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We present a comparative study of spherically symmetric, localized, particle-like solutions for spin 
s = 0, 1/2 and 1 gravitating fields in a D-dimensional, asymptotically flat spacetime. These fields are 
massive, possessing a harmonic time dependence and no self-interaction. Special attention is paid to the 
mathematical similarities and physical differences between the bosonic and fermionic cases. We find that 
the generic pattern of solutions is similar for any value of the spin s, depending only on the dimension-
ality of spacetime, the cases D = 4, 5 being special.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction and motivation

The first explicit realization of the idea of stable, localized bun-
dles of energy as a model for particles can be traced back to the 
work of Kaup [1] and Ruffini and Bonazzalo [2], fifty years ago. 
They found asymptotically flat, spherically symmetric equilibrium 
solutions of the Einstein-scalar field system in four spacetime di-
mensions. These boson stars are macroscopic quantum states and 
are only prevented from collapsing gravitationally by the Heisen-
berg uncertainty principle [3], [4]. However, as shown in the recent 
work [5], similar configurations exist also for a model with a grav-
itating massive spin-one field, representing Proca stars. Analogous 
solutions (although less known) were found also in Einstein-Dirac 
theory [6], the fermions being treated as classical fields.

A comparative study of all these cases can be found in the re-
cent work [7], where it has been noticed that, as classical field the-
ory solutions, the existence of such self-gravitating energy lumps 
does not distinguish between the fermionic/bosonic nature of the 
fields, possessing a variety of similar features. For example, in all 
cases there is a harmonic time dependence in the fields (with a 
frequency w), together with a confining mechanism, as provided 
by a mass μ �= 0 of the elementary quanta of the field. Moreover, 
when ignoring the Pauli’s exclusion principle, the (field frequency-
ADM mass)-diagram of the solutions looks similar for both bosonic 
and fermionic stars. Also, the existence of these (nontopological) 
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solitons can be related to the fact that they possess a Noether 
charge Q , associated with a global U(1) global symmetry.

As with other models, it is of interest to see how the dimen-
sionality D of spacetime affects the properties of the solutions.1

For example, one would like to know which of their properties are 
peculiar to four-dimensions, and which hold more generally. Thus, 
at the very least, such a study will lead to a deeper understanding 
of D = 4 case. However, relatively little is known about the prop-
erties of this type of configurations in more than four dimensions. 
While D = 5 spin-zero boson stars are discussed in [9], the case of 
spin s = 1/2, 1 fields was not considered at all.

The purpose of this work is to consider a comparative study 
of scalar, Proca and Dirac particle-like solutions in D ≥ 4 dimen-
sions, looking for spherically symmetric solutions which approach 
at infinity a Minkowski spacetime background. In this approach, 
one deals with classical field theory solutions, the quantum ef-
fects being ignored. Our results show that, despite the existence 
of some common features, the cases D = 4, 5 are rather special. 
Perhaps the most striking feature is that the D > 4 solutions con-
figurations do not connect continuously to Minkowski spacetime 
vacuum, with the existence of a mass (and Noether charge) gap. 
Also, when ignoring the Pauli’s exclusion principle, the Dirac stars 
share the pattern of the bosonic configurations.

1 This question has been addressed in the literature for the Einstein(-Maxwell) 
theory mainly, in which case it has been found that while the static D ≥ 5 black 
holes share the basic properties of the four-dimensional counterparts, a variety of 
new features appear in the physics of higher dimensional spinning solutions [8].
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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The paper is structured as follows: in Section 2 we present the 
general framework for both geometry and matter fields. Special at-
tention is paid to the construction of a suitable spin s = 1/2 field 
Ansatz compatible with a spherically symmetric spacetime metric, 
a task which, to our knowledge, has not been yet addressed in the 
literature. In Section 3 the field equations are solved numerically, 
and it is shown how the dimensionality of spacetime affects the 
properties of the solutions. We conclude with Section 4 where the 
results are compiled.

2. The framework

2.1. The general action and line element

We consider Einstein’s gravity in D-spacetime dimensions min-
imally coupled with a spin-s field (with s = 0, 12 , 1), generically 
denoted as U , the corresponding action being

S =
∫

dD x
√−g

[
1

16πG
R +L(s)

]
. (1)

Extremizing the action (1) leads to a system of coupled Einstein-
matter equations of motion

Rαβ − 1

2
Rgαβ = 8πG T (s)

αβ, with T (s)
αβ = 2√−g

δL(s)

δgαβ
, (2)

while the variation of (1) w.r.t . U leads to the matter fields equa-
tions.

We are interested in horizonless, nonsingular solutions describ-
ing particle-like, localised configurations with finite energy. Re-
stricting for simplicity to spherically symmetric configurations, the 
corresponding spacetime metric is most conveniently studied in 
Schwarzschild-like coordinates, with

ds2 = dr2

N(r)
+ r2d�2

D−2 − N(r)σ 2(r)dt2 ,

with N(r) ≡ 1 − 2m(r)

rD−3
, (3)

where d�2
D−2 denotes the line element on a (D − 2)−dimensional 

sphere, while r and t are the radial and time coordinates, respec-
tively. This Ansatz introduces two functions m(r) and σ(r), with 
m(r) being related to the local mass-energy density up to some 
D-dependent factor. Also, its asymptotic value, m0, fixes the total 
ADM mass of the spacetime,

M = (D − 2)V D−2

8πG
m0, (4)

(with V D−2 the area of the (D − 2)-sphere). An advantage of the 
above metric form is that it leads to simple first order equations 
for the functions m, σ ,

m′ = − 8πG

D − 2
rD−2T t

t , σ ′ = 8πG

D − 2

rσ

N
(T r

r − T t
t ). (5)

The ground state of the model is U = 0, together with a flat space-
time metric (i.e. m = 0, σ = 1).

2.2. The matter content

In all three cases, the Lagrangian L(s) possesses a global U (1)

invariance, under the transformation U → eiaU , with a being con-
stant. This implies the existence of a conserved 4-current, jα

(s);α =
0. Integrating the timelike component of this current on a space-
like slice yields a conserved quantity – the Noether charge:
Q (s) = V D−2

∞∫
0

dr rD−2σ jt
(s) . (6)

Upon quantization, Q becomes an integer–the particle number. 
Also, one remarks that the ADM mass M and the Noether charge 
Q provide the only global charges of the system.

2.2.1. s = 0: a massive complex scalar field
We start with the simplest case of a complex scalar field �

with a Lagrangian density

L(0) = −gαβ�̄, α�, β − μ2�̄�, (7)

the energy-momentum tensor, the current and the Klein-Gordon 
equation being

T (0)
αβ = �̄,α�,β + �̄,β�,α

− gαβ

[
1

2
gγ δ(�̄,γ �,δ + �̄,δ�,γ ) + μ2�̄�

]
, (8)

jα(0) = −i(�̄∂α� − �∂α�̄), ∇2� − μ2� = 0. (9)

A scalar field Ansatz which is compatible with a spherically sym-
metric geometry is written in terms of a single real function φ(r), 
and reads:

� = φ(r)e−iwt . (10)

The scalar field amplitude solves the equation

φ′′ +
(

D − 2

r
+ N ′

N
+ σ ′

σ

)
φ′ + (

w2

Nσ 2
− μ2)

φ

N
= 0, (11)

while the Einstein equations imply

m′ = 8πG

D − 2
rD−2

(
Nφ′ 2 + μ2φ2 + w2φ2

Nσ 2

)
,

σ ′ = 16πG

D − 2
rσ

(
φ′ 2 + w2φ2

N2σ 2

)
. (12)

Finally, following [10,11], one can prove the virial identity

∞∫
0

dr rD−2σ
(
(D − 3)φ′ 2 + (D − 1)μ2φ2

)

= w2

∞∫
0

dr (2(D − 2)N − D + 3)
rD−2φ2

N2σ
, (13)

which shows e.g. that a nontrivial scalar field can only be sup-
ported if w �= 0.

2.2.2. s = 1: a massive complex vector field
For any value of D , the complex Proca field is described by 

a potential 1-form A with the associated field strength F = dA
(where we denote the corresponding complex conjugates by an 
overbar, Ā and F̄ ). The corresponding Lagrangian density, field 
equations, current and energy-momentum tensor are

L(1) = −1

4
FαβF̄αβ − 1

2
μ2AαĀα, ∇αFαβ − μ2Aβ = 0,

jα(1) = i

2

[
F̄αβAβ −FαβĀβ

]
, (14)

T (1)
αβ = 1

2
(Fασ F̄βγ + F̄ασFβγ )gσγ − 1

4
gαβFστ F̄στ

+ 1
μ2 [

AαĀβ + ĀαAβ − gαβAσ Āσ
]
. (15)
2
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Note that the field equations imply the Lorentz condition (which 
for a Proca field is not a gauge choice, but a dynamical require-
ment), ∇αAα = 0.

The 1-form Ansatz compatible with a static, spherically sym-
metric geometry contains two real potentials, F (r) and G(r):

A = (
F (r)dt + iG(r)dr

)
e−iwt, (16)

which solve the equations

F ′ = (w2 − μ2Nσ 2)
G

w
,

G ′ +
(

(D − 2)

r
+ N ′

N
+ σ ′

σ
+ w F

N2σ 2

)
G = 0, (17)

the corresponding equations for the metric functions being

m′ = 4πG

D − 2
rD−2

[
(F ′ − wG)2

2σ 2
+ μ2

(
G2N + F 2

Nσ 2

)]
,

σ ′ = 8πG

D − 2
σ rμ2

(
G2 + F 2

N2σ 2

)
. (18)

In this case the solutions satisfy the following virial identity

μ2

∞∫
0

dr rD−2σ

(
(D − 3)G2 − F 2(2(D − 2)N − D + 3)

N2σ 2

)

= (D − 3)

∞∫
0

dr rD−2 (wG − F ′)2

σ
. (19)

2.2.3. s = 1/2: massive Dirac fields
It is also of interest to consider a fermionic matter content 

and look for the existence of particle-like solutions of the corre-
sponding gravitating systems. However, while in the bosonic case 
(s = 0, 1) one expects that such a classical treatment of the (many 
particle) systems is consistent, this is not the case for fermions, 
which are intrinsically quantum fields. Thus the construction of 
Dirac stars (although historically motivated by the research on 
geons [12] and solitonic solutions which can be used as effective 
models of nucleons [13]) is rather a (pure) mathematical problem. 
This is, however, worth to investigate, possessing various curious 
features.

For example, restricting to a Dirac field (s = 1/2), one remarks 
that a model with a single (backreacting) spinor is not compatible 
with a spherically symmetric spacetime. Thus, as in the D = 4 case 
[6], one should consider several spinors with equal mass μ and 
the same frequency w , each one possessing a specific angular de-
pendence. Although an individual energy-momentum tensor is not 
spherically symmetric, the sum of all contributions leads to a result 
which is compatible with the line-element (3). In D-dimensions, 

such configuration can be constructed with (at least) n f = 2

⌊
D−2

2

⌋

spinors 
[A] (A = 1...n f ), each one with a Lagrangian density

L[A]
(1/2) = −i

[
1

2

(
{ /̂D


[A]}
[A] − 

[A]

/̂D
[A]) + μ

[A]


[A]
]

, (20)

the total energy-momentum tensor and the individual current be-
ing

T (1/2)
αβ =

n f∑
A=1

T [A]
αβ , with

T [A]
αβ = − i

2

[



[A]
γ(α D̂β)


[A] −
{

D̂(α

[A]}

γβ)

[A]] ,

jα[A] = 
̄[A]γ α
[A]. (21)
(1/2)
Also, each spinor solves the Dirac equation

/̂D
[A] − μ
[A] = 0 . (22)

The Dirac equation in a D > 4 spherically symmetric back-
ground has been extensively studied in the literature, see e.g.
Ref. [14]. Thus here we shall only review the basic steps, together 
with the special choice of the Ansatz which leads to a total energy-
momentum tensor T (1/2)

αβ which is compatible with the static and 
spherically symmetric line-element (3). To achieve this aim, we 
impose the spinors to satisfy a set of conditions, which can be 
summarized as follows.2

i) The separable Ansatz. The first step is to assume some simple 
but generic Ansatz for each field 
[A] . Since each individual spinor 
satisfies equation (22), we want to make use of the separability 
of the angular and the radial dependence of each field. Hence we 
assume that:

• the radial dependence is the same for all individual spinors;
• the temporal dependence is of the form of a phase (similar to 

the previously considered s = 0, 1 fields), and also common to 
all individual spinors;

• the only difference between spinors is in the angular part.

Such an Ansatz takes the form


[A] = e−iwtφκ(r) ⊗ �(κ;A) , (23)

where φκ(r) only depends on the radial coordinate, and �(κ;A) on 
the angular coordinates.

ii) Solutions of the angular part. In the second step, we solve 
the angular part of the decomposition (23). Since each individual 
spinor satisfies the equation (22), we make use of the separability 
of the angular and the radial dependence of each field [15]. Also, 
it is convenient to choose a parametrization of the (D − 2)-sphere 
with

d�2
D−2 = dθ2

1 + sin2 θ1 dφ2
1 + cos2 θ1 d�2

D−4 . (24)

For D > 5, a similar decomposition of d�2
D−4 can be done by in-

troducing further φ j and θ j coordinates on the (D − 4)-sphere. 
Such a tower can be constructed until all the angles of the sphere 
are parametrized (with d�2

0 = 0, d�2
1 = dφ2⌈

D−2
2

⌉ , �x
 denoting the 

ceiling function). The decomposition makes the 
⌈

D−2
2

⌉
commuting 

azimuthal Killing directions φ j explicit, and we have ∂φ j �(κ;A) =
im j�(κ;A) (m j being a half-integer).

One can show that the angular part of the spinor �(κ;A) is an 
eigenfunction of a Dirac angular operator KD−2, with κ the cor-
responding angular eigenvalue [14,16]. Working with the vielbein 
ωt = √

Nσdt, ωr = 1√
N

dr, ω j = r ω j
D−2 (where j = 1, ..., D − 2

and ω j
D−2 is a vielbein for the (D − 2)-sphere), a tower of an-

gular operators in the lower dimensional spheres is found, with 
[KD−2, KD−4] = 0, [∂φ1 , KD−2] = 0, etc.

As a result, with this parametrization, the angular dependence 
of the spinors can be explicitly solved, and the general solution 
is given by a combination of hypergeometric functions.3 However, 
for our purpose, it is enough to consider the case where the an-
gular eigenvalue is minimal (which means that each individual 

2 For D = 4, the construction of a spin s = 1/2 Ansatz compatible with a spher-
ically symmetric spacetime is discussed at length in Ref. [6] (although for rather 
different conventions than in this work).

3 These angular solutions are the spinor monopole harmonics for a (D −2)-sphere 
[17]; also, they are related with the solutions of the angular part in [18].
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spinor carries the minimally allowed angular momentum value). 
The analysis of the solutions shows that this happens when

κ = ± (D − 2)

2
and m1 = ±1

2
. (25)

Apart from the global sign of κ , which determines the “spirality” of 
the configuration, in practice, the solution on the (D − 2)-sphere 
possesses 

⌊
D−2

2

⌋
free sign combinations (�x� denoting the floor 

function).
iii) Combination of the angular part. Hence, the third step is to 

select a proper combination of all these different angular parts 
of the spinors, making use of all these free signs. One can easily 

prove that, if one chooses n f = 2

⌊
D−2

2

⌋
spinors, the angular parts 

can be combined in such a way that almost all the non-diagonal 
components of the total energy-momentum tensor are zero [16]. 
As a result, the total combination of fields carries zero angular 
momentum. The only non-diagonal component of the total energy-
momentum tensor that cannot be set to zero just by making use 
of the angular dependence of the spinors is the (t, r)-component.

iv) Vanishing radial current. One remarks that T t
r �= 0 is related 

to the existence of a non-vanishing radial current for the generic 
Ansatz (23). Nonetheless, in order to set it to zero it is enough to 
impose one condition on the radial part of the spinors Ansatz. For 
simplicity, it is convenient to fix the representation of the radial γ
matrices at this stage,4

γ t =
[

0 1
1 0

]
, γ r =

[
0 −1
1 0

]
, φκ =

[
φ1
φ2

]
, (26)

with φ1, φ2 two complex functions depending only on r. Then the 
vanishing of the radial current, jr[A]

(1/2) = 0, for the Ansatz (23) im-

plies that |φ1|2 = |φ2|2. One can choose

φ1 = φ̂ , φ2 = eiν φ̂ , (27)

with φ̂ a complex function and ν a real valued function.5 This is 
enough to assure that the (t, r)-component of the total energy-
momentum tensor vanishes.

With all these requirements, the total energy-momentum ten-
sor is diagonal and compatible with the static and spherically sym-
metric line element (3).

To simplify the numerical treatment of the problem it is conve-
nient to define

φ̂e
iν
2 = g − i f , (28)

the equations for the new matter functions being

f ′ +
(

N ′

N
+ 2σ ′

σ
+ 2(D − 2)

r
+ 2(D − 2)

r
√

N

)
1

4
f

+ (
μ√

N
− w

Nσ
)g = 0, (29)

g′ +
(

N ′

N
+ 2σ ′

σ
+ 2(D − 2)

r
− 2(D − 2)

r
√

N

)
1

4
g

+ (
μ√

N
+ w

Nσ
) f = 0 . (30)

Also, the corresponding equations for the metric functions are

4 The representation of the angular γ matrices is that employed in [18].
5 However, let us comment here that in the field equations, the phase of φ̂ plays 

no role, and thus one can choose without loss of generality φ̂ to be a real function).
m′ = 64πGrD−2

D − 2

w( f 2 + g2)√
σ N

,

σ ′

σ
= 64πG

D − 2

r

N

(
− (D − 2) f g

r
+ 2w( f 2 + g2)

σ
√

N
+ μ( f 2 + g2)

)
.

(31)

Note that in the above equations (29)-(31) we have fixed the 
“spirality” to +1, the only case discussed in this work. Nonetheless, 
all the qualitative properties of the Dirac stars that we present in 
the next Section are not affected by this choice (for instance, other 
properties of the Dirac field on static and spherically symmetric 
configurations, such as the quasinormal modes, are not qualita-
tively affected by the change of spirality [18]).

Finally, the virial identity satisfied by the solutions reads

∞∫
0

dr rD−2σ

(
(D − 2)2 f g

r

+ (2(D − 1) + (D + 1)(N − 1))

2
√

N
(g f ′ − f g′)

)

=
∞∫

0

dr rD−2σ

(
w( f 2 + g2)

2N
√

N
(2(D − 1)

+ (3D − 5)(N − 1)) + (D − 1)μ( f 2 − g2)

)
. (32)

3. The results

We are interested in particle-like solutions of the eqs. (11), 
(12), (17), (18) and (29), (31), with a topologically trivial, smooth 
geometry and a regular matter distribution. Thus, as r → 0, one 
imposes N(r) → 1 (with m(r) ∼ O (rD−1)), while σ(r) → σ0 > 0. 
The requirement of finite mass and asymptotic flatness imposes 
m(r) → m0 (i.e. N(r) → 1) and σ(r) → 1 as r → ∞. Also, all mat-
ter functions vanish are infinity, while their behaviour near the 
origin is more complicated, with f (r) and G(r) vanishing there, 
while φ(r), g(r) and F (r) satisfy Neumann boundary conditions. 
For any s, an approximate form of the solutions can be system-
atically constructed in both regions, near the origin and for large 
values of r. For example, the near-origin expansion contains two 
free parameters, one of them being σ(0), and the other one being 
φ(0), g(0) or F (0), while the matter fields decay exponentially in 
the far field.

The solutions that smoothly interpolate between these asymp-
totics are constructed numerically. The results reported in this 
work are found in units with μ = 1, 4πG = 1 (thus we use a 
scaled radial coordinate r → r/μ (together with m → m/μD−3, 
w → wμ and, for s = 1/2, f → f

√
μ, g → g

√
μ) while the factor 

of 4πG is absorbed in the expression of the matter functions). The 
equations are solved by using a standard Runge-Kutta ODE solver 
and implementing a shooting method in terms of the near-origin 
essential parameters, integrating towards r → ∞.

For a given spin-s model, the only input parameters are the 
number D of spacetime dimensions and the value w of the fre-
quency. Then a (presumably infinite) set of solutions is found for 
some range of w , as indexed by the number of nodes of the mat-
ter functions. Note that, however, only fundamental solutions are 
reported in this work.

We have constructed in a systematic way scalar, Proca and Dirac 
stars in D = 4, 5 and 6 dimensions; partial (less accurate) results 
were also found for D = 7, 8. The profile of typical D = 5 configu-
rations with the same ratio w/μ are shown in Fig. 1, together with 
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Fig. 1. Top left panel: the energy density is shown for a (typical) solution of each spin-s model in D = 5 dimensions, all with the same frequency to particle mass ratio, 
w/μ = 0.98. Top right panel: the matter functions profiles for the same solutions. Bottom panels: the metric functions are shown for the same solutions.
the corresponding energy-density distribution. This plot appears to 
be generic, a (qualitatively) similar picture being found for other 
values of w (or even for D �= 5).

Remarkably, the s = 0, 1/2, 1 solutions exhibit a certain degree 
of universality, the pattern depending on the number of the space-
time dimensions. Their basic (qualitative) features are displayed in 
Fig. 2 in a frequency-mass diagram, which is the main result of 
this work, while quantitative results are shown in Fig. 3.

The study of these plots indicates the existence of a number of 
basic properties which hold for both bosonic and fermionic solu-
tions and can be summarized as follows.

• For any D , a (continuous) family of s = 0, 1/2, 1 solutions ex-
ists for a limited range of frequencies only, wmin < w < μ, the 
minimal value of the ratio w/μ decreasing with the space-
time dimension. After reaching the minimal frequency, the 
M(w)-curve backbends into a second branch; moreover, fur-
ther branches and backbendings are found. We conjecture 
that, for any D , the M(w)-curve becomes a spiral, which ap-
proaches at its centre a critical solution, a result rigorously 
established so far only for the D = 4, s = 0 case [21], [22].

• The behaviour of the solutions as w → μ depends on the 
number of spacetime dimensions. For D = 4, the matter 
field(s) becomes very diluted and the solutions trivialize in 
that limit, with M → 0, the maximal mass value being at-
tained at some intermediate frequency.
The picture for D = 5 is different and a mass gap is found be-
tween the U = 0 vacuum Minkowski ground state and the set 
Fig. 2. The generic M(w)-diagram (with M the ADM mass and w the field fre-
quency) is shown for the s = 0, 1/2, 1 families of solutions in D ≥ 4 dimensions.

of solutions with U �= 0. Moreover, the limiting configurations 
with a frequency w arbitrarily close to μ exhibit a different 
pattern as compared to the four dimensional case. That is, al-
though the matter fields spread and tend to zero, while the 
geometry becomes arbitrarily close to that of flat spacetime, 
the mass remains finite and nonzero (being also the maximal 
allowed value).
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Fig. 3. The ADM mass M vs. field frequency w is shown for scalar (s = 0), Proca (s = 1) and Dirac (s = 1/2) stars in D = 4,5,6 dimensions.
The existence of a mass gap is a property found also for D ≥ 6
solutions. Also, again the solutions do not trivialize as w → μ. 
However, in this case their mass appears to diverge in that 
limit.

• A similar picture is found when considering instead a Q (w)

diagram. In particular, one finds that M > μQ for all D > 4
solutions, with (at the level of numerical accuracy) M → μQ
as w → μ. The picture for D = 4 is more complicated, with 
M < μQ for some range of frequencies ranging between μ
and some critical value [3], [4].

3.1. Fermions: the single particle condition

In the discussion above, no distinction has been made between 
the bosonic and fermionic solutions. However, although we have 
treated the Dirac equation classically, the fermionic nature of a 
spin s = 1/2 field would manifest at the level of the occupation 
number. Thus, for each field 
[A] , at most a single particle should 
exist, in accordance to Pauli’s exclusion principle.

The single particle condition, Q = 1 is imposed by using the 
following scaling symmetry of the Einstein-Dirac system6:

6 Note that Q corresponds to the Noether charge for a single spinor, the total 
charge being Q tot = ∑

A Q = 2

⌊
D−2

2

⌋
Q .
r → λr̄, w → w̄

λ
, μ → μ̄

λ
, m → λD−3m̄, f → f̄√

λ
, g → ḡ√

λ
,

while M → λD−3M̄, Q → λD−2 Q̄ ,

(with λ > 0 arbitrary and σ invariant). One can easily verify that 
this transformation does not affect the equations of motion; how-
ever, it changes the model, since it leads to a different field 
mass μ. Then, for an initial solution with a given Q , the condition 
Q̄ = 1 is imposed by taking λ = Q

1
D−2 , which accordingly changes 

the corresponding values for the ADM mass and the field’s fre-
quency and mass.

The resulting M(μ)-diagram is shown in Fig. 4 for Einstein-
Dirac solutions in D = 4, 5 and 6 dimensions (note that there we 
drop the overline for both M and μ). Again, one notices a differ-
ent behaviour in each spacetime dimension. In four dimensions, 
the (n f = 2 particle) Einstein-Dirac solutions exist for a family of 
models with both μ and M ranging from zero to a maximal value 
of order one [7]. The situation is different in D = 5, in which case 
the minimal value of μ and M is nonzero (and n f = 2 again). This 
feature is preserved by D = 6 solutions (with n f = 4 particles); 
however, no upper bounds for μ and M appear to exist in that 
case.

In the inset of Fig. 4, we zoom a part of the D = 5 curve, 
revealing a structure of peaks. This behaviour is generic for any 
dimension D , and it is related with the inspiral behaviour com-
mented in the previous section. As a result, one can see that for 
fixed values the dimension D and the scaled field mass μ (i.e.
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Fig. 4. The ADM mass is shown vs. field mass μ for Dirac stars in D = 4, 5 and 6
dimensions. The single particle condition, Q = 1 for a fermionic field, is imposed 
here. Note that the D = 6 curve continues to large values, presumably diverging. 
The inset focuses on the D = 5 case.

for fixed models), it is possible to have situations with a single 
solution (only one value of M), a discrete set of solutions (with 
different values of M), or no solution.

4. Further remarks

The main purpose of this work was to provide a preliminary 
investigation of a special type of solitonic solutions of gravitating 
matter systems in a number D ≥ 4 of spacetime dimensions. The 
(massive) matter fields correspond to bosons (spin 0, 1) or Dirac 
fermions (spin 1/2), respectively, and possess an harmonic time 
dependence. No quantum effects were included, both bosons and 
fermions being treated as classical fields.7 The simplest solutions 
of this type are the well-known D = 4, s = 0 boson stars [1], [2].

Our results show that, for any D , the existence of these particle-
like solutions, does not distinguish between the fermionic/bosonic 
nature of the field, with the existence of a general pattern fixed by 
the number of spacetime dimensions. Moreover, while the cases 
D = 4 and D = 5 are special, the D > 5 solutions appear to share 
the same (qualitative) picture. Perhaps the most curious feature re-
vealed by this study is the existence, for D > 4, of a mass gap, the 
set of spin-s configurations being not continuously connected to 
Minkowski spacetime vacuum.

Among the numerous avenues that one may pursue following 
the study here we mention a few. First, it would be interesting to 
clarify the stability of D > 4 solutions, an issue which has been ex-
tensively studied for D = 4 (see e.g. [3], [4] for s = 0, [5], [20] for 
s = 1, and [6] for the s = 1/2 case). Since, as noticed above, the 
higher dimensional configurations have M > μQ , they possess an 
excess energy and thus we expect them to be unstable against fis-
sion (the case s = 1/2 being more subtle, due to the single particle 
condition). A better understanding of the limiting behaviour of the 
solutions as w → μ and towards the centre of the M(w)-spiral 
is another important open question. In the scalar field case (with 
D = 4), an explanation of this behaviour is provided in [21], [22]
(see also the explanation in Ref. [9] for the behaviour of the D = 5
bosons stars (s = 0) as w → μ).

Furthermore, one may inquire if, similar to other field theory 
models [27], these spin-s solitons possess generalizations with a 

7 One remarks that such a treatment could be inadequate for a fermionic matter 
content, see e.g. Ref. [19] for an early discussion of this issue. As such, in contrast 
to boson stars, the construction of Dirac stars is rather a purely mathematical task.
horizon at their centre. In four dimensions, no such (spherically 
symmetric) solutions exist, as shown in [23] for spin 0, in [24] for 
spin 1 and in [25], [26] for a Dirac field. We expect a similar result 
to hold also in the higher dimensional case.

As further possible physical applications, we mention first the 
possibility of studying this type of solutions in an anti-de Sitter 
spacetime background. Such configurations are of interest in the 
context of the AdS/CFT correspondence, some partial results being 
already reported in the literature (see e.g. [28], [29]). Moreover, 
the solutions in this work could also be of interest in scenarios in-
volving large extra-dimensions [30] and braneworld models [31]. 
Finally, it would be interesting to investigate this type of con-
figurations within the framework of the large-D limit of General 
Relativity [32].
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