) is equal to 2, the reaction is designated

dimerization, whereas for n>100 it is a polymerization reaction.l*”] The reaction mechanism
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of olefins over solid acid catalysts may follow a classic carbenium route (exemplified in
Figure 2.12 for 1-butene). Three main steps may be considered. Step 1 involving the
protonation of an olefin over an acid site (initiation step — (1a)) leading to the formation of
a secondary alkyl-carbenium ion. Step 2 where the alkyl-carbenium ion may undergo double
bond isomerization ((2a) and (2b)) giving cis- and trans-2-butene, or skeletal isomerization
(2c) giving isobutene (via rearrangement of the secondary carbenium ion into a protonated
cyclopropane intermediate and subsequently an unstable primary carbenium ion). The alkyl-
carbenium may react with an olefin molecule (propagation step — (1b) and (1c)) to give
longer carbon chain olefins. Alternatively, step 3 involved the termination of the chain
growth via, for example, deprotonation (termination step — (1d)) to give an olefin and the
initial acid site.1"#477% Olefin reactivity tends to increase with chain length, and the
molecular weight of the products formed depends on the rate constants of propagation and
termination, kp and ki, respectively.®® If k, >> ki, polymers will be formed; if kp << ki,
dimers are formed, and if kp = ki, oligomers are formed.®” These rate constants are strongly

dependent on the reaction conditions.

The carbenium ions formed may undergo isomerization via hydride shifts (3a and 3b
in Figure 2.12) or alkyl shifts (3c, Figure 2.12), or cracking (4, Figure 2.12) (via -scission,
the classical cracking mechanism[®®) giving mixtures of oligomeric olefins in which the
number of carbon atoms per molecule may be a multiple of the total number of carbon atoms
of the olefin molecule in the f