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Testing the true nature of black holes—the no-hair hypothesis—will become increasingly more precise
in the next few years as new observational data is collected in both the gravitational-wave channel and the
electromagnetic channel. In this paper we consider numerically generated spacetimes of Kerr black holes
with synchronized scalar hair and build stationary models of magnetized thick disks (or tori) around them.
Our approach assumes that the disks are not self-gravitating, they obey a polytropic equation of state, the
distribution of their specific angular momentum is constant, and they are marginally stable, i.e., the disks
completely fill their Roche lobe. Moreover, contrary to existing approaches in the literature, our models are
thermodynamically relativist, as the specific enthalpy of the fluid can adopt values significantly larger than
unity. We study the dependence of the morphology and properties of the accretion tori on the type of black
hole considered, from purely Kerr black holes with varying degrees of spin parameter, namely from a
Schwarzschild black hole to a nearly extremal Kerr case, to Kerr black holes with scalar hair with different
Arnowitt-Deser-Misner mass and horizon angular velocity. Comparisons between the disk properties for
both types of black holes are presented. The sequences of magnetized, equilibrium disks around Kerr black
holes with scalar hair discussed in this study are morphologically and thermodynamically different than
their Kerr black hole counterparts, namely their vertical size is larger, the high-density central region is
more extended, and the fluid is more relativistic. Therefore, we expect significant differences to appear
when these sequences are used as initial data for numerical relativity codes to investigate their dynamical
(nonlinear) stability and used in tandem with ray-tracing codes to obtain synthetic images of black holes
(i.e., shadows) in astrophysically relevant situations where the light source is provided by an emitting
accretion disk.
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I. INTRODUCTION

In recent years, new families of stationary, asymptotically
flat black holes (BHs) avoiding the so-called ‘“no-hair”
theorems, have been obtained both in general relativity and
in modified gravity (seee.g., Ref. [1] and references therein).
Among those, Kerr BHs with synchronized hair [2,3] are a
counterexample to the no-hair conjecture resulting from
minimally coupling Einstein’s gravity to simple (bosonic)
matter fields obeying all energy conditions. The physical
conditions and stability properties of these classes of hairy
BHs (HBHs) have been recently investigated to assess their
potential viability as alternatives to astrophysical Kerr BHs.
On the one hand, Kerr BHs with Proca hair have been shown
to form dynamically as the end product of the superradiant
instability [4,5] (see also Refs. [6,7] for the case of a charged
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scalar field around a charged BH in spherical symmetry). On
the other hand, even though the hairy BHs themselves are
(like Kerr BHs) afflicted by superradiant instabilities [8,9],
these instabilities are weaker than for Kerr and, at least
in some regions of parameter space, are inefficient for
astrophysical time scales, making the hairy BHs effectively
stable against superradiance [10].

In the observational arena, the LIGO/Virgo detection of
gravitational waves from binary BHs [11-15] and the
exciting prospects of observing the first image—the black
hole shadow—of a BH by the Event Horizon Telescope
(EHT) [16] opens the opportunity to test the true nature of
BHs—the no-hair hypothesis—and, in particular, the astro-
physical relevance of HBHs. It is not yet known whether
the LIGO/Virgo binary BH signals are consistent with
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alternative scenarios, such as the merger of ultracompact
boson stars or non-Kerr BHs, because the latter possibilities
remain thus far insufficiently modeled. Likewise, Kerr BHs
with scalar hair (KBHsSH) can exhibit very distinct
shadows from those of (bald) Kerr BHs, as shown by
Refs. [17,18] for two different setups for the light source:
either a celestial sphere far from the compact object or an
emitting torus of matter surrounding the BH, respectively. It
is therefore still possible that the very-long-baseline inter-
ferometric observations of BH candidates in Sgr A* and
M87 envisaged by the EHT may constrain the astrophysical
significance of HBHs.

The setup considered by Ref. [18] in which the light
source producing the BH shadow is an accretion disk, is
arguably more realistic than the distant celestial sphere of
Ref. [17]. Thick accretion disks (or tori) are common
systems in astrophysics, either surrounding the supermas-
sive central BHs of quasars and active galactic nuclei or,
at stellar scales, surrounding the compact objects in
x-ray binaries, microquasars, and gamma-ray bursts (see
Ref. [19] and references therein). In this paper we present
new families of stationary solutions of magnetized thick
accretion disks around KBHsSH that differ from those
considered by Ref. [18]. Our procedure, which combines
earlier approaches put forward by Refs. [20,21] was
presented in Ref. [22] for the Kerr BH case. In Ref. [22]
we built equilibrium sequences of accretion disks in the
test-fluid approximation endowed with a purely toroidal
magnetic field, assuming a form of the angular momentum
distribution that departs from the constant case considered
by Ref. [20] and from which the location and morphology
of the equipotential surfaces can be numerically computed.
Our goal in the present work is to extend this approach
to KBHsSSH and to assess the dependence of the morphol-
ogy and properties of accretion disks on the type of BH
considered, either Kerr BHs of varying spins or KBHsSH.
In this first investigation we focus on disks with a constant
distribution of specific angular momentum. In the purely
hydrodynamical case, such a model is commonly referred
to as a “Polish doughnut,” after the seminal work by
Ref. [23] (but see also Ref. [24]). In a companion paper we
will present the nonconstant (power-law) case, whose
sequences have already been computed. The dynamical
(nonlinear) stability of these solutions as well as the
analysis of the corresponding shadows will be discussed
elsewhere.

The organization of this paper is as follows. Section II
presents the mathematical framework we employ to build
magnetized disks in the numerically generated spacetimes
of KBHsSH. Section III discusses the corresponding
numerical methodology to build the disks. Sequences of
equilibrium models are presented in Sec. IV along with the
discussion of their morphological features and properties
and the comparison with models around Kerr BHs. Finally,

our conclusions are summarized in Sec. V. Geometrized
units (G = ¢ = 1) are used throughout.

II. FRAMEWORK

A. Spacetime metric and KBHsSH models

The models of KBHsSH we use in this study are built
following the procedure described in Ref. [25]. The under-
lying theoretical framework is the Einstein-Klein-Gordon
(EKG) field theory, describing a massive complex scalar
field ¥ minimally coupled to Einstein gravity. KBHsSH
solutions are obtained by using the following ansatz for the
metric and the scalar field [2]:

d 2
ds? = e (]\r] + r2d92> + e*F2r2sin?0(d¢p — Wdr)?
— e*foNdr, (1)
¥ = o(r,0)elm-on, (2)

with N =1 — rg/r, where ry is the radius of the event
horizon of the BH, and W, F'|, F,, F are functions of r and
6. Moreover, o is the scalar field frequency and m is the
azimuthal harmonic index. We note that the radial coor-
dinate r is related to the Boyer-Lindquist radial coordinate
rg. by r = rgp —a*/rypL, in the Kerr limit, where a =
J/M stands for the spin of the BH and ry p; is the location
of the horizon in Boyer-Lindquist coordinates.

The stationary and axisymmetric metric ansatz is a
solution to the EKG field equations R,, — %Rgab =
8”(TSF)ab with

(Tsg)up =0,¥0,¥ +0,¥*0,¥
1
~Yab <590d(6clp*adlp +04970.¥) +ﬂ2‘P*‘I‘> ,
(3)

where p is the mass of the scalar field and the superscript
(*) denotes complex conjugation. The interested reader is
referred to Ref. [25] for details on the equations of motion
for the scalar field ¥ and the four metric functions
W, Fy, Fy, F,, along with their solution.

Table I lists the seven KBHsSH models we use in this
work. The models have been selected to span all regions of
interest in the parameter space. Model I corresponds to a
Kerr-like model, with almost all the mass and angular
momentum stored in the BH (namely, 94.7% of the total
mass and 87.2% of the total angular momentum of the
spacetime are stored in the BH), while model VII corre-
sponds to a hairy Kerr BH with almost all the mass (98.15%)
and angular momentum (99.76%) stored in the scalar field. It
is worth mentioning that some of the models violate the
Kerr bound (i.e., the normalized spin parameter is larger
than unity) in terms of both Arnowitt-Deser-Misner (ADM)
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TABLE L

List of models of KBHsSH used in this work. From left to right the columns report the name of the model, the ADM mass,

M apm»> the ADM angular momentum, Jzpy;, the horizon mass, My, the horizon angular momentum, Jy, the mass of the scalar field,
Mg, the angular momentum of the scalar field, Jgg, the radius of the event horizon, ry, the values of the normalized spin parameter for
the ADM quantities, aspy;, and for the BH horizon quantities, ay, the horizon linear velocity, vy, the spin parameter corresponding to a

Kerr BH with a linear velocity equal to vy, an,,» and the sphericity of the horizon, 3. Here u = 1.

Model ~ Muapv Jabm My Ju Mgg Jsk 'y N ay vy ay, 38

1 0.415 0.172 0.393 0.150 0.022 0.022 0.200 0.9987 0.971 0.7685 0.9663 1.404
11 0.630 0.403 0.340 0.121 0.290 0.282 0.221 1.0140 0.376 0.6802 0.9301 1.352
111 0.797 0.573 0.365 0.172 0.432 0.401 0.111 0.9032 1.295 0.7524 0.9608 1.489
v 0.933 0.739 0.234 0.114 0.699 0.625 0.100 0.8489 2.082 0.5635 0.8554 1.425
A\ 0.940 0.757 0.159 0.076 0.781 0.680 0.091 0.8560 3.017 0.4438 0.7415 1.357
VI 0.959 0.795 0.087 0.034 0.872 0.747 0.088 0.8644 3.947 0.2988 0.5487 1.222
VIl 0.975 0.850 0.018 0.002 0.957 0.848 0.040 0.8941 6.173 0.0973 0.1928 1.039

or horizon quantities. This is not a source of concern
because, as shown in Ref. [26], the linear velocity of the
horizon, vy, never exceeds the speed of light. For compari-
son, we also show in Table I the spin parameter ay_

corresponding to a Kerr BH with a horizon linear velocity
vy. In the last column of Table I we indicate the horizon
sphericity of the KBHsSH, defined in Ref. [27] as the
quotient of the equatorial and polar proper lengths of the
event horizon

Le B fOZn: dd)er(rH,n:/Z)rH
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In addition to the information provided in Table I, Fig. 1
plots the location of our models in the domain of existence of
KBHsSH in an ADM mass versus scalar field frequency
diagram.

B. Distribution of angular momentum in the disk

Equilibrium models of thick disks around Kerr BHs are
built assuming that the spacetime metric and the fluid fields

Boson Stars

m=1

hairy Kerr black holes vacuum Kerr

o VL VI oy o

Mypmm

vacuum Kerr black holes

0.6 0.7 0.8 0.9 1
Qu/n
FIG. 1. Domain of existence for KBHsSH (shaded blue area) in

an ADM mass versus scalar field frequency diagram. The seven
solutions to be studied herein are highlighted in this diagram.

are stationary and axisymmetric (see, e.g., Refs. [22,28,29]
and references therein). For disks around KBHsSH we can
follow the same approach as the metric ansatz given by
Eq. (1) is stationary and axisymmetric.

We start by introducing the specific angular momentum
[ and the angular velocity € employing the standard
definitions,

where u* is the fluid four-velocity. The relationship
between / and Q is given by the equations

Q(( +
[— G T Y1gp O—

lgtl + gt¢ (6)
Qgtd) + 9u '

19t + 9pp~

where we are assuming circular motion, i.e., the four-
velocity can be written as

u' = (u',0,0,u?). (7)

The approach we followed in Ref. [22] for the angular
momentum distribution of the disks was introduced by
Ref. [21], and it is characterized by three free parameters,
P, v, and 5 [see Eq. (7) in Ref. [22]]. In this work, for
simplicity and to reduce the ample space of parameters of
the system, we consider a constant angular momentum
distribution, I(r,6) = const, which corresponds to setting
p =y =0 in Ref. [22]. This choice also allows for the
presence of a cusp (and hence matter accretion onto the
BH) and a center. Following Ref. [29], the specific value of
the angular momentum corresponding to bound fluid
elements (—u, < 1) is computed as the minimum of the
following equation:

Yip + (9;2(/, - gttg¢¢)(1 + gtt)
ey =2V — C®
it

043002-3



GIMENO-SOLER, FONT, HERDEIRO, and RADU

PHYS. REV. D 99, 043002 (2019)

where the plus sign solution corresponds to prograde
orbits and the minus sign solution to retrograde orbits.
Our convention is that the angular momentum of the BH is
positive and the matter of the disk rotates in the positive
(negative) direction of ¢ for a prograde (retrograde) disk.
Equation (8) is given by Ref. [29] for Kerr BHs, but it is
valid for any stationary and axisymmetric spacetime. For
prograde motion, the function has a minimum outside the
event horizon. The location of this minimum corresponds
with the marginally bound orbit r;, (also known as the
innermost circular orbit in the literature), and the angular
momentum corresponds to the Keplerian angular momen-
tum [, at that point. We show the proof of this statement in
the Appendix.

C. Magnetized disks

To account for the magnetic field in the disks we use the
procedure described by Refs. [20,30]. First, we write the
equations of ideal general-relativistic magnetohydrody-
namics as the conservation laws VMT"” =0, V”*F”” =0,
and V,(pu) = 0, where V, is the covariant derivative and

T = (ph -+ B+ (p+ pu)g = B8, (9)

is the energy-momentum tensor of a magnetized perfect
fluid, with h, p, p, and p, being the specific enthalpy,
density, fluid pressure, and magnetic pressure, respectively,
the latter defined as p,,, = b*/2. The ratio of fluid pressure
to magnetic pressure defines the magnetization parameter
P = P/ Pm- Moreover, *F* = b*u? — b*u* is the (dual of
the) Faraday tensor relative to an observer with four-velocity
u#, and b* is the magnetic field in that frame, with b2 = b*b "
(see Ref. [31] for further details). Assuming the magnetic
field is purely azimuthal, i.e., b" = p? =0, and taking into
account that the flow is stationary and axisymmetric, the
conservation of the current density and of the Faraday tensor
follow. Contracting the divergence of Eq. (9) with the
projection tensor hg = 52’ + u®uy, we arrive at

2

(ph + b*)u,0u” + 0 (p + %) —b,0;* =0, (10)

where i = r, 0. This equation can be rewritten in terms of the
specific angular momentum / and of the angular velocity €,

Qall 8,p (9l- £b2
0, (In]) = =g+ AP Z(Eph) —0, (11)

where £ = g3 — 919y
To integrate Eq. (11) we need to assume an equation of
state (EOS). We assume a polytropic EOS of the form

p=Kp", (12)

where K and I are constants. By introducing the definitions
Pm = Lpm,w = phandw = L(w), we can write equations
equivalent to Eq. (12) for both p,, and p,,

ﬁm = meq’ (13)
Pm = Kn LT (ph), (14)

where K., and ¢ are constants. Then we can integrate
Eq. (11) as

'K q
W—=Wy,+In(1+—p! ——K.,(Lph)?~1 =0,
m+n( T )+q_1 m(Lph)
(15)

where W =In |u,| stands for the (gravitational plus cen-
trifugal) potential and W;,, is the potential at the inner edge
of the disk.

We can also define the total energy density for the torus,
pr=-T/+T:, and for the scalar field, psp=—(Tsg)! +
(Tsg)i. These are given by

B Ph(g(/n/) - gttlz)
=
9pp T 2951 + gul?

+2(p+ pm).  (16)

2 om(w — mW)
=2 ) @
Using these expressions, we can compute the total
gravitational mass of the torus and the scalar field as the
following expression:

M Z/p\/—_gd3x, (18)

where ¢ is the determinant of the metric tensor and
P = P1, PSE-

In this work we take an approach to construct the
magnetized disks different to the one proposed by
Ref. [20] and used by Ref. [18] for building disks around
KBHsSH. As noted by Ref. [22], the approach of Ref. [20]
implicitly assumes that the specific enthalpy of the fluid is
close to unity (w = ph =~ p). This means that the polytropic
EOS (12) can be written as p = Kw' [see Eq. (27) of
Ref. [20]]. We do not make this assumption here. To better
understand the differences between these two approaches,
we consider their behavior in two limiting cases, namely the
nonmagnetized case and the extremely magnetized case.

For the former, we can rewrite Eq. (15) in the limiting
case of ff,, — oo (K, = 0) as

I'K
W—Win—f—ln <1+ﬁpr_l> =0. (19)
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Then, we can solve this equation for the specific enthalpy
h=eVn W, (20)

Now, we want to obtain an analogous equation for the & ~ 1
case. We start by considering Eq. (20) of Ref. [22] and
taking the limit B, — oo (in this equation, this means
K., — 0), to obtain

'K
W_Win +mWF_1. (21)
If we consider the 4 ~ 1 approximation, we can use the
definition of & and solve the equation to arrive at

h=1+(Wy,—W). (22)

If we compare both results, we can see that Eq. (22) is the
first-order Taylor series expansion of Eq. (20) for a
sufficiently small value of W;, — W.

For the extremely magnetized case, we consider again
Eq. (15) and Eq. (20) of Ref. [22], but this time around we
take f3,, —0 (K—0). This yields the same result for both
equations

Kn(Lph)?™! = 0. (23)

W—Win—&-i
qg-—1

In addition, we could consider the expression for the specific

. . KT -1
enthalpy in terms of the density 7 = 1 4- =Z—to see that we

will have h — 1. This shows that, for the extremely
magnetized limit, the two approaches coincide.

Taking into account these two limits we can obtain the
range of validity of the 4 ~ 1 approximation: as magnetized
disks exist between the two considered cases, for disks with
a sufficiently small value of the potential well, AW =
Wi, — W, the h ~ 1 approximation is valid. On the contrary,
if the value of AW is large enough, the approximation
does not hold even for disks with a fairly low value of
magnetization.

1. METHODOLOGY

We now turn to describe the numerical methodology to
build the disks. From the discussion in the preceding section
it becomes apparent that the number of parameters defining
the disk models is fairly large. In order to reduce the sample,
in this work we set the mass of the scalar field to y = 1, the
azimuthal harmonic index to m = 1, the exponents of the
polytropic EOS to ¢ = I = 4/3, the density at the center of
the disk to p, = 1, the specific angular momentumto ! = [,
and the inner radius of the disk to r;, = r,,. Thus, we leave
the magnetization at the center, S, , as the only free
parameter for each model of KBHsSH. With this informa-
tion we can compute all relevant physical quantities.

In particular, our choice of specific angular momentum
and inner radius is made to allow disks to have a cusp and a

center. These disks are marginally stable, as they com-
pletely fill their Roche lobe, and a small perturbation can
trigger accretion onto the BH. In addition, the thermody-
namical quantities of the disks reach their maxima for this
particular choice of parameters, as they are related to the
total potential well |AW/|. Our choice also implies that the
resulting disks will be semi-infinite (they are closed at
infinity) but this is not a source of concern, as the external
layers of the disk have extremely low density.

Before building the models, it is important to note that
we need a sufficiently fine numerical grid to fully capture
the behavior of the physical magnitudes at the innermost
regions of the disk. For this reason, we use a nonuniform
(r,0) grid with a typical domain given by [ry, 199.2] x
[0,7/2] and a typical number of points N, x Ny =
2500 x 300. Those numbers are only representative as
the actual numbers depend on the horizon radius ry and
on the specific model. The spacetime metric data on this
grid is interpolated from the original data obtained by
Ref. [25]. The original grid in Ref. [25] was a uniform (x, 9)
grid (where x is a compactified radial coordinate) with a
domain [0, 1] x [0,7/2] and a number of points of N, x
Ny =251 x30 [32]. To obtain our grid, we use the
coordinate transformation provided in Ref. [33] and inter-
polate the initial grid using cubic spline interpolation.

To build the disks we first need to find [/, and r, as
the minimum of Eq. (8) and the location of said
minimum in terms of the radial coordinate respectively.
Once this is done, we can compute the total potential
distribution as

Gop = 999
9pp T 291 + gul?|

1
W(r,0) =1n|u,| = Eln (24)

With the total potential distribution, we can compute the
location of the cusp ., and the center r, as the extrema
(maximum and minimum respectively) of the total potential
in the equatorial plane. Also, we set ri, = re,. For our
choice of angular momentum distribution, this also means
W;, = 0. Having the total potential distribution and the
characteristic radii of the disk, we can start to compute the
thermodynamical quantities in the disk. First of all, we
compute the polytropic constant K by evaluating Eq. (15) at
the center

'K
W—W, +1In (1 +F1p£")

K I
+-1 P =0, (25)
q- lﬂmc(pc+rTF)1c)

where we have used the definition of magnetic pressure and
the definition of the magnetization parameter . Using their
corresponding definitions, we can also compute kg, pe, P,
and the constant of the magnetic EOS K. With both K and
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FIG. 2. Distribution of the rest-mass density. From top to bottom the rows correspond to the first four models of KBHsSH (I, II, III and
IV). From left to right the columns correspond to different values of the magnetization parameter, namely nonmagnetized (f,, = 1019y,
mildly magnetized (f,, = 1) and strongly magnetized (f,, = 10~'°). Note that the range of the color scale is not the same for all plots.

K, obtained, we can now compute the thermodynamical
quantities in all our numerical domain. For points with

W(r,8) >0 we set p = p = p,, = 0 and for points with

W, < W(r,0) <0, we write Eq. (15) as

=0,
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FIG. 3.

to compute the rest-mass density p of said point. Then, we
can use again Egs. (12) and (13) and the definition of the
specific enthalpy to compute the distribution of p, p,, and k.

It is relevant to note that Egs. (25) and (26) are
transcendental equations and that Eq. (26) in particular
must be solved at each point of our numerical grid. To solve
these equations we use the bisection method. To ensure the
accuracy of our computations (particularly the accuracy of
the maximum and central quantities we report) our grid has
a difference between two adjacent points of Ar(r=r,) =
0.001 in the equatorial plane.

IV. RESULTS

A. 2D morphology

We start by presenting the morphological distribution of the
models in the (7 sin 6, r cos @) plane in Figs. 2 and 3. These

0.4
rsin @

0.6 0.8

0.4
rsin @

0.6 0.8

Same as Fig. 2 but for the last three models of KBHsSH (V, VI, and VII).

figures show the rest-mass density distribution for all our
KBHsSH models for three different values of the magneti-
zation parameter at the center of the disks, /3, , namely 1010
(unmagnetized, left column), 1 (mildly magnetized, middle
column) and 107!° (strongly magnetized, right column).

The structure of the disks is similar for all values of f,,
with the only quantitative differences being the location of
the center of the disk, which moves closer to the BH as the
magnetization increases, and the range of variation of the
isodensity contours, whose upper ends become larger with
decreasing f, . This behavior is in complete agreement
with that found for Kerr BHs in Ref. [22] irrespective of the
BH spin. For the particular case of model VII, the
maximum of the rest-mass density for the strongly mag-
netized case is significantly larger than for the other models
and the spatial extent of the disk is fairly small.
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FIG. 4. Size of the disks. Top panel: Effects of the magnetization on the radial profiles of the logarithm of the density at the equatorial
plane for different KBHsSH models. From left to right we show models I, IV, and VII, respectively. Bottom panel: Same as the top panel
but for Kerr BHs. From left to right the cases shown have the same ADM quantities as the KBHsSH models I, IV, and VII, respectively,
shown in the top panel. Note that the scale shown in the horizontal axes is different in all plots.

The size of the disks can be best quantified by plotting
the radial profiles of the rest-mass density on the equatorial
plane. This is shown in the upper panels of Fig. 4 for
models I, IV and VII and for the same three values of the
magnetization parameter shown in Figs. 2 and 3. (The
lower panels of this figure correspond to disks around
Kerr BHs and will be discussed below.) From Fig. 4 we
see that model I disks are significantly larger than models
IV and VII, i.e., the hairier the models the more compact
and smaller the disks become. We also note the presence
of an extended region of high density in the unmagnetized
model VII (the mildly magnetized case also shows this
feature but to a lesser extent). This could be related to the
existence of an extra gravitational well due to the
scalar field distribution that overlaps with the matter
distribution of the disk (as can be seen in the right panel
of Fig. 7 below).

In Figs. 5 and 6 we show the same morphological
distribution of Figs. 2 and 3 but using, instead, a perimetral
radial coordinate R, related to the radial coordinate r
according to R = ef2r. This perimetral coordinate repre-
sents the proper length along the azimuthal direction, which
constitutes a geometrically meaningful direction since it
runs along the orbits of the azimuthal Killing vector field.
Therefore, the proper size of a full ¢ orbit is given by 2zR,

i.e., R is the perimetral radius. The most salient feature of
the morphologies shown in Figs. 5 and 6, when compared
to those displayed in Figs. 2 and 3, is the deformation of the
disks in their innermost regions. In general, the deforma-
tions become larger the higher the horizon sphericity $ and
the closer the disk is to the horizon. Model III is the one
showing the largest deformation, as (R;, — Ry)/Ry attains
the smallest value for this model. It is also worth noticing
that the shape of the BH also changes when using the
perimetral coordinate. While in the r coordinate the horizon
is spherical (cf. Figs. 2 and 3) in the perimetral coordinate R
is not always so. Moreover, the larger the value of vy, the
more elliptic the horizon becomes, which in our sample
corresponds to model III (cf. Table I, 8 = 1.489).

In addition, an interesting geometrical property of the
perimetral coordinates is that, for the Kerr metric, Ry =
2M irrespective of the value of the angular momentum.
However, for the KBHsSH cases, 2My < Ry < 2M apm»
and the quotient Ry/2My increases as more mass and
angular momentum is stored in the scalar field.

Table II reports the relevant physical quantities for all of
our disk models around KBHsSH. It is worth mentioning
that KBHsSH can violate the Kerr bound for the potential
AW = W;, — W.. As shown in Ref. [23], constant angular
momentum disks around Kerr BHs exhibit a maximum for
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FIG. 5. Same as Fig. 2 but using the perimetral radial coordinate R.

|AW| when the spin parameter a — 1. This value is
AW e = —31In3 = —0.549. Models V, VI, and VII of
our sample violate that bound. As a result, the maximum
values of the fluid quantities for disks around KBHsSH are
significantly larger than in the Kerr BH case. In both cases,

these values increase as |[AW/| increases, irrespective of the
magnetization, as shown in Table II.

In Fig. 7 we show the total energy density of the torus pr
(upper half of each image) and the total energy density of
the scalar field pgr (lower half) for models I, IV and VII and
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FIG. 6. Same as Fig. 3 but using the perimetral radial coordinate R.

two values of the magnetization parameter at the center
(10'°, top row, and 10~'°, bottom row). This figure shows
that, for nonmagnetized disks, the maximum of the total
energy density of the disk py is closer to the maximum of
the total energy density of the scalar field pgr for increasing
hair. This trend disappears with increasing magnetization,
as the disk moves closer to the horizon in such a case.

B. Comparison with Kerr BHs

For the sake of comparison we also build equilibrium
sequences of magnetized disks around four Kerr BHs of the
same mass (Mgy = 1) and varying spins, from a = 0 to
a =0.9999. These models are more general than the
corresponding ones presented in Ref. [22] as the h =1
assumption is now relaxed. Our numerical approach can
handle BH spins as large as |a—1|= 1077 without

modifying the resolution of our numerical grid. How-
ever, for higher values of the spin parameter, we would
need to increase our resolution (especially the resolution
along the polar angle 8 for the most highly magnetized
case) but such extreme cases do not add further relevant
information to our discussion. Table III reports a summary
of the values of the main physical quantities of these disks,
whose morphology is displayed in Figs. 8 and 9. As for the
disks built around KBHsSH, the maximum values of the
enthalpy, density, pressure and magnetic pressure increase
with increasing |AW/|, which, in the Kerr BH case, also
means with increasing values of a. It can be seen that both
the cusp and the center move closer to the horizon with
increasing a, i.e., the size of the disks decreases and they
approach the BH as the spin parameter increases. (Note
that, as we mentioned before, in the Kerr case the radial
location of the horizon at the equatorial plane in perimetral
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TABLE II.  Values of the relevant physical magnitudes of our models of magnetized, equilibrium tori around KBHsSH. All reported
radii correspond to the perimetral coordinate. For all cases, R;, = R, and / = [,,;,. From left to right the columns contain the specific
angular momentum, /, the potential at the center of the disk, W, the inner radius of the disk, R;,, its center, R., the value of the
magnetization parameter at the center, B, , the maximum specific enthalpy, /.y, density, ppm,y, thermal pressure, pp,, and magnetic
pressure, pm max» and the location of the maximum of the thermal pressure and magnetic pressure, Ry« and Ry, ., respectively.

Model l

Wc R in

R

P,

hmax

p max

p max

pm.max

R

R

C max m,max

I 0934 —0.188 081  L14 10 121 100  516x102  550x 1072 114  1.26
1 110 L17  311x102  268x102 10l 106

10710 100 190  L10x 1071 7.80x 102 093  0.96

i 0933  -0205 075 118 10 123 100  569x102  6.14x1072 118 136
1 112 L19  350x102  297x102 100  1.07

10710 100 201 130x1071"  899x102 091 094

i} 1064 0362 084 107 100 144 100  1.09x 107 121x10°" 107 122
1 123 128 7.22x102  576x102 095  0.99

10710 100 274 348x 107" 206x10" 089 091

v 1159 -0.547 067 106 100 172 100  1.82x10"  2.09x10" 106 134
I 138 137 129x107  976x 102 085 091

10710 100 370  7.83x10°!!  408x10" 076 0.8

v 1204  —0.685 058 107 100 198 100  246x 10"  276x 107" 107 131
1 151 140 178x 107 132x10" 078 0.87

10710 100 426 1I18x1071°  579x10" 067  0.69

VI 1198 —0.832 043 L1210 230 100  324x10""  352x107" 112 132
1 166 139 228x10"  1.69x10" 072 086

10710 100 454 157x1070  740x10" 055 059

VI 0920 -1236 018 110 1070 344 100  6.10x10"'  646x 1071 110 125
1 225 164 510x107  322x 1071 043 0.62

10710 100 1042 7.03x1071°  024x107 028 030

| = @ i i

FIG.7. Energy density distribution for the torus pr (upper half of the images) and for the scalar field pgr (lower half). From left to right
the columns correspond to models I, IV, and VII. The top row corresponds to nonmagnetized models (B, = 10'%) and the bottom row to
strongly magnetized models (f,, = 107').
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TABLEIII. Disk parameters and values of their relevant physical magnitudes for the Kerr BH case. For all models, R;;, = R, [ = Ly
and Mgy = 1. The meanings of the quantities reported are as in Table II.
a g l WC Rl[l RC ﬁmc hmax pmax pmax pm,max Rmax RmA,max
0 1 400 -4.32x1072 4.00 1047 10 1.04 100 1.10x1072 1.15x 1072 10.47 11.86
1 1.2 111 629x107° 5.69x107° 88l 9.52
10710 1.00 148 1.83x107? 148x1072 7.70 8.14
0.5 1.053 341 —6.35x1072 2.99 7.12 10 1.07 1.00 1.64x1072 172x1072 7.19 8.14
1 1.03 112 943 x1073 847x107°  6.05 6.53
10719 1.00 1.53 2.81x107? 223x1072 5.29 5.59
0.9 1.276  2.63 -0.129 2.18 378 1019 114 1.00 1.64 x 1072 3.65x 1072 3.78 4.23
1 1.07 1.14 203x1072 1.78x 1072 3.25 3.47
10710 1.00 170 6.54 x 10712 4.92x 1072 292 3.04
0.9999 1.629 2.02 —0.429 2.00015 2.034 100 154 1.00 134x10"" 1.61x10~'" 2.034 2.094
1 129 151 1.10x 107" 7.52x 1072  2.0075 2.014
10719 1.00 6.17 1.22x 1071 491 x 107! 2.0021  2.0030

coordinates is Ry = 2M irrespective of the value of the
BH spin.)

The comparison of the values of the physical quantities
shows that, even for highly rotating Kerr BHs, the maxi-
mum values for A, p and p,, are lower than in the KBHsSH
case. This is not a surprise, as these quantities are related to
the value of |[AW|. Also, as in the case of KBHsSH, we
observe a higher distortion of the shape of the disc in the
near-horizon region with increasing sphericity 8 (and spin,
in this particular case). This is particularly noticeable when
plotting the disk morphology in terms of the perimetral
coordinates (cf. Fig. 9). For the a = 0.9999 model the disk
is extremely skewed and attached to the BH horizon,
particularly in the highly magnetized case in which the
values reported in Table III for R;, and R, are very close to
each other. The appearance of the solution is more disk-like
when displayed in terms of the r coordinate, as shown in
Fig. 8, as this radial coordinate expands the near-horizon
region. While this coordinate is well suited for computa-
tions, this is not the case for visualization, where the
perimetral coordinate is preferred since it allows to directly
compare the different models as the scale is the same.

To provide additional information for the comparison we
show in the bottom panels of Fig. 4 three disk models
around Kerr BHs with the same ADM mass and ADM
angular momentum as the KBHsSH cases shown in the
upper panels of the same figure. The model in the left plot
corresponds to a near-extremal Kerr BH (a = 0.9987) and
the other two have a similar value for the spin parameter
(a =0.8489 and a = 0.8941, for the middle and right
plots, respectively). The comparison reveals interesting
differences between these models regarding their compact-
ness. The size of the disk in the Kerr case plotted on the left
is considerably smaller than its hairy counterpart, KBHsSH
model L. In this case, the presence of the scalar field has
little effect on the morphology of the disk (as its gravita-
tional field is small) but its effect is nonetheless noted in a
reduction of the value of the sphericity (see Table IV),

effectively reducing the effect of the BH spin in the disk (i.e.,
increasing its shape). As the mass and angular momentum
stored in the scalar field increase, the gravitational field of
the scalar field affects the radial morphology of the disk,
altering its shape and reducing its extent. Note that both
KBHsSH models IV and VII have lesser radial extent than
their Kerr BH counterparts with the same ADM mass and
angular momentum, even though model VII attains a lower
value of the sphericity. These conclusions hold irrespective
of the value of the magnetization parameter.

C. Magnetization profiles

The dependence of the maximum specific enthalpy /.,
and the maximum rest-mass density p,,.. with the magneti-
zation parameter is shown in Fig. 10. The upper panels
correspond to the KBHsSH models (I-VII) and the lower
ones to our sequence of Kerr BHs with increasing spin
parameter. For both cases, an increase in |[AW/| implies
monotonically higher values for £,,,, (low magnetization)
and also higher values for p,. (high magnetization).
However, there are quantitative differences between the
two cases. For the enthalpy, the values of h,,,, reached for
disks around KBHsSH are much higher than those of the
Kerr BH case. This implies that, while the w = ph ~p
approximation (employed in Refs. [20,22]) is valid for
magnetized disks (fp, ~ 1) around Kerr BHs for values
of the spin parameter as high as a ~ 0.99, that is not the case
for disks around KBHsSH. We note that for the most
extreme spin value we can build, |a —1|= 1077, the
maximum enthalpy for the purely hydrodynamical case is
hmax = 1.692. For this case, the maximum density in the
extremely magnetized limit reaches a value of p., = 97,
significantly larger than the value displayed in the left panel
of Fig. 10 for the a = 0.9999 model.

Figure 11 shows the relative variation of the quotient
of the perimetral radius of the magnetic pressure
maximum and the perimetral radius of the disk center,
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FIG. 8. Rest-mass density distribution. From top to bottom the rows correspond to a sequence of Kerr BHs with
increasing spin parameter a (0, 0.5, 0.9 and 0.9999). From left to right the columns correspond to different values of
the magnetization parameter, namely nonmagnetized (B, = 10'9), mildly magnetized (Pm, = 1) and strongly magnetized
(ﬂmC = 10710)
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FIG. 9. Rest-mass density distribution using perimetral coordinates. From top to bottom the rows correspond to a sequence
of Kerr BHs with increasing spin parameter a (0, 0.5, 0.9 and 0.9999). From left to right the columns correspond to different values
of the magnetization parameter, namely nonmagnetized (B, = 10'%), mildly magnetized (Pm, = 1) and strongly magnetized

(B, = 10719
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TABLE IV.  Central density for the different models. A value of rj, such that AW = 0.9AW . = Wy, — W, is chosen and a torus
gravitational mass of Mt = 0.1M spy; is assumed. In the third column, the value of the central density is reported in geometrized
units (“g.u.”) while in the fourth column this value is reported in cgs units. The fifth and sixth columns provide those values but for tori
built around Kerr BHs with the same ADM quantities as the KBHsSH models. Finally, the last column reports the sphericity of the Kerr

BH models.
Pc Pe ,05 p'IC(
Model B, [g.u.] [gem™3] [g.u.] [gem™3] gk
I 1010 6.818 x 1074 1.739 x 10" 3.752 x 1073 9.567 x 103 1.589
1 2.185 x 1073 5.503 x 1013 7.942 x 1073 2.025 x 104
10-10 3.227 x 1073 8.229 x 1013 7.641 x 1073 1.948 x 104
I 1010 3.216 x 1074 8.201 x 10'2 - e
1 1.651 x 1073 4210 x 1013
10-10 3.026 x 1073 7.716 x 1013
111 100 8.120 x 104 2.071 x 1013 6.683 x 1075 1.704 x 102 1.278
1 3.497 x 1073 8.917 x 1013 2.075 x 1074 5.291 x 1012
10710 5.452 x 1073 1.390 x 10 3.265 x 10~ 8.325 x 1012
1AY 10%0 1.197 x 1073 3.052 x 1013 3.001 x 1073 7.652 x 101! 1.219
1 3.421 x 1073 8.723 x 1013 9.512 x 1075 2.425 x 1012
10-10 5.135 x 1073 1.309 x 10'4 1.533 x 104 3.909 x 10!2
\Y 1010 1.792 x 1073 4.569 x 1013 3.152 x 1073 8.037 x 10'! 1.227
1 3.883 x 1073 9.901 x 10" 9.942 x 1075 2.535 x 1012
10-10 5.435 x 1073 1.386 x 10 1.596 x 1074 4.070 x 10'2
VI 1010 2.348 x 1073 5.987 x 1013 3.232 x 1073 8.241 x 10!! 1.234
1 4.106 x 1073 1.047 x 104 1.019 x 104 2.598 x 1012
10-10 5.685 x 1073 1.450 x 10 1.632 x 1074 4.161 x 10'2
VII 100 3.737 x 1073 9.529 x 1013 4.114 x 1075 1.049 x 10!2 1.268
1 5.356 x 1073 1.366 x 10'4 1.280 x 104 3.264 x 10'2
10710 7.598 x 1073 1.937 x 104 2.021 x 1074 5.153 x 102

(Rm.max — R¢)/Re, with the decimal logarithm of the mag-
netization parameter at the center of the disk, log; fp,, . The
curves plotted correspond to the same KBHsSH and Kerr
BH cases as those in Fig. 10. For all cases, the radial location
of the magnetic pressure maximum decreases with decreas-
ing S, . InRef. [22] we proved that for 2 = 1 disk models in
stationary and axisymmetric BH spacetimes, the location of
the maximum of the magnetic pressure is identical for all
models when g, =1/(I'—=1) =3. This condition is
almost fulfilled for the Kerr BH case even when h # 1,
with a very slight deviation for cases with very high spin
parameter. This cannot be seen clearly in Fig. 11 (even in the
inset) but, as an example, for a = 0.9999, the relative
difference of (R, max — Re)/R. with the i = 1 case is about
0.1%. (We note that in the radial coordinate of the metric
ansatz, the disks are not so skewed and attached to the
horizon and the differences would be more visible.) On the
other hand, the condition Ry, .« = R, when f, =3 is
clearly not fulfilled (when A # 1) for disks built around
KBHSsSH (see inset in the left panel). At this point, it is
relevant to remember that some of the KBHsSH models
violate the Kerr bound in terms of the potential. As we
mentioned previously, we need a small value of AW for the
h~1 approximation to be valid in the nonmagnetized

regime. Now we can see that, in the KBHsSH case, this
approximation is not valid even for mildly magnetized disks.

D. Torus mass

In an attempt to gauge the astrophysical relevance of our
models, in this section we drop the p. = 1 choice we have
thus far considered to build the tori and compute their
masses and, instead, we assume that the mass of the tori is
Mt = 0.1M spy and ask ourselves what are the corre-
sponding values of the central density of each model. The
value selected for M is, broadly speaking, compatible with
the torus masses found through numerical relativity sim-
ulations of binary neutron star mergers (see, e.g.,
Refs. [34,35] and references therein). Moreover, to avoid
complications due to the infinite size of our models, we
choose the total potential well as 90% of its maximum
possible value.

Therefore, we compute the mass of the tori around
KBHsSH and, for comparison, the corresponding mass for
seven disk models around Kerr BHs, each one of them with
the same ADM quantities as their KBHsSH counterparts.
The resulting values are reported in Table IV. The variables
corresponding to the Kerr case are indicated with a “K”
superscript in this table. The third and fifth columns of
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FIG. 10. Effects of the magnetization on the values for the maximum density (left) and enthalpy (right) of the disks. In the first row, we
show this for all of our KBHsSH models. In the second row, we show this for a sequence of Kerr BHs with increasing spin parameter.
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Table IV indicate the resulting central densities for the
KBHsSH and Kerr BH cases, respectively, in geometrized
units. In order to compare these values with those from the
end products of binary neutron star mergers, we need to
convert our results to cgs units. To this end, we first need to
choose a mass for the scalar field p, as the maximum ADM
mass of KBHsSH depends on y. In particular, we compute
the maximum ADM mass with the following equation (see
Ref. [36] and references therein):

GeV
M =107 o (X))
u

for a value of agg = 1.315 (corresponding to a value of the
azimuthal harmonic index m = 1). The constant agg is
computed numerically for rotating boson stars. Note that
Eq. (27) corresponds to the maximum mass of a boson star
but, as mentioned in Ref. [36], this is also the maximum
mass for the corresponding hairy BH. Using a value of the
mass of the scalar field of u = 2.087 x 10! eV yields
values for the ADM mass of our models that increase from
2.043 Mg t04.799 M, from model I to VII. This value of
u is within the mass range suggested by the axiverse of
string theory (see Ref. [37]) portraying a large number
of scalar fields in a mass range from 107>* to 1071° eV. In
addition, as mentioned in Ref. [38], the value of y we
choose is compatible with the scalar-field mass range
allowed by the observational tests in scalar-tensor theories
of gravity. Although in this paper we are working within
general relativity, for the low values of the trace of the
energy-momentum tensor of our models (in comparison
with the values reached for neutron stars) both theories
should be indistinguishable. We should note as well that
Eq. (27) is valid for non-self-interacting scalar hair. Adding
self-interaction terms would produce astrophysically rel-
evant solutions for less extreme values of the scalar-field
mass y [27].

Once we compute the new values of the central density in
geometrized units, we use the equation [39]

G\ (My)?2
Pegs = 6.17714 x 107 (?> (W) Pgeor (28)

to obtain the value of the central density in cgs units for the
different models. These values are reported in columns
four and six of Table IV. The range of values is fairly
broad, spanning from ~10'! to ~10'* gcm™3. This is due
to the significant differences in size of the different
disks, especially between the Kerr and KBHsSH cases.
Comparing these values with those reported in the literature
(see Refs. [34,35]) we conclude that, despite our assump-
tions, they are in the same ballpark as the central densities
found in disks consistently formed through ab initio
simulations of binary neutron star mergers. In particular,
changing the distribution of the specific angular momentum

from our simplistic constant prescription to a more realistic
power-law distribution, may help improve the accuracy of
our results.

V. CONCLUSIONS

Astrophysical BHs are commonly surrounded by accre-
tion disks, either at stellar-mass scales or at supermassive
scales. In the former case, stellar-mass BHs surrounded by
thick disks (or tori) are broadly accepted as natural end
results of catastrophic events involving the coalescence and
merger of compact objects, namely binary neutron stars
and BH-neutron star systems (see e.g., Refs. [35,40,41]
and references therein). These systems are traditionally
described using the paradigmatic BHs of general relativity,
where the spacetime metric is given by the Kerr metric,
solely characterized by the BH mass and spin. Upcoming
observational campaigns may, however, provide data to
discriminate those canonical BH solutions from exotic
alternatives such as, e.g., those in which the BHs are
endowed with scalar or vector (Proca) hair, recently
obtained by Refs. [2,3]. It is conceivable that testing the
no-hair hypothesis of BHs will become increasingly more
precise in the next few years as new observational data is
collected in both the gravitational-wave channel and in the
electromagnetic channel.

In this paper we have considered numerically generated
spacetimes of Kerr BHs with synchronized scalar hair and
have built stationary models of magnetized tori around
them. Those disks are assumed to be non-self-gravitating,
to obey a polytropic equation of state, and to be marginally
stable, i.e., the disks completely fill their Roche lobe. In
addition, and for the sake of simplicity, the distribution of
the specific angular momentum in the disks has been
assumed to be constant. The models have been constructed
building on existing approaches presented in Refs. [20,22]
which dealt with (hairless) Kerr BHs. An important
generalization of the present work compared to the meth-
odology presented in previous works has had to do with the
fluid model: while the matter EOS we use is still rather
simplistic (a polytropic EOS) the models are allowed to be
thermodynamically relativist, as the specific enthalpy of the
fluid can adopt values significantly larger than unity. That
has led to interesting differences with respect to the
findings reported in Ref. [22] for the purely Kerr BH case.

We have studied the dependence of the morphology and
properties of the accretion tori on the type of BH system
considered, from purely Kerr BHs with varying degrees of
spin parameter (namely from a Schwarzschild BH to a
nearly extremal Kerr case) to KBHsSH with different ADM
mass and horizon angular velocity. Comparisons between
the disk properties for both types of BHs have been
presented. The sequences of magnetized, equilibrium disks
models discussed in this study can be used as initial data
for numerical relativity codes to investigate their dynamical
(nonlinear) stability and can be used in tandem with
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ray-tracing codes to obtain synthetic images of black holes
(i.e., shadows) in astrophysically relevant situations where
the light source is provided by an emitting accretion disk
(first attempted by Ref. [18]). In particular, the morpho-
logical and thermodynamical differences we observe when
comparing the solutions for KBHsSH with those for disks
around Kerr BHs (i.e., a larger vertical size of the disks, a
more extended high-density central region, and a more
relativistic fluid) are expected to yield significantly differ-
ent results when their shadows are computed. Moreover,
the stability properties of such disks under perturbations are
expected to be affected by the presence of the gravitational
well produced by the scalar hair. In a companion paper we
will present the nonconstant (power-law) case, whose
sequences have already been computed. The dynamical
(nonlinear) stability of these solutions as well as the
analysis of the corresponding shadows will be discussed
elsewhere.
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APPENDIX: FINDING I,,;, AND r,;,

We start by considering the Lagrangian of a stationary
and axisymmetric spacetime

1. . . )
L=3 [9:(1)* + 29,41  +9,-(F)* + 900(0)> + 94 ()],
(A1)

where x* = dx*/dA denotes the partial derivative of the
coordinates with respect to an affine parameter 4. We can
note that we have two cyclic coordinates (¢ and ¢). Then,
the canonically conjugate momentum of each coordinate is
conserved, namely

OL
n=g=F (A2)
oL
=—=1, A3
P =% (A3)

where we identify the constants of motion as the energy and
angular momentum of a test particle.

If we assume motion in the equatorial plane (i.e.,

0=rx/2, 6 = 0) we can write the relativistic four-momen-
tum (of a massive particle) normalization as

pip' 4 pop”+ pyp? = —m?, (A4)

where m is the mass of a test particle. Using the definitions
of the energy and angular momentum of the particle and

taking into account that p* = x4, we can rewrite the above
equation as

—Et + L + g,,i* = —m>. (AS)

Now, we can find the expressions for the contravariant
momenta p’ and p? from p, = g,sp”

9poE + 9ip
f= (A6)
Gip — 9uGp¢
_ 9nL + Gigp

5 , (A7)
Gip — 9ue9gpg

p? =

insert these expressions into Eq. (A5) and write the
expression for the radial velocity 7

. E? +2g,,LE + g,L*
gt = (—m2 4 900 5 91¢ I > (A8)
Gtp — 99

We want to consider circular orbits, so the radial velocity
must be 7 = 0. Then, we arrive at

Gip = 9upp = 9pp€” + 29iple + gul?, (A9)
where we have introduced the specific energy per unit
mass (e = E/m) and the specific angular momentum per
unit mass (I = L/m). Additionally, we are interested in
bound orbits. Specifically, we want marginally bound orbits

(e = 1). Taking this into account, we get the following
expression for the specific angular momentum:

i + (92 - gttgt/)(/))(l + Gu)
[F = /e (A10)
—9n

which corresponds to Eq. (8). It is well known that in BH
spacetimes there is an innermost circular marginally bound
orbit for test particles. Naturally, a marginally bound
particle at the innermost circular orbit has to have the
smallest possible value of the specific angular momentum
[i.e., a minimum of Eq. (A10)]. The radial location of said
minimum is, obviously, the innermost circular marginally
bound radius 7.
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