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palavras-chave caça ao troféu, constrangimento genético, evolução, genética quantitative evolutiva, mod-
elo baseado em indivíduos, modelo de projecção integral, Ovies aries, Ovies canadensis,
paradoxo da estase morfológica, selecção natural, tamanho, trajectórias de crescimento,
viés.

resumo O paradoxo da estase morfológica (paradox of stasis) tem motivado avanços consid-
eráveis na área da genética quantitativa evolutiva nas últimas décadas. Discrepâncias
entre tendências temporais do tamanho de organismos em populações selvagens e pre-
visões baseadas em teoria evolutiva devem-se necessariamente a uma compreensão de-
ficiente dos fundamentos teóricos subjacentes à evolução num determinado sistema e/ou
à adopção de ferramentas metodológicas com pressupostos que não são realistas. Em-
bora difiram na sua natureza, estas duas explicações são difíceis de distinguir, uma vez
que, muitas vezes, as ferramentas (estatísticas) da genética quantitativa têm pressupos-
tos, implícitos ou explícitos, sobre biologia e ecologia. Na presente tese, eu investigo
mecanismos de hereditariedade e/ou selecção em casos para os quais se prevê que
aplicações teóricas convencionais gerem previsões enviesadas ou erróneas acerca da
evolução do tamanho dos organismos. Especificamente, adopto uma metodologia para
lidar com constrangimentos genéticos numa perspectiva bastante fenotípica, o que fa-
cilita a quantificação do viés que existiria se tal constrangimento não fosse tido em conta
(Capítulo 3). Esta metodologia permite distinguir a selecção do peso corporal de ovel-
has da raça Soay (Ovies aries) que ocorre directamente, através do efeito do peso na
fitness (ou valor adaptativo), e indiretamente, através do seu efeito na probabilidade de
gravidez durante o primeiro ano de vida. No Capítulo 4, apresento provas analíticas de
várias questões com aplicações típicas de modelos de projeção integral (integral projection
models, IPMs) que incorporam hereditariedade e desenvolvimento de caracteres, con-
cluindo que estas aplicações são incapazes de prever alterações evolutivas, ainda que
estas tenham ocorrido ou se espere que ocorram. Outro tópico importante desta tese é
o desenvolvimento de um modelo baseado em indivíduos (individual-based model, IBM),
concebido e parameterizado para o comprimento dos cornos da população de ovelhas
de raça bighorn (Ovies canadensis) residente em Ram Mountain, no Canada (Capítulo 6).
Este modelo, desenvolvido para ambos os sexos e equivalente a um IPM, usa teoria da
genética quantitativa para modelar a transmissão genética de caracteres (com funções
de desenvolvimento estimadas no Capítulo 5). Desta forma, esta abordagem permite a
quantificação da resposta evolutiva à caça ao troféu, contabilizado, ao mesmo tempo, um
grande número de complexidades ecológicas.
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keywords bias, evolutionary prediction, evolutionary quantitative genetics, genetic constraint,
growth, individual-based models, integral projection models, natural selection, ontogenetic
trajectories, Ovies aries, Ovies canadensis, paradox of stasis, size, trophy hunting.

abstract A considerable body of work in recent decades in the field of evolutionary quantitative
genetics has been motivated by the paradox of stasis. Mismatches between observed dy-
namics of size in wild populations and evolutionary predictions must arise from deficient
understanding of the theoretical grounds underlying the evolution in a particular system,
and/or the adoption of methodological tools making assumptions that are unrealistic. Al-
though different in their nature, these classes of explanation are difficult to tear apart, as
very often quantitative genetics (statistical) tools make either implicit or explicit assump-
tions about biology and ecology. In this thesis, I investigate inheritance and/or selection
mechanisms when conventional applications of theory are expected to lead to biased or
erroneous predictions of evolutionary change in size. Specifically, I adopt a methodology
to handle genetic constraints in a fairly phenotypic perspective, which facilitates quantifi-
cation of bias that would exist if such constraint was not accounted for (Chapter 3). I use
this methodology to tear apart the selection in Soay sheep body mass that occurs directly
through its effect on fitness and indirectly through its effect on pregnancy during the first
year of life. Next, I provide analytical proofs of several issues with applications of inte-
gral projection models (IPMs) that incorporate inheritance and development, concluding
that these will predict no evolutionary change regardless of whether it should, will, or has
occurred (Chapter 4). Another main topic of this thesis is the development of a two-sex
individual-based model (IBM) of horn length (Chapter 6), equivalent to an IPM, that uses
quantitative genetics theory to model trait transmission (with development functions esti-
mated in Chapter 5). This IBM, parameterised using data from the bighorn sheep (Ovis
canadensis) of Ram Mountain, is used to quantify the evolutionary response to trophy hunt-
ing, while accounting for a large number of ecological complexities.
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CHAPTER 1
General introduction

This thesis, along with a considerable body of work produced over the last decades in the field of
evolutionary quantitative genetics, is primarily motivated by the paradox of stasis and an attempt to
make a contribution to its resolution. Mismatches between observed dynamics of body size in wild
populations and evolutionary predictions must arise from deficient understanding of the theoretical
grounds underlying the evolution in a particular system, and/or the adoption of methodological tools
making assumptions that are unrealistic. The former is related to how general theory can be in the
face of the complex biology and ecology of particular species or populations, while the latter relates
to technical aspects of evolutionary prediction. Although different in their nature, these are difficult to
tear apart, as very often quantitative genetics tools make either implicit or explicit assumptions about
biology and ecology. The work contained within this thesis aims at investigating inheritance and/or
selection mechanisms when conventional applications of theory are expected to lead to biased or
erroneous predictions of evolutionary change. Its focus is not the paradox of stasis, in particular, but
to identify and correct sources of error when predicting the evolution of size. Although I dedicate
one of the technical chapters to looking at such issues at a particular age, most of the work I devel-
oped focuses on the evolution of ontogenetic size trajectories. At this particular point in time, such
focus is particularly relevant, as notions of inheritance are starting to be implemented into population
models. With such advances in the field of population ecology, new theoretical and methodological
challenges have arisen in predicting evolutionary change that can also lead to biased predictions.
The main subjects addressed in this thesis and, therefore in this introduction to the thesis, are, as
a consequence, the paradox of stasis and biases in predicting evolutionary change, the genetics of
function-valued traits, particularly trajectories of size-at-age, and the use of population models in the
prediction of evolutionary change. I devote the last paragraphs of this introduction to providing a brief
outline of the structure and contents of the thesis.

1.1 Bias in predicting evolution and the paradox of stasis

The inheritance and evolution of body size has been the subject of great interest since early in the
study of evolutionary biology (Galton, 1886). Size is particularly relevant in different areas of evo-
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lutionary biology as it has been shown to be associated with fitness, including fecundity, offspring
quality, mating success and survival, with larger body sizes generally being beneficial. This connec-
tion between size and fitness is so widely accepted that body size is often used as a proxy for fitness
when it is not possible or it is difficult to measure fitness itself (Dmitriew, 2011, but see Franklin &
Morrissey, 2017). One relevant hypothesis, the tendency for organisms to evolve larger body sizes
over evolutionary time (Cope, 1896), has been given particular attention by microevolutionary biolo-
gists, as quantitative genetics theory provides a perfect framework in which to formally address such
hypothesis. Over decades we have witnessed microevolutionary predictions of evolution by natural
selection chiefly corroborating the Cope’s rule, while very little evidence exists of it (Bradshaw, 1991).
In fact, the contrary, stasis (or even decreasing body size), seems to be more common, and has been
argued as the predominant mode of evolution (Gould & Eldredge, 1993). Such mismatch between
microevolutionary predictions and the macroevolutionary evidence from the fossil record, referred to
as the paradox of stasis (e.g. Sogard, 1997), is an important theoretical problem in microevolution and
is still largely unsolved.

When natural selection operates on genetic variability, evolution is expected to occur (Fisher, 1930).
Formalisations of how evolution by natural selection occurs in terms microevolutionary dynamics,
such as the breeder’s equation (Lush, 1937) or the secondary theorem of selection (Robertson,
1966, 1968; Price, 1970), are used to identify the direction and quantify the magnitude of evolution-
ary change. Accurate estimates of evolution are obtained whenever those formalisations hold and
their parameters, measures of the strength of selection and evolvability, are estimated sufficiently pre-
cisely and without bias. Estimates obtained so far suggest that directional selection towards larger
size is widespread in nature (Kingsolver & Pfennig, 2004; Hereford et al., 2004), even when account-
ing for selection of correlated traits (Hereford et al., 2004; Perez & Munch, 2010; Morrissey et al.,
2012a). Likewise, numerous studies have shown that body size is heritable across a wide range of
taxa (Visscher et al., 2008; Hansen et al., 2011), including mammals (Wilson et al., 2005; Pelletier
et al., 2007), birds (Noordwijk et al., 1988; Charmantier et al., 2004), amphibians (Pakkasmaa et al.,
2003), fish (Gjerde et al., 2004; Shimada et al., 2007; Letcher et al., 2011), crustaceans (Thompson,
1986), insects (Gunay et al., 2011), zooplankton (Spitze, 1995) and plants (Johnson et al., 1966;
Peiffer et al., 2014). Considering the positive directional selection along with the widespread her-
itability of body size reported for so many species, one would expect faster evolution of body size
than is observed in the fossil record. Hunt (2007) analysed fossil traits and fit three evolutionary
models: directional change, random walk and stasis and concluded that only 5% of the size related
traits were best fit by the directional change model, suggesting that evolution in these traits was
rarely sustained in a particular direction. Similarly, Estes & Arnold (2007) fitted different evolutionary
models to a database of 2,639 microevolutionary, historical and paleontological evolutionary rates,
concluding that an adaptive landscape model with a single displaced optimum, allowing very rare
displacements, was the best fit to the data, once again corroborating stasis as a common mode of
evolution. While Kingsolver & Pfennig’s (2004) interpretation of directional gradients as the basis of
the Cope’s rule might be tempting, it actually neither holds quantitatively nor qualitatively: for the
reported magnitudes of positive directional selection of body size to be consistent with Cope’s rule,
greater magnitudes of phylogenetic increase in body size would be necessary. Consistent evidence
from extant taxa is also available, with body size being proven to be stable or decreasing, even when
heritable and under positive selection (Larsson et al., 1998; Kruuk et al., 2002; Knouft & Page, 2003;
Ozgul et al., 2009).
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Several mechanisms have been proposed to explain the apparent lack of widespread rapid contem-
porary evolution of body size, and consequently the inherent bias in microevolutionary estimates.
Such mechanisms are either associated with how natural selection operates or to how apparent ge-
netic variability might not be available. Regarding the former, widespread stabilising selection and
the existence of opposing selective forces (selective constraints or trade-offs) have been the most
investigated candidates, whereas concerning the latter, variational constraints have been suggested,
which can either be pleiotropic or epistatic in nature. Several authors have suggested that either fluc-
tuating selection or the widespread occurrence of stabilising selection (empirically difficult to detect
once populations have adapted to a fitness peak) may be the main cause of the stasis observed in
body size (Perez & Munch, 2010; Estes & Arnold, 2007; Haller & Hendry, 2014). However, stabilising
selection as a single explanation for stasis is a challenging theory to accept as it implies that the
selective optimum varies only within a narrow range, when evidence exists suggesting that selection
is variable both in space and time (e.g. Hereford, 2009; Siepielski et al., 2009; Bell, 2010; Morrissey &
Hadfield, 2012). Another explanation for stasis, very tightly related to selection constraints, is based
on the notion of adaptive landscape and how its shape can itself provide a constraint to evolution
(Arnold et al., 2001). Natural selection, as a multivariate mechanism, might result in no adaptation if
traits under different selective pressures are correlated (Hansen, 2012). As for inheritance mecha-
nisms, the existence of genetic (or variational) constraints can also provide an explanation for stasis
(Hansen & Houle, 2004; Walsh & Blows, 2009; Hansen, 2012). Although additive genetic variance
may exist in a particular trait, both pleiotropic and epistatic effects may prevent adaptation or evo-
lution. If genes that create variation in one trait also create variation in other traits that are under
stabilising selection, evolution is expected to be slower. Such mechanisms result in genetic correla-
tions among traits that are likely to be common in nature (Walsh & Blows, 2009). Likewise, interaction
between genes can also modulate evolvability if genes interaction involve negative directional epis-
tasis (Hansen & Houle, 2004; Hansen, 2012). Variational and selective constraints are sometimes
difficult to tear apart and are the basis of a broader explanation for stasis, the occurrence of trade-
offs, as for example between natural and sexual selection.

Despite the fact that large body sizes are known to (mostly) confer fitness advantages, regarding
survival and/or reproductive success (see Honek, 1993; Sogard, 1997; Sokolovska et al., 2000), the
occurrence of trade-offs as a limiting mechanism to the evolution of body size has strong support in
the literature. It is generally accepted that trade-offs among body size and different components of
fitness play an important role on the evolution of body size (Roff, 1981, 1986; Neems et al., 1998;
Miller & Sinervo, 2007; Johnson & Hixon, 2011). This argument has its roots in sexual selection and
the notion that natural and sexual selection could operate as opposing forces. Trade-offs occur when
an increase in one trait that improves fitness is associated with a decrease in another trait that de-
creases fitness and therefore, in the absence of confounding variables, are statistically identified by
a simple bivariate correlation (Roff & Fairbairn, 2007). Evidence for the occurrence of trade-offs has
been documented in experimental studies, with major contributions from Stearns (1989), Roff (Roff,
1981, 1986, 2000; Roff & Fairbairn, 2007), De Jong & Van Noordwijk (1992), and van Noordwijk &
de Jong (1986), regarding both their theoretical understanding and their translation to a quantitative
framework (particularly under the resource acquisition-allocation model). However, observational
studies in the wild rarely report negative phenotypic correlations between life-history traits such as
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viability and fecundity (Kruuk et al., 2008), where strong a priori expectations of trade-offs exist (van
Noordwijk & de Jong, 1986; De Jong & Van Noordwijk, 1992). A methodological limitation may be
the cause of such apparent incoherence, as correlations cannot be expected to detect trade-offs if
the values of two traits are both partially determined by a third trait (Roff & Fairbairn, 2007). The ex-
istence of trade-offs in the wild is particularly difficult to detect when both traits are determined by an
overall acquisition resource, which may be largely or entirely non-genetic (De Jong & Van Noordwijk,
1992). In that case, at the phenotypic level, both traits may covary positively, despite the existence of
an inherent trade-off (Morrissey et al., 2012c).

Another layer of bias that could be associated with both selection and evolvability is related to how
body size is measured and what is the actual trait under selection. Larger body size at a specific age
is either the result of faster growth or longer development time, and ultimately the accumulation of
growth until that specific age (Roff, 2000). Although size at a specific age is the result of the entire
ontogeny, empirical evidence on trade-offs among body size and fitness mostly includes data on body
size at certain ages, not including information from the entire life-cycle trajectories (e.g. Neems et al.,
1998; Miller & Sinervo, 2007; Xu & Wang, 2013). This approach might be limiting, as growth rates
seem to play an important role on selection as well. Blanckenhorn (2000) clearly identifies costs of
becoming larger, as opposed to costs of being larger, and other authors identify and discuss several
advantages and disadvantages of accelerated growth and extended development time (Arendt, 1997;
Dmitriew, 2011). Looking at size at a particular age, disregarding any selection and/or variational
constraints between size across ages might also be a source of bias leading to inaccurate estimates
of evolutionary change.

1.2 Evolution of ontogenetic size trajectories

The realisation that growth rates are rarely at their physiological maximum suggests that observed
rates are the result of a compromise between the advantages and the costs of growing fast, a trade-off
between age and size at maturity (Dmitriew, 2011). While faster growth rates imply shorter devel-
opment time, which allows, for example, early reproductive onset, several disadvantages have been
identified that limit how fast individuals grow (Blanckenhorn, 2000). These include increased viability
costs associated with predation, parasitism and/or starvation, as a consequence of riskier forag-
ing behaviours necessary to reach faster growth, or higher metabolic demands necessary for faster
growth under resource limitation (reviewed by Blanckenhorn, 2000; Dmitriew, 2011). Along with the
natural selection operating on size across ontogeny, abundant additive genetic variability in growth
trajectories has also been documented in wild populations (e.g. Wilson et al., 2005, 2007; Hadfield
et al., 2013; Huchard et al., 2014). Put together, these suggest that investigating the evolution of size
at a particular age might be a limiting perspective and have the potential to be misleading. As an
alternative, the genetic architecture and selection mechanisms could be evaluated throughout the life
cycle of organisms.

The extension of quantitative genetics theory to encompass developmental trajectories has been
accessible for nearly three decades (Kirkpatrick & Heckman, 1989; Kirkpatrick et al., 1990). These
traits, referred to as function-valued, or as initially coined, infinite-dimensional (Kirkpatrick & Heck-
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man, 1989), vary according to another continuous character (e.g. an environmental variable, or time
or age), therefore being described by a function. Deriving expressions that determine the genetic
architecture of function-valued traits and allow predictions of evolutionary change to be made was a
very important breakthrough to both evolutionary biologists and animal breeders as it allowed over-
coming serious intractability issues associated with considering size at each age as a separate trait,
as when applying the classical multivariate approach proposed by Lande & Arnold (1983). Kirkpatrick
& Heckman (1989) proposed describing the additive genetic variance of function-valued traits using
a covariance function. As a consequence, the number of parameters of a GGG matrix corresponds to
the number of parameters in the corresponding GGG function, which is independent from the number of
ages analysed. Additionally, one of the grounds upon which quantitative genetics lies, the partition-
ing of variance components (Fisher, 1918), is readily extendable to covariance functions, such that a
phenotypic covariance function of a polygenic trait can be written as the sum of the additive genetic
function and functions associated with other variance components. Implementations of this theory
have lead to the development of animal models (Henderson, 1975) being coupled to random regres-
sion of orthogonal polynomial functions (Kirkpatrick et al., 1990; Meyer, 1998). Such approach was
then generalised to functions of principal components (Kirkpatrick & Meyer, 2004; de los Campos &
Gianola, 2007) or even fully parametric functions (Pletcher & Geyer, 1999).

The quantitative genetics of function-valued traits has been predominantly used by animal breeders
as a means to selecting for larger body mass (e.g. Lewis et al., 2002; Legarra et al., 2004; Meyer,
2005), increased milk yield (e.g. Jakobsen et al., 2002; Sesana et al., 2010), or higher food intake
(e.g. Bermejo et al., 2003), for example. For evolutionary biologists working with wild populations
such a framework has been important to establish, for instance, that heritabilities can be quite vari-
able and high across the ontogeny of animals from different taxa, and that additive genetic and envi-
ronmental correlations in traits such as body mass can be very substantial, providing evidence that
both the genetic architecture and mechanisms of plastic adaptation play a role in defining size at each
age (Wilson et al., 2005, 2007; Hadfield et al., 2013). Quantitative genetics of function-valued traits
has also been valuable in collecting evidence of compensatory growth in wild populations where
phenotypic variability decreases with increasing age (Wilson et al., 2005, 2007). Equally relevant,
such an approach has been useful in testing for genetic constraints across ages that could be limit-
ing evolutionary change in populations under directional selection. In Soay sheep (Ovies aries), for
example, Wilson et al. (2007) concluded that the paradox of stasis observed in this species is not
the result of a constraint imposed by genetic architecture of body mass, suggesting instead that the
mismatch between observed dynamics and evolutionary predictions is likely to lie, at least partially,
in how natural selection is being measured.

Although the genetic architecture of ontogenetic trajectories of size is very well described by the for-
mulation proposed by Kirkpatrick and co-authors, and that age-specific selection gradients are also
easily obtainable (Kirkpatrick et al., 1990), accounting for changes in natural selection over and within
generations is not readily feasible by applying expressions as the breeder’s or Lande’s (Lande, 1979;
Lande & Arnold, 1983) equation. Assuming that selective pressures on size and its genetic architec-
ture across ages is constant over time results in quantitative prediction of evolutionary change to be
potentially biased in natural systems that are characterised by environmental heterogeneity (Reeve,
2000; Nussey et al., 2005). Such limitation is particularly relevant given the information gathered over
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the last decades suggesting that selection, in addition to evolvability, can change very dramatically
with environmental conditions (Charmantier & Garant, 2005; Hereford, 2009; Bell, 2010). Further-
more, the emergence of several long-term studies of long-lived animals, in which both phenotype and
life history are measured very precisely over large periods of time (Pemberton, 2008; Clutton-Brock
& Sheldon, 2010), demands a solution to this problem. Population models, such as integral projec-
tion models (IPMs, Easterling et al., 2000) or individual based models (IBMs, Huston et al., 1988),
modelling trait inheritance across generations might be an alternative, given their ability to explicitly
model changes in ecological patterns over time, besides life history and population dynamics. In
fact, the theoretical grounds of quantitative genetics of developing traits are now on the verge to be
fully implemented within structured population models (Childs et al., 2016), opening the possibility to
predict evolutionary change while simultaneously considering population ecology and life history.

1.3 Population models

Demographic models are often classified as top-down or bottom-up models, referring to whether they
are structured from the population to the individual or vice-versa (e.g. DeAngelis & Grimm, 2014;
Grimm, 1999). Top-down models are described by population-level parameters, such as reproduc-
tion and survival rates, whereas in bottom-up models population parameters emerge from the inter-
actions between individuals and between individuals and the surrounding environment. Examples of
top-down, or state variable (Huston et al., 1988), population models include matrix models (Caswell,
2001) and integral projection models (IPMs), whereas individual-based models (IBMs) belong to the
second group. The technical distinction between these approaches relies on whether individual infor-
mation is handled or if instead that information is reduced to a distribution function (Caswell & John,
1992). In practice, in both bottom-up and top-down models, a population increases or decreases
according to fundamental processes determining the rate at which individuals are born, mature, re-
produce, and die. In both cases, these processes are allowed to depend, not only on time or age,
but also on one or more characteristics of interest (e.g. age- and stage-structured IPMs). As a result,
both are used to track the number of individuals and their distribution according to certain charac-
teristics, and more generally to link demography and life history to ecological aspects of populations
(DeAngelis & Gross, 1992; Caswell, 2001). Given that state variable models and IBMs mimicking
the life cycle of individuals within a population have the potential to rely on the exact same biological
functions, their mathematical implementation is the feature that mostly distinguishes them. Differing
implementations, however, have pragmatic implications that will constitute benefits or constraints de-
pending on the characteristics of the population to be modelled. Particularly, whereas state variable
models are particularly useful to derive properties of populations analytically, IBMs can incorporate
more complexity and therefore be used to build models that are more realistic (Caswell & John, 1992).

From their conceptual equivalence follows that, in principle, IBMs and IPMs are equally suited to in-
corporate the mechanics of trait transmission among relatives. Simple formulations of IPMs explicitly
modelling the genetics underlying trait transmission exist. These track allele frequencies of a trait de-
termined by a single locus in a diploid organism (Coulson et al., 2011) and by setting the mechanics
of genetic transmission in clonal organisms (Rees & Ellner, 2016). Additionally, Barfield et al. (2011)
and Childs et al. (2016) have begun to set the solutions to incorporate the infinitesimal model (Fisher,
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1918; Bulmer, 1980) into stage and age- and stage- structured IPMs, respectively. In opposition to
IPMs, given their structural flexibility, IBMs have been widely used to study various genetic aspects,
including the dynamics of trait transmission in population models (e.g. Eldridge et al., 2010; Castel-
lani et al., 2015).

1.4 Thesis overview

Although never the very focus of any chapter, this thesis was motivated at making a contribution to
resolving the paradox of stasis, looking both at biological and methodological issues that could pos-
sibly explain the mismatch between the observed dynamic of size and growth and the corresponding
evolutionary predictions. I study these issues looking particularly at body mass and horn length in two
species of the genus Ovis, the Soay sheep (Ovis aries) and the bighorn sheep (Ovis canadensis), and
I dedicate Chapter 2 to a detailed description of the two study systems. This thesis comprises four
chapters making novel empirical and/or theoretical contributions (Chapters 3, 4, 5, and 6). Chapter
3 addresses issues in predicting evolutionary change in a scalar trait, the body mass at a particular
age, whereas the remaining address size as a developing trait, focusing on ontogenetic trajectories
of body mass and horn length. In the last chapter of this thesis (Chapter 7) I provide a general dis-
cussion of the results obtained in the previous chapters. Finally, various supplementary materials
that accompany each of the previous chapters are provided in the last pages of this thesis.

Chapter 2Chapter 2Chapter 2 includes a description of the Soay sheep study system in the isle of Hirta in the archipelago
of St Kilda, in the Outer Hebrides, Scotland, as well as of the population of bighorn sheep inhabiting
Ram Mountain, in Alberta, Canada. Details of the biology of the species, how phenotypic data were
collected and how pedigrees were constructed are provided.

Chapter 3Chapter 3Chapter 3 provides evidence of a trade-off between viability and fecundity mediated by body size and
pregnancy in female lambs and how it shapes the strength of selection. Larger lambs are more likely
to survive their first year of life and produce more offspring over their lifetime, but are also more prone
to become pregnant during their first months of life, which, in turn, is associated with lower first-year
survival. I use this knowledge in a formal analysis of selection, using an extension of path analysis
for nonlinear development systems, where I disentangle the selection on body mass that is occurring
through the direct effect of body mass on fitness and through its effect on lamb pregnancy.

Chapter 4Chapter 4Chapter 4 encompasses theoretical proofs of four different sources of bias in common IPM imple-
mentations. These occur both in the development functions and the inheritance function and lead to
serious underestimation of resemblance within individuals across time and of relatives across gen-
erations. I use the principles of path analysis to derive expression for true parameters and those
implied by such implementations of IPMs, therefore allowing analytical comparisons. I finish this
chapter providing an empirical example of body mass in bighorn sheep ewes.

Chapter 5Chapter 5Chapter 5 applies different modelling approaches for fitting ontogenetic trajectories of male horn
length and the underlying genetic architecture in bighorn sheep from Ram Mountain. I particularly
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use random regression and factor analytic structures to model both additive genetic and permanent
environment correlations across ages, as well as an antedependence model as typically implemented
in IPMs. I compare these three alternatives to a multivariate trait model.

Chapter 6Chapter 6Chapter 6 is dedicated to implementing a two-sex IBM of horn length in bighorn sheep, using the
different development and inheritance functions estimated in Chapter 5. I first estimate the remaining
vital functions (survival and breeding success of both males and females), and then simulate popu-
lations that are exposed to trophy hunting after a hunting-free period, allowing a direct comparison of
phenotype and breeding values before and after hunting was applied.

Chapter 7Chapter 7Chapter 7 includes a general discussion of the previous chapters, drawing attention to the main
contributions of the present thesis to resolving the paradox of stasis, including: (1) the use of a
fairly phenotypic approach to deal with genetic constraints, (2) the application of population models
that incorporate quantitative genetics principles (also accounting for ecological complexities such as
differing selection pressures according to age structure and sex), and (3) theoretical proof of the
very little correspondence between a cross-parent offspring regression and known mechanics of trait
transmission across relatives.
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CHAPTER 2
Meet the sheep

The empirical results included in this thesis were produced using two populations of unmanaged
sheep, namely of Soay (Ovies aries) and bighorn (Ovies canadensis) sheep. Both populations have
been subject to an intensive individual-level study and are predigreed, providing valuable information
on both the genetic architecture of any traits of interest and the selection pressures the populations
have been subjected to. The bighorn sheep population has been the target of both natural and artifi-
cial selection, as it was subject to trophy hunting until 2011. In this chapter, I provide a description of
both populations as well as details on how the data were collected.

2.1 The Soay sheep

I used data from the Soay sheep population inhabiting the Village Bay study area in the island of
Hirta, in the St Kilda archipelago. St Kilda is located off the north-west of Scotland, beyond the
Outer Hebrides (57°49’N 08°34’W). The Soay sheep population inhabiting the island was introduced
in 1932, when the landlord of St Kilda, the Marquis of Bute, moved 107 Soay sheep from the nearby
island of Soay to Hirta to maintain the grazings (Clutton-Brock & Pemberton, 2004a). Since then, this
population has been unmanaged and, therefore, limited by the availability of resources in the island.
As a consequence, the population dynamics of the Soay sheep of St Kilda is very unpredictable,
with population crashes after periods of sustained growth. These crashes, one of the most striking
characteristics of this population, result in the number of individuals oscillating considerably (between
600 and 2200 individuals on the island).

The Soay sheep are a small breed compared to domestic sheep, mature female and male adults
weigh, on average, 24 Kg and 32 Kg, respectively (Fig. 2.1, Illius et al., 1995; Nussey et al., 2011).
This species ruts in the autumn and gives birth during the spring, with the first lambs being born in
late March or early April. Depending on population density, a significant proportion of females con-
ceive in the first November of their lives, when they are around seven months old (Clutton-Brock et al.,
2004a). Additionally, Soay sheep ewes give birth to twins at a rate that can be over 20% in years of
low population density (Clutton-Brock et al., 2004a). Horn-clashing fights that establish dominance
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relationships between males start in September preparing for the female oestrus, occurring for one
to four days during November (Clutton-Brock et al., 2004a). In winter, resources become limiting,
resulting in weight loss and mortality, which occurs predominantly in February and March, and espe-
cially when population density is high and winter weather conditions are unfavourable (Clutton-Brock
et al., 2004b).

The population inhabiting the Village Bay study area on Hirta has been the subject of intensive,
individual-based study since 1985 (Clutton-Brock & Pemberton, 2004a). More than 95% of the indi-
viduals living in the study area have been marked with plastic ear tags shortly after birth to enable
identification throughout their lifetimes. Regular censuses and mortality searches allow the survival
status of individual sheep to be known. Each year in August a large portion of the Soay sheep resi-
dent in the Village Bay study area is captured and phenotyped for multiple traits. During the mating
season further measurements are made on males migrating into the study area. A very comprehen-
sive pool of information about the life cycle of most individuals in the population is therefore gathered
and both biometric and life history traits are available.

The pedigree of this population was constructed through a combination of observational field data
and molecular markers for maternal links, and using molecular markers only for paternal links (John-
ston et al., 2013; Bérénos et al., 2014). 315 polymorphic and unlinked SNP markers were used
in molecular parentage assignments (for 4371 individuals) with 100% confidence in the R package
MasterBayes (Hadfield et al., 2006). Polymorphic microsatellite markers were also used when SNP
genotypes were not available either for lambs or candidate fathers. In those cases, for a total of 222
lambs, 14-18 polymorphic microsatellite markers were used in assignments with confidence >95% in
MasterBayes (Morrissey et al., 2012b). The resulting pedigree has a maximum depth of 10 genera-
tions and consists of 6740 individuals, of which 6336 are nonfounders (i.e. have one or two known
parents).

Data used in Chapter 3Data used in Chapter 3Data used in Chapter 3 I used the Soay sheep data to investigate the effect of a trade-off between
lamb body mass and the probability of becoming pregnant as lamb. Only data from 1991 to 2015
were used, as there is no systematic record of pregnancies occurring in non-surviving ewes for the
early years of the study. My analyses focus on August body mass, measured in kg, pregnancy sta-
tus, evaluated through the presence of lambs and lactation for ewes that survive the winter, survival
status, number of offspring successfully reared, and population density (total number of individuals
in the Village Bay study area). In the statistical models I present in Chapter 3, I also used birth and
capture dates, birth year, twinning status (singleton or twin), maternal age at parity and maternal
identity.
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Figure 2.1: The Soay sheep of St Kilda. (a) lamb, (b) adult ewe, (c) adult ram, and (d) a portrait of a
horn-clashing fight between two rams during the rut. Photo credits: Jill Pilkington.

2.2 The bighorn sheep

The bighorn sheep data I used in this thesis come from the population inhabiting Ram Mountain,
Alberta, Canada (52°N, 115°W, elevation 1082-2173 m). The study area at Ram Mountain includes
approximately 38 m2 of alpine and subalpine habitat, surrounded largely by coniferous forest and by
the North Saskatchewan River on one side. Similarly to the Soay sheep, this species is characterised
by a marked sexual dimorphism, with males being considerably heavier than females - adult males
weigh on average 80 Kg, whereas females weigh on average 50 Kg - and presenting larger horns
(Fig. 2.2 Wilson et al., 2005). These phenotypic traits are of extraordinary importance to males, as
they largely determine male reproductive success (Coltman et al., 2002). The annual cycle of this
population is similar to that described for the Soay sheep. Most lambs are born from late May to
early June (Festa-Bianchet, 1988), and the rut occurs in late November and early December (Festa-
Bianchet et al., 1995).

This isolated population has been the subject of intensive individual-level monitoring since 1971.
Sheep are captured in a corral trap (see Fig. 2.2) baited with salt and phenotyped multiple times
per year between late May and late September. Most individuals are marked with unique tags as
lambs, and therefore the vast majority are of known age. As births, deaths and migratory movements
are closely observed, population size is known with high accuracy. At each capture, body mass and
different aspects of horn size are measured. Adults and lambs are recaptured approximately 3-5
and 2-3 times per year, respectively. These measurements are used to estimate phenotype adjusted
to June 5 and September 15, using the methodology proposed by Martin & Pelletier (2011), who
adopted linear mixed models to standardise trait values of each individual to common environmental
conditions and a given point in time.
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Although maternities have been assigned from suckling behaviour since 1972, genetic assignment
of paternities was initiated in 1988 based on 26 microsatellite loci with a confidence threshold of
95% using Cervus (Coltman et al., 2005; Poissant et al., 2008). By 2014, the pedigree included 864
maternal links (corresponding to 254 dams) and 528 paternal links (including 79 sampled and 37
unsampled sires). Colony (Wang, 2013) was used to infer full or half siblings from unsampled males.

Trophy hunting occured from late August through October in the study area from before the beginning
of the study until 2011. Any resident in Alberta was allowed to purchase a trophy sheep license and
the only criterion defining a legal trophy ram was based on phenotype, with no limit to the number of
rams shot. Until 1996, rams with horns achieving four fifths of a curl (Fig. 2.2), which was described
as “a male sheep with horns, 1 of which is of sufficient size that a straight line drawn from the most
anterior point of the base of the horn to the tip of the horn passes in front of the eye when viewed in
profile”, could be legally harvested (Jorgenson et al., 1998). From 1996 the definition of legal trophy

ram increased to a full curl. This restriction resulted in only four rams being shot between then and
2011 (Pigeon et al., 2016).

DataDataData from the bighorn sheep study system is used in Chapters 4, 5, and 6used in Chapters 4, 5, and 6used in Chapters 4, 5, and 6. In Chapter 4, I used on-
togenetic trajectories of ewe body mass to perform a comparison between IPM-like development and
inheritance functions and random regression models in how well these alternatives recover similar-
ity across ages within individuals and between individuals and their relatives. A similar comparison
was performed in Chapter 5, where I compared the additive genetic and phenotypic architecture of
male horn length across ages using different modelling approaches. To minimise measurement error
caused by horn wear or breakage, I used the longest horn in the analyses presented in this chapter.
Finally, in Chapter 6, I used the bighorn sheep data to estimate male and female breeding success
and winter survival, as well as selective harvest-related survival for males. The estimates obtained,
in addition to the horn length trajectories estimated in Chapter 5, were used to parameterise the IBM
of horn length presented this chapter.
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Figure 2.2: Bighorn sheep at Ram Mountain. (a) lamb with its mother wearing a collar; (b) adult ewes;
(c) ram next to the corral trap where sheep are caught; and (d) an illustration of the legal definition of
a 4/5 of a curl; Photo credits: Marco Festa-Bianchet (a,b,c) and Alberta F&W (d).
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CHAPTER 3
Selection of size and early pregnancy in

Soay sheep (Ovies aries)

Abstract

The paradox of stasis has been widely documented in the last few decades. Both the-
oretical and methodological grounds for the mismatch between the predictions of quan-
titative genetics and observed dynamics of size have been shown to occur in various
species, including the Soay sheep (Ovies aries). Particularly, genetic correlations be-
tween traits that affect fitness can result in trade-offs between different mechanisms of
selection. Here, I identify the persistence of a maladaptive behaviour, pregnancy during
the first year of life, as the basis of a genetic constraint regulating body mass in ewe
lambs. I demonstrate the existence of a positive additive genetic correlation between
lamb body mass and early pregnancy, larger ewes are more likely to get pregnant, and
investigate how this correlation provides a mechanism for regulating body size in Soay
sheep. I used recent theory on nonlinear developmental systems to disentangle selection
of and for body mass. The direct effect of body mass on fitness is positive, regarding
both first-year survival and offspring production, whereas its pregnancy-mediated effect
on fitness entails important viability costs. I thus explain why selection of body mass
is not stronger (more positive) and provide evidence that substantial selection on lamb
body mass occurs at older ages, suggesting that this mechanism might also play a role
at regulating size at older ages.

Keywords: body size, lamb pregnancy, natural selection, non-linearity, paradox of stasis, path anal-

ysis, Soay sheep

3.1 Introduction

The paradox of stasis and the pattern bigger-is-better (Sogard, 1997) with respect to selection on
body size have been the target of great attention in the last few decades amongst both macro- and
microevolutionary biologists. Widespread positive directional selection (e.g. Kingsolver & Pfennig,
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2004; Hereford et al., 2004) and available genetic variability (e.g. Postma, 2014) have been docu-
mented, while fossil records (Estes & Arnold, 2007; Hunt, 2007) and extant taxa data (Larsson et al.,
1998; Knouft & Page, 2003; Ozgul et al., 2009) show very little change in body size. Both theoreti-
cal and methodological explanations have been identified for this mismatch (Bradshaw, 1991; Merilä
et al., 2001; Hansen & Houle, 2004). One such mechanism that is expected to be common in nature
is the existence of opposing selective forces, i.e. trade-offs between natural and sexual selection
(e.g. Roff, 2000; Roff & Fairbairn, 2007). On a more methodological side, a lack of compliance with
the assumptions of the breeder’s equation (Lush, 1937), the most widely adopted means of predict-
ing evolutionary change, has been argued to be a major problem in studies of natural selection in
the wild (Morrissey et al., 2010). Ultimately, as information accumulates, it is becoming increasingly
evident that a single explanation for stasis will not suffice, either generally, or even in a single instance.

It is widely accepted that fecundity and sexual selection are major evolutionary forces selecting for
larger body size in both females and males (Fairbairn, 1997). These may eventually be counterbal-
anced by viability selection targeting bigger individuals (Blanckenhorn, 2000), leading to a trade-off
between sexual (or fecundity) and natural (particularly viability) selection (Roff, 2000; Roff & Fairbairn,
2007). The benefits and costs associated with larger body size provide the mechanisms underlying
such trade-offs and have been extensively discussed (Shine, 1988; Honek, 1993; Anderson, 1995;
Sogard, 1997; Blanckenhorn, 2000; Sokolovska et al., 2000). This weighting of costs and benefits
are naturally not limited to adult body size. Particularly, Blanckenhorn (2000) emphasizes the distinc-
tion between the costs of becoming as opposed to being large, and elaborates on how forces such
as predation, parasitism and starvation play different roles in juveniles and adults.

Trade-offs are most likely identified through a deep understanding of the biology of a species. Once
a trade-off’s mechanistic basis is hypothesised, appropriate multivariate statistical methods are use-
ful to characterise trade-offs on evolutionary quantitative genetics terms. Path analysis, developed
by Wright (1921, 1934) to deal “with a system of interrelated variables” (Wright, 1960), is a natural
candidate as it provides the means to disentangle the different mechanisms by which body size can
affect fitness. In fact, the use of path analysis underlies the concept of extended selection gradient,
formally defined by Morrissey (2014) as the total effects of traits on fitness, i.e, taking into account
the whole system of causal associations among traits. Extended selection gradients are therefore
akin to the concept of selection for, defined by Sober (1986) in opposition to that of selection of (the
total association of traits with fitness). Also, the initial linear formulation of path analysis and extended

selection gradients was extended to nonlinear development systems (Morrissey, 2015), such as one
including variables central to the study of selection, like the probability of survival or the number of
offspring.

The Soay sheep (Ovis aries) on St Kilda (Clutton-Brock & Pemberton, 2004b) is an example of such
a species where positive directional selection (Milner et al., 2004; Morrissey et al., 2012a) and rea-
sonably high heritability (Milner et al., 2000; Wilson et al., 2007; Bérénos et al., 2014) have been
reported for body size, alongside with stasis (Ozgul et al., 2009). Growing faster may be harmful
in Soay sheep female juveniles as a consequence of an association between size and fecundity,
combined with a viability cost of reproduction. A non-negligible percentage of ewes get pregnant as
lambs and those ewes are more likely to die during their first year of life (Clutton-Brock et al., 2004a).
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I hypothesise that early pregnancy is size-dependent, with larger ewes being more likely to get preg-
nant and, therefore, to die. A mechanism regulating body size follows directly from this hypothesis
- genetic variation in body mass could be maintained by a trade-off between fitness components in
female lambs: being larger is associated with higher rates of survival and total offspring production
over a lifetime (Clutton-Brock et al., 1992, 1996; Milner et al., 1999), but being pregnant as a lamb
would be associated with lower first-year survival.

In this chapter, I first model lamb body mass and early pregnancy, as well as their effects on first-year
survival and lifetime offspring production, showing that: (1) early pregnancy is size-dependent; (2)
there is a positive additive genetic correlation between lamb body mass and pregnancy, (3) there is
selection against early pregnancy through viability selection, and (4) lifetime rearing success (LReS;
lambs reared to independence) in surviving ewes is size-dependent, but very similar in ewes that
got and did not get pregnant. I devote a subsequent section of this chapter to a formal quantitative
genetic analysis of natural selection. I estimate overall selection on body mass to be positive, and I
quantify how much stronger it would be in the absence of lamb pregnancy. I also show that about half
the selection on lamb body mass occurs later in life, suggesting that this trade-off is also regulating
body size in adults through across-age correlation in body size.

3.2 Study system and data

The Soay sheep population of Hirta, St Kilda, was adopted as the study system to investigate the
effects of lamb size and pregnancy on the evolution of body size. A comprehensive description of the
population and the individual-based study is given in Chapter 2. Here, I used data on ewe lambs from
1991 to 2015, as there is no systematic record of pregnancies occurring in non-surviving ewes for the
early years of the study. My analyses focus on August body mass, measured in kg, pregnancy sta-
tus, evaluated through the presence of lactation and foetuses observations, survival status, number
of offspring successfully reared, and population density (total number of individuals at the Village Bay
study area). In the statistical models I also used birth and capture dates, birth year, twinning status
(singleton or twin), maternal age at parity and maternal identity. Here, I define parental success as
the number of offspring successfully reared to their first November 1st and distinguish between those
offspring successfully reared as a result of early pregnancy (annual reproductive success, AReS)
and subsequently (lifetime rearing success, LReS). LReS, as AReS, are conceptually intermediate
to breeding success (offspring produced over a lifetime) and reproductive success (offspring suc-
cessfully raised up until the age of 1) as usually used with Soay sheep. This definition was adopted
in order to consider labour-related mortality as being part of the first annual cycle, while avoiding
having offspring winter survival as part of parental fitness (see Thomson et al., 2017, for reasons
why that is important).

Information with increasingly tighter constraints was used to perform the analyses shown in this chap-
ter. The first level of information includes all ewes born from 1991 to 2015 (n1 = 3916). These data
were used in models of body mass and pregnancy. A second level of information was considered in
analyses associating first-year survival to body mass and pregnancy. In this case, the following extra
constraining criteria were considered: having known first-year survival status and to have survived
until the rut, which is not a major restriction as almost no mortality occurs between August (up until
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when most growth occurs) and November (n2 = 947). To study LReS, the data were also constrained
to only include ewes from cohorts that were completely phenotyped for this trait, which was achieved
by excluding all ewes born after 2006 (n3 = 542). This procedure resulted in including very few LReS
records associated with ewes that were still alive by the cut-off year (2015). While these ewes lifetime
fitness is underestimated, they have reared most the offspring they will rear in their lives. Excluding
these records would result in stronger bias as those correspond to ewes that lived longer and there-
fore had potentially higher rearing success, while avoiding excluding more cohorts.

Lamb body mass in August is dependent on birth and measurement dates. Both are indicators of
how long lambs had the opportunity to grow and are particularly relevant because higher growth rates
occur during the warmer months (before August), when vegetation is most available (Crawley et al.,
2004). As a result, birth and measurement dates were included as covariates when modelling lamb
body mass or lamb body mass was used as a predictor. Fixed effects for twinning status, population
density and maternal age at parity, including quadratic terms for the latter two, were included in all
regressions, as well as the following linear interaction terms: between lamb body mass and pop-
ulation density in models including lamb body mass as predictor, between early pregnancy status
and population density in models including early pregnancy as a predictor, and between these three
traits in models including both lamb body mass and early pregnancy status as predictors. Likewise,
random effects to estimate among-mother and among-cohort variation were included in all regres-
sions. This fixed and random structure was applied to all statistical models except the one modelling
AReS (due to a lack of statistical power). Finally, the pedigree information required to parameterise
the quantitative genetic models was constructed as described by Johnston et al. (2013) and Bérénos
et al. (2014), and as detailed in Chapter 2.

3.3 Early pregnancy and lamb size

Early pregnancy, here defined as a pregnancy occurring during the first year of life, occurs at a rate
of 37 per year in Soay sheep (914 records documented from 1991 to 2015). The frequency of lamb
pregnancy varies greatly among years, but in the raw data no apparent temporal trend is found (Fig.
3.1a). A major driver of these pregnancies seems to be body size, as early pregnancy increases sig-
nificantly with body mass (Fig. 3.1b, Tab. 3.1). A lamb weighing around 10 kg has a very low chance
of becoming pregnant, whereas a lamb weighing around 15 kg is more likely to become pregnant
than not (Fig. 3.1c). It is well known that body mass in Soay sheep depends on population size, on
average decreasing in years with higher density (Clutton-Brock & Pemberton, 2004b; Ozgul et al.,
2009). Conditional on population density, there is a temporal trend for body mass to decrease in Soay
sheep, including in lambs (Ozgul et al., 2009), and also in ewe lambs (Fig. 3.1d, upper panel). This
trend is apparently concomitant with a decrease in the rate of early pregnancy over the years, when
density is again accounted for (Fig. 3.1d, lower panel). Substantial costs and few benefits would
explain this trend in early pregnancy, as, for example, ewe lamb descendants having significant lower
survival when compared to offspring born to older ewes (Fig. 3.1e).

To better understand the nature of the association between lamb size and early pregnancy I used an
animal model corresponding to a multi-response generalised linear mixed model (Hadfield, 2010) for
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Figure 3.1: (a) Number of Soay sheep ewes, ewe lambs and population size from 1991 to 2015 in
the Village Bay study area; (b) empirical distribution of body mass in pregnant and non-pregnant ewe
lambs; (c) size-dependent probability of early pregnancy. The line in teal corresponds to the predic-
tion of a binomial regression with logit link function (see Tab. 3.1 for full specification and parameter
estimates), whereas the grey bars correspond to 95% confidence intervals on the binomial probabil-
ity obtained from the raw data; (d) lamb body mass (upper panel) and probability of early pregnancy
(lower panel) across time. The black lines correspond to predictions of a linear and a binomial model
(logit link function), respectively, correcting for birth and measurement dates, maternal age and pop-
ulation density (slopes and curvatures for the latter two covariates). Random effects for cohort and
maternal identity were also considered. The grey areas illustrate the variation in lamb body mass and
probability of early pregnancy attributed to varying population density in 1 standard deviation from the
mean; (e) non-parametric survival curves of Soay sheep according to mother’s age at conception.
The p value corresponds to a Peto & Peto test for differences among Kaplan-Meier curves.
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Table 3.1: Coefficients of a binomial regression (logit link function) of early pregnancy on body mass
in Soay ewe lambs. Other fixed effects include population density, twin status, and maternal age. All
covariates, except for twin status, were mean-centred. Variances in random intercepts for cohorts
and maternal identity were also estimated. 95% credible intervals correspond to HPD intervals. See
Fig. 3.1(c).

parameter posterior mode 95% CrI

intercept -0.81 (-1.39; -0.12)
body mass 0.69 (0.49; 0.87)
body mass2 -0.11 (-0.18; -0.07)
body mass3 0.01 (-0.01; 0.02)
density (×100) -0.45 (-0.89; -0.15)
density2 (×100) 0.00 (0.00; 0.01)
density × body mass (×100) 0.11 (0.02; 0.23)
twin 0.76 (0.17; 1.45)
maternal age -0.03 (-0.13; 0.07)
maternal age2 0.00 (-0.03; 0.03)
birth date -0.02 (-0.05; 0.02)
measurement date -0.07 (-0.12; 0.01)

variance in cohort effects: 0.46 (0.14; 1.27)

variance in maternal effects: 0.01 (0.00; 1.34)

residual variance: set to 1

body mass, m, and the probability of lamb pregnancy, p. Although the probability of lamb pregnancy
is well described by a binomial distribution, a latent scale variable, pl , can be defined such that
pl = ln

(
p

1−p

)
. In that case, both m and pl are assumed to be drawn from a multivariate normal

distribution, with a mean vector that includes both mean mass, µm , and mean pregnancy probability
in the logit scale, µpl , and a variance-covariance matrix PlPlPl ,


m

pl


∼MVN




µm

µpl


,PlPlPl


 . (3.1)

Both µm and µpl depend on twin status (singleton or twin), population density, and maternal age
at parity, whereas the former also depends on birth and measurement dates. The corresponding
parameters and their estimates are listed in Appendix A.1. Note that the subscript l denotes latent

scale, which, in practice, refers to early pregnancy only, since August lamb body mass was modelled
in its natural scale. The model in Equation (3.1) is particularly useful to study the correlation between
lamb body mass and early pregnancy, providing information about its strength and its nature. To
accomplish that, the genetic and environmental contributions to PlPlPl were partitioned by including
random effects on breeding values (animal model, Henderson 1975). In fact, a GlGlGl matrix and an ElElEl

matrix can be defined as follows

PlPlPl =

σ2
m σm,pl

σm,pl σ2
pl


=


σ2
ma

σm,pl a

σm,pl a
σ2

pl a


+

σ2
me

σm,pl e

σm,pl e
σ2

pl e


, (3.2)

where subscripts a and e denote the additive genetic and the environmental contribution to the over-
all (co)variances, respectively. For more information on (co)variance partition, see Falconer (1981).
To simplify the notation, I do not use any extra subscript to denote phenotypic (co)variances (see
matrix PlPlPl in Equation 3.2). Besides residual variances and covariances, matrix ElElEl also includes
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variances and covariances associated with cohort and maternal random effects. Since the overdis-
persion variance of a generalised linear mixed model (GLMM) is unobservable for binary data, the
residual variance for pl was set to one.

Taking into account the additive genetic and the phenotypic variances in lamb body mass, 0.78 (95%
CrI 0.20; 1.27) and 4.29 (95% CrI 3.84; 5.23), respectively, the heritability of this trait is estimated
to be 0.14 (95% CrI 0.04; 0.29), very similar to the estimate reported by Bérénos et al. (2014) for
both sexes (0.12, SE 0.036). Up until very recently, for binomial variables, heritabilities were typically
obtained by approximation, as described in Nakagawa & Schielzeth (2010). Following this approach,
I obtain an estimate of 0.15 (95% CrI 0.10; 0.70) for the heritability of early pregnancy. There is
a strong positive phenotypic correlation between lamb body mass and early pregnancy (0.51, 95%
CrI 0.40; 0.66), the genetic contribution to that correlation being very important (0.64, 95% CrI 0.24;
0.90).

In 2016, Villemereuil et al. derived exact expressions to convert the latent scale parameters esti-
mated in GLMMs into scales on which traits are expressed and selected. I am particularly interested
in obtaining parameters in the probability scale (probability of early pregnancy), rather than in the
logarithm of the odds of being pregnant as a lamb. Villemereuil et al. (2016) refer both to expected

and data scales, the difference between them being the random noise that distinguishes a model
from the data itself. Here, I adopt the expected scale. Following their work, the expected values for
body mass and the probability of early pregnancy is given by

z̄̄z̄z =

m̄

p̄


=

∫
g−1(l)g−1(l)g−1(l) fMVN (lll, µµµ,PlPlPl )dl, (3.3)

where ggg−1 corresponds to the inverse link functions used to model body mass and the probability of
early pregnancy. As the adopted link functions for these variables were the identity and the logit func-
tions, respectively, their inverses are the identity and the logistic functions, the latter corresponding
to exp(pl )

exp(pl )+1 . lll are the latent values for lamb body mass and early pregnancy. fMVN (lll, µµµ,PlPlPl ) is the
probability density of a multivariate normal distribution with vector mean µµµ and variance PlPlPl . Likewise,
the phenotypic variance-covariance matrix in the expected scale is given by

PPP =
∫ (

ggg−1(l)(l)(l) − z̄̄z̄z
)2

fMVN (lll, µµµ,PlPlPl ) dl . (3.4)

The GGG matrix in the expected scale,

GGG = ΦΦΦGlGlGlΦΦΦ
T , (3.5)

can also be derived (Villemereuil et al., 2016), where ΦΦΦ is the average derivative of the expected
values with respect to the latent values,

ΦΦΦ =

∫
dggg−1

dlll
fMVN (lll, µµµ,PlPlPl ) dl . (3.6)

Details on how derivatives and integrals were solved are provided in Appendix A.2. The heritability in
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the expected scale is obtained directly through its definition, as the proportion of the additive genetic
variance relative to the phenotypic variance, using the derived values. The results obtained using the
above expressions can also be found in Table 3.2. The heritability of early pregnancy in the expected
scale (probability) is 0.40 (95% CrI 0.11; 0.63), higher than the approximation shown above (but note
that such approximation is derived for the data scale), and corroborating the genetic basis of this
trait. Using the derived values in the expected scale, I also obtained the conditional genetic variance
of lamb body mass. Such measure allows to evaluate the proportion of the additive genetic variance
in lamb body mass that is independent from early pregnancy. Following Hansen et al. (2003), such
quantity, σ2

m |pa
, is given by

σ2
m |pa

= σ2
ma
−
σm,pa

2

σ2
pa

, (3.7)

which in this particular case corresponds to 0.40 (95% CrI 0.06; 0.85). The analogous metric for
early pregnancy corresponds to 0.03 (95% CrI 0.00; 0.05). Since σ2

ma
and σ2

pa
were estimated to

be, respectively, 0.78 (95% CrI 0.20; 1.27) and 0.04 (95% CrI 0.00; 0.08), the additive genetic vari-
ance in lamb body mass and early pregnancy that are independent from one another corresponds to
59% (95% CrI 29%; 100%). A significant proportion of the genetic variance in lamb body mass and
early pregnancy are not independent, and therefore selection for each one of these traits necessarily
results in selection of the other.

Table 3.2: Coefficients in the latent and expected scales of the multi-response animal model on
lamb body mass and early pregnancy in Soay sheep. Note that lamb body mass was modelled in
its natural scale and therefore no distinction between latent and expected scales are made. 95%
credible intervals correspond to HPD intervals. The fixed effects and the partition of the EEE matrix are
not shown, but can be found in Appendix A.1.

latent scale expected scale
posterior mode 95% CrI posterior mode 95% CrI

µm 13.82 (13.22; 14.26) - -
µp 0.00 (-0.85; 0.64) 0.50 (0.39; 0.59)
σ2
ma

0.78 (0.20; 1.27) - -
σ2

pa
0.69 (0.00; 5.86) 0.04 (0; 0.08)

σmpa
0.31 (0.00; 1.49) 0.11 (0; 0.18)

ρmpa
0.64 (0.24; 0.90) 0.64 (0.24; 0.9)

σ2
m 4.29 (3.84; 5.23) - -

σ2
p 3.20 (1.99; 10.12) 0.09 (0.07; 0.14)

σmp 2.34 (1.49; 3.50) 0.36 (0.26; 0.44)
ρmp 0.51 (0.40; 0.66) 0.49 (0.38; 0.64)
Note that the estimated mean log odds of being pregnant (0.00) is considerably higher than the
intercept in the univariate model (-0.81, Tab. 3.1). The models differ in their fixed effect structure
(the univariate version includes mean-centred body mass). As a result of the distribution of body
mass being slightly left skewed those values are not expected to match.
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3.4 Fitness: first-year survival and lifetime rearing success

3.4.1 First-year survival

I investigated whether early pregnancy has fitness costs by evaluating first-year survival in ewe lambs
as a function of pregnancy and body mass. First-year survival was defined using the first day of May
as the cut-off date to make sure that dying during labour was considered in the first annual cycle
of the ewes (89% of births are before 1 May). A binomial regression with logit link function of the
form

ln
(
E[si jk ]

1 − E[si jk ]

)
= α+αp × Ipi jk + βm ×massi jk + βmp × Ipi jk ×massi jk + βββ ×Xi jkXi jkXi jk +uc i+um j+ε i jk , (3.8)

was adopted to model the probability of lamb k, born in year i to mother j, survives its first year of life.
α and αp are the intercept and the pregnancy-specific contrast to the intercept, βm and βmp are the
slope for lamb body mass, and its pregnancy-specific contrast, and βββ is a vector with the coefficients
for the remaining fixed effects. As first-year survival, and survival in general, is highly dependent on
cohort effects due to variability in winter conditions and food availability (Clutton-Brock et al., 2004a),
I included cohorts as random effects (uc i), as well as maternal environmental effects (um j ). Variance
in residuals (ε i jk ) was set to one, as overdispersion is unobservable in binomial mixed models.

I first establish that first-year survival is size-dependent by adopting a similar model to the one in
Equation (3.8), but excluding the pregnancy-specific contrasts - bigger ewes have higher chance of
survival (p < 0.001, Fig. 3.2a, Tab. 3.3a). Adopting the full model in Equation (3.8) shows that for a
given body mass pregnant lambs are significantly less likely to survive their first annual cycle when
compared to the ewes that were not pregnant (p < 0.001, Fig. 3.2c, Tab. 3.3b). Lamb pregnancy has
indeed a cost to survival - the probability of survival for ewe lambs of average body mass that did
not get pregnant is 50% (95% CrI 37%; 65%), an estimate that drops to 26% (95% CrI 14%; 39%) in
pregnant lambs. Pregnant lambs of all sizes are more likely to die than non-pregnant ewe lambs (Fig.
3.2c). Although merely a numerical result, it is interesting to notice that the mean body mass is lower
in lambs that got pregnant (14.00, 95% CrI 13.65; 14.48) than it is in the sub-group of lambs that got
pregnant and survived at least a year (14.59, 95% CrI 14.11; 15.03), suggesting that if a ewe is to be
big enough to get pregnant, then it is better to be as big as possible. Investigating the simultaneous
effect of lamb body mass, early pregnancy and population density on first-year survival exposes an
important interaction effect between the former traits and the latter. Although large population size is,
in general, associated with lower survival, it is evident that pregnant ewe lambs (Fig. 3.3a) are more
susceptible to variation in population density than lambs that do not get pregnant (Fig. 3.3b). In gen-
eral, investigating the simultaneous effect of body mass and population density on first-year survival
exposes the importance of the effect of population density on this trait. It also shows that first-year
survival in pregnant ewes is very low (below 10%) across most possible values of population density,
unless body mass is relatively very high (Fig. 3.3a), whereas such low survival rates are much less
likely in non-pregnant ewes (Fig. 3.3b).
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Figure 3.2: Probability of first-year survival (a, c) and lifetime rearing success, LReS, (b, d) in Soay
sheep ewes as a function of lamb body mass (a, b), and both lamb body mass and early preg-
nancy status (c, d). Dots correspond to observed data and curves to model predictions. Binomial
regressions for first-year survival with logit link function were fit to the data (see Tab. 3.3 for model
parameters). LReS was estimated in ewes that survived their first year of life. Poisson regressions
with exponential link function were fit to the data (see Tab. 3.5 for model parameters). In all mod-
els, population density and maternal age were included as covariates (slopes and curvatures were
estimated for both), as well as birth and measurement dates. Variance among cohorts and maternal
identities were also estimated.
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Table 3.3: Coefficients of mixed effect binomial regressions with logit link function exploring the as-
sociation of first-year survival with lamb size and early pregnancy in Soay ewes; (a) size-dependent
first-year survival, (b) first-year survival as a function of size and pregnancy. Covariates except for
twin status and pregnancy status were mean-centred.

parameter posterior mode 95% CrI

(a)

intercept -0.55 (-1.59; 0.38)
body mass 0.50 (0.36; 0.66)
density (×100) -1.38 (-1.95; -0.72)
density2 (×100) 0.01 (0.00; 0.01)
density × body mass (×100) -0.06 (-0.18; 0.05)
twin 0.06 (-0.70; 0.74)
maternal age -0.02 (-0.12; 0.12)
maternal age2 0.01 (-0.03; 0.05)
birth date 0.02 (-0.02; 0.05)
measurement date -0.10 (-0.20; -0.03)

variance in cohort effects: 0.78 (0.78; 4.18)

variance in maternal effects: 1.82 (0.61; 4.22)

residual variance: set to 1

(b)

intercept 0.14 (-0.95; 1.23)
pregnancy -2.15 (-2.73; -1.35)
body mass 0.69 (0.47; 0.89)
body mass × pregnancy 0.19 (-0.18; 0.43)
density (×100) -0.89 (-1.75; -0.28)
density2 (×100) 0.00 (0.00; 0.01)
density × pregnancy (×100) -1.35 (-2.04; -0.70)
density × body mass (×100) 0.10 (-0.07; 0.24)
density × body mass × pregnancy (×100) -0.04 (-0.34; 0.27)
twin 0.19 (-0.74; 0.88)
maternal age 0.04 (-0.12; 0.14)
maternal age2 0.00 (-0.04; 0.04)
birth date 0.01 (-0.03; 0.05)
measurement date -0.15 (-0.23; -0.04)

variance in cohort effects: 2.04 (0.98; 5.11)

variance in maternal effects: 2.23 (0.85; 4.89)

residual variance: set to 1
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Figure 3.3: Probability of first-year survival in pregnant (a) and non-pregnant (b) ewe lambs, and
AReS (c) and LReS (d) in Soay sheep ewes that survived their first annual cycle as a function of
lamb body mass and population size. These are predictions based on models in Tables 3.3, 3.4 and
3.5.
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3.4.2 First-year rearing success (AReS)

Having established that pregnant ewe lambs are more likely to die when compared to same sized
non-pregnant ewe lambs, it is important to understand what is the fate of those pregnancies. From
the 914 documented early pregnancies only 97 resulted in offspring surviving until the winter (AReS),
and only 36, less than 5%, resulted in recruitments to the population, i.e. offspring that survived until
their first April 1st. For modelling purposes, I only considered phenotyped mothers and those cases
where their offspring had a chance of surviving, particularly looking at the cases where the mothers
were known to have survived. As a result, only 50 offspring surviving until the winter were available.
I estimated the AReS of ewe lamb i fitting a binomial regression with a logit link function of the
form

ln
(
E[AReSi]

1 − E[AReSi]

)
= α + βm × massi + βββ × XiXiXi + ε i , (3.9)

where α is the model intercept, βm is a slope for lamb body mass, and βββ is a vector with the co-
efficients associated to the covariates in XXX , which includes capture and birth dates, as well a linear
and a quadratic term for population density. The variance in the model residuals, ε i , was set to
one. Due to sample size limitations, I did not include any random effects. I estimate that only 2.2%
(95% CrI 0.57%; 6.17%) of the offspring born to ewes getting pregnant as average-sized lambs in
average-density years survive until the winter (Tab. 3.4). It is interesting to note that the slope for
body mass is positive and significantly different from zero, showing that larger ewe lambs are more
likely to have surviving offspring, and suggesting that, as for first-year survival, if a ewe lamb is to get
pregnant, than the larger the better. Overall, AReS not only increases with ewe body mass, but also
significantly decreases as population size increases (Fig. 3.3c).

Table 3.4: Coefficients of a binomial regression (logit link function) of AReS in surviving ewe lambs
that got pregnant on lamb body mass, birth and measurement dates, and population density in Soay
sheep ewe lambs. All covariates were mean-centred and the 95% credible intervals correspond to
HPD intervals.

Parameter Posterior mode 95% CrI

intercept -4.00 (-5.08; -2.94)
body mass 0.64 (0.43; 1.02)
density (×100) -1.06 (-2.41; -0.11)
density2 (×100) 0.00 (0.00; 0.01)
birth date 0.03 (-0.04; 0.10)
measurement date 0.06 (-0.11; 0.16)

residual variance: set to 1

3.4.3 First-year life history

Given the dependency of first-year survival on pregnancy and mass, a diagram combining these
events can be built that covers all the possible outcomes of the first year of life of Soay sheep ewes,
and even extend it to include the fate of lamb pregnancy (Fig. 3.4a). Such a comprehensive diagram
illustrates both the joint and the conditional distributions of these events on an average cohort. I
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present such an exercise for average conditions, including average body mass and population den-
sity. The most evident feature is that the most common events are not getting pregnant and surviving
and not getting pregnant and dying (32%), whereas the less likely event is for a ewe lamb to get
pregnant and survive (9.49%). Also interesting, is that even though the major fraction of the average-
sized ewe lambs do not get pregnant, pregnant and non-pregnant ewes contribute similarly to the
yearly ewe lamb mortality (26.62%, and 31.83%, respectively). By looking at the first year of life only,
the costs of lamb pregnancy in terms of survival seem huge when compared to the marginal benefits
in terms of rearing success. Only 0.21% of all the ewes will successfully rear an offspring at least
until the winter, corresponding to 2.21% of the pregnant ewes that get pregnant and survive. After the
first annual cycle, in any given cohort, the ewe yearlings will correspond to the 32.06% of surviving
non-pregnant lambs plus the 9.49% of pregnant ones, where 2.21% of these will have contributed
with an offspring.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

fir
st

−
ye

ar
 s

ur
vi

va
l p

ro
ba

bi
lit

y

(a)

26.6 %

9.3 %

0.2 %

31.8 %

32.1 %

fir
st

−
ye

ar
 s

ur
vi

va
l p

ro
ba

bi
lit

y

0.0 0.2 0.4 0.6 0.8 1.0

(b)

0.00

3.36

0.00

2.3

pregnant
not pregnant
alive
dead
dead offspring

first−year pregnancy probability

Figure 3.4: Geometric diagrams with areas corresponding to the joint probabilities of early pregnancy
and first-year survival for average-sized individuals experiencing average environmental conditions.
Areas in teal and grey correspond to early pregnancy and non-early pregnancy probabilities, respec-
tively, and black-dashed and non-dashed areas correspond to non-surviving and surviving probabili-
ties. Values within areas correspond to (a) joint probabilities of early pregnancy, survival, and AReS
(grey-dashed area); and (b) LReS in ewes surviving their first year of life. The values shown in these
plots were obtained using the models in Tables 3.1, 3.3(b), 3.4, and 3.5(b).

3.4.4 Subsequent lifetime rearing success (LReS)

I also investigated the effect of lamb body mass and early pregnancy on LReS. As the LReS of ewes
dying during their first year of life is known to be zero, analyses presented here only include ewes
that survived their first winter. The LReS of ewe i, born in year j to mother k was modelled with a
Poisson mixed model with a log link function of the form

ln(E[LReSi jk ]) = µ+ µp × Ipi jk + βm × massi jk + βmp × Ipi jk × massi jk + βββXXX +uc j +umk + ε i jk , (3.10)

where µ is the model intercept and µp is the early pregnancy specific contrast to the intercept, with
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Ipi jk being an indicator variable for early pregnancy. βm is the slope for lamb August mass, βmp the
slope contrast for pregnant ewes, and βββ a vector with the slopes of the remaining fixed effects, XXX . ucucuc
and umumum are random effects, assumed to be drawn from independent normal distributions, for cohort
and maternal identity. Finally, ε i jk is the residual of individual i.

I applied the model in Equation (3.10) without the coefficients associated with early pregnancy and
established that LReS is dependent on lamb size (Fig. 3.2b, Tab. 3.5a). Rearing success is an
increasing function of lamb August body mass, with bigger animals being more likely to rear more
offspring. Results from the full model suggest that rearing success is not determined by early preg-
nancy status (Fig. 3.2d, Tab. 3.5b), although it is unclear whether under particular conditions of
population density this trait could have an effect on LReS that is independent from its correlation to
lamb body mass. Neither the contrast to the intercept (0.37; 95% CrI -0.06; 0.82) nor the interaction
terms with body mass (0.02; 95% CrI -0.05; 0.07) and population density (0.34; 95% CrI -0.09; 0.75,
(×100)) are significantly different from zero, however these pregnancy-related coefficients are close
to being considered so. Such numeric differences result in distinct expected number of offspring suc-
cessfully reared in ewes that were and were not pregnant as lambs. In averaged-sized individuals
living under average environmental conditions, 2.48 (95% CrI 1.57; 4.00) offspring are expected to
be reared by ewes that survived their first year of life, which is broken down to 3.36 (95% CrI 1.87;
5.54) and 2.30 (95% CrI 1.40; 3.46) in ewes that got and did not get pregnant as lambs, respectively
(Fig. 3.4b). As no strong statistical support is found for these differences nor any biological justifica-
tion is known for such an effect of early pregnancy, LReS will be assumed to be independent from
this trait in further analyses. The simultaneous effect of body mass and population density on LReS,
independent of early pregnancy, is presented in Fig. 3.3(d), showing not only that LReS is highest in
ewes born at low population densities, but also that the effect of lamb body mass on LReS is stronger
in ewes that were also born in years of low population density.
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Table 3.5: Coefficients of Poisson regressions with logarithm link functions, exploring the associa-
tion between LReS in ewes surviving their first year and lamb body mass and early pregnancy; (a)
size-dependent LReS, and (b) LReS as a function of lamb August body mass and early pregnancy.
Covariates except for twin status and early pregnancy status were mean-centred, and 95% credible
intervals correspond to HPD intervals.

parameter posterior mode 95% CrI

(a)

intercept 0.64 (0.12; 0.99)
body mass 0.14 (0.04; 0.23)
density (×100) -0.15 (-0.49; 0.01)
density2 (×100) 0.00 (0.00; 0.00)
density × body mass (×100) 0.04 (-0.06; 0.09)
twin 0.07 (-0.38; 0.52)
maternal age 0.00 (-0.08; 0.06)
maternal age2 0.01 (0.00; 0.03)
birth date 0.01 (-0.02; 0.03)
measurement date 0.01 (-0.06; 0.07)
variance in cohort effects: 0.00 (0.00; 0.37)

variance in maternal effects: 0.38 (0.00; 0.68)

residual variance: 0.45 (0.20; 0.86)

(b)

intercept 0.38 (-0.07; 0.83)
pregnancy 0.37 (-0.06; 0.82)
body mass 0.14 (0.03; 0.27)
pregnancy × body mass 0.02 (-0.28; 0.09)
density (×100) -0.25 (-0.52; 0.06)
density2 (×100) 0.00 (0.00; 0.00)
density × pregnancy (×100) 0.34 (-0.09; 0.75)
density × body mass (×100) 0.10 (0.00; 0.21)
density × body mass × pregnancy (×100) -0.24 (-0.39; -0.06)
twin 0.14 (-0.34; 0.57)
maternal age 0.00 (-0.08; 0.07)
maternal age2 0.02 (0.00; 0.04)
birth date 0.00 (-0.02; 0.03)
measurement date 0.02 (-0.05; 0.07)
variance in cohort effects: 0.00 (0.00; 0.38)

variance in maternal effects: 0.30 (0.00; 0.60)

residual variance: 0.51 (0.26; 0.91)
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3.5 Formal selection analysis

The analyses shown so far establish that (1) early pregnancy is size-dependent, (2) there is a fairly
strong positive additive genetic correlation between lamb body mass and early pregnancy, (3) there
is selection against early pregnancy through viability selection, (4) ultimate fitness benefit of early
pregnancy is very small, and (5) subsequent LReS in surviving ewes is size-dependent, but very
similar in ewes that got and did not get pregnant. In this section, I use the information presented so
far in a formal selection analysis to investigate selection for and selection of lamb size in Soay sheep
ewes. Particularly, I use a path analysis involving all pertinent traits (Fig. 3.5), allowing the estimation
of an extended selection gradient (Morrissey, 2014) for lamb body mass. Using the path rules for
developmental systems set by Wright (1934) and expanded to non-linear variables by Morrissey
(2015) one can infer the component of the effect of lamb body mass on fitness and that that occurs via
early pregnancy and otherwise. The path diagram shown in Figure 3.5 includes twining, t, mass, m,
pregnancy, p, survival, s, AReS, ares, subsequent LReS, lres, and fitness, W , and can be represented
by a vector-valued function of the following form

zzzi jk =



t

m

p

s

ares

lres

W

 i jk

= f (l)f (l)f (l)i jk =



e
α+βββXi jkXi jkXi jk +uc j+umk +εi jk

1+eα+βββXi jkXi jkXi jk +uc j+umk +εi jk

α + αt × Iti jk + βββXi jkXi jkXi jk + ai + uc j + umk + ε i jk

e
α+αt × Iti jk +βm1 ×mi jk +βm2 ×m2

i jk
+βm3 ×m3

i jk
+βββXi jkXi jkXi jk +uc j+umk +εi jk

1+e
α+αt × Iti jk +βm1 mi jk +βm2 m2

i jk
+βm3 m3

i jk
+βββXi jkXi jkXi jk +uc j+umk +εi jk

e
α+αt × Iti jk +αp × Ipi jk +βm ×mi jk +βββXi jkXi jkXi jk +uc j+umk +εi jk

1+e
α+αt × Iti jk +αp × Ipi jk +βm ×mi jk +βββXi jkXi jkXi jk +uc j+umk +εi jk

(Eqn. 3.8)

e
α+βm ×mi jk +βββXi jkXi jkXi jk +εi jk

1+eα+βm ×mi jk +βββXi jkXi jkXi jk +εi jk
(Eqn. 3.9)

eα+αt × Iti jk +αp × Ipi jk +βm ×mi jk+βββXi jkXi jkXi jk+uc j+umk+εi jk (Eqn. 3.10)

si jk (aresi jk + lresi jk )



. (3.11)

As before, although corresponding to different quantities, I use the same Greek letters for equivalent
coefficients in all models: α represents the intercepts, αt and αp the twinning and pregnancy-specific
contrasts to the intercept, respectively, βm (and βm1 ), βm2 , and βm3 the slope, curvature, and cubic
term for mass, βmp the pregnancy-specific contrast to the slope and, finally, βββ is a vector containing
the effects associated with the remaining covariates, population density and maternal age at parity,
including quadratic terms for both. βββ also includes interaction terms for body mass and population
density in all models including body mass as predictor, interaction terms between early pregnancy
status and population density in all models including early pregnancy as a predictor, and between
these two and body mass in the models including both lamb body mass and early pregnancy status
as predictors. uc j and umk are random effects associated with cohort j and mother k, and ε i jk is the
residual of individual i. The model for mass also includes breeding values, a, allowing to segregate
the additive genetic variance from other sources of variation. Twinning, pregnancy, survival, and
AReS were assumed to follow binomial distributions, mass to follow a Gaussian distribution, whereas
LReS was assumed to be Poisson distributed with additive overdispersion. Fitness was defined as
the sum of AReS and LReS of ewes surviving their first annual cycle weighted by the probability of
first-year survival. The estimates of the parameters in the vector-valued function are found in the
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tables shown so far, except for the parameters explaining the probability of twining, which can be
found in Table 3.6. Note that although population density is not included in the path diagram of Fig-
ure 3.5, all the results presented in this section were obtained by marginalising over the observed
population density in all cohorts. Particularly, population densities were marginalised by averaging
over predicted values, i.e. Equation (3.11) was evaluated for the values of population density of each
cohort and the mean value taken as the best estimate of z̄̄z̄z.

Table 3.6: Coefficients of a binomial regression (logit link function) of the probability of twinning as a
function of mean-centred population density and maternal age. 95% credible intervals correspond to
HPD intervals.

parameter posterior mode 95% CrI

intercept -2.47 (-3.37; -1.43)
density (×100) -0.07 (-0.47; 0.55)
density2 (×100) -0.01 (-0.01; 0.00)
maternal age 0.90 (0.69; 1.14)
maternal age2 -0.15 (-0.20; -0.08)
variance in cohort effects: 0.72 (0.15; 2.59)

variance in maternal effects: 9.25 (5.02; 14.35)

residual variance: set to 1

twin mass preg surv

LReS W

AReS

Figure 3.5: Developmental system representing the phenotypic landscape defined in Equation (3.11).
The probability of twinning, twin, has an effect in all the other traits, lamb body mass affects the
probabilities of being pregnant as a lamb, preg, surviving the first annual cycle, surv, and also first
year (conditional on early pregnancy) and subsequent lifetime rearing success, AReS and LReS; and
preg affects surv. Fitness, W, is defined as the sum of AReS and LReS on surviving ewes weighted
by the probability of first-year survival.

Mean phenotype, z̄̄z̄z, and the phenotypic variance-covariance matrix, PPP, in the expected scale were
obtained using Equation (3.3) and Equation (3.4), and correspond to
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z̄̄z̄z =



t̄

m̄

p̄

s̄

¯ares
¯lres

W̄



=



0.20 (0.16; 0.25)
12.71 (12.54; 12.87)

0.48 (0.46; 0.49)
0.57 (0.55; 0.59)
0.06 (0.05; 0.06)
3.00 (2.50; 3.54)
1.95 (1.61; 2.31)



,

and

PPP =



0.09 (0.06; 0.11) −0.25 (−0.34;−0.16) −0.01 (−0.02;−0.01) −0.02 (−0.02;−0.01) 0.00 (0.00; 0.00) −0.05 (−0.13; 0.01) −0.09 (−0.15;−0.04)
−0.43 (−0.49;−0.34) 3.92 (3.54; 4.55) 0.31 (0.27; 0.36) 0.25 (0.20; 0.29) 0.04 (0.03; 0.05) 1.26 (0.86; 2.02) 1.45 (1.17; 2.18)
−0.14 (−0.22;−0.08) 0.57 (0.48; 0.64) 0.08 (0.07; 0.09) 0.01 (0.00; 0.02) 0.00 (0.00; 0.00) 0.10 (0.04; 0.18) 0.09 (0.04; 0.15)
−0.21 (−0.27;−0.13) 0.42 (0.33; 0.51) 0.11 (0.03; 0.19) 0.09 (0.07; 0.11) 0.00 (0.00; 0.00) 0.08 (0.03; 0.16) 0.31 (0.23; 0.40)
−0.12 (−0.17;−0.06) 0.31 (0.25; 0.36) 0.15 (0.09; 0.21) 0.14 (0.08; 0.19) 0.00 (0.00; 0.01) 0.01 (0.00; 0.04) 0.02 (0.01; 0.04)
−0.05 (−0.11; 0.00) 0.19 (0.11; 0.26) 0.10 (0.03; 0.16) 0.08 (0.02; 0.13) 0.05 (−0.01; 0.13) 11.39 (4.93; 36.23) 8.51 (3.74; 25.96)
−0.09 (−0.15;−0.05) 0.27 (0.18; 0.35) 0.10 (0.03; 0.16) 0.34 (0.24; 0.43) 0.11 (0.03; 0.18) 0.87 (0.79; 0.93) 7.55 (3.88; 23.60)



,

respectively. Note that, as reported here, the diagonal of PPP corresponds to variances, the upper
off-diagonal to covariances and the lower off-diagonal to correlations among traits. As variance in
breeding values was only estimated for lamb body mass, which was modelled in its natural scale,
the additive genetic variance in mass in the expected scale is the one estimated in the model, 0.67
(95% CrI 0.07; 1.14). The fact that the correlations between lamb body mass and first-year survival
(0.42, 95% CrI 0.33; 0.51) and between early pregnancy and first-year survival (0.11, 95% CrI 0.03;
0.19) are both non-negative suggests that the equilibrium between lamb body mass affecting first-
year survival positively (direct effect) and negatively (through its effect on early pregnancy) is leaning
towards the former. To investigate the consequences of this trade-off in the selection of lamb body
mass, I calculated its extended directional selection gradient. For trait z, the extended directional
selection gradient is defined as the average derivative of expected fitness with respect to latent value
(Morrissey, 2015; Villemereuil et al., 2016),

ηz =
∂W̄ (l̄̄l̄l)
∂ l̄ j

W̄−1. (3.12)

For mass, I calculate ηm to be positive, 0.25 (95% CrI 0.24; 0.27), whereas for lamb pregnancy, ηp
is negative, -0.56 (95% CrI -0.67; -0.46). Importantly, the conflict between viability and fecundity is
density-dependent, and is almost nonexistent when population density is very low. In such circum-
stances, virtually all ewe lambs survive, and therefore early pregnancy does not have a significant
cost. As a consequence, ηp is higher when population density is at its lowest and decreases with
population density (Fig. 3.6, Tab. 3.7). In contrast, at high densities, when the probability of first-year
survival is lowest, selection favouring larger body size is stronger. The directional selection gradient,
βm , as opposed to the extended directional selection gradient, ηm , is blind to the positive correlation
that exists between lamb body mass and early pregnancy (and therefore to the pregnancy induced
viability selection), and as a consequence is expected to be larger than ηm . On average, however,
these two quantities do not differ much, and βm is only marginally larger (0.29; 95% CrI 0.26; 0.31).
The reason for that lies again in the dependency of these quantities on population density. At its limit,
no differences between ηm and βm are expected when population density is very low, as viability
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selection tends to zero and, therefore, there is no cost to early pregnancy. Indeed, I show that ηm
and βm become increasingly dissimilar with increasing population density (Fig. 3.6).
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Figure 3.6: The effect of population density on the values of the traits in the path diagram in Figure
3.5, and consequently on selection of lamb body mass and early pregnancy. The upper panel shows
variation in mean twinning (t), early pregnancy (p), and first-year survival (s) probabilities, and in
mean-centred lamb body mass (m). The three lower panels include functions of mean fitness, selec-
tion of lamb body mass, and selection of early pregnancy on population density. All plots include an
histogram showing the empirical distribution of population density. Areas in teal correspond to 95%
HPD credible intervals.

The path analysis represented by Figure 3.5 assumes a definition of fitness that includes the entire
life of the Soay ewes, encompassing the selection on lamb body mass that occurs throughout the
entire lifetime. However, the mechanisms through which selection acts, survival and fecundity, tend
to occur predominantly at different points of the life of these ewes. Viability selection is particularly
strong in the first annual cycle, whereas most offspring are reared at older ages. To evaluate the
strength of the two mechanisms is, therefore, also to understand in which period selection is the
strongest. I quantify the contribution of selection on lamb body mass that occurs during the first year
of life using a path diagram similar to the one in Figure 3.5, but defining fitness as first-year survival.
Measured this way, ηm is 0.12 (95% CrI 0.11; 0.14), and therefore corresponds to 48% (95% CrI
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44%; 52%) of the overall selection on body mass. Such relative strength of first-year survival and
lifetime fecundity in shaping the selection on lamb body mass varies with environmental conditions
(Fig. 3.7, Tab. 3.7). Selection acting on lamb body mass through viability costs during the first
year of life is proportionally very low when population density is lowest (around 30%), is highest at
intermediate populations densities and decreases when population density is very high. A slightly
different pattern is obtained if βm , instead of ηm , is used to quantify the strength of selection. In this
case, the relative importance of viability selection does not decrease when population density is at
its highest. These two trajectories, put together, suggest that at low densities, when both fecundity
and survival are very high (Fig. 3.6), fecundity governs selection on lamb body mass, as mothers will
successfully rear several offspring. As population size increases and first-year survival decreases
(Fig. 3.6), viability selection becomes proportionally more important as it occurs before any oppor-
tunity for reproduction. Under exceptional high population density, the probability of survival is very
low. As most ewes die, fecundity selection becomes slightly more important. That is not observed
when the correlation between lamb body mass and early pregnancy is dismissed, probably because
the pregnancy-related viability costs are not considered. Overall, the fact that about half the selection
on lamb body mass does not occur in the first year of life of these ewes, strongly suggests that the
trade-off between viability and fecundity selection in ewe lambs might also play a role in regulating
body mass at older ages.
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Figure 3.7: Proportion of natural selection on lamb body mass occurring through viability selection
in Soay sheep ewes as a function of population density. This proportion was obtained both using
the extended (ηm) and non-extended (βm) directional selection gradient of lamb body mass. The
histogram in grey shows the empirical distribution of population density.

Finally, I investigated in which conditions of population size and body mass early pregnancy could be
advantageous, or at least not maladaptive, to Soay sheep ewes. Such knowledge could contribute
to understand why early pregnancy occurs in this population despite its large viability cost. To ac-
complish this I used a modified version of Equation (3.11) where instead of the expression for lamb
body mass I used a range of values comprising all observations of lamb body mass and where I also
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Table 3.7: Selection gradients of lamb body mass and early pregnancy for three different values
of observed population density - minimum, mean and maximum (321, 452, and 671, respectively).
Raw (η) and standardised selection gradientes, either by the observed standard deviation (ηsd) or
the observed mean (ηµ), are shown. For lamb body mass, selection gradients considering first-year
survival as a measure of fitness are also included (ηs).

d=321 d=452 d=671

mass

η 0.14 (0.13; 0.15) 0.28 (0.25; 0.30) 0.32 (0.28; 0.36)
ηsd 0.33 (0.30; 0.35) 0.64 (0.59; 0.69) 0.73 (0.64; 0.83)
ηµ 1.76 (1.64; 1.87) 3.42 (3.15; 3.70) 3.95 (3.46; 4.47)
ηs 0.04 (0.04; 0.05) 0.15 (0.13; 0.17) 0.13 (0.11; 0.16)
ηssd 0.10 (0.08; 0.11) 0.34 (0.30; 0.39) 0.31 (0.25; 0.37)
ηsµ 0.53 (0.45; 0.59) 1.83 (1.60; 2.08) 1.66 (1.33; 2.00)

pregnancy η 0.01 (0.00; 0.02) -0.40 (-0.46; -0.33) -1.79 (-2.14; -1.42)
ηsd 0.00 (0.00; 0.01) -0.20 (-0.23; -0.17) -0.90 (-1.07; -0.71)

modified the expression used to fit the probability of early pregnancy. I simplified the latter expression
by dropping the polynomial terms associated to body mass, leaving only the slope and by substituting
the intercept and the slope for lamb body mass by a fixed range of values that would allow proba-
bilities of early pregnancy to vary from zero to one. I, then, evaluated this modified expression for
all observed values of population density. For each combination of lamb body mass and population
density, a matrix for each trait, including early pregnancy and fitness, was obtained that corresponded
to the possible combinations of intercepts and slopes associated to early pregnancy. As a result, for
each combination I could derive the probability of pregnancy that maximised fitness. Often this max-
imisation was not singular, and various values of early pregnancy (various combinations of intercepts
and slopes) would result in maximum fitness. In such cases, I selected the combination resulting in
highest probability of early pregnancy, as my aim was to assess the conditions under which early
pregnancy would not be selected against. Such approach resulted in reaction norms of probability
of pregnancy across values of lamb body mass for different population densities (Fig. 3.8). I con-
clude that early pregnancy is only adaptive in particular combinations of environmental and body
mass conditions. Specifically, early pregnancy is only adaptive when population density is low and/or
lamb body mass is particularly high. Although population density ranged from 321 to 671 individuals,
only when population density corresponded to 410 individuals or less, there were conditions of body
mass for which probabilities of pregnancy higher than zero would maximise fitness. Also interesting
is the fact that when population density is particularly low, early pregnancy can be advantageous in
ewes whose mass is even below average. Given these results, it would be particularly relevant to
understand if there is variation in these reaction norms and, if so, how much of that variation has an
additive genetic basis.
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Figure 3.8: Maximum probability of early pregnancy that maximises fitness as a function of lamb
body mass in Soay sheep. Results are shown for different values of population density, ranging from
300 to 500 individuals, by intervals of 20. The vertical grey line represents average body mass.

3.6 Model estimation and reported statistics

All statistical models were fit using a Bayesian framework, using MCMCglmm (Hadfield, 2010). In-
verse gamma distributions were adopted for residual variances (of non-binary traits), whereas in-
verse Wishart distributions were adopted for the remaining (co)variance components associated with
random effects, using parameter expansion to increase convergence efficiency (Gelman, 2006; Had-
field, 2010). While parameter estimates from statistical models were defined as corresponding to
the modes of the respective posterior distributions, when presenting derived quantities I used means
instead. The reason for that was because these derived quantities not always were expected to be
normally distributed. Uncertainty on parameter estimates and derived quantities is presented using
Highest Posterior Density credible intervals at the 95% level. Adopting a Bayesian framework allowed
for uncertainty to be propagated when calculating composite statistics such as heritabilities and se-
lection gradients.

3.7 Discussion

Results from this chapter provide evidence of a trade-off between viability and fecundity selection of
body size in Soay sheep ewe lambs. Larger lambs are more likely to get pregnant during their first
annual cycle, and pregnant lambs are more likely to die. As a consequence, natural selection acts
on lamb body mass through two distinct pathways, through the direct effect of lamb body mass on
fitness, independent of early pregnancy status, and through its effect on early pregnancy. Selection

37



CHAPTER 3. SIZE AND EARLY PREGNANCY IN SOAY SHEEP

on lamb body mass would, therefore, be stronger (more positive) if not for the relationship between
this trait and early pregnancy. As a result, this correlation provides a mechanism that contributes to
the regulation of body size in Soay sheep.

Although I do not directly test the impact of the identified trade-off in body mass of males or older
females, any existing genetic correlation in body mass across sexes and ages would, in principle,
facilitate that effect. In Soay sheep, both kinds of genetic correlations are known to exist. On the
one hand, Robinson et al. (2009) have shown that there is very strong additive genetic correlation in
body mass between ewes and rams, and, additionally, Wilson et al. (2007) showed that body mass
is highly correlated across ages. This last finding is consistent with the fact that, as I have shown,
nearly half the selection on lamb body mass occurs through subsequent lifetime rearing success,
rather than through first-year survival. Overall, evidence suggests that the correlation between lamb
body mass and early pregnancy in females plays a role in the selection of body mass in the entire
population of Soay sheep. It is also noteworthy that this mechanism is expected to become increas-
ingly important if the population of Hirta continues to increase (Clutton-Brock et al., 2004a).

I used recent theory on nonlinear development systems to decompose selection on body mass,
which essentially correspond to systems of path analyses that allow for non-linear effects and inter-
actions (Morrissey, 2015). As a result, I was able to disentangle and quantify the direct effect of lamb
body mass on fitness and that through its effect on early pregnancy. Alternatives to this approach
are the use of traditional path analysis (developed for linear traits, e.g. Scheiner et al., 2000; Mor-
rissey, 2014) or multi-response (linear or generalised linear) models that explicitly estimate (additive
genetic) correlations among traits (e.g. Bonnet et al., 2017). Although each approach was designed
for slightly different purposes, these are equally suitable to decompose selection into its different
mechanisms and therefore to identify and quantify putative evolutionary constraints. My approach
specifically harnesses the phenotypic relationship between lamb body mass and early pregnancy,
and builds it into a formal model of selection. Such an approach has the potential to be particularly
useful when analytical power is a limiting constraint to infer the genetic architecture among traits. If
the existence of genetic trade-offs, alongside with the lack of directional selection, is indeed a ma-
jor explanation for the widespread mismatch between predicted evolutionary change and observed
dynamics of body size (Blanckenhorn, 2000; Hansen & Houle, 2004; Kruuk et al., 2008), why are
these methods not more frequently adopted? Information available suggests that the most consider-
able obstacle in dealing with the selection of correlated traits is far from being purely methodological.
Detecting such correlations seems to be a limiting step, with evidence for genetic constraints in the
wild being rather scarce (Kruuk et al., 2008). Reasons for this may include insufficient knowledge
about the biology and ecology of a species (Pemberton, 2010), but also the existence of confounding
effects between genes and environment. A negative genetic covariation between two traits might
be obscured at the phenotypic level by patterns of environmental covariation among traits (Roff &
Fairbairn, 2007; Morrissey et al., 2012c). Put together, the information gathered so far supports the
hypothesis that the paradox of stasis will not in most cases have a single and simple solution and
that a deep understanding of the biology and ecology of the species being studied is of instrumental
importance.

Finally, the work presented here does not to explain why early pregnancy occurs in Soay sheep,
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given the significant selection against this trait and its fairly high heritability. It is clear that to some
extent it is a non-adaptive correlated response to lifetime selection for larger body size, but there is
some additive genetic variance that is independent of mass. As a result, although at a slow pace,
reduced pregnancy can evolve despite selection for larger body size. An explanation for its persis-
tence might lie in the dynamics of this population. The Soay sheep were reintroduced in Hirta in
1932, when one hundred and seven individuals were brought from the neighbouring island of Soay
(Clutton-Brock & Pemberton, 2004a), and evidence suggests that population density is still increas-
ing (Clutton-Brock et al., 2004a). In the first decades after the reintroduction, the population size was
much below its carrying capacity, potentially favouring behaviours that would increase reproductive
success. The non-negative selection gradients for early pregnancy obtained here for low population
densities support the hypothesis that this was once an adaptive behaviour. A second explanation
could be related to gene introgression. Given that early pregnancy is actually common in domestic
sheep, its occurrence in Soay sheep could be a result of introgression of domesticated genes back
into the Soay sheep population of Hirta. There is some evidence supporting this hypothesis, as ad-
mixture is known to have happened between Soay sheep and a more modern breed approximately
150 years ago (Feulner et al., 2013).

3.8 Summary

The results presented in this chapter provide evidence of a trade-off constraining the evolution of
lamb body mass in an unmanaged population of an ungulate species. The Soay sheep population of
Hirta has been established as an example of the paradox of stasis, which exists beyond the genetic
constraint here identified. Nonetheless, I show that selection towards larger body sizes would be
stronger if not for the positive correlation between lamb body mass and early pregnancy, and their
opposing association to fitness. Large lamb body mass is associated with higher rates of first-year
survival and lifetime rearing success, but also with higher chance of early pregnancy. The latter has
a very large viability cost. Furthermore, I present results that strongly suggest that this mechanism
might also be involved in the regulation of adult body size in females, as half the selection on ewe
lamb body mass occurs at older ages. Additive genetic correlations among sexes and across ages
might also facilitate a broader scope of action for this mechanism, which might play a role at regulating
the body size in the entire population.
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CHAPTER 4
Towards robust evolutionary inference with

integral projection models

Note:Note:Note: The work presented in Chapter 4 was presented in the form of a peer-reviewed article: To-
wards robust evolutionary inference with integral projection models (2017). M. J. Janeiro, D.
W. Coltman, M. Festa-Bianchet, F. Pelletier & M. B. Morrissey. Journal of Evolutionary Biology, 30:
270-288.

Abstract

Integral projection models (IPMs) are extremely flexible tools for ecological and evolu-
tionary inference. IPMs track the full joint distribution of phenotype in populations through
time, using functions describing phenotype-dependent development, inheritance, survival
and fecundity. For evolutionary inference, two important features of any model are the
ability to (i) characterise relationships among traits (including values of the same traits
across age) within individuals, and (ii) characterise similarity between individuals and
their descendants. In IPM analyses, the former depends on regressions of observed trait
values at each age on values at the previous age (development functions), and the latter
on regressions of offspring values at birth on parent values as adults (inheritance func-
tions). I show analytically that development functions, characterised this way, will typically
underestimate covariances of trait values across ages, due to compounding of regression
to the mean across projection steps. Similarly, I show that inheritance, characterised this
way, is inconsistent with a modern understanding of inheritance, and underestimates the
degree to which relatives are phenotypically similar. Additionally, I show that the use of
a constant biometric inheritance function, particularly with a constant intercept, is incom-
patible with evolution. Consequently, one should expect typical constructions of IPMs to
predict little or no phenotypic evolution, purely as artefacts of their construction. I present
alternative approaches to constructing development and inheritance functions, based on
a quantitative genetic approach, and show analytically and by empirical example, using a
population of bighorn sheep, how they can potentially recover patterns that are critical to
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evolutionary inference.

Keywords: integral projection models, regression to the mean, inheritance, development, body size,

evolutionary responses, bighorn sheep

4.1 Introduction

Evolutionary and ecological dynamics converge at the scale of generation-to-generation change in
populations (Pelletier et al., 2009; Coulson et al., 2010). When traits cause fitness variation, the dis-
tributions of those traits, weighted by fitness, necessarily changes within generations (Godfrey-Smith,
2007). If differences among individuals have a genetic basis, then genetic changes will be concomi-
tant with phenotypic changes. Such genetic changes are the basis for the transmission of within-
generation change due to selection, to genetic change between populations, i.e. evolution (Lewontin,
1970; Endler, 1986). The fundamental nature of this relationship between phenotypic change due to
selection, and associated genetic and thus evolutionary change, has motivated the development of
various expressions relating selection to genetic variation and evolution in quantitative terms (Lush,
1937; Robertson, 1966, 1968; Lande, 1979; Lande & Arnold, 1983; Morrissey, 2014, 2015). Impor-
tant recent advances in population demography, particularly the introduction (Easterling et al., 2000)
and popularisation (e.g. Childs et al., 2003; Ellner & Rees, 2006; Coulson et al., 2010; Ozgul et al.,
2010; Coulson, 2012; Merow et al., 2014) of integral projection models (IPMs), can potentially allow
the construction of very flexible models of changes in phenotype, and of associated demographic
implications (Coulson et al., 2010).

In principle, IPMs track the full joint distribution of phenotype through time. These are very general
models capable of calculating many biological parameters through the estimation of four sets of func-
tions, termed fundamental functions or fundamental processes (Coulson et al., 2010): (i) survival, (ii)
fertility, (iii) ontogenetic development of size conditional on surviving (development functions), and
(iv) distribution of offspring trait as a function of parent’s (inheritance functions). As discussed by
Coulson et al. (2010), these processes underly the high flexibility of IPMs and their ability to link
different aspects of population ecology, evolutionary biology and life history.

A key aspect of the distribution of phenotypes is how traits covary at the level of individuals. Genetic
and phenotypic covariances among traits are key determinants of evolution (Lande, 1979). In the
context of IPMs, which often consider single traits (e.g., mass), age-specific values of a given trait
can be thought of as separate, age-specific traits, the covariances among which are key determi-
nants of evolutionary processes. For example, if viability selection acts on juveniles, the influence
of that selection on future generations can only occur if there is covariance between trait values at
juvenile ages and at ages when reproduction occurs. In IPMs as parameterised to date (e.g. Childs
et al., 2003; Ellner & Rees, 2006; Coulson et al., 2010; Ozgul et al., 2010), covariance across ages
depends on correctly estimating regressions of observed trait values at each age on trait values at
the previous age. In practice, such regressions will typically be underestimated due to regression
to the mean (Campbell & Kenny, 1999; Barnett et al., 2005; Kelly & Price, 2005). This statistical
phenomenon occurs if phenotypic measurements of predictor variables imperfectly reflect relevant
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biological quantities. This problem has been implied in the context of IPMs (Chevin, 2015), and it is
likely to be very general. A theoretical analysis of development functions in IPMs may help to deter-
mine the scope of the problem, and suggest potential solutions.

In age-size-structured IPMs, size-dependent transition functions of the fundamental demographic
processes are used to project size distribution from one age to the next, and across generations.
The inheritance function has been defined as an association between the phenotype of the offspring
as newborns or juveniles and that of the parents at the time the offspring was produced (Coulson
et al., 2010; Schindler et al., 2013; Traill et al., 2014; Bassar et al., 2016). Essentially, it is a cross-age
parent-offspring regression, which is a peculiar measure of resemblance. The concept of biometric
heritability, outside of the IPM framework, is defined by comparing parent and offspring at the same
age (e.g. Galton, 1886). In fact, no theory exists for this concept of heritability as used in IPMs.
Body size, commonly the focal trait in IPMs, is typically a dynamic trait - in opposition to static, as
defined by Vindenes & Langangen (2015) - and therefore its value at a certain age is the result of
the accumulation of growth until that age, causing differences among individuals to accumulate over
the ontogeny due to environmental and genetic variation in size trajectories (Chevin, 2015). Genes
are inherited, or as put by Simpson (1944, p. 30), “what is inherited is a complex of potentialities for
development”, not the phenotypes (or functions of phenotypes) resulting from development. As such,
parental phenotype (as an adult) is an imperfect predictor of the adult’s (genetic) contribution to the
phenotype of the offspring. In effect, a phenotype at a given age is generally an imperfect measure
of genetic value for phenotype at any age. As a consequence, regression to the mean occurs and
results in the underestimation of resemblance between parents and their offspring, and therefore of
the genetic contribution to phenotypic change (Chevin, 2015).

In this chapter, I construct simple but realistic models of development and inheritance. For both pro-
cesses, I construct corresponding models of how conventional IPMs will use data on size-at-age of
relatives, and what across-age and across-generation population structure in continuous traits IPMs
can recover. Aspects of the distribution of traits through time, other than over single iteration steps (in
size-dependent development and inheritance functions), are not used to parameterise IPMs. Also,
the way IPMs are typically iterated means that once the population structure at time t+1 is generated,
the state of the population at time t is discarded. Consequently, while IPMs owe their generality to
tracking the distribution of phenotype through time, they do not output aspects of the population struc-
ture that allow their performance to be checked. Critically, aspects of the distribution of traits across
time for any inference, particularly evolutionary inference, requires that correlations of individual trait
values across ages, and of trait values of relatives across generations, are adequately reflected.

I use path analysis to generate analytical expressions that isolate growth and inheritance in IPMs,
providing insight into their behaviour in structuring populations. These exercises demonstrate that
typical parameterisations of IPMs generally recover only a small fraction of similarity within individu-
als across ages, and that IPMs recover only a small fraction of similarity between relatives. These
patterns have severe consequences for evolutionary inference with IPMs. I discuss potential solutions
that may prove useful in fully realising the potential of IPMs. I give an empirical example where I use
random regression of developmental trajectories to develop a quantitative genetic analysis to model
variation in mass in a pedigreed wild population of bighorn sheep (Ovis canadensis). I compare this
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analysis to the inheritance function based on the cross-age parent-offspring regression and standard
regression methods for growth functions normally implemented into IPMs. I show a large difference
between the two parameterisations in the ability to capture similarity within individuals across ages,
which results in standard regression methods normally used in IPMs not capturing the across-age
structure in growth. Similar conclusions are reached across generations, with most similarity among
relatives being missed by IPMs, corresponding to a failure of the typical IPM inheritance function to
predict evolution.

4.2 Development

Regression to the mean is particularly relevant to IPMs due to how size-dependent growth coeffi-
cients are typically - although not necessarily - estimated. Transition rates between size classes for
surviving individuals are modelled by regressing observed size at age a + 1 on observed size at age
a, observed size being therefore a predictor. Either linear models (e.g. Childs et al., 2003; Coulson
et al., 2010), or extensions of such models, including generalised linear or additive (mixed) models
and nonlinear models (e.g. Ozgul et al., 2010; Rees et al., 2014; Traill et al., 2014) have been used
for this purpose. All these methods assume that predictors are measured without error. When this
assumption is violated, downwardly biased estimates are obtained (for a review on problems and
proposed models to deal with measurement error see Thompson & Carter, 2007). Measurements
of most traits, including size, will virtually always be made with non-trivial error, for two reasons.
First, limitations in the measurement process caused by different measuring conditions (e.g. different
levels of stomach fill when measuring the mass of a sheep), or limitations of instruments used for
measurement, tend to occur. Second, size, like most other variables of ecological interest, is an ab-
stract concept and therefore is not directly measurable. As such, proxy variables that do not perfectly
represent size are measured instead, such as mass or some skeletal measure. The complexity of
size is such that the covariation between any proxy at time t and t + 1 is also determined by the other
components of size, which are highly correlated with each other. Importantly, the mechanics un-
derlying IPMs neither imply measurement error nor regression to the mean. Rather, the application
of standard regression methods that do not account for measurement error within an autoregressive
structure on size (subsequent sizes being used as predictors) promotes the occurrence of regression
to the mean due to measurement error.

As the measurement error that causes regression to the mean is random rather than systematic, this
problem can be modelled by thinking of true size, the trait we want to measure, as a latent variable,
z, that cannot be measured (e.g. McArdle, 2009; Little, 2013, p. 43). In such a scenario, instead
of the true values z, a proxy, the trait we actually measure, x, is recorded, which differs from z by
a measurement error, σ2

ε , and is related to it by a repeatability, r2. x can, therefore, be written as
x = z + σ2

ε . In Figure 4.1a, I illustrate such model of the ontogenetic development of size, which I
named latent true size model, using a path diagram. In this diagram, true size at age 1, z1, determines
true size at age 2, z2. z2 is then a predictor of true size at age 3, z3, and so on until size at age n, zn ,
is predicted. In contrast, the kinds of regression analyses implemented to date in IPMs (e.g. Childs
et al., 2003; Coulson et al., 2010; Ozgul et al., 2010; Rees et al., 2014; Traill et al., 2014) assume that
true size z is being measured when in fact the measured variable is x. This model, which I termed
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observed size model, is illustrated in Figure 4.1b. The autoregressive structure in this model is very
similar to that in Figure 4.1a, but is built on observed sizes rather than true ones. I use the theoret-
ical models in Figure 4.1 to illustrate the consequences of this conceptual mismatch and to inspect
how regression to the mean affects inference about development. I show that the correlations, and
therefore the regression coefficients, estimated using IPMs do not correspond to the true latent ones.
I then derive a generic analytical expression for how much correlation an IPM can recover given a
certain repeatability and number of projection steps (number of IPM iterations).

(a)

x1 x2 x3 xn

z1 z2 z3 zn

r1 r2 r3 rn
bz1 bz2

...

bx1 bx2
...

σ2
ε1 σ2

ε2 σ2
ε3 σ2

εn

σ2
g1 σ2

g2 σ2
g3 σ2

gn

(b)

x1 x2 x3 xn
bx1 bx2

...

s2
g1 s2

g2 s2
g3 s2

gn

Figure 4.1: Path diagrams illustrating the ontogenetic development of size. (a)(a)(a) Latent true size model;
(b)(b)(b) Observed size model implemented into IPMs. za and xa are, respectively, the true and observed
sizes at age a. ra , linking true and observed sizes, are defined such that repeatabilities are r2

a .
In these antedependence models, σ2

ga
and s2

ga
are exogenous variances in growth for true and

observed values, respectively, except when they refer to a = 1. In this case, σ2
g1

and s2
g1 also

correspond to variances in size. σ2
εa

are exogenous errors associated with observed sizes. bza and
bxa are growth regressions (path coefficients) for true and observed values, respectively. Dashed
lines, as opposed to solid lines, do not belong in the path diagram. Although bxa correspond to the
same quantities in both models, the two models result in covariance structures that are very different
(see Appendix B.1.1).

If we consider linear size-dependent growth functions, we can express the true biometric relation-
ships (i.e. true theoretical expressions) among traits z (e.g. size at different ages), as well as the
relationships captured by standard regression methods typically used in IPMs to describe develop-
ment, using the principles of path analysis (McArdle & McDonald, 1984). Developed by Wright (1921,
1934) for estimating causal path coefficients, path analysis mathematically decomposes correlations
(or covariances) among the variables in a path diagram. For convenience, in the path diagrams that
I show I assume that all variables are standardised (mean centred and variance of 1). In such cir-
cumstances, the expected correlation between two variables is the product of the standardised path
coefficients that link them. Some notational details are worth summarising: σ denotes several as-
pects of true covariation (covariance in growth among ages), whereas σ2 represents true variances.
Variances estimated by IPMs are denoted by s2. Since the models in Figure 4.1 are antedependence
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models (or autoregressive, as the response variable depends on itself at a previous time), σ2
g in Fig-

ure 4.1a and s2
g in Figure 4.1b correspond to variances in growth associated with the regressions

of true size on true size at a previous time and observed size on observed size at a previous time,
respectively. Finally, the path coefficients b correspond to regressions of size on size and r2 to the
square of the regression coefficient of observed size at age a, xa , on true size at the same age, za .
Following the principles of path analysis, I used a variance-covariance matrix with the variances in
growth, σ2

ga , and errors associated with observed sizes, σ2
εa , for each age a, and a matrix with

path coefficients (bz a and ra) matching Figure 4.1a to obtain a variance-covariance matrix for sizes
at different ages (Appendix B.1.1). From this matrix, I then extracted the covariances among ages
for both true and observed sizes (Tab. B.2.1 in Appendix B.2). As an example, according to the path
rules, the correlation and covariance in true size between ages 1 and 3 are given by bz1 · bz2 and
σ2

g1 · bz1 · bz2, respectively. Analogous quantities were obtained similarly for IPMs (Tab. B.2.2 in
Appendix B.2). Since regressions of observed size on observed size, bxa , are estimated from the
data (rather than implied), these quantities are necessarily recovered correctly, and therefore the bxa

estimated in IPMs (Fig. 4.1b) are equivalent to the analogous quantities in Figure 4.1a. In contrast,
variances in growth estimated with observed sizes, s2

ga , do not correspond to variances in growth
estimated with true latent sizes, σ2

ga
, nor to the measurement error associated with observed sizes,

σ2
ε a . Consequently, since these quantities are crucial to estimate covariances in size among ages,

the across-age distribution of phenotype that occurs in a typically-constructed IPM does not generally
recover the across-age distribution of either a measured aspect of phenotype (e.g. correlations in the
x variable across ages) or of an underlying quantity (e.g. correlations in the z variable across ages).
An across-age distribution of phenotype, which includes correlations among ages, is not typically
tracked by an IPM (e.g. Childs et al., 2003; Ellner & Rees, 2006; Coulson et al., 2010; Ozgul et al.,
2010). Yet, an IPM’s utility for any ecological and evolutionary inference depends on its ability to track
this distribution through time. In a typical implementation, the distribution of phenotype at age a − 1 is
discarded once the distribution at age a is generated, so such correlations cannot easily be outputted
and checked against data. As such, I use path analysis to mimic basic IPM mechanics and to extract
the across-age dynamics that are not otherwise easily tracked. In contrast, an IPM can easily be
interrogated for the distribution of phenotype at any given time. These distributions generally closely
match data (Ozgul et al., 2010; Childs et al., 2011, also see fig3(a) in Chevin, 2015 for a simulation
example).

For tractability, I demonstrate that IPMs do not in general recover the across-age structure of pheno-
type using a simplified case of the path diagram in Figure 4.1a as the true model. Specifically, I focus
on a static trait, as it renders the basic principles more clearly without loss of generality. I assume that
all size-dependent growth coefficients are one (bza = 1,∀a), that the variance in true growth at age
one - which also corresponds to the variance in true size at age one - is one (σ2

g1 = 1) and that the
subsequent variances are zero (σ2

ga = 0,∀a > 1). Finally, all repeatabilities, ra , and measurement
errors, σ2

εa , take the same value, r and 1 − r2, respectively. Applying the path rules and these as-
sumptions results in the particular case of all true phenotypic variances and covariances being 1 and
variances and covariances for phenotypic observed size being 1 and r2, respectively (see Appendix
B.1.1 for details). Standard regression methods typically used in IPMs underestimate regressions
for true growth in any instance where r < 1, by a factor of r2. Whenever true and observed sizes
differ, which is true for virtually every attempt to measure size, instead of 1 (value set for all bza ), bxa

take the value r2 for any consecutive pair of ages (both in Fig. 4.1a and Fig. 4.1b). As mentioned
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before, covariances in size across ages are in general not reported when building an IPM. How-
ever, the implied covariances can be calculated using path analysis (see Appendix B.1.1 for both the
general and the simplified cases). Since that according to the path rules of standardised variables
correlations between two variables correspond to the product of the path coefficients linking them,
in this example correlations in size among two ages will be r2 to a power equivalent to the number
of links between them. As such, since r < 1, these correlations will be underestimated. As for the
covariances, these are obtained by multiplying the correlations by the variance in growth at age 1,
which corresponds to the variance in growth at age one, sg1 . Variances in size are well recovered in
IPMs because these quantities are directly estimated from the data. Therefore, in this example, sg1 ,
which also corresponds to variance in size at age one, corresponds to one, resulting in covariances
in size implied by the growth functions normally implemented in IPMs being given by

covI PM (xi , x j ) =
(
r2

)∆t
, (4.1)

where ∆t is the number of projection steps (or path coefficients) connecting ages i and j ( j − i).

The standardised conditions set in this simplified example illuminate how much correlation between
sizes at different ages the standard IPM formulation will miss. As true correlations (or covariances)
in size across ages were set to one, subtracting the correlation in Equation (4.1) to that theoretical
value corresponds to the amount of correlation a standard regression fails to recover,

missed correlation = 1 −
(
r2

)∆t
. (4.2)

The theoretical result of Equation (4.2) shown in Figure 4.2 demonstrates that this quantity is far from
negligible, increasing rapidly with the number of projection steps and decreasing values of r.
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Figure 4.2: Proportion of correlation in size among ages recovered by a typically-built IPM as a
function of the square root of the repeatability (r) and number projection steps (∆t ). The true values
were used as reference.
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Many IPM analyses to date have focused on long-lived organisms. In these systems, age differences
(projection steps) of 5 to 10 years may correspond to the gap between juvenile stages, which are
often subject to the strongest viability selection, and ages of greatest fecundity. Even for traits with
high repeatabilities (e.g. r = 0.9), correlations over such age differences will be underestimated by
more than 60% (Fig. 4.2). Ultimately, size is estimated as an accumulation of growth through an
autoregressive process that discards the distribution of size at time t − 1 at each iteration (when the
distribution at t is obtained). This results in measurement error at each iteration not being accounted
for in the next, and therefore the effect of regression to the mean rising with the number of IPM
projection steps. Serious consequences can be expected both for evolutionary and ecology studies,
whenever differences in individual growth are of interest. Curiously, all else being equal, IPMs with
narrower projection intervals (e.g. monthly, rather than yearly) will suffer more from regression to the
mean than models constructed with wider projection intervals. Finally, it is important to note that as-
serting that the observed quantities, rather than underlying variables, are the target of interest in any
given IPM application does not solve the fundamental problem. In any scenario where the covariance
of observed values through time is caused (in part or in whole) by quantities other than the observed
values themselves (Fig. 4.1a) a model of sequential regressions of observed values on one another
(Fig. 4.1b) will not recover the resulting covariance structure.

4.3 Inheritance

The modern understanding of how genes contribute to similarity among relatives (Fisher, 1918, 1930;
Wright, 1922, 1931) has a very different structure from the inheritance function typically included in
IPMs (e.g. Coulson et al., 2010; Traill et al., 2014; Bassar et al., 2016). Fisher and Wright showed
how Mendelian inheritance at many loci influencing a trait generates the observed biometric relation-
ships among relatives, including the relationships of a quantitative character between parents and
offspring. Here, I use the basic mechanics of inheritance of a polygenic trait, which have well-known
relationships to selection and evolution (Lynch & Walsh, 2018), and use it as simple background to
see if IPM mechanics are generalisations of these principles. The notion of breeding value, or ge-
netic merit, of an individual is central to the current theory of the inheritance of quantitative traits, and
has its roots in Fisher’s (1918) and Bulmer’s (1980) infinitesimal model (see Falconer, 1981; Lynch
& Walsh, 2018, Chapter 15). Each parent passes half of its genes and therefore half of its breeding
value on to the offspring. As such, the expected breeding value of offspring i, E[BVi], corresponds to
half the sum of parental breeding values, as follows

E[BVi] =
(BVmi + BVfi )

2
, (4.3)

where BVmi and BVfi are the maternal and paternal breeding values, respectively. The true breeding
value, BVi , follows a normal distribution,

BVi ∼ N (E[BVi],
σ2a
2

), (4.4)

with its expected value as mean and σ2a
2 as variance, corresponding to the variance in breeding

values in the absence of inbreeding, conditional on mid-parent breeding values, resulting from seg-
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regation (Bulmer, 1980). The variance in the breeding values divided by the phenotypic variance
is defined as heritability, h2, a measure of evolutionary potential. The degree of resemblance be-
tween relatives provides the means for distinguishing the different sources of phenotypic variation
and therefore for estimating heritabilities and other quantitative genetic parameters (Falconer, 1981).
The simplest way of doing so is by using correlations of close kin, for example, of parents and their
offspring, as h2 corresponds to the slope of the offspring trait regressed on the midparent’s (Lynch
& Walsh, 1998, Chapter 7). In fact, Jacquard (1983) defines the heritability estimated with a parent-
offspring regression as a biometric heritability, as opposed to broad- and narrow-sense heritabilities,
for which the genetic and additive genetic variances are, respectively, explicitly estimated. Any ge-
netic architecture, i.e. broad- and narrow-sense heritability, determines the biometric relationships
among kin (Lynch & Walsh, 1998, Table 7.2). In IPMs, heritabilities have been estimated using
parent-offspring regressions. Specifically, inheritance has been defined as a regression of the phe-
notype of the offspring as newborns or juveniles on that of the parents at the time the offspring was
produced (Coulson et al., 2010; Schindler et al., 2013; Traill et al., 2014; Bassar et al., 2016). In this
section, I investigate whether this cross-age biometric notion of inheritance is compatible with what
is known about trait transmission across generations.

4.3.1 Inheritance across generations

I start by addressing consequences of regression to the mean related to the biometric concept of
inheritance when applied across multiple generations. I define a true model for trait transmission
across four generations of the same age, according to Fisher’s and Wright’s understanding of trait
transmission (Fig. 4.3a), and a comparable model reflecting the biometric concept of inheritance
typically used in IPMs (Fig. 4.3b). As for the development models, I used path diagrams and path
analysis to compare the correlations implied by both models. In Figure 4.3a, breeding values, the
underlying units that are inherited, are passed on across generations: from great-grandparents to
grandparents, from grandparents to parents, and from these to the offspring. Since each parent
passes on half its breeding value to the next generation, the regression coefficient linking genera-
tions is 1

2 . The variance associated with the breeding values is 3
4 , which corresponds to 1

2 from the
other parent and 1

4 from segregation. h corresponds to the correlation between the breeding values
and phenotypic values (Wright, 1921; Falconer, 1981) and, in a standardised path analysis, to the
corresponding regression coefficient as well. If observed size is standardised (variance of 1), then
according to the path rules its exogenous variance corresponds to 1 − h2. Finally, if any regression
was to be made between the observed sizes, x, the coefficient would be half the heritability. There
is a close analogy with the path diagrams in Figure 4.3a and Figure 4.1a. Not only do they share
the same structure (sizes at different generations instead of sizes at different ages), but other analo-
gies can be taken. For example, as the regression coefficient of phenotype on breeding values, the
square root of the heritability expresses the reliability of the phenotype to represent the underlying
genetics, which in Figure 4.1a was represented by the square root of the repeatability. In Figure 4.3b
I show a series of parent-offspring regressions based on phenotype, rather than genetics. The slope
of the parent-offspring regression for a single parent is known to be 1

2 h2 and in a standardised path
analysis, the associated variance is 1 − 1

4 h4. Similarly, the path diagram in Figure 4.3b relates to the
one in Figure 4.1b.
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Figure 4.3: Path diagrams illustrating the transmission of a quantitative trait across generations of the
same age. (a)(a)(a) Model based on the fundamentals of quantitative genetics; (b)(b)(b) model corresponding to
a purely biometric notion of inheritance. BV and x correspond to breeding values and the observed
phenotype, respectively. The exogenous inputs to BVs include contributions from the other parent
and segregation. The subscripts GGP, GP, P and O denote great-grandparent, grandparent, parent
and offspring, respectively. h2 corresponds to the heritability and therefore h and h4 to its square
root and square, respectively. Dashed lines, as opposed to solid lines, do not belong in the path
diagram. While the observed parts of the two models look very similar, they imply different correlation
structures among relatives more than one generation apart (see main text).

With this single age set up, I can isolate the regression to the mean that occurs as a result of a purely
biometric approach to the inheritance function. As for the true regressions, parent-, grandparent-,
great-grandparent-offspring regressions are given by 1

2 h2, 1
4 h2, 1

8 h2, respectively (Lynch & Walsh,
1998). The extension for arbitrary ancestral regressions is given by

β∆g =
1

2∆g
h2, (4.5)

where ∆g is number of generations between two relatives. I used path analysis to obtain the analo-
gous regressions that are implied when applying a biometric inheritance function repeatedly within an
autoregressive process (Fig. 4.3b). The structure of the path diagrams in Figures 4.1b and 4.3b are
equivalent and therefore the reasoning for obtaining covariances and regressions for size presented
in Appendix B.1.1 also applies in this case. As such, according to the path rules, IPMs, as usually
parameterised, will estimate these regressions as

β∆g I PM
=

(
1
2

h2
)∆g

, (4.6)

which does not correspond to Equation (4.5). As an example, tracing the regression of grand-
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offspring size (xO) on grandparent size (xGP) in this standardised path diagram involves two paths
with coefficient 1

2 h2, resulting in 1
4 (h2)2 instead of the true regression 1

4 h2. Equation (4.6) implies that
trait transmission between same-age relatives is not fully recovered when the gap between gener-
ations (∆g ) is greater than one. For ancestral regressions other than of offspring on parent to be
correctly recovered the heritability of this trait would have to be one, which tends not to happen in
nature for most ecologically interesting traits. The proportion of the true regressions recovered by the
biometric inheritance function is given by h2 (∆g −1), as illustrated in Figure 4.4. For example, if a trait
has a heritability of 25%, the grandparent-grandoffspring regression will be estimated as 1

4 h4 = 1
64

rather than its true value of 1
4 h2 = 1

16 , which corresponds to only recovering 25% of the regression.
This proportion drops to 6.25% for great-grandparents and their offspring.
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Figure 4.4: Proportion of the parent-offspring regression recovered by a same-age inheritance func-
tion as a function of the heritability (h2) and the number of generations (∆g ). The true values were
used as reference.

4.3.2 Across-age inheritance functions

There is a second mechanism by which regression to the mean affects inference with the inheritance
function, particularly resulting from its cross-age structure. It is important to note that although an
individual’s genetic constitution is constant throughout life, the genetic variants relevant at one life
stage need not affect other life stages. Genetic variants acting late in life may be latent early in de-
velopment. Such variants may be inherited and contribute to similarity among relatives, even if they
contribute neither to covariance of traits within individuals, through time, nor to covariance of parents,
as adults, with their offspring, at young, or arbitrary, life stages. Consequently, there is potential for
the concept of inheritance applied to date in IPMs to neglect a major fraction of how genetic variation
can generate similarity among relatives (Hedrick et al., 2014; Chevin, 2015). Chevin (2015) illus-
trated this issue with numerical demonstrations. Here I formalise his findings analytically to explore
the generality and the magnitude of his conclusions. I examine what would happen to two cohorts
(parents and offspring) with two ontogenetic stages (juvenile, J, and adult, A, Figure 4.5). I choose a
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simple model with only two ontogenetic stages, since extending it to include more age classes would
correspond exactly to what was described for development in the previous section. I explore two
different perspectives of trait transmission - first using basic quantitative genetic principles and then a
cross-age biometric approach typical of IPMs. The first path diagram (Fig. 4.5a) reflects the former,
with phenotype being a result of the breeding values, BV , and the environment, σe 2. To account
for the fact that different genes may influence different traits or the same traits across ages, I use
different symbols for breeding values in the juvenile and adult stages. In this path diagram, parent
phenotype as a juvenile determines parent phenotype as an adult through the regression coefficient
b. I also represent segregation and mating, through which the offspring receives paternal breeding
values that, together with the environment, define offspring phenotype as juveniles, OJ . Finally, off-
spring phenotype as juvenile also determines its phenotype as an adult, OA. I use the subscripts z, a
and e to distinguish between phenotypic variance, σ2, and covariance, σ, and their additive genetic
and environmental components, respectively. The diagram in Figure 4.5b illustrates a cross-age phe-
notypic transmission between parents and offspring normally used in IPMs (e.g. Coulson et al., 2010;
Traill et al., 2014; Bassar et al., 2016). In this diagram, parent phenotype as a juvenile determines
parent phenotype as an adult (through the regression coefficient for development, bdev), which de-
termines offspring phenotype as a juvenile (through the regression coefficient for inheritance, binh).
Finally, growth also occurs in the offspring, resulting in its adult stage. As before, I consider lin-
ear size-dependent growth functions, and additive genetic effects on juvenile size and subsequent
growth, so that path analysis can be used to obtain the biometric relationships among traits (true
theoretical expressions), as well as the relationships captured by the cross-age inheritance function
implemented in IPMs (see Appendix B.1.2 for details).

First, I defined true hypothetical additive genetic and environmental variance-covariance matrices for
growth at each age, as well as true path coefficients that match the path diagram in Figure 4.5a.
Subsequently, I used path analysis to obtain the true phenotypic variance-covariance matrix for size,
a matrix that quantifies both direct and indirect effects of size at each age. Finally, the slopes of the
regressions of offspring size on parent size were obtained analytically from the model, corresponding
to the true parent-offspring regressions for both juveniles,

βOJ ,PJ =
1
2
σ2a J

σ2
z J

=
1
2

h2
J , (4.7)

and adults,

βOA,PA =
1
2
σ2a J b2 + 2σa J,A b + σ2a A

σ2
z J b2 + 2σzJ,A b + σ2

z A

=
1
2

h2
A. (4.8)

Note that the numerator and denominator in Equation (4.8) are simply reconstructions of the additive
genetic and phenotypic variances in size, respectively, given the additive genetic and phenotypic vari-
ances in juvenile size, growth to adult size, and the covariance between them. Two other expressions
are required, as they are used in constructing IPMs, namely for the regression of adult offspring size
on juvenile offspring size, or adult parent size on juvenile parent size,

βOA,OJ = βPA,PJ = βA,J =
σ2
z J b + σzJ,A

σ2
z J

, (4.9)

52



CHAPTER 4. EVOLUTIONARY INFERENCE WITH IPMS

(a)

environment

PJ PA
b

BVPJ BVPJ

BVP A BVP A

σe 2
J σe 2

A

segregation
and mating

OJ OA
b

BVOJ BVOJ

BVOA BVOA

σe 2
J σe 2

A

environment

(b)

stage

juvenile adult

generation

parent
offspring

PJ PA

OJ OA

s2
g J

s2
g J

s2
g A

s2
g A

binh

bdev

bdev

Figure 4.5: Path diagrams illustrating the transmission of a quantitative trait between parents, P, and
offspring, O, with two ontogenic stages, juvenile, J, and adult, A. (a)(a)(a) Model based on the fundamen-
tals of quantitative genetics; (b)(b)(b) model corresponding to a cross-age concept of trait transmission. PJ

and PA correspond to parental trait as juvenile and adult, respectively, and likewise for the offspring
(OJ and OA). σ2e and s2

g correspond to the exogenous variances of size at birth, and of growth until
the juvenile stage (σ2e J and s2

g J
) and of growth (σ2e A and s2

g A
). b, bdev and binh correspond to regres-

sions, namely for development (b and bdev) and inheritance (binh). Finally, BV are breeding values.
Although the genetic constitution is constant over an individual’s life, different genes are activated
throughout life, which is denoted by distinguishing BV for both juvenile and adult stages.

which models the ontogenetic development of size, and for the regression of juvenile offspring size
on adult parent size,

βOJ ,PA =
1
2

σ2a J b + σa J,A

σ2
z J b2 + 2σz J,Ab + σ2

z A

, (4.10)

which corresponds to the cross-age inheritance function.

As shown in Figure 4.5b, typical IPMs adopt βOJ ,PA (binh) as the inheritance function. I use the path
rules to obtain the covariances among same-age parent and offspring that are implied by this quantity,
and therefore to obtain expressions for the same-age parent-offspring slopes. In practice, I then
compare the theoretical results presented above, in particular the true parent-offspring regressions
in Equations (4.7) and (4.8), to those that occur with the cross-age inheritance function, allowing
us to derive the conditions under which IPMs recover the population structure of continuous traits
between parents and offspring. According to the path rules, IPM-based inference for parent-offspring
regression at both juvenile and adult stages, βOJ ,PJ and βOA,PA , respectively, corresponds to the
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product of βJ,A (Eqn. 4.9) and βOJ ,PA (Eqn. 4.10, see Appendix B.1.2 for details), as follows

1
2

h2
(I PM ) = βOJ ,PJ (I PM ) = βOA,PA (I PM ) =

1
2
σ2
z J b + σzJ,A

σ2
z J

σ2a J b + σa J,A

σ2
z J b2 + 2σzJ,A b + σ2

z A

. (4.11)

As a result, in a two-stage case, an IPM as typically built implies the same value of the parent-
offspring regression for both stages, which is not the case for the true values (Eqn. 4.7 and Eqn.
4.8). Also, and even more importantly, the IPM-based inference corresponding to the expression in
equation (4.11) does not correspond to the true values for either age (Eqn 4.7 and Eqn. 4.8). Thus,
IPMs do not, in general, recover parent-offspring regressions.

The comparison between IPM-based inference and true values becomes more straightforward in
the simplified case of no covariances of growth across ontogenetic stages (additive genetic, σa J,A ,
and more generally, phenotypic, σzJ,A ). In such circumstances, the IPM implies a parent-offspring
regression, for both juveniles and adults, of

1
2

h2
(I PM ) = βOJ ,PJ (I PM ) = βOA,PA (I PM ) =

1
2

σ2a J b2

σ2
z J b2 + σ2

z A

, (4.12)

which is always less than the corresponding true values. This is a best-case scenario for IPMs, as co-
variances of growth across ages are in general not modelled when estimating size transitions in such
models. Even in such unrealistic conditions, a standard IPM can only recover the true parent-offspring
regressions under very specific conditions. According to Equation (4.12), for parent-offspring regres-
sion in juveniles to be fully recovered by a model using a cross-age biometric inheritance function,
the phenotypic variance in growth, σ2

z A, must be zero. When that is not the case, the proportion of
regression recovered decreases with decreasing size-dependent size regression, b (Eqn. 4.7, Fig.
4.6a). The same condition holds for the parent-offspring regression in adults (Eqn. 4.8, Fig. 4.6b).
These quite narrow conditions are unlikely to occur in nature. I obtained similar results for the case
where covariance in growth exists (Appendix B.2). Indeed, although IPMs were developed to model
dynamic traits, the conditions for which they are guaranteed to recover parent-offspring regression,
particularly the absence of variance in growth, essentially constrain a dynamic trait to be static.

4.3.3 Parent-offspring regression with a constant intercept

The preceding analysis shows that regression to the mean prevents the inheritance function from cap-
turing most aspects of covariance between individuals and their descendants. In language typically
used to describe properties of IPMs, a cross-age biometric inheritance function does not fully capture
the most important ways in which inheritance influences the dynamics of a population through time.
Importantly, however, as shown above, the biometric inheritance notion does capture the correct co-
variance of parents and offspring, at least of a static trait (or a model with a single age class). In itself,
this may imply that a purely biometric notion of inheritance can be used, at least in simple cases, to
track some important features of a population. Nonetheless, the use of the concept of biometric inher-
itance that is extensively recommended for IPMs (Coulson et al., 2010; Coulson, 2012; Rees et al.,
2014) does not correctly employ the concept. This recommendation is based on two misconceptions
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Figure 4.6: Proportion of parent-offspring regression recovered by a cross-age parent-offspring re-
gression, in juveniles, (a)(a)(a), and adults, (b)(b)(b). In both cases, correlation in growth, genetic (σa J,A ) and
environmental (σe J,A ), was assumed to not exist, and the remaining parameters were set as follows
σ2a J = 1, σ2e J = 1, and σ2e A = 0. The true values were used as reference in both plots.

about biometric inheritance, both of which lead to failures to characterise even the simplest aspects
of phenotype (e.g. the dynamic of mean phenotype). The first misconception, shown above, is the
assumption that theory underlying the biometric relations among kin can be applied to a non-static
trait when parents and offspring are of different ages. This includes the assumption that iteration
of the purely phenotypic relations of parents and offspring across multiple generations can recover
biometric relationships among more distant kin, e.g. arbitrary ancestral regressions. The second
misconception is that the biometric inheritance concept, and its known relationships to quantitative
genetic parameters (Lynch & Walsh, 1998, Chapter 7), implies that biometric functions are constant.
A constant genetic basis (e.g. an assumption that h2 is constant over a period of time) to a trait is
commonly assumed in quantitative genetic studies, and implies that the slope of the parent-offspring
regression is constant. However, should a trait evolve, changing the mean phenotype, then the in-
tercept of the parent-offspring regression necessarily changes. If the intercept is assumed to not
change, or a model is constructed where the intercept cannot change, then the dynamic of mean
phenotype will be highly restricted. Therefore, even the simplest possible IPM constructed with a
typical inheritance function, which has not only a constant slope, but also a constant intercept, will
necessarily fail in describing the evolution of mean phenotype.

As an example, consider a non-age structured population, with no class structure other than that
associated with some focal trait, z. I denote the mean trait value in generation g by z̄g and its heri-
tability as h2. Without loss of generality, I assume that during a period of equilibrium z is measured
such that its mean is 10. I also assumed that z is heritable (h2 = 0.5) but, since there is no selec-
tion, no phenotypic change is observed (Fig. 4.7a). Suppose that the equilibrium is then disrupted
and that both sexes experience the same selection, which represents a change in mean phenotype
for the first generation (∆z̄′1) of 1 unit (Fig. 4.7b). The offspring on mid-parent regression is then
E[z2] = α + h2 z1m+z1 f

2 , where α is the intercept and z1m and z1 f denote maternal and paternal pheno-
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types, respectively. An IPM constructed using this regression (appropriately handling the two sexes)
yields a mean phenotype in the next generation of z̄2 =

∫
α + h2 · z · p1(z)dz = α + h2

(
z̄1 + ∆z̄′1

)
.

The first expression corresponds to the integral that would be solved (typically numerically) by an
IPM corresponding to this example, and p1(z) is the probability density function of phenotype after
selection but before reproduction in generation 1. The second expression is the analytical solution for
this integral, made possible by assuming a linear function. Under the conditions set for this example,
this expression would be z̄2 = 5 + 0.5 · (10 + 1) = 10.5. This change satisfies the breeder’s equation
for the change in mean phenotype across generations z̄i+1 − z̄i = h2∆z̄′. The problem arises in the
next generation.

Let us suppose that selection is now relaxed, such that the within-generation change in phenotype
due to selection, ∆z̄′2, is zero. In the absence of selection, drift, immigration and mutation, we expect
no change in allele frequencies (Wright, 1937) and therefore no evolution. Consequently, we expect
no change in mean phenotype (Fig. 4.7c). In a very simple non-age structured IPM, we would use
the current distribution of trait values (g = 2) and the same inheritance function to obtain the mean
phenotype in generation 3, and that would correspond to z̄3 =

∫
α+ h2 · z · p2(z)dz = α+ h2 ( z̄2), which

in this case would be 10.25 (Fig. 4.7d). In this example, an IPM would predict the trait moving back
0.25 phenotype units, which corresponds to reverting back to half of the initial response to selection.
If z2 is any value other than 10, the static biometric inheritance function results in changes in mean
phenotype in the absence of selection, drift, mutation and migration. Continuing the analytical itera-
tion of the mean phenotype in this simple IPM, I show that with each subsequent generation (iteration
step, in this simple argument), the mean phenotype regresses further toward a value determined by
the nature of the static biometric inheritance function (Fig. 4.7e). If selection is sustained, then the
dynamic of the mean phenotype even in this very simple IPM will be wrong, representing a compo-
nent associated with the response to selection, and a spurious change due to the misconception of
biometric inheritance associated with a parent-offspring regression with a fixed intercept. A biometric
inheritance function with a constant slope and intercept is inconsistent with evolution.
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Figure 4.7: The consequences of assuming a constant intercept for the parent-offspring (PO) re-
gression across generations. (a)(a)(a) Population at equilibrium, where mean phenotype is 10; (b)(b)(b) Period
of selection. Selection before reproduction causes mean parental size to change from 10 to 11
(∆z̄′1 = 1). Mean offspring phenotype (z2) is 10.5, which implies a parent-offspring regression given
by z̄2 = 5 + 0.5 · ( z̄1 + ∆z̄′1), and therefore h2 = 0.5 and an intercept of 5; (c)(c)(c) Relaxed selection.
When mean phenotype changes across generations, in this case from 10 to 10.5, the intercept of
the parent-offspring regression necessarily changes as well. In a case of no selection in generation
2, the parent-offspring regression is given by z̄3 = 5.25 + 0.5 · z̄2; (d)(d)(d) Relaxed selection with constant
intercept. If the intercept is assumed to remain constant, and the first parent-offspring regression is
used to estimate the mean phenotype in generation 3 (z3), instead of the true value 10.5, 10.25 is ob-
tained instead; (e)(e)(e) Iteration of mean phenotype to subsequent generations of relaxed selection, both
under a model with a genetical notion of inheritance and an analytical iteration of a simple IPM with a
biometric inheritance function with a fixed intercept. In (c)(c)(c) and (d)(d)(d) the distribution in grey corresponds
to the previous generation.
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4.4 Study case: bighorn sheep

I used a pedigreed population of bighorn sheep from Ram Mountain, Alberta, Canada (52◦ N, 115◦

W) to assess the performance of the development and inheritance functions as implemented in stan-
dard IPMs. Both quantitative genetic (e.g. Coltman et al., 2003; Wilson et al., 2005) and IPM analyses
(Traill et al., 2014) have been conducted for this study system. For detailed information on the study
system see Chapter 2. I analysed individual age-specific masses adjusted to September 15 (see
Martin & Pelletier, 2011) for 461 ewes captured from 1975 to 2011 and aged up to 10 years (2002
ewe-years). I built two statistical models, one reflecting how the ontogenetic development of size and
inheritance have been typically modelled in IPMs, and the other corresponding to a possible alterna-
tive to estimating these two key functions, a random regression animal model of body size (Kirkpatrick
et al., 1990, 1994; Meyer & Hill, 1997; Meyer, 1998; Wilson et al., 2005). I chose random regression
because it is widely used to study the genetics of developmental trajectories and it satisfies a number
of criteria, namely: (i) it accommodates across-age covariance, over and above that attributable to
measured values of focal traits, (ii) it incorporates the known fundamentals of quantitative genetics,
(iii) it is economical in terms of the number of parameters that need to be estimated, and (iv) its basic
structure is compatible with IPMs. Criteria (i) and (ii) result in random regression analysis providing
an approach for characterising development and inheritance that should be robust to regression to
the mean, as imperfectly measured quantities are not used as predictor variables, and as it uses
a modern notion of inheritance of quantitative traits. Nonetheless, other options can also avoid re-
gression to the mean, including a formulation of an explicit genetic autoregressive size-dependent
model that accounts for measurement error. Also, although the random regression approach, and
potentially other models using quantitative genetic approaches characterising variation in phenotype
and its inheritance, could profitably be integrated into the broader IPM framework, for simplicity I refer
to the former approach as “IPM" and to the latter as “RRM". Both models were fitted in a Bayesian
framework, using MCMCglmm (Hadfield, 2010), and diffuse inverse gamma priors for all (co)variance
components.

4.4.1 Standard IPM approach

I used a linear model to estimate the development and inheritance functions used in typical IPMs. I
modelled observed ewe mass at each age as a function of mass at the previous age, with separate
intercepts and slopes for each age. For lambs, I estimated a regression of lamb mass on the mass of
their mother two months before conception (previous September). Formally, the model is described
as

xi,a ∼ N
(
ua + bdeva × Iadulti × xi,a−1 + binh × Ilambi × mothermassi ,ei,a

)
, (4.13)

where xi,a is the observed mass of individual i at age a, ua age-specific intercepts, bdeva age-specific
size slopes and binh is the inheritance function coefficient. Ilamb and Iadult are indicator variables
for lambs and older individuals, respectively. Finally, ea are heterogeneous residuals per age. The
estimated fixed effects and variance parameters are presented in Table 4.1.
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Table 4.1: Coefficients for the IPM standard approach, including regressions of mass at age a on
mass at age a− 1, and of lamb’s mass on mother’s mass at conception for the bighorn sheep popula-
tion of Ram Mountain. The values correspond to posterior modes and 95% quantile-based credible
intervals.

Age Intercept Slope Residuals
1 17.30 ( 13.61 - 21.16 ) - ( - - - ) 17.87 ( 15.63 - 20.80 )
2 25.62 ( 21.41 - 29.63 ) 0.71 ( 0.56 - 0.87 ) 20.66 ( 17.43 - 25.04 )
3 25.91 ( 21.45 - 30.56 ) 0.70 ( 0.59 - 0.79 ) 17.51 ( 14.83 - 21.30 )
4 35.01 ( 29.42 - 40.77 ) 0.51 ( 0.41 - 0.60 ) 18.04 ( 15.15 - 21.98 )
5 26.75 ( 19.78 - 34.07 ) 0.62 ( 0.52 - 0.74 ) 15.13 ( 12.51 - 18.69 )
6 28.04 ( 19.07 - 36.47 ) 0.62 ( 0.49 - 0.75 ) 17.79 ( 14.80 - 22.32 )
7 28.05 ( 19.97 - 35.28 ) 0.62 ( 0.51 - 0.73 ) 12.63 ( 10.35 - 16.17 )
8 27.34 ( 17.14 - 37.05 ) 0.63 ( 0.49 - 0.77 ) 15.04 ( 12.31 - 19.43 )
9 23.04 ( 13.72 - 32.60 ) 0.68 ( 0.55 - 0.81 ) 11.48 ( 9.17 - 15.10 )
10 20.30 ( 7.56 - 33.20 ) 0.72 ( 0.54 - 0.90 ) 15.14 ( 11.83 - 21.05 )

Posterior mode and 95% credible interval for the inheritance regression: 0.12 (0.07 - 0.18)

4.4.2 Random regression of size

To model the family of size-at-age functions in bighorn sheep ewes, its genetic basis, and associated
phenotypic and genetic covariances of size across age, I fitted a random regression animal model
(Kirkpatrick et al., 1990, 1994; Meyer & Hill, 1997; Meyer, 1998; Wilson et al., 2005) of the form

xi,a ∼ N
(
µa + f1(di ,n1,a) + f2(BVi ,n2,a),ei,a

)
, (4.14)

where xi,a is the mass of individual i at age a and µa are age specific intercepts. f1 and f2 are
random regression functions on natural polynomials of order n, for permanent environment effects
and additive genetic values, respectively. The permanent environment effect refers to all consistent
individual effects other than the additive genetic effect (see Kruuk & Hadfield, 2007). In both f1 and
f2, n was set to 2, allowing the estimation of random intercepts, slopes, and curvatures. Polynomials
were applied to mean-centred and standard deviation-scaled ages to improve convergence. Finally,
heterogeneous residuals across ages were estimated (ei,a). d and BV , vectors with individual and
pedigree values, respectively, were assumed to follow normal distributions, d ∼ N (000,DDD) and BV ∼

N (0,GGG ⊗ AAA). Both DDD = IIIσ2
i , where σ2

i is the permanent environment effect of individual i, and the
additive genetic variance-covariance matrix, GGG, are 3 × 3 matrices, AAA is the pedigree-derived additive
genetic relatedness matrix, and ⊗ denotes a Kronecker product. More information on partitioning
phenotypic variance into different components of variation using pedigrees and the animal model is
provided by Lynch & Walsh (1998), Kruuk (2004) and Wilson et al. (2010). To obtain the genetic
variance-covariance matrix for the 10 ages, the following equation is used

G10G10G10 = ΦΦΦGGGΦΦΦT , (4.15)

where G10G10G10 is the resulting 10 × 10 genetic matrix, GGG is the 3 × 3 genetic matrix estimated by the model
and ΦΦΦ is a 10 × 3 matrix with the polynomials evaluated at each age (Kirkpatrick et al., 1990; Meyer,
1998). A 10 × 10 matrix, D10D10D10, for individual effects at the 10 ages can be obtained similarly. The
estimated fixed effects and variance parameters are presented in Table 4.2.
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Table 4.2: Coefficients for the random regression animal model on body mass for the bighorn sheep
ewes from Ram Mountain, including age-specific fixed intercepts and residuals (upper part), as well
as estimates for the intercept, slope (Age) and curvature (Age2) of the random effects on breeding
values (BV ) and permanent environment (d, lower part). The values correspond to posterior modes
and 95% quantile-based credible intervals.

Age-specific intercepts and residuals
Age Intercept Residuals

1 25.77 (25.18 - 26.36) 8.19 (4.75 - 11.68)
2 44.22 (43.48 - 44.94) 14.01 (10.83 - 17.23)
3 57.05 (56.26 - 57.83) 16.21 (12.90 - 19.73)
4 63.64 (62.85 - 64.42) 11.45 (8.80 - 14.20)
5 66.76 (65.93 - 67.59) 9.78 (7.41 - 12.32)
6 69.15 (68.29 - 70.03) 10.20 (7.55 - 12.99)
7 70.32 (69.47 - 71.16) 6.84 (4.91 - 8.96)
8 71.09 (70.20 - 71.99) 8.72 (6.27 - 11.31)
9 71.36 (70.44 - 72.30) 6.90 (4.50 - 9.43)
10 71.34 (70.14 - 72.48) 10.0 (5.95 - 14.56)

Random regression on age
Term BV d

Intercept 7.59 (1.52 - 13.29) 8.60 (2.00 - 15.93)
cov(Intercept, Age) 2.29 (0.24 - 4.29) 0.46 (-1.45 - 2.56)
cov(Intercept, Age2) -1.44 (-3.11 - 0.19) -1.12 (-2.94 - 0.45)
Age 2.07 (0.71 - 3.37) 0.53 (0.01 - 1.38)
cov(Age, Age2) -1.13 (-1.90 - -0.36) -0.01 (-0.48 - 0.39)
Age2 0.89 (0.20 - 1.57) 0.34 (0.02 - 0.80)

4.4.3 Recovering resemblance within and across-generations

I compare the correlations in mass among ages implied by the development functions typically
adopted in IPMs and those derived from a RRM, to the observed phenotypic correlations (Fig. 4.8A-
C). I used the path rules, as described for the theoretical models, to obtain the correlation matrix for
size at different ages implied by the IPM approach. There was no need to do the same for the RRM,
as these correlations were recovered with Equation (4.15). I also analyse the proportion of corre-
lation recovered for different gaps between ages (projection steps, ∆t ) by both models (Fig. 4.8D).
The RRM estimates a phenotypic correlation matrix (Fig. 4.8C) that is much more similar to that ob-
served (Fig. 4.8A) than the correlation matrix implied by the IPM approach (Fig. 4.8B). Across-age
correlations are better recovered by the RRM than by the IPM approach (Fig. 4.8D). The proportion
of correlation in size among ages recovered by an IPM follows the pattern predicted in Figure 4.2,
with high recoveries for a single projection step, and then rapidly decaying to near zero (Fig. 4.8D).
As predicted by the theory presented in this chapter, typical parameterisations of the development
functions severely underestimate similarity of trait values within individuals across ages.

Second, I show the parent-offspring regressions recovered by the RRM and the IPM, and use the
“observed" regressions as reference (Fig. 4.9). These latter values correspond to regressions of
daughter mass on maternal mass for all matching ages, also including random intercepts for mother
identity by age, year and cohort, as well as heterogeneous residuals by age. The cross-age biometric
inheritance function implemented in IPMs recovers parent-offspring regression for lambs (age 1), but
for older ages most similarity between parents and offspring is missed (Fig. 4.9). In contrast, the
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patterns of parent-offspring similarity recovered by the RRM are of the observed order of magnitude
throughout most of the life cycle (Fig. 4.9).
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Figure 4.8: Observed phenotypic correlation matrix for size across ages for the bighorn sheep pop-
ulation of Ram Mountain (AAA), and analogous matrices implied by the IPM (BBB) and estimated by the
RRM (CCC) approaches. Proportion of the correlations in size among ages recovered by the IPM (black
dots) and RRM (grey dots) for different age gaps (projection steps, ∆t ), using the observed pheno-
typic correlations as reference (DDD). In (DDD), a porportion of 1 (horizontal line) corresponds to a perfect
recovery of the observed correlation.
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Figure 4.9: Parent-offspring regressions estimated for different ages for the bighorn sheep population
of Ram Mountain, by the IPM and the RRM approaches. The observed values, and the corresponding
95% credible intervals, were estimated by a linear mixed model of daughters’ mass on mothers’ mass
for matching ages, with random intercepts for the mother identity by age, year, and cohort. The
values on top of the bars correspond to the number of offspring (top, bold) and mothers (bottom,
italic) available for each age.

63



CHAPTER 4. EVOLUTIONARY INFERENCE WITH IPMS

4.5 Discussion

I have shown analytically that IPMs, as typically implemented, will generally, and often severely, un-
derestimate quantities that are critical to evolutionary inference. Both my theoretical results and my
empirical example show that phenotypic covariances within and across individuals can be effectively
zero in these models, due purely to artefacts of their construction. Additionally, the static nature
of the inheritance function (parent-offspring regressions with fixed intercept) artificially reverses any
response to selection. Consequentially, IPMs, as typically constructed, will inevitably suggest that
evolution is not an important aspect of the dynamics of traits over time. I suggest, and demonstrate
empirically, alternative approaches that could be used to characterise some key functions in IPMs.
IPMs in principle are extremely useful and highly flexible, and their original conceptualisation (East-
erling et al., 2000; Ellner & Rees, 2006) should be broadly compatible with a variety of alternative
ways of characterising variation in growth and inheritance.

The main reason why development functions in IPMs fail to recover within-generation covariances
of traits is regression to the mean. This problem is well-understood in evolutionary and ecological
studies (e.g. Kelly & Price, 2005). In IPMs, this problem is particularly severe because the multiple
age-specific projection steps compound the effect of measurement error to reduce covariance among
predictor and response variables. Consequently, covariance between non-adjacent ages, which can
be substantial (Fig. 4.8A, Wilson et al., 2005), is severely underestimated (Fig. 4.8B), even when
measurement error is relatively small (Equations 4.1 and 4.2).

The failure of biometric inheritance functions to predict phenotypic similarity among relatives is par-
tially also a direct manifestation of regression to the mean. Indeed, it is the canonical manifestation
of regression to the mean - coined in exactly this context by Galton (1886). What we now understand
is that Mendelian factors are inherited, and that, in terms of statistical mechanics of quantitative ge-
netics, environmental variation can be regarded as measurement error obscuring the influence of
breeding values. Any model of inheritance that does not include our understanding of how inheri-
tance drives similarity among relatives in quantitative traits (Fisher, 1918, 1930; Wright, 1922, 1931)
cannot be expected to suffice for even the most basic evolutionary predictions. Another issue arises
from assuming that the biometric inheritance function is constant. Whenever the mean phenotype
changes, the intercept of the parent-offspring regression necessarily changes as well. To presume
that the intercept of the parent-offspring regression is constant across generations constrains the
mean phenotype to be able to respond only transiently to selection, as I show by analytically iterating
the mean phenotype in a simple IPM model structure (Fig. 4.7d). I reiterate that my criticism of a
constant inheritance function is not a criticism of models assuming a constant heritability, whether
that heritability is modelled using a genetical (i.e. using constant σ2a and σ2

z ) or a biometric approach
(i.e. using a parent-offspring regression with a constant slope). Rather, the key point is that the mean
phenotype cannot evolve in a model where a parent-offspring regression has a fixed intercept.

In my theoretical models, I use simple but general development and inheritance functions that are
specifically designed to isolate these two fundamental processes from each other. In practice,
however, the undesirable behaviours that I have modelled separately will interact. Importantly, in
iteroparous organisms, where multiple episodes of reproduction occur over the lifetime, regression to
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the mean in development functions will further obscure relationships between parents and offspring,
with increasing effects as parents age (Chevin, 2015). Additionally, biased estimates of covariance of
parents and offspring are compounded across multiple generations. The underestimation of similarity
between parents and offspring will be compounded at each generation, leading to increasingly severe
undervaluation of the relevance of relationships among more distant relatives to the evolutionary pro-
cess. This interaction is very evident in the empirical example I present. Parent-offspring regressions
recovered with the development and inheritance functions generally used in IPMs (Fig. 4.9) could
not be predicted by the two-age theoretical model presented here, and specifically by Equation (4.11).

IPMs with typical cross-age biometric inheritance functions have been recommended for studying
evolutionary responses to selection (Coulson et al., 2010; Coulson, 2012; Rees et al., 2014). Some
studies applying this approach have concluded that non-evolutionary changes in trait distributions
are the major contributors to temporal changes in phenotype (Ozgul et al., 2010; Traill et al., 2014).
My theoretical findings do not indicate that these conclusions are wrong. Rather, I demonstrate that
these are the conclusions that this kind of model must inevitably generate when applied to any sys-
tem, regardless of whether evolutionary change is important or not. Since typical parameterisations
of IPMs neglect the vast majority of similarity between parents and offspring, they cannot attribute
phenotypic change to evolution. Concern about how IPMs model the transmission of dynamic traits
had been previously raised (Hedrick et al., 2014; Chevin, 2015; Vindenes & Langangen, 2015; Ben-
them et al., 2017). Particularly, Chevin (2015) identified some issues addressed in this chapter,
presenting insightful numerical examples that illuminate the main concern with the cross-age struc-
ture of the inheritance function. Besides my analytical demonstrations, and the numerical examples
made available by Chevin (2015), I also provide an empirical example, using random regression
analysis to address the issues presented here. The random regression model provided substantial
improvement in recovering both correlations across ages within a generation (Fig. 4.8D), and parent-
offspring regressions reflecting how breeding values are transmitted over generations (Fig. 4.9).

Vindenes & Langangen (2015) discuss joint models of static traits (constant through life) and dynamic
traits (such as those typically handled in IPMs) in the general IPM framework. They suggest that
incorporation of static traits could solve some of the problems that had begun to be acknowledged
about evolutionary inference with IPMs (Hedrick et al., 2014; Chevin, 2015). The authors propose
that the static trait, birth mass in their example, could be modelled as influencing mass at all other
ages and demographic rates, which would allow covariances among birth mass and older ages to
be well recovered. In a sense, using random regression animal models as I suggest treats breeding
values (as opposed to some realised phenotypic value) as a static trait, but critically also models
the inheritance of breeding values, not as some observed function, but according to the principles of
quantitative genetics. It is noteworthy to mention that a genetic notion of trait transmission has already
been implemented into an IPM for a single Mendelian locus (Coulson et al., 2011). The authors
constructed an IPM that describes the dynamics of body mass and a biallelic gene determining
coat color in wolves (Canis lupus). In contrast to biometric IPMs of quantitative traits, Coulson et al.
(2011) conclude that the genetic variance within the study population is enough for natural selection
to cause evolution. In fact, it is in principle relatively straightforward to implement an IPM that uses
the basic principles of inheritance of polygenic quantitative traits to define inheritance functions of
breeding values; such exercises have indeed begun for a single trait (Childs et al., 2016). It is easy
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to conceive of multivariate extensions of such inheritance functions (based on multivariate versions
of equations 4.3 and 4.4), whereby one could treat age-specific sizes as different characters, and
estimate genetic variances and covariances from data. Nonetheless, a great deal of work is still
required. For long-lived organisms, genetic covariance matrices of age-specific traits would be very
challenging to estimate with useful precision (Wilson et al., 2010). Furthermore, the dimensionality of
resulting phenotypes would overwhelm typical strategies for implementing IPMs (Coulson et al., 2010;
Rees et al., 2014; Merow et al., 2014). In practice, a key challenge, but a surmountable one, will be to
develop sufficiently flexible, low-dimensional characterisations of the genetic basis of development for
practical estimation and subsequent modelling. The function-valued trait approach I adopted with a
random regression model of bighorn sheep ewe mass is just one such possibility. Other approaches
could possibly be even more useful; for example, uses of various autocorrelation functions (Pletcher
& Geyer, 1999; Hadfield et al., 2013), or factor-analytic mixed model (de los Campos & Gianola,
2007; Meyer, 2009; Walling et al., 2014).

4.6 Summary

I have shown analytically and using and empirical example that standard implementations of integral
projection models will generally severely underestimate the likelihood of evolutionary change. IPMs
to date have been constructed using characterisations of development and inheritance that would
not stand up to scrutiny in studies focusing on development and inheritance. It is not surprising that
more complex models built on such functions behave poorly. In fact, insofar as the ability of IPMs
to track the full joint distribution of phenotype has been suggested as their main quality for ecolog-
ical inference, the problems that preclude their typical use for evolutionary inference should be of
equal concern to ecologists. Importantly, I have suggested ways in which more nuanced models of
development, and a modern understanding of inheritance, can be incorporated into the general IPM
approach. A great deal more work is required before IPMs based on adequate models of develop-
ment and inheritance will be field-ready. As a next step, careful studies of the performance of different
approaches for characterising the genetic basis of developmental trajectories, with particular focus
on approaches that could be incorporated into an IPM framework, are needed.
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CHAPTER 5
The genetics of horn length trajectories in

bighorn sheep (Ovies canadensis) rams

Abstract

Modelling the genetic contribution to the variation in traits that develop over time is still
a challenge, due to data and computational limitations. Even a reduced dimensional ap-
proach can prove to be challenging when usual methods of quantitative genetics are to
be implemented within complex population models, such as integral projection models
(IPMs). Here, I first describe variation in horn length trajectories in bighorn sheep (Ovies

canadensis) in terms of relevant components, including additive effects, and characterise
similarity within individuals across the ontogeny and between individuals and their rela-
tives. After establishing such characterisation, using a full-ranked multivariate model, I
compare different models in their performance at recovering those relationships. IPMs
have been implemented including a concept of inheritance that does not match the rules
of how genes are passed through generations. I find that such parameterisation recovers
nearly zero additive genetic variance in a trait that was shown to be heritable across the
ontogeny of bighorn rams, whereas a random regression coupled with the animal model
closely matches the saturated model. A very poor fit was obtained with factor analytic
models with one and two common factors fitting the GGG matrix, implying that two principal
components were not sufficient to model the additive genetic architecture in horn length
across ages. A reason for this result might lie in how different models handle horn break-
age, which is a common consequence of horn-clashing fights during the rut.

Keywords: additive genetic (co)variance, bighorn sheep, integral projection models, factor-analysis,

function-valued trait, ontogeny, random regression

5.1 Introduction

Three decades have passed since Kirkpatrick and collaborators extended the canonical notion of
quantitative genetics, generalising it to comprise function-valued traits (Kirkpatrick & Heckman, 1989;
Kirkpatrick et al., 1990), i.e. traits that change over the ontogeny (e.g. size). This development was
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critical in overcoming intractability issues associated with the use of classical quantitative genetics
of multivariate traits (Lande & Arnold, 1983), also providing a means to describe a continuous trait
over all its range (infinite points), rather than at arbitrary and finite landmarks. With the emergence
of several long-term studies of long-lived animals and molecular tools to infer pedigree structure
(Pemberton, 2008; Clutton-Brock & Sheldon, 2010), this framework has become particularly popular
to investigate the genetics of ontogenetic trajectories of size in the wild (e.g. Wilson et al., 2005,
2007), using the so-called animal model (Henderson, 1975). Additionally, advances in genotyping
technology continue to widen the scope of systems to which these models can be applied (Bérénos
et al., 2014; Morrissey et al., 2018). All these accomplishments in the theoretical grounds of quan-
titative genetics of developing traits are now on the verge to be fully implemented within structured
population models (Childs et al., 2016), opening the possibility to predict evolutionary change while
simultaneously considering population ecology and life history.

Function-valued traits, initially coined infinite-dimensional (Kirkpatrick & Heckman, 1989), are traits
that vary according to another continuous quantity, therefore being described by a function. Size
through time or age, i.e., the ontogenetic trajectory of size, is an example of such a function. The
variation associated with size across ages is itself described by a function, specifically a covariance

function. The covariance function concept applies to the phenotypic variance, but also to any partition
within total variance, including the variance in additive genetic values. As a result, an additive genetic
covariance function, GGG, can be estimated. In fact, one of the grounds upon which quantitative genet-
ics lies, the partitioning of variance components introduced by Fisher in 1918, is readily extendable
to covariance functions, such that a phenotypic covariance function of a polygenic trait can be writ-
ten as the sum of an additive genetic covariance function and an uncorrelated non-additive genetic
(residual) covariance function, PPP = GGG + RRR (see Kirkpatrick & Heckman (1989) for details). For prac-
tical reasons, however, additive genetic variance-covariance matrices, GGG, are often derived, simply
by evaluating GGG at specific ages i and j, GGGi, j = GGG (i, j ). In its initial formulation, Kirkpatrick adopted
random regression on orthogonal polynomials as a function to model the genetic structure across
the ontogeny of individuals, but since then other modelling approaches have been adopted, such
as the estimation of autoregressive (Pletcher & Geyer, 1999; Hadfield et al., 2013) or factor analytic
(Kirkpatrick & Meyer, 2004; de los Campos & Gianola, 2007; Meyer, 2009) genetic structures.

A fairly recent breakthrough in terms of potentially expanding application of quantitative genetics of
developing traits happened with the extension of integral projection models (IPMs, Easterling et al.,
2000) to include inheritance functions (Coulson et al., 2010). These are structured models designed
to study the dynamic of populations when individuals’ vital rates (e.g. survival, growth, reproduction)
depend on one or more continuous state variables (e.g. horn length). To achieve this, IPMs make
population projections from regression models that define the underlying vital rates as functions of
the state variables. By combining evolutionary biology to different aspects of population ecology and
life history, these models are potentially very flexible and an advantageous framework to study evolu-
tionary change. However, controversy has been raised as to a concept of inheritance that has been
implemented in several IPMs (Chapter 4, Hedrick et al., 2014; Chevin, 2015). Peculiarly, cross-age
parent-offspring regressions (offspring trait at birth or recruitment regressed on parental trait at con-
ception or parity) have been adopted (e.g. Coulson et al., 2010; Schindler et al., 2013; Traill et al.,
2014; Bassar et al., 2016) as matching the concept of biometric heritability (Jacquard, 1983). The
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concept of biometric heritability, however, has been defined since Galton (1886) as a parent-offspring
regression evaluated at the same age. Such implementation is highly problematic because: (1) there
are no theoretical grounds to a concept of inheritance matching a cross-age parent-offspring regres-
sion; and (2) such implementation leads to a systematic underestimation of the resemblance across
relatives and, therefore, of evolution (see Chapter 4 and Chevin, 2015 for details). Moreover, another
concern regarding IPM implementations is related to how mean trajectories have been estimated so
far, through a series of antedependent regressions of subsequent observed sizes, and its conse-
quences to the phenotypic variance-covariance matrix implied in all IPMs to date. By using multiple
subsequent regressions on observed size, bias occurs through regression to the mean, leading to an
underestimation of the resemblance within individuals across ages (Chapter 4).

Of particular interest is an IPM developed for the bighorn sheep (Ovis canadensis) population at Ram
Mountain in Alberta, Canada, due to its role in an ongoing controversy about the effect of trophy
hunting in the evolution of horn size (Traill et al., 2014). Such debate is of critical concern as a result
of this being the only hunted population of ungulates for which a pedigree and horn measurements
are available. Bighorn sheep rams at Ram Mountain were subject to trophy hunting until 2011, while
shooting was allowed of any ram whose horns reached a certain phenotypic criteria based on the curl

of the horn (for details, see Chapter 2). The curl of a horn is highly correlated with its length, a trait
that is known to be positively associated to the reproductive success of rams beginning at 6-7 years
of age (Coltman et al., 2002; Festa-Bianchet et al., 2004). As rams from the age of 4 years start
to reach legal trophy status, and are thus vulnerable to hunting mortality, selective harvest of males
with larger horns could, consequently, result in reproductive advantage to rams with smaller horns,
potentially leading to a change in the allele frequency in this population. The first analyses address-
ing this hypothesis (Coltman et al., 2003; Traill et al., 2014, although the IPM developed by Traill et
al. used body mass rather than horn length) reached opposite conclusions as to the role of evolution
in the phenotypic decrease in horn size and were both subject to criticism (Postma, 2006; Hadfield
et al., 2010; Hedrick et al., 2014; Chevin, 2015, Chapter 4). Recently, Pigeon et al. (2016) presented
a similar analysis to Coltman et al. (2003), addressing the issues raised to the initial analysis and
provided evidence of evolutionary change. As a result, there is particular interest in assessing the
performance of a cross-age parent-offspring regression of horn length, rather than body mass, and
comparing it to quantitative genetics models.

This chapter serves, in large part, as an intermediate step to developing an individual-based model
(IBM) of horn length, which is presented in the next chapter (Chapter 6). Nonetheless, two distinct
goals were set for Chapter 5. The first aim includes characterising the contribution of additive ge-
netic effects in the variability of horn length along the ontogeny of bighorn sheep rams, as well as
quantifying the similarity in horn length among ages and among individuals and their descendants.
Although estimates of the heritability of male horn length in bighorn sheep exist in the literature (Colt-
man et al., 2003, 2005; Poissant et al., 2012; Pigeon et al., 2016), those are specific to particular
ages or age ranges, and the genetic and phenotypic architecture of correlations across ages is un-
known for this trait. The second aim of this chapter involves testing alternatives to the cross-age
parent-offspring regression that simultaneously: (1) could be implemented into IPMs - or into alter-
natives to IPMs that are more feasible to implement with realistic models of component biological
processes, such as IBMs, and (2) match known theory of how genes are inherited. As such alterna-
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tives, which also should be relatively economical in terms of the number of parameters used, I adopt
random regression and factor analysis, both coupled with the animal model. The former is possibly
the most frequently used approach to investigate the genetics of size ontogeny among evolutionary
biologists, whereas the latter is primarily adopted by animal breeders. I compare the ability of the
three approaches in recovering both across-generation and across-age resemblance and conclude
that random regression is the option that shows better performance.

5.2 Methods

5.2.1 Study system and data

I used the pedigreed population of bighorn sheep at Ram Mountain, Alberta, Canada (see details
in Chapter 2), to investigate the mechanisms underlying resemblance in horn length across the on-
togeny of bighorn males and among individuals and their relatives, as well as to assess the perfor-
mance of alternative models in their ability to recover such patterns. I used yearly measurements of
horn length, information on population density (number of females in the study area), age and year
of measurement, maternal identity and cohort of each individual, as well as the pedigree of the popu-
lation. To minimise measurement error caused by horn wear or breakage, I used the longest horn in
the analyses presented here. Also, prior to any data analysis, horn length was adjusted to predicted
individual values on September 15 using a mixed model approach (Martin & Pelletier, 2011). As data
becomes very scarce for older ages, the corresponding sample sizes are not enough for the unstruc-
tured estimation of all age-specific additive genetic variances, and all covariances between ages. For
that reason, I focused on horn length estimated for rams aged between 1 and 8 years old. Most rams
achieve their asymptotic horn length by that age (Fig. 5.1, Schindler et al., 2017). Furthermore, for
tractability, a multivariate model, (sensu Lande & Arnold, 1983), was fitted to ages 1 to 4 years only.
I analysed 819 records of individual age-specific horn lengths of 276 rams captured from 1972 to
2015. For detailed information on the study system and on how the data were collected, see Chapter
2.

5.2.2 Models and variance structures

The genetics of horn length trajectories was modelled using three different approaches: random re-
gression (rr, Kirkpatrick et al., 1990, 1994; Meyer & Hill, 1997; Meyer, 1998), factor analysis (fa,
Kirkpatrick & Meyer, 2004; de los Campos & Gianola, 2007; Meyer, 2009), and an antedependence
model (ant), as implemented for, example, in Traill et al. (2014) and advised by Coulson et al. (2010)
or Rees et al. (2014). Although both the rr and the fa models are low dimensional alternatives to
a multivariate approach (Lande & Arnold, 1983), only the former is implemented within the function-
valued trait framework. As a result, covariance functions were obtained with the rr model, whereas
matrices were instead derived with the fa and ant models. Regardless of this conceptual difference,
phenotypic (co)variances were obtained as the sum of additive genetic, permanent environment,
maternal, cohort, year of measurement and residual effects. While additive genetic, permanent envi-
ronment, and phenotypic covariance functions were denoted by GGG, EEE, and PPP, respectively, matrices
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were denoted by the corresponding bold capital letter (e.g. GGG for the additive genetic covariance
matrix). I use the term permanent environment to refer to all consistent individual effects other than
the additive genetic effects (Kruuk & Hadfield, 2007). To simplify model comparison, covariance ma-
trices were derived from covariance functions in the rr model. In the IPM-like ant model, covariance
matrices are not explicitly estimated, but the phenotypic variance-covariance matrix and heritabilities
at each age implied by the model can be derived (see Chapter 4).

I fitted the rr, fa, and antmodels sharing several consistent features. Age-specific intercepts, µt , and
different slopes for population size, βpop , according to a four-level categorical variable to characterise
age were fitted. Yearlings, 2 year-olds, 3 year-olds and individuals of older ages were the classes
considered. Additionally, I estimated random intercepts for maternal, um , cohort, uc , and year of
measurement, uy , effects. A structure that is common to all models is represented by

zit ∼ N


µt +

4∑
j=1

I ji t × βpop j × popit + umi + uci + uyi +UUU, ε it


 , (5.1)

where zi, t corresponds to the horn length of individual i at age (or time) t. As t takes values from
1 to 8, eight different µ were estimated in each model. I ji t is an indicator variable for age class j

and pop are observed values of population density. To simplify model notation, indexing refers to
individuals and ages only, resulting in umi corresponding to the effect associated to the mother of
ram i, rather than the effect of mother i. um , uc , uy , and ε it , the model residuals, were assumed to
be independent and normally distributed with mean zero and variances σ2

m , σ2
c , σ2

y , σ2
r , respectively.

Finally, UUU includes any approach to modelling across-age resemblance within individuals and among
relatives and is specific to each model.

Random regression models To model the family of size-at-age functions and associated phenotypic
and genetic covariances of horn length across ages using random regression, I set up Equation (5.1)
as follows

zit ∼ N


µt +

4∑
j=1

I ji t × βpop j × popit + umi + uci + uyi + f1(di ,n1, t) + f2(ai ,n2, t), ε it


 . (5.2)

f1 and f2 are random regression functions on natural polynomials of order n, of permanent envi-
ronment and additive genetic values, respectively. In both f1 and f2 n was set to 2, allowing the
estimation of random intercepts, slopes, and curvatures. Polynomials were applied to mean-centred
ages to improve convergence. di and ai , vectors with individual permanent environment and breeding
values, respectively, were assumed to follow normal distributions, d ∼ N (000, III⊗EEE) and a ∼ N (0,AAA⊗GGG),
where III and AAA are identity and pedigree-derived relatedness matrices, respectively. Random regres-
sions imply correlation structures among ages that are described by their coefficients, variances in
intercepts, slopes and curvatures and by the covariances among them. Both the permanent environ-
ment, EEE, and the additive genetic, GGG, covariance functions are defined by those coefficients and can
be represented by 3 × 3 symmetrical matrices. Importantly, a covariance matrix, such as the 8 × 8 GGG
matrix with the additive genetic covariances among ages from 1 to 8 years, can be decomposed as
GGG = ΦΦΦGGGΦΦΦT . In that case,ΦΦΦ is a 8 × 3 matrix with natural polynomials of order n evaluated at each age
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(Kirkpatrick et al., 1990; Meyer, 1998). A covariance matrix associated to permanent environment
effects, EEE, is obtained similarly using the corresponding covariance function, EEE. More information on
partitioning the phenotypic variance into different components of variation using general pedigrees
and the animal model is provided by Lynch & Walsh (1998), Kruuk (2004) and Wilson et al. (2010).
Finally, I estimated heterogeneous residual variances for each of the age classes defined above.

Factor analytic model In a factor analysis, a vector of q random variables, for example of additive
genetic effects at q different ages, is described as a linear combination of m, fewer, unobservable
random variables called common factors and the variance not explained by these is modelled sepa-
rately by fitting corresponding specific effects (de los Campos & Gianola, 2007; Meyer, 2009). As I
aim to identify low dimensional approaches that could possibly be implemented into population mod-
els, I adopted a particularly parsimonious version of this factor analytic setting, often referred to as a
reduced rank model, in which the specific effects are not estimated (Kirkpatrick & Meyer, 2004; Meyer,
2009). I modelled the breeding values at 8 different ages as aaa = ΛΛΛ × ccc, in which each ci is a vector
of m × 1 common factors characteristic of individual i and ΛΛΛ corresponds to an 8 × m matrix with the
loadings for each of the m common factors. The variance in the common factors is assumed to be
unitary and the covariance matrix associated with a factor analytic structure is simply obtained by
GGG = ΛΛΛ × ΛΛΛT . I fitted two different models, fa(1) and fa(2), where I set m to 1 and 2, respectively.
In both fa(1) and fa(2), I modelled permanent environment effects also adopting a factor analytic
structure, setting m = 1. These models can be represented as

zit ∼ N (µt +
4∑
j=1

I ji t × βpop j × popit + umi + uci + uyi + λat
λatλatcai t

cai tcai t + λet cei t , ε it ), (5.3)

where subscripts a and e refer to additive genetic and permanent environment structures, respec-
tively. When more than one common factor is fitted, orthogonality constraints must be considered.
Specifically, m× q−m(m−1)/2 parameters are estimated, where m(m−1)/2 are constrained to ensure
orthogonality among the common factors (Meyer, 2009). As a result, in model fa(2) I fixed the first
loading (referring to age 1) of the second factor to zero. Finally, as in the random regression model, I
estimated heterogeneous residual variances for ages 1, 2, 3 and older.

Antedependence model I used a linear model to estimate the development and inheritance func-
tions used in typical IPMs (see Chapter 4). I modelled observed horn length at each age as a function
of observed horn length at the previous age, with separate intercepts and slopes for each age. For
yearlings, I estimated a regression of yearling horn length on sire horn length at the age of 3 years,
zs3i . Formally, the model is described as

zit ∼ N (µt +
4∑
j=1

I ji t × βpop j × popit + bdevt × zi, t−1 × (1 − Iyeari t ) + binh × Iyeari t × zs3i t+

uei + umi + uci + uyi , ε it ),

(5.4)

where bdevt are age-specific horn length slopes and binh is the inheritance function coefficient. Iyear
is an indicator variable for yearlings and uei is a random intercept for individual i. As for the remain-
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ing random effects, ue are assumed to be normally distributed with mean zero and a certain variance
(σ2

e). To match the rational of autoregressive growth functions in IPMs, which can be fitted separately,
heterogeneous residual variances were estimated for each age.

In order to derive the phenotypic covariances implied by this model, it is useful to perceive the an-
tedependence model, i.e. the subsequent regressions of trait value on trait value at a previous age,
as a path diagram (see Fig. 4.1 in Chapter 4). In that case, bdev correspond to path coefficients and
the phenotypic variances associated with growth at each age to the exogenous variances. To apply
the rules of path analysis (McArdle & McDonald, 1984; Gianola & Sorensen, 2004; Morrissey, 2014),
I define ΨΨΨ as the matrix of total causal effects of each trait on every other as

ΨΨΨ = (III − bbb)−1, (5.5)

where bbb is a matrix with all path coefficients. The phenotypic covariance matrix, PPP, is then obtained
as

PPP = ΨΨΨPεPεPεΨΨΨT , (5.6)

where PεPεPε includes all exogenous variances, which in the case of the model in Equation (5.4) in-
cludes permanent environment, maternal, cohort, year of measurement and residual effects. For
more details on how to obtain covariance matrices in causally covarying traits see Morrissey (2014).
Regarding the inheritance function, note that although a single regression coefficient is estimated, it
is possible to derive the same-age parent-offspring regression coefficient (and, therefore, heritability)
that is implied at each age. According to the path rules, such quantities are obtained as the product
of the inheritance function coefficient by the development path coefficients up until the age of interest.
Using these parent-offspring covariances it is then straightforward to derive the implied age-specific
additive genetic variances, using the phenotypic variances as denominator.

As implemented in Coulson et al. (2010) or Traill et al. (2014), the inheritance function, used jointly
with the antedependence model of development, uses parental phenotype at the age of conception.
In the particular case of these data, this regression is negative (-0.14, 95% CrI -0.22; -0.07, see
Appendix C.2 for the remaining parameters). This negative cross-age inheritance function is itself
a clear indication of the inadequacy of this approach to handling inheritance. Nonetheless, some
comparison of this approach with the random regression and factor analytic approaches is clearly
desirable. Consequently, the solution I adopt, a parent-offspring regression using parental measure-
ments at the age of 3 years, should be regarded as a particularly conservative approach to typical
IPM implementations with respect to the criticisms identified in Chapter 4. Highest breeding success
occurs at older ages (Chapter 6, Coltman et al., 2002), resulting in an age gap between parents and
their offspring that is larger than the one considered here (between yearlings and 3 years-old). As
a result, the cross-age parent-offspring regression using paternal age at conception is expected to
recover less resemblance between generations (Chapter 4).

Multivariate model

Ideally one would compare the above models, and particularly the phenotypic and genetic architec-
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ture they recover, with the corresponding true ones. The closest to that is to fit a model that estimates
each parameter of the GGG and EEE matrices, a multivariate model (mvt, sensu Lande & Arnold, 1983).
Such approach will entail no bias due to any constraints imposed by the low-dimensional approaches,
but suffers from having the most parameters, and therefore is prone to being imprecise. In fact, it
implies estimating n × (n + 1)/2 parameters for each n × n covariance matrix and is often impossible
to accomplish as the number of traits (or times at which traits are evaluated) increases. Formally, I
define the mvt model as

zi, t ∼ N


µt +

4∑
j=1

I ji t × βpop j × popit + umi + uci + uyi + ai, t , ε i, t


 , (5.7)

where ai, t is the breeding value of individual i at age t. The breeding values are assumed to follow a
multivariate normal distribution with zero mean vector and the direct product of AAA and an unstructured
GGG matrix as covariance. In such a saturated model, permanent environment effects and residuals are
confounded, as once a residual unstructured covariance matrix is estimated, there are no degrees
of freedom left to model among-individual variation. Due to insufficient observations at later ages,
I could not fit the model in Equation (5.7) to ages from 1 to 8 years. Instead, I fitted a phenotypic
version of this model (i.e. excluding the estimation of the GGG matrix) to all ages and the full model to
ages from 1 to 4 years only.

5.2.3 Model estimation and comparison

All models were fitted using Bayesian statistics in R (R Core Team, 2014). The multivariate, ran-
dom regression and antedependence models were estimated using MCMCglmm (Hadfield, 2010),
whereas the factor analytic models were estimated using JAGS (Plummer, 2003) with the R package
rjags (code is provided in Appendix C.1). I assumed diffuse normal prior distributions for the fixed
effects, including the factor loadings, and inverse (multivariate) Wishart distributions for residuals and
random effects. For the latter, parameter expansion was adopted to improve model convergence
(Gelman, 2006; Hadfield, 2010).

Model outputs correspond to means of the posterior distributions and Highest Posterior Density cred-
ible intervals (CrI). Matrix comparison was performed by taking absolute differences of posterior
samples of each parameter estimated by different models. This procedure results in posterior distri-
butions of differences, which allowed inference on the likelihood of those differences being different
from zero. The proportion of variation explained by both additive genetic (narrow-sense heritability)
and permanent environment effects at each age were calculated from the GGG and EEE matrices, as well
as the additive genetic and permanent environment coefficients of variation, as these measures tend
to be less sensitive to scale effects than unstandardised variance components (Houle, 1992).
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5.3 Results

5.3.1 Observed size trajectories and underlying cross-age population struc-
ture in horn length

Variation in horn length trajectories of bighorn rams (Fig. 5.1) is a result of both genetic and environ-
mental contributions (Fig. 5.2). According to the multivariate model, heritability in horn length is very
high in bighorn rams during the first four years of age, as additive genetic variance amounts for up to
57% of the observed variation (at the age of 4 years), and never corresponds to less than 29% (at the
age of 1, Appendix C.3) of the phenotypic variance. Differences among cohorts are also an important
source of variation, contributing to up to 50% of total variation (in yearlings). Effects associated to the
maternal environment and year of measurement account for the smallest contributions to the phe-
notypic variation in horn length during the first four years of life of bighorn males, representing less
than 5% of total variation. Finally, although “permanent environment” effects are not distinguishable
from the residual variance in the multivariate model, since there is one measurement per individual
of each age-specific trait, the associated variance is not particularly large (up to 10%), leading to the
conclusion that most variation is captured by the remaining components.
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Figure 5.1: Observed horn length trajectories of 276 rams of the bighorn sheep population of Ram
Mountain. Measurements were adjusted to September 15, and values in grey correspond to the
number of observations available at each age. The line in teal corresponds to the mean trajectory
estimated by the multivariate model, adjusted for average population size. The vertical line illustrates
the adopted cut-off for data inclusion (up to the age of 8 years), suggesting that in most individuals
maximum size has been reached by that age.

GGG matrices, as well as GGG functions, of function-values traits are often difficult to estimate due to data
or computational limitations. Moreover, as the sample size available to estimate GGG depends on kin-
ship, whereas the accuracy in estimating PPP depends on the number of observations only, PPP matrices
have smaller sampling error, and are sometimes adopted as proxies for GGG (Willis et al., 1991; Steppan
et al., 2002; Agrawal & Stinchcombe, 2009). Given that the additive genetic contribution to the phe-
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Figure 5.2: Variance components contributing to the phenotypic variance in horn length up to the
age of 4 years in bighorn rams from Ram Mountain (a); and the corresponding proportion of variance
explained by each component (b), as estimated by the multivariate model in Equation (5.7). va, vm,
vc, vy, and ve/vr correspond to the additive genetic, maternal, cohort, year of measurement and
permanent environment/residual components of the phenotypic variance.

notypic covariation in horn length among ages is quite substantial in this species, it is not surprising
that the correlation pattern of PPP is very similar to that of GGG (Fig. 5.3), and that none of the differences
between phenotypic and additive genetic correlations are statistically different from zero (Tab. 5.1).

Table 5.1: Absolute differences (upper diagonal) and corresponding 95% credible intervals (lower
diagonal) between phenotypic and additive genetic correlations in horn length of bighorn sheep rams
from Ram Mountain, estimated by the multivariate model.

1 2 3 4
1 0.06 0.08 0.12
2 (0.00; 0.14) 0.04 0.07
3 (0.00; 0.20) (0.00; 0.08) 0.03
4 (0.00; 0.25) (0.00; 0.12) (0.00; 0.06)

5.3.2 Model comparison

Recovering mean trajectories

Although all models include age as a categorical fixed effect, the mean values across the ontogeny
will not necessarily correspond exactly among the models, due to intrinsic differences in their struc-
ture (Fig. 5.4, see Appendix C.2 for parameter estimates). The main difference in how models
estimate mean trajectories is associated with how each model copes with data incompleteness. Due
to (1) mortality before the age of 8 years, (2) rams not having reached that age by the cut-off year for
data inclusion, and (3) recapture success being necessarily lower than 100%, most individuals will
have incomplete trajectories. When data is missing at random, modelling among-individual variation
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Figure 5.3: Diagrams showing unstructured PPP and GGG variance-covariance and correlation matrices of
horn length across ages (years) in bighorn rams from Ram Mountain. Values correspond to estimates
from the multivariate model in Equation (5.7) (due to insufficient statistical power, a genetic version
was estimated only considering ages up until 4 years). Colour varies according to the minimum
(green) and maximum (purple) values of each covariance matrix and from 0 (green) to 1 (purple) in
the correlation matrices. Matrix estimates can be found in appendix C.4.
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might be a solution to deal with incompleteness of data (Hadfield, 2008). This very reason explains
why the multivariate model apparently overestimates horn length when compared to observed mean
values (Fig. 5.4c). Such differences accumulate over the ontogeny, and by the age of 8 years reach
3.09 cm. All models presented in this chapter include structures fitting among-individual variation, ei-
ther by including random effects on individual rams (all models but the factor analytic) or by including
a factor analytic structure on individual variation (factor analytic models). The extent to which those
structures were included in different models aimed at mimicking common uses of these models and
will impact how each model copes with information missing at random.

Mean horn length trajectories are modelled similarly in all models, except for the antedependence
model, which is conceptually distinct from the other models. All remaining models fit size-at-age,
whereas as the antedependence function models size-dependent growth: observed trait values at a
certain age are regressed on observed trait values at the previous age (development functions, e.g.
Ellner & Rees, 2006). In principle, such conceptual differences between size-at-age and autoregres-

sive modelling strategies do not necessarily affect how well the mean trajectory is recovered. The
fact that the ant model appears to underestimate horn length at older ages (in comparison to the
multivariate model), simply suggests that random intercepts at the individual level are not enough to
cope with information missing at random (Fig. 5.4b). The remaining models use more parameters to
model among-individual variation, therefore outperforming the antedependence model.
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Figure 5.4: Mean male horn length trajectories observed and estimated for the bighorn sheep pop-
ulation of Ram Mountain. Lines are estimates from the multivariate (mtv), random regression (rr),
factor analytical (with one and two additive genetic common factors, fa(1) and fa(2)), and antede-
pendence (ant) models, for average population size (a, b), and also observed (obs) mean values at
each age (c). In (a) the full trajectory is shown, whereas in (b) and (c) a close-up to older ages is
presented.
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Recovering age-specific aspects of variation

The contribution of the additive genetic effects to the phenotypic variance in horn length was esti-
mated (or derived) for ages from 1 to 8 in all models. The number of parameters each model used
to retrieve those effects varied considerably, from one (ant) to fifteen (fa(2)). Note that an unstruc-
tured matrix would have 36 free parameters. The additive genetic variances implied by the antmodel
(corresponding to twice the implied parent-offspring covariance) were not significantly different from
zero at any age (Fig. 5.5a, Appendix C.3), showing that the cross-age parent-offspring regression
implemented is not appropriate to recover similarity in horn length across relatives at any stage of
the ontogeny of bighorn rams (see also Chapter 4, Hedrick et al., 2014; Chevin, 2015). The model
that best recovered the additive genetic contribution to the phenotypic variation in horn length was
the rrmodel. Using 6 parameters to model the additive genetic (co)variation across ages, this model
closely matched the pattern obtained with the saturated model, a result that holds regardless of the
adopted scale (Fig. 5.5 a, c, e). Finally, both models using factor analytic structures to approximate
the GGG matrix did considerably worse than the rr model, and underestimated significantly the addi-
tive genetic variance in most ages. Adding a second additive genetic common factor did improve
the amount of variation recovered of this component, but rather insufficiently when compared to the
rr model. On the contrary, the factor analytic models, and particularly the fa(1), overestimated
permanent environment effects (Fig. 5.5 b), which, put together, suggests that the first two princi-
pal components of the GGG matrix are not sufficient to explain the genetic architecture of horn length
across the ontogeny, resulting in the the additive genetic and permanent environment factors being
confounded.

Given that the development functions adopted in IPMs usually use at most a single parameter to
model among-individual variance (e.g. Traill et al., 2014), that was the strategy adopted in this chap-
ter. Variance in random intercepts for permanent environment was estimated by the ant model as
1.22 (95% CrI 0.32; 2.20). As a result, heterogeneous variances in permanent environment effects
across the ontogeny of bighorn rams were only estimated in the random regression and factor ana-
lytic models (Fig. 5.5 b, d, f). Although values are also shown for the saturated (multivariate) model,
these quantities are confounded with residual variances and, as a result, these correspond to upper
limits of the true underlying among-individual variances.

Recovering resemblance within and across generations

In this section, I compare the different models in terms of their ability to recover similarity in horn
length among ages, considering both only the additive genetic contribution to such similarities and
all sources of variation. Those comparisons rely on the assumption that the parameter estimates
(covariances) of the multivariate model are very close to the underlying true ones (see Appendix
C.4 for covariance matrices). I quantified the resemblance across ages recovered by each model by
analysing the proportion of the correlations in horn length between ages recovered by each model
(Fig. 5.6). In reality, the multivariate model, and in particular the one including additive genetic pa-
rameters, estimate parameters with substantial sampling error. As a result, this comparison is mainly
an exercise checking for consistency, rather than a procedure that would lead to categorically reject
any of the models. Overall, all models recover better phenotypic and additive genetic correlations be-
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tween closely related ages. Regarding the phenotypic architecture of horn length across ages, both
the rr and the fa(2) recover correlations that are very close to the ones estimated by the mvtmodel,
whereas the fa(1) and the ant model seriously underestimate correlations between distant ages. In
fact, the pattern shown by the ant model in recovering phenotypic correlations follows the theoreti-
cal prediction derived in Chapter 4 (Fig. 4.2), decaying rapidly to almost zero. Notably, correlations
involving older ages are not systematically more difficult to recover, as long as relative to a closer
age. Additionally, both the rr and the factor analytic models estimate additive genetic correlations
between ages up to four years that are very close to the ones obtained with the multivariate model.
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Figure 5.5: Variance (a, b), proportion of phenotypic variance (c, d), and coefficient of variation
(e, f) associated with additive genetic (a, c, e) and permanent environment (b, d, f) effects in horn
length trajectories of male bighorn sheep at Ram Mountain. Estimates are shown for the multivariate
(mvt), random regression (rr), factor analytic with a single genetic common factor (fa(1)), factor
analytic with two genetic common factors (fa(2)), and antedependence (ant) models. Note that
for the mvt model residual effects that include permanent environment effects are shown, therefore
corresponding to upper limits of underlying among-individual variances. CVa estimates were not
obtained for the ant model, as it implied obtaining the squared root of negative values. All estimates
and associated uncertainty are available in Appendix C.3.
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Figure 5.6: Proportion of the phenotypic and additive genetic correlations in horn length recovered by
the random regression, rr, the factor analytic with a single, fa(1), and two, fa(2), additive genetic
common factors, and the antedependence, ant, models, according to the number of years apart
between horn length measurements. Different colours are used to show the lowest age involved the
correlation (for example, if age 7 is the lowest, only the correlation in horn length between ages 7
and 8 can be shown). Proportions were obtained adopting the estimates from the multivariate model
as reference.
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5.4 Discussion

Horn length is very heritable across the ontogeny of bighorn sheep rams, varying from 0.29 (95%
CrI 0.12; 0.45) to 0.57 (95% CrI 0.38; 0.74) up to the age of four years. After the age of four, the
random regression model suggests a decrease in the proportion of variance explained by additive
genetic effects, reaching 0.28 (95% CrI 0.00; 0.70) by the age of 8 years. Several studies had already
shown that horn length is heritable in this (Coltman et al., 2003, 2005; Poissant et al., 2012; Pigeon
et al., 2016) and other species of ungulates, where horn and antler size is also known to be heritable
(Kruuk et al., 2002; Johnston et al., 2010). However, no age-specific estimates were available, nor
was information on additive genetic correlations among ages. According to the multivariate model,
correlations among ages are, overall, positive and strong, both at the additive genetic and pheno-
typic levels, therefore suggesting that rams that have larger horns early in life tend to be the ones
with larger asymptotic horn length. I also provide evidence that both additive genetic and phenotypic
variances decrease at older ages. Such pattern could be a misleading result of lower sample size at
older ages due to incomplete trajectories, but also an indication of compensatory growth (Monteiro &
Falconer, 1966), a mechanism that has been suggested for body mass in this species (Wilson et al.,
2005).

Phenotypic and additive genetic correlations of horn length across ages are very similar. Such pat-
tern seems to be very common in nature, as many examples exist where the phenotypic correlation
matrix matches its additive genetic counterpart, not only in sign, but also in magnitude (Cheverud,
1988; Roff, 1995, 1996). Here, I have estimated additive genetic correlations in horn length across
ages that are slightly stronger than the corresponding phenotypic correlations. Such pattern has also
been commonly found by other authors and is likely to be related with differing accuracies in estimat-
ing PPP and GGG (Ponzi et al., 2018). Effective sample size corresponds to the number of observations
when estimating PPP, whereas for GGG it depends on the number of families present in the data. As these
are necessarily fewer, sampling errors can be considerably larger in GGG, resulting in more biased esti-
mates (Lynch & Walsh, 1998, Ch. 21).

Heritability estimates of bighorn sheep horn length available in the literature refer to different age
ranges and were obtained from models that are not equivalent, therefore varying quite significantly
(from 0.26 (Poissant et al., 2012) to 0.69 (Coltman et al., 2003)), and providing a good example of
heritability not being generalised across different studies (Wilson, 2008), even within the same study
system. The models I adopted to estimate the additive genetic contribution to the phenotypic vari-
ance in horn length are particularly distinct from any of the the models previously adopted, not only
because the corresponding heritability estimates are conditioned on a different set of fixed effects,
but also because, contrarily to the previous approaches, I estimated age-specific values, rather then
grouping ages together. As a check to the analyses presented here, I fitted a similar model to the
one fitted by Pigeon et al. (2016), estimating an additive genetic variance of 18.07 (95% CrI 6.24;
27.09, model not shown), closely matching the results of these authors.

Other than describing the genetic architecture underlying horn length trajectories in bighorn sheep, I
also aimed at evaluating alternatives to the cross-age biometric inheritance function that could also
be implemented into population models such as IPMs or IBMs. Although certainly other options could
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have been considered (see Pletcher & Geyer, 1999), I provided results of random regression and fac-
tor analytic models. The reasons for having selected these methods are two-fold: (1) their potential
to make use of very few parameters to model both the genetic and the among-individual architec-
ture of horn length ontogenetic trajectories, and (2) because these are extremely popular statistical
tools amongst evolutionary biologists and animal breeders, therefore being available in a range of
different software. As implemented in several IPMs to date (e.g. Traill et al., 2014), the cross-age
parent-offspring regression requires inference of a single parameter to characterise trait transmis-
sion across generations. Other than being very economical in terms of the number of parameters
used, such inheritance requires a linear regression and therefore is easily estimated. Nonetheless,
I have shown here that this function recovers a resemblance in horn length across ages between
fathers and their male offspring that is essentially zero, despite the high age-specific heritabilities
estimated by the multivariate model. Such an empirical result is not surprising given the theoretical
results presented in Chapter 4, where I show analytically that the phenotypic covariances within and
across individuals can be effectively zero, due purely to artefacts of how the growth and inheritance
functions are typically built in IPMs. The theoretical results from Chapter 4, put together with the em-
pirical evidence presented here, strongly suggest that the cross-age parent-offspring regression (of
body mass) adopted by Traill et al. (2014) to infer on the role of trophy hunting in the evolution of horn

length in bighorn sheep is not appropriate. The consequence of using such model is that their result,
that evolution does not result from selection, was inevitable, regardless of the underlying reality.

Three alternative models were assessed for their ability to recover the additive genetic and pheno-
typic architecture of horn length ontogenetic trajectories. Formal approaches to matrix comparison
include, for example, the use of genetic covariance tensors (Hine et al., 2009), which by correspond-
ing to higher order structures of matrices allow characterising the variation among multiple matrices.
In this chapter, I preferred using metrics corresponding exactly to the quantities of interest to perform
matrix comparison. As a result, model comparison was performed informally, by assessing how well
each model recovered different variance components at each age and how much similarity within
individuals across ages and between individuals and their relatives was recovered. The random
regression model was particularly fit at recovering both age-specific additive genetic variances and
the additive genetic and phenotypic architecture among ages, whereas the structures adopted in the
factor analytic models seemed insufficient to achieve even close results. Particularly, results from
these models suggest that there was no clear separation between the additive genetic and perma-
nent environment sources of variation, resulting in a significant underestimation of the former and a
possible overestimation of the latter. An explanation for these results obtained with the factor analytic
models might lie on horn breakage. Horns break often in bighorn males, resulting in damage that
tends to increase with age and can be very substantial (Pigeon et al., 2016). Such a phenomenon
is expected to have a smaller effect when function-valued approaches, such as random regression,
are adopted given that a trend defined by a function with a particular shape is imposed on the data.
Although random regression is adopted very often among evolutionary biologists, several criticisms
have been raised towards this approach (Pletcher & Geyer, 1999). Some of the concerns raised by
Pletcher & Geyer (1999) are common to other methods, such as matrices not being automatically
positive semidefinite, or parameters not having theoretical justification and being estimated potentially
in large numbers. More specific to random regression, Pletcher & Geyer mention that polynomials do
not fit covariance functions well, mainly as a consequence of not having asymptotes, which covari-
ance functions tend to. Although acknowledging these limitations, random regression, when properly
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applied is seen as being vastly advantageous in many circumstances (Stinchcombe & Kirkpatrick,
2012).

The alternative models assessed in this chapter differ considerably in the number of parameters es-
timated. Both the random regression and the factor analytic models were used to derive additive
genetic and permanent environment (co)variance matrices among ages from one to eight years. In
the random regression model, each of the two 8 × 8 matrices was characterised by a covariance
function, through the estimation of random intercepts, slopes, and curvatures of breeding and indi-
vidual values across ages, as well as the correlations between these parameters. In the two factor
analytic models, one and two additive genetic common factors were used to model the GGG matrix,
whereas a single axis was used to estimate the among-individual variation. As a result, the GGG matrix
was modelled using 6 (random regression), 8 (factor analysis with a single genetic common factor)
and 15 (factor analysis with two genetic common factors) parameters. The EEE matrix was fitted using
6 parameters in the random regression model and 8 in both factor analytic models. The number
of parameters needed to describe the horn length trajectories is of crucial relevance in determining
their utility to population models, and particularly to IPMs, which, as matrix models, easily become
intractable (Caswell & John, 1992). In factor analytic models, I followed the approach adopted by
de los Campos & Gianola (2007) and Meyer (2009), who described the GGG and EEE matrices using their
most important eigenvectors. Alternatively, implementations of factor analysis are possible where
eigenfunctions are estimated instead, potentially using fewer parameters, a rational that is similar to
using random polynomial functions in random regression (Kirkpatrick & Meyer, 2004; Meyer & Kirk-
patrick, 2005).

The bighorn sheep data used in this chapter imposes a serious limitation in the estimation of unbi-
ased ontogenetic horn length trajectories, as the population of Ram Mountain was subject to trophy
hunting until 2011 (Festa-Bianchet et al., 2014). Any ram whose horns reached a certain phenotypic
criterion of minimum horn curl was allowed to be harvested (see Chapter 2, Pelletier et al., 2012).
Importantly, horn curl and horn length are very correlated in bighorn sheep (Festa-Bianchet et al.,
2014), resulting in horn length trajectories of rams with larger horns being more likely to be missing
due to artificial selective pressure (Schindler et al., 2017). In such circumstances, the missing data
mechanism is said to be non-ignorable, as selection is not ignorable in the completeness of the data
(Hadfield, 2008, and references therein). In reality, there are different processes generating missing
data in the used data set: (1) less than perfect recapture rate, (2) individuals not having reached 8
years old at the last year of data considered, and (3) death before reaching 8 years-old. The latter
process encompasses trophy hunting, and is the only that produces incompleteness of data that is
necessarily not missing at random (as the largest individuals are targeted). Both Restricted Max-
imum Likelihood (REML) and Markov chain Monte Carlo (MCMC) Bayesian methods are useful in
accounting for data missing at random, through the use of random effects at the individual level (Had-
field, 2008). In the case of bighorn sheep horn length trajectories, such approach results in observed
and estimated trajectories differing considerably (Fig. 5.4), which suggests that processes (1) and
(2) are significant in the data. Nonetheless, the results presented here are not free from bias due
to missing information not at random, which could be addressed by explicitly modelling the drop-out
mechanism, in this case, size-dependent harvest of male bighorn sheep (Hadfield, 2008).
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5.5 Summary

Horn length is very heritable across most of the lifespan of bighorn sheep males and both additive
genetic and phenotypic correlations in this trait across the ontogeny tend to be positive and strong,
despite some evidence for compensatory growth. As a result, rams with larger horns at early ages
tend to be the ones with larger asymptotic horn length. Here, I show that a cross-age parent-offspring
regression - analogous to those implemented in several IPMs to date - recovers similarity in horn
length between fathers and their male offspring that is not significantly different from zero. The
adoption of random regression coupled with the animal model provides a robust alternative as it
recovers additive genetic and phenotypic architectures of horn length across ages that are similar to
the ones estimated by a multivariate model (sensu Lande & Arnold, 1983). Additionally, since random
regression is reasonably economical in terms of the parameters to be estimated, it may be generally
useful for: (1) inference from limited data, and (2) integrating inheritance and development into more
comprehensive models of population ecology and evolution.
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CHAPTER 6
What evolutionary change is expected due

to trophy hunting based on a heritable trait?

Abstract

When acting on heritable traits, selective harvest has the potential to cause evolution.
Assessing and quantifying such evolution is a challenging task in wild populations due
to concomitant plastic responses to selection and also due to technical challenges aris-
ing from integrating microevolutionary, demographic and life history theory. Population
models providing robust estimates of evolutionary response to selection can be particu-
larly useful to assess human-induced exploitation of natural resources, which is known to
have resulted in rapid and dramatic changes in phenotype. A particular case of interest
is trophy hunting, as management decisions should be based on unbiased quantification
of demographic versus genetic responses. Here I build a two-sex individual-based model
of horn length mimicking the life cycle of the hunted population of bighorn sheep (Ovis

canadensis) from Ram Mountain, Canada. I incorporate different approaches to mod-
elling trait transmission across generations, including random regression and a cross-age
parent-offspring regression that has been used in several population models. As the latter
has been shown inadequate to recover the genetic architecture of horn length across the
ontogeny of bighorn rams, I focus my attention on the former. I present results from sim-
ulations comprising 200 years, where hunting is allowed in the last 100 years, providing
strong evidence of evolutionary response to selective harvest, as measured by change in
breeding values.

Keywords: bighorn sheep, breeding success, evolutionary change, horn length, individual-based

models, function-valued trait, survival

6.1 Introduction

Evolution through natural selection is an emergent process in a population, a manifestation of the
effect of a changing environment in the life history of individuals and therefore in the dynamics of the
population they belong to. Due to the complexity of the association between population dynamics,
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life history and change in allele frequency over generations, i.e. evolution, the latter is often very
difficult to quantify in the wild (Kruuk et al., 2014). An appropriate balance between modelling com-
plexity and parsimony is a study-specific decision of critical importance and multiple solutions exist
that explore a wide range of this trade-off. Structured population models or simply computational
simulations of populations are often used as a means of integrating different aspects of the ecology
and life history traits and have begun to additionally be used to predict evolutionary change in mi-
croevolutionary terms (Barfield et al., 2011; Childs et al., 2016). Such advances in population models
have the potential of being very useful also to evolutionary biologists, particularly to test hypotheses
on the causality of any aspects of the environment on evolutionary change.

Demographic models are used to track the number of individuals and their distribution according to
certain characteristics, and more generally to link demography and life history to ecological aspects
of populations (DeAngelis & Gross, 1992; Caswell, 2001). Different approaches have been devel-
oped to achieve this purpose, leading to the appearance of models as distinct as integral projection
models (IPMs, Easterling et al., 2000) and individual-based models (IBMs) applied in ecology (Hus-
ton et al., 1988). In both approaches, a population increases or decreases depending on the rates at
which individuals are born, mature, reproduce, and die, all of which processes depending on time (or
age) and one or more characteristics of interest (named state variables, e.g. horn length). Although
very similar in the kinds of information they provide, IPMs and IBMs are operationally very distinct
from each other (Caswell & John, 1992). While IPMs (and their precursor, matrix models, Caswell,
2001) are structured by top-down population parameters, such as birth and death rates, in individual-
based models those population level parameters emerge from interactions among individuals and
between individuals and the surrounding environment and are said bottom-up models (DeAngelis &
Grimm, 2014). This distinction is at the basis of the strengths and weaknesses that characterise
each approach in relation to one another. IPMs are a generalisation of matrix models to continuous
state variables, and as for matrix models, algebra can be used with IPMs as a means to describe the
dynamics of populations. Such characteristic is extremely powerful, allowing for generalisations that
are not possible with simulations (Caswell & John, 1992). Nonetheless, although IPMs can poten-
tially be very general in the kinds of complexity they allow (e.g. stochasticity, density- and frequency
dependent populations), they very easily become intractable, in which case simulation models like
IBMs are the alternative.

Both IPMs and IBMs are, in principle, equally suited to, aside from modelling demography, life his-
tory and ecology, also incorporating the principles of trait transmission among relatives. In IPMs,
solutions leaning towards such purpose have begun to be developed. The first IPM used to predict
evolutionary change was of body weight and coat colour in the population of wolves (Canis lupus)
from the Yellowstone National Park (Coulson et al., 2011). As coat colour is determined by a single
locus with two alleles this was a simplified genetic IPM, not directly extendable to polygenic traits.
For polygenic traits, Barfield et al. (2011) and Childs et al. (2016) have started to set the theoretical
grounds to incorporate the infinitesimal model (Fisher, 1918; Bulmer, 1980) into stage- and age- and
stage- structured IPMs, respectively. Computer simulations, on the contrary, allow further flexibility in
terms of model implementation and have been used to model trait transmission across generations
in different contexts and use different approaches to model inheritance (e.g. Castellani et al., 2015;
Benthem et al., 2017).
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Population models incorporating the principles of trait transmission across generations are extremely
useful for testing hypotheses about the effects of different selection pressures on evolutionary change.
A particular interest exists in investigating the impact of human activities in the evolution of wild popu-
lations (e.g. Hutchings & Fraser, 2008; Allendorf & Hard, 2009; Pigeon et al., 2016). Artificial selection
has been used for the purpose of understanding the mechanisms underlying evolution, intentionally
as a means to select for particular characteristics of plants and animals, but also unintentionally,
as consequence of human activities such as animal or plant harvesting (Harris et al., 2002). The
consequences of the latter, typically in wild populations, have been difficult to quantify (Kuparinen
& Merilä, 2007). A very important example is associated with intensive fishing, which in addition
to being responsible for fish population colapses, is also believed to have resulted in evolutionary
change in wild populations (Hutchings & Fraser, 2008; Kuparinen & Festa-Bianchet, 2017). Trophy
hunting of ungulates is another selective pressure that is expected to result in evolution (Allendorf &
Hard, 2009; Festa-Bianchet et al., 2014). A particular case of interest is the population of bighorn
sheep resident at Ram Mountain, in Alberta, Canada, as it was subject to selective harvest, while be-
ing intensively monitored and also having been pedigreed (Coltman et al., 2002). Until 2011, males
meeting a certain phenotypic criterion of minimum horn curl were considered trophy rams and could
be legally harvested (Chapter 2, Festa-Bianchet et al., 2014). Horn curl is closely correlated to horn
length, which, in turn is of critical importance in horn clashing fights during the rut and, therefore,
to male breeding success (Coltman et al., 2002). While males showing fast-growing horns reached
legal status from the age of four years (Jorgenson et al., 1998), the reproductive peak is not reached
until the age of 8-10 years (Coltman et al., 2002). As a result, many rams were shot before fulfilling
most of their reproductive potential (Festa-Bianchet et al., 2004). Through its effect on the reproduc-
tive success of rams with larger horns, trophy hunting has operated as selection favouring smaller
horn size and has lead, as consequence, to evolutionary change (Coltman et al., 2003; Pigeon et al.,
2016).

In this chapter, I develop a two-sex individual-based model of horn length mimicking the population of
bighorn sheep inhabiting Ram Mountain. I first derive the vital rates (breeding success, winter mortal-
ity, and trophy hunting-related harvest) which, along with the models of development and inheritance
of horn length estimated in Chapter 5, are used to simulate the life-cycle of individuals belonging to
this population. Such a model has the potential to enlighten as to the consequences of trophy hunt-
ing in the evolution of horn size. The advantage of such approach when compared to, for example,
predicting evolution with the breeder’s equation is its flexibility to incorporate ecological complexity. I
present results from simulations obtained using the three alternatives to modelling size trajectories
examined in the previous chapter, namely random regression, factor analytic and antedependence
models, the latter including a cross-age parent-offspring regression typical of several IPMs (Coul-
son et al., 2010; Traill et al., 2014; Bassar et al., 2016). In accordance to the results from Chapter
4, I provide strong evidence of the inability of the antedependence solution to identify evolutionary
change when it is known to have occurred. Taking into account that random regression was the only
alternative capable of recovering similarity across ages within individuals and between individuals
and their relatives (Chapter 5), I used this approach to quantify changes in breeding values over 100
years of selective harvesting and along the ontogenetic trajectory of male horn length.
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6.2 Study system and data

The IBM built for this chapter is based on the annual cycle of the bighorn sheep population inhab-
iting Ram Mountain, for which a description is presented in Chapter 2. I used data from 1972 to
2015 to estimate breeding success and winter survival of both males and females, as well as trophy
hunting-related survival in males. For male breeding success, I used a subset of the data encom-
passing years from 1998 to 1992 and from 1996 to 2014, as those are the years when DNA samples
were collected and paternities were assigned. All hunters harvesting rams were required by law to
register their kill, which enabled an accurate count of harvested individuals. Mortality caused by pre-
dation, particularly by cougars (Puma concolor), but also from wolves (Canis lupus) and black bears
(Ursus americanus), was disregarded when estimating winter mortality. While this mortality is rele-
vant, much of it results from one cougar that specialised on bighorn sheep during a period of low
population size (Festa-Bianchet et al., 2006). Consequently, it generated a pattern of positive den-
sity dependent survival, which would have ultimately precluded the implementation of the IBM with a
reasonable population dynamic. Although polynomial functions of age were used to fit both breeding
success and survival, age classes were adopted to estimate heterogeneous residual variances and
slopes for population density, defined as the number of females in the study area, in which case the
levels lambs, yearlings, 2 year-olds, 3 year-olds and older were considered. Detailed information on
how information was collected and how the pedigree was reconstructed is also available in Chapter 2.

6.3 Vital rates

As both the breeding success and the survival of the sheep inhabiting Ram Mountain have already
been described in detail (Coltman et al., 2002; Festa-Bianchet et al., 1998; Festa-Bianchet & King,
2007; Jorgenson et al., 1997; Loison et al., 1999), this section serves the single purpose of deriving
the functions required to construct the IBM. Note that I use the same symbol to represent parameters
with analogous meaning across different models. This solution, although mathematically imprecise
(symbols get re-used), was adopted to simplify model interpretation. Model validation via predictions
plotted against observed values are shown in Appendix D.1.

6.3.1 Annual breeding success

The nature of annual breeding success (defined as the number of offspring born) differs between
male and female bighorn sheep. Whereas a ewe can only produce a single offspring per year, a
ram can father multiple lambs. Female annual breeding success was assumed to follow a binomial
distribution, whereas for males a multinomial model was adopted. As described by Festa-Bianchet
& King (2007), offspring production begins at the age of 2 years in bighorn sheep ewes, is higher for
ewes aged 4 to 12 years than for ewes aged 2 or 3 years, and senescence begins at 13 years of
age. As a result, I adopted a second-order polynomial function to describe the age-breeding success
association in bighorn ewes. The log odds of the probability of ewe i producing an offspring at age t
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(absit ) was modelled as follows

log
(
E[absit ]

1 − E[absit ]

)
= α + βts × (tit − t̄) + βtc × (tit − t̄)2+

4∑
j=2

I ji t × βpop j × popit + upei + umi + uci + uyi + ε it ,

(6.1)

where α is the model intercept, βts and βtc are the slope and curvature for mean centred-age (t − t̄)
and βpop j

is the slope for mean-centred female density (pop) estimated for age class j (2 year-olds,
3 year-olds, or older). I ji t is an indicator variable for age class j. Note that since the rut occurs in the
previous calendar year to the birth of the offspring, population density of the year corresponding to
the rut was used. upei , umi , uci , and uyi are random intercepts associated with permanent environ-
ment, mother, cohort, and year of measurement, respectively. To simplify model notation, indexing
in this and the following models refers to individuals and ages only, resulting in umi corresponding to
the effect associated to the mother of ram i, rather than the effect of mother i. Each random effect
was assumed to be drawn from a normal distribution with mean zero and variance σ2

pe , σ2
m , σ2

c , and
σ2
y , depending on the source of variation (individual, mother identity, cohort, or year of measurement,

respectively). εεε are the model residuals, which variance was set to one, as overdispersion is unob-
servable in binomial mixed models.

Annual breeding success in males is upwardly constrained by the number of available breeding ewes
(and more directly by the number of lambs produced each year), and that number is (negatively)
correlated to the number of offspring the remaining rams father. The probability p that a particular
ram fathers n out of N offspring is well described by a multinomial distribution. For each year k, I
define a variable corresponding to the number of offspring fathered by each ram out of the total lambs
born that year. The number of lambs fathered by a particular ram i in year k follows a multinomial
distribution with parameters Nk and ~pk ,

nk ∼ Multinomial (Nk , ~pik ), (6.2)

where ~pik is a vector with the probabilities of each ram i fathering nk offspring as a proportion of the
offspring fathered by all the rams. Therefore, each of these probabilities is defined as follows

pik =
p′
ik∑

i p′
ik

. (6.3)

p′
ik

, the number of offspring fathered by ram i when he is of age t in a particular year k, can be
modelled, for each year, as a function of any covariates of interest, as follows

p′it = eβts × (ti t− t̄ )+βhs ×hli t+βt,h × (ti t− t̄ )×hli t+upei +umi +uci +uyi , (6.4)

where βts and βhs are the slopes for mean-centred age (t − t̄) and mean-centred horn length (hl), re-
spectively, and βt,h corresponds to a linear interaction term between age and horn length. Note that
since the rut occurs in the previous calendar year to the birth of the offspring, horn length of the year
corresponding to the rut was used. As in the model for females, upei , umi , uci , and uyi are random
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effects associated with permanent environment, mother identity, cohort, and year of measurement,
respectively. The residuals in this model are unobservable.

While female breeding success clearly shows the effect of senescence, with a significant negative
quadratic effect for age (Fig. 6.1, Tab. 6.1, Festa-Bianchet & King, 2007), breeding success in males
increases with age along the entire lifespan and with horn size (Fig. 6.1, Tab. 6.1, Coltman et al.,
2002). The effect of population density was not explicitly estimated in the multinomial model because
it is implicitly incorporated by construction - the probability of n out N lambs being fathered by a
certain ram is estimated, where N is very closely related to the number of ewes present in the study
area in each year. As for females, breeding success is higher under low population densities (Fig.
6.1, Tab. 6.1, Martin & Festa-Bianchet, 2011).

Table 6.1: Parameter estimates of the binomial and multinomial regressions of annual breeding suc-
cess in bighorn sheep females and males, respectively, from the population at Ram Mountain. Logit
and exponential link functions were adopted. Results correspond to means of posterior distributions
and 95% HPD credible intervals.

females males
parameter mean 95% CrI mean 95% CrI

fixed
effects

intercept 2.04 (1.57; 2.50) - -
age 0.05 (-0.01; 0.10) 0.03 (-0.36; 0.44)
age2 -0.07 (-0.09; -0.06) - -
population2 -0.03 (-0.06; -0.01) - -
population3 -0.04 (-0.06; -0.01) - -
populationolder -0.01 (-0.02; 0.01) - -
horn length - - 0.04 (-0.01; 0.10)
age × horn length - - 0.00 (-0.01; 0.01)

random
effects

permanent environment 0.35 (0.00; 0.64) 0.12 (0.00; 0.38)
mother 0.08 (0.00; 0.27) 0.05 (0.00; 0.19)
cohort 0.09 (0.00; 0.28) 0.11 (0.00;0.48)
year 1.37 (0.63; 2.16) - -
residual set to 1 - -

6.3.2 Harvest-related survival

As detailed in Chapter 2, trophy hunting was allowed at Ram Mountain from before the beginning of
the study until 2011. Until 1996, rams could be harvested when describing at least four-fifths of a curl,
which was limited from then on to rams presenting a full-curl. This latter criterion is very restrictive
resulting in only four rams being shot since 1996 (Pigeon et al., 2016). Here, I mimicked the harvest
intensity that existed at Ram Mountain during the 4/5 criterion period, and therefore I used data until
1996 only. The probability, h, of ram i not being harvested at age t was modelled with the following
binomial model

92



CHAPTER 6. EVOLUTIONARY CHANGE IN HUNTED BIGHORN SHEEP

0.0

0.2

0.4

0.6

0.8

1.0

age (years)

an
nu

al
 b

re
ed

in
g 

su
cc

es
s

2 6 10 14 18

(a)

2 4 6 8 10 12 14

20

30

40

50

60

70

80

age (years)

ho
rn

 le
ng

th
 (

cm
)

(b)

age (years)

20 30 40 50 60 70 80 90

population density

1 2 3 4

comparative sire ability

Figure 6.1: Annual breeding success in bighorn ewes (a) and rams (b) at Ram Mountain, as a function
of age and population density (females) and age and horn length (males). The predictions are based
on the models in Equation (6.1), and Equations (6.2-6.4), for which estimates are shown in Table 6.1.
Sire breeding success is compared to that of 7 year-old males with horn length of 60 cm.

log
(
E[hit ]

1 − E[hit ]

)
= α + αlamb × Ilambi t+

(1 − Ilambi t ) × (βts × (tit − t̄) + βtc × (tit − t̄)2 + βhs × hlit + βhc × hl2
it + βt,h × (tit − t̄) × hlit )+

I4i t × βpop4 × popit + umi + uci + uyi + ε it ,

(6.5)

where α is the intercept of the model and αlamb is the intercept contrast for lambs (Ilamb is an indi-
cator variable for lambs, which takes the value 1 if age is 0 and the value 0 otherwise). βts and βtc

are the slope and curvature associated with mean-centred age (t − t̄), whereas βhs and βhc are the
slope and curvature associated with mean-centred horn length (hl). These parameters and a linear
interaction term between age and horn length, βt,h , were not estimated for lambs. Finally, a slope for
female density (βpop4 ) was also estimated. Given that the youngest age at which rams were shot by
hunters was 4 years, this slope was only estimated for the age class older, which includes 4 year-olds
and older individuals. umi , uci , and uyi are random effects associated with maternal identity, cohort,
and year of measurement, respectively. Those effects were assumed to be drawn from independent
normal distributions with variances σ2

m , σ2
c , and σ2

y , respectively. As in the model of female breed-
ing success, the variance in the residuals (εεε) was set to one, as overdispersion in unobservable in
binomial mixed models. The model predicts that trophy hunting leads to mortality of rams with partic-
ularly long horns and that virtually does not occur in young individuals, which corresponds to a good
description of reality (Tab. 6.2, Fig. 6.2a), as described by Jorgenson et al. (1998).

6.3.3 Winter survival

As for breeding success, winter survival was modelled separately for males and females. In females,
survival was assumed to be a function of age and population density, and therefore a binomial model
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with a logit link function of the following form was adopted

log
(
E[sit ]

1 − E[sit ]

)
= α + αlamb × Ilambi t+

(1 − Ilambi t ) × (βts × (tit − t̄) + βtc × (tit − t̄)2) +
4∑
j=0

I ji t × βpop j × popit + umi + uci + uyi + ε it ,

(6.6)

where sit is the probability of ewe i surviving the winter at age t, α is the model intercept and αlamb

a contrast to the intercept for lambs. The remaining parameters have a similar interpretation as
described in previous models. Winter survival in males was modelled similarly to harvest-related
survival, described in Equation (6.5), aside from the slopes for population density estimated for each
age class, as follows

log
(
E[sit ]

1 − E[sit ]

)
= α + αlamb × Ilambi t+

(1 − Ilambi t ) × (βts × (tit − t̄) + βtc × (tit − t̄)2 + βhs × hlit + βhc × hl2
it + βt,h × (tit − t̄) × hlit+

4∑
j=0

I ji t × βpop j × popit + umi + uci + uyi + ε it .

(6.7)

The probability of winter survival is lower for lambs (only shown for females as no records of horn
length were used for male lambs) and is very high in early ages, particularly in females (Tab. 6.2,
Fig. 6.2c, d, e). Senescence in females starts around the age of 8 years while in males lower rates
of survival are observed earlier in life, a pattern that has been described by Loison et al. (1999).
Interestingly, there is a viability cost to carrying large horns in males (Fig. 6.3), an effect that is more
evident in years of high population density (Fig. 6.2b3).

6.3.4 Horn length ontogenetic trajectories

Horn length at each age and the underlying correlations among ages within individuals and between
individuals and their relatives were modelled as described in Chapter 5. In this chapter I show sim-
ulations using the random regression model, the factor analytic model with a single additive genetic
axis, and the antedependence model coupled with the cross-age parent-offspring regression as the
inheritance function.

6.3.5 Parameter estimation and reported statistics

The statistical models introduced in this chapter were fitted in a Bayesian framework, using JAGS
(Plummer, 2003, male breeding success; code available in Appendix D.2) and MCMCglmm (Had-
field, 2010, remaining models). Diffuse normal distributions were used as prior distributions for the
fixed effects, whereas inverse Wishart and inverse gamma were adopted as prior distributions for the
variance components associated with the random effects, using parameter expansion to increase
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Figure 6.2: Annual survival probability as a function of age, population density and horn length
in the bighorn sheep population at Ram Mountain; male harvest-related survival (a), and male (b)
and female (c) winter survival are shown. For harvest-related and winter survival in males, results
are shown for three different population densities (25, 45, and 65 females). Coloured lines in (c)
corresponds to prediction for different values of population density.
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Table 6.2: Parameter estimates of binomial regressions of winter and harvest-related survival fitted
to data from the bighorn sheep population at Ram Mountain. Logit link functions were adopted, and
results correspond to means of posterior distributions and 95% HPD credible intervals.

females males
winter survival harvest survival winter survival

parameter mode 95% CrI mode 95% CrI mode 95% CrI

fixed
effects

intercept 1.87 (1.44; 2.26) 9.06 (-0.15; 21.12) 3.31 (1.76; 4.74)
lamb -0.39 (-0.82; 0.01) 79.90 (59.66; 101.78) -2.44 (-3.99; -0.94)
age -0.15 (-0.21; -0.10) -1.02 (-4.12; 2.39) -0.07 (-0.67; 0.54)
age2 -0.01 (-0.02; 0.00) -0.18 (-0.47; 0.09) -0.06 (-0.19; 0.06)
horn length - - -0.43 (-1.44; 0.23) -0.02 (-0.13; 0.08)
horn length2 - - 0.00 (-0.01; 0.02) -2.0e-03 (-4.2e-03; 2.8e-05)
age × horn length - - 0.07 (-0.09; 0.21) 0.01 (-0.02; 0.05)
population0 -0.03 (-0.05; -0.02) - - -0.02 (-0.04; -0.01)
population1 -0.03 (-0.05; -0.01) - - 0.00 (-0.02; 0.02)
population2 0.00 (-0.01; 0.03) - - -0.01 (-0.04; 0.01)
population3 0.01 (-0.01; 0.03) - - -0.01 (-0.04; 0.01)
populationolder 0.01 (-0.01; 0.02) 0.02 (-0.04; 0.08) -0.01 (-0.03; 0.01)

random
effects

maternal ID 0.15 (0.00; 0.41) 7.10 (0.00; 22.16) 0.08 (0.00; 0.30)
cohort 0.21 (0.00; 0.47) 2.22 (0.00; 10.40) 0.48 (0.00; 1.11)
year of measurement 0.67 (0.24; 1.21) 3.39 (0.00; 11.70) 0.39 (0.00; 0.89)
residual set to 1 set to 1 set to 1
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Figure 6.3: Probability of annual winter survival as a function horn length for ages one (a), four
(b), and seven (c) years, for the bighorn rams from the population at Ram Mountain. The black
lines correspond to averages, whereas the areas in teal correspond to 95% credible intervals, both
predicted using the model in Equation 6.7.
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convergence (Gelman, 2006; Hadfield et al., 2010). Parameter estimates were defined as corre-
sponding to means of the posterior distributions and uncertainty around those estimates was re-
ported using Highest Posterior Density (HPD) credible intervals.

6.4 The model

6.4.1 Model description

I built a stochastic simulation model mimicking populations of bighorn sheep, and structured accord-
ing to the annual cycle of the population from Ram Mountain (Fig. 6.4a). At Ram Mountain, bighorn
sheep are born during the spring, most growth occurs until August, after which the breeding season
occurs mainly from October to December (Festa-Bianchet, 1988; Festa-Bianchet et al., 1995). Most
natural mortality occurs during the winter, until March (Schindler et al., 2017). In this annual cycle,
I also considered that a hunting season could occur, from August to October, as it used to at Ram
Mountain until 2011, and is the case throughout Alberta. So as to take into account this sequence
of events, I defined the time step of the model to be one year, with the cycle beginning with the birth
of a new cohort during the spring. In the simulations I present in this chapter, the population in each
simulation run was represented at the first year step, year = 1, by 50 males and 50 females (see Fig.
6.4b for observed population dynamics of bighorn sheep inhabiting Ram Mountain). Both males and
females could reproduce for the first time from the age of two years, and were assumed to live up
to 15 and 20 years, respectively. The mechanics of horn length inheritance were implemented ac-
cording to the growth functions estimated in Chapter 5. As a result, breeding values were passed on
from parents to their offspring (see Eqn. 4.3 and Eqn. 4.4 in Chapter 4) in scenarios using random
regression or factor analysis, whereas trait transmission was purely phenotypic in scenarios using
the antedenpendence model, in which the cross-age parent-offspring regression was adopted. Par-
ticularly, intercepts, slopes and curvatures defining ontogenetic trajectories of breeding values were
passed on to the offspring in scenarios using random regression, whereas in scenarios using the
factor analytic model age-specific breeding values were transmitted. Results of simulations where
no mechanism of inheritance is built-in are also shown, reflecting the average state of the population
at Ram Mountain. A burn-in of 200 years (iterations) was adopted for scenarios with no inheritance,
whereas a burn-in of 1000 iterations was used in scenarios with a functional inheritance mechanism
(see Appendix D.3 for details regarding how the burn-in periods were defined and supplementary in-
formation on simulated dynamics and vital rates). I show results of simulations run for 200 years after
the burn-in period, corresponding first to a set of 100 years of no harvest and the subsequent 100
years with harvest simulated using Equation 6.5. The number of simulations run for each scenario
is shown in Table 6.3 and a description of how the model was implemented is presented in Figure 6.5.

6.4.2 Comparison of alternative approaches to modelling horn length trajec-
tories

The statistical models fitting the ontogenetic trajectories of horn length introduced in the previous
chapter were used, together with the remaining vital rates, to simulate populations similar to the
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Figure 6.4: (a) Annual cycle of the bighorn sheep at Ram Mountain, illustrating the time of the year at
which the main events occur, including the hunting season. The letters in the inner circle represent
the months of the year. (b) Population dynamics and sex-ratio from 1972 to 2015.
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Figure 6.5: Simplified illustration of the individual-based model mimicking the life-cycle of the bighorn
sheep inhabiting Ram Mountain.

Table 6.3: Number of simulations run for each combination of growth function, inheritance and hunting
settings.

no inheritance inheritance inheritance + hunting

rr 100 200 200
fa 50 50 50
ant 50 50 50
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bighorn sheep population at Ram Mountain and, ultimately, to assess the phenotypic and genetic
responses to selective hunting. As I show in Chapter 5, only the random regression model was ad-
equate to recover similarity across ages between individuals and their relatives. As a consequence,
only this solution has the potential to reflect a putative evolutionary response to trophy hunting. This
is indeed suggested by horn length trajectories simulated over a period of 200 years, the last 100
of which under a selective pressure similar to that observed at Ram Mountain until 1996 (Fig. 6.6).
All three alternatives show some kind of phenotypic decrease in horn length later in life, which cor-
responds at least partially to a (within generation) demographic response, as rams with larger horn
are more likely to be removed from the population. While the responses observed in scenarios us-
ing factor analysis and the antedependence model are very modest and only apparent by the age
of 7 years, responses predicted by the random regression scenario are more prominent and evident
starting at the age of one year. This latter result suggests an evolutionary response to trophy hunting,
given that any demographic response mediated by a decrease in population density would have the
opposite effect. In light of these and last chapter’s results, response to trophy hunting will be further
investigated using the random regression approach.
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Figure 6.6: Male horn length dynamics simulated over 200 years, of which the last 100 years cor-
respond to a hunting period. Results are shown for the three approaches to modelling horn length
trajectories, random regression (rr), factor analysis (fa) and the antedependence model (ant), and
for three different ages (1, 4, and 7 years). Each plot also includes a scenario with no inheritance,
establishing the average state of the population at Ram Mountain.
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6.4.3 Measuring evolution

The central aim of this chapter is to quantify the genetic contribution to the observed change in horn
length due to trophy hunting. As a consequence, this particular model was not built to quantify the
demographic response to such selective pressure. The demographic component of the response,
which acts via two distinct effects, a plastic response to density reduction (as a consequence of ram
removal) and within-generation response to selection, is therefore not shown. Nonetheless, given
that the yearly rate of removal is very low (average of 2.4 males per year, Jorgenson et al., 1993),
these effects are not expected to be particularly consequential. Phenotypic and additive genetic
changes are, therefore, presented. The response to selective harvest is apparently very fast, occur-
ring immediately after hunting is applied (Fig. 6.6, rr). The observed response in lambs and four
year-olds suggest that the response to artificial selection starts very early in life, rather than involving
older ages only, which is corroborated by assessing the entire ontogenetic trajectory (Fig. 6.7). As
noted before, this effect occurs very few generations after hunting is started. Additionally, there are
considerable changes in the mean intercept, slope and curvature defining the ontogenetic trajecto-
ries of breeding values after hunting is applied (Fig. 6.8). The value of the intercept decreases by
44% and both the slope and the curvature increase. As a consequence, age-specific breeding values
decrease markedly since the age of one year (Fig. 6.9).
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Figure 6.7: Average male horn length ontogenetic trajectories for different years (iterations) after
the start of the hunting period (a), and the relative change in horn length across the ontogeny, with
respect to observed age-specific means (b).

From a purely technical perspective it is also interesting to note that before simulated harvest started
at year = 1, horn length was not evolving towards larger lengths, or it was doing so at a very slow
rate (Fig. 6.6, rr). More importantly, horn length had evolved already to an optimum that is slightly

101



CHAPTER 6. EVOLUTIONARY CHANGE IN HUNTED BIGHORN SHEEP

smaller than currently observed horn sizes. This result suggests that the approach adopted here,
which considers different ecological complexities, might have been able to avoid the paradox of sta-
sis, in particular by capturing opposing selection pressures at different stages of the life cycle.
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Figure 6.8: Trajectories of the breeding values of male horn length as simulated using the random
regression model over 200 iterations, of which the last 100 correspond to a hunting period. Results
are shown for the intercept (int), slope (sl) and curvature (curv) used to describe the ontogenetic
trajectories of breeding values, as well as age-specific breeding values for ages 1, 4 and 7 years.

102



CHAPTER 6. EVOLUTIONARY CHANGE IN HUNTED BIGHORN SHEEP

−5

−4

−3

−2

−1

0

Index

ap
pl

y(
di

ffR
R

11
[2

, ,
 ],

 1
, m

ea
n,

 n
a.

rm
 =

 T
)

age=1

Index

ap
pl

y(
di

ffR
R

11
[3

, ,
 ],

 1
, m

ea
n,

 n
a.

rm
 =

 T
)

age=2

Index

ap
pl

y(
di

ffR
R

11
[4

, ,
 ],

 1
, m

ea
n,

 n
a.

rm
 =

 T
)

age=3

Index
ap

pl
y(

di
ffR

R
11

[5
, ,

 ],
 1

, m
ea

n,
 n

a.
rm

 =
 T

)

age=4

−5

−4

−3

−2

−1

0

Index

ap
pl

y(
di

ffR
R

11
[6

, ,
 ],

 1
, m

ea
n,

 n
a.

rm
 =

 T
)

0 25 50 75 100

ab
so

lu
te

 c
ha

ng
e 

in
 h

or
n 

le
ng

th
 (

cm
)

age=5

Index

ap
pl

y(
di

ffR
R

11
[7

, ,
 ],

 1
, m

ea
n,

 n
a.

rm
 =

 T
)

0 25 50 75 100

age=6

Index

ap
pl

y(
di

ffR
R

11
[8

, ,
 ],

 1
, m

ea
n,

 n
a.

rm
 =

 T
)

0 25 50 75 100

year (iteration)

age=7

Index

ap
pl

y(
di

ffR
R

11
[9

, ,
 ],

 1
, m

ea
n,

 n
a.

rm
 =

 T
)

0 25 50 75 100

age=8

1 2 3 4 5 6 7 8

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

ye
ar

ly
 c

ha
ng

e 
(c

m
/y

r)

1 2 3 4 5 6 7 8

0.00

0.01

0.02

0.03

0.04

0.05

0.06

as.numeric(labels(change_mag))

re
la

tiv
e 

ch
an

ge

age (years)

phenotype breeding values

Figure 6.9: Differences in horn length (phenotype and breeding values) from the beginning of the
hunting period over 100 years for ages from 1 to 8 years (upper panels). Yearly and relative pheno-
typic rate of change across the ontogeny of bighorn sheep males, corresponding to changes between
year 1 and year 100, after hunting was started (lower panel). Relative changes correspond to the
difference between horn length at year 1 and year 100 divided by the value at year 1.
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6.5 Discussion

The simulations presented in this chapter provide strong evidence that selective harvesting: (1) has
the potential to result in rapid evolutionary change (sensu Fussmann et al., 2007), and (2) is very
likely to have resulted in evolutionary change in the bighorn sheep population at Ram Mountain, until
1996. Human-mediated disturbances, which have been argued as the world’s greatest evolutionary

forces (Palumbi, 2001), can take different shapes, from pollution and habitat fragmentation to climate
change. From these disturbance contexts (reviewed by Hendry et al., 2017), hunting or harvesting
animals and plants have been particularly associated with creating strong and consistent directional
selection, therefore having the potential to result in evolutionary change (provided traits are evolv-
able). Virtually all hunting or harvesting involves a selective process of some kind, as the largest
individuals of each generation are very often targeted and disproportionately removed (Allendorf &
Hard, 2009; Kuparinen & Festa-Bianchet, 2017). As a result, selective harvesting is believed to have
many times resulted in rapid evolution (Schoener, 2011), the bighorn sheep population of Ram Moun-
tain constituting one of such examples (Coltman et al., 2003; Pigeon et al., 2016).

The genetic consequences of hunting have been grouped in (1) alterations of population structure,
(2) loss of genetic variation, and (3) evolutionary response to selection (Harris et al., 2002; Allendorf
et al., 2008). In this chapter, I focused my attention on the latter by quantifying the genetic change
in horn length, provided that strong selection against large horn length had been documented for
this population as a result of trophy hunting (rams with legal horns had a probability of 40% of being
harvested each year, including each of the approximately 3-4 years between becoming legal and
reaching prime reproductive age, Coltman et al., 2003, 2005; Bonenfant et al., 2009b). The sim-
ulations I ran corroborate the findings by Coltman et al. (2003) and Pigeon et al. (2016), strongly
suggesting that in the presence of selective harvesting, bighorn rams evolve smaller horns. In gen-
eral, although evidence of phenotypic change due to harvest is very conspicuous in the literature
(Darimont et al., 2009), quantification of genetic change using quantitative genetic tools is scant for
wild populations (but see Swain et al., 2007), possibly a result of the nature of the data needed to
use these tools. Additionally, given the evidence demonstrating a decrease in age-specific breeding
values since very early ages, evolving shorter horns seems to have occurred by decelerating growth
rates (Fig. 6.7 and Fig. 6.8). Further evidence supporting this hypothesis comes from the decline in
the proportion of harvested rams in Alberta that are aged 4 or 5 years, from about 25% in the 1980’s
to less than 10% in recent years (Festa-Bianchet et al., 2014). These results are in agreement with
the notion that growth rates are rarely at their physiological maximum and therefore are the result of
a trade-off between benefits and costs of growing faster (Blanckenhorn, 2000; Dmitriew, 2011). In
fact, change in horn length in bighorn males under harvesting selection not only constitutes an ex-
ample of suboptimal growth rates, but also provides an example of genetic adaptation of ontogenetic
trajectories.

The IBM used in this chapter was parameterised using empirical data from to the population of
bighorn sheep at Ram Mountain and, as a result, the conclusions reached here apply primarily to
this population. The rates of phenotypic and evolutionary change in horn length due to selective
harvesting varied across the ontogeny of bighorn rams, reaching its maximum at the age of 5 years
(Fig. 6.8, upper panels). Both horn length and the corresponding breeding values decreased up to
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approximately -0.035 cm/year, which corresponds to up to around 5% change from the phenotype
observed prior to harvesting (Fig. 6.8, lower panels). Previously, Coltman et al. (2003) estimated a
much steeper phenotypic trend of -0.35 cm/year, from which -0.075 cm was attributable to evolution-
ary change. Additionally, Pigeon et al. (2016), improving the methodology adopted by Coltman et al.
(2003) in light of Postma (2006) and Hadfield et al. (2010), estimated a rate of change in breeding
values of male horn length of -0.119 cm/year. Although the change in breeding values estimated
in this chapter is qualitatively very consistent with the previous estimates, the dynamic approach I
used is expected to yield results that are distinct from these previous estimates (Benthem et al.,
2017), which rely on the direct application of the animal model (Henderson, 1975). While the ani-
mal model produces estimates that reflect the average state of the population, a dynamic approach
allows quantitative genetics tools like the animal model to be incorporated with population dynamics
so that microevolutionary dynamics are predicted under realistic assumptions of population struc-
ture and individual life histories. A dynamic approach as the one adopted in the present chapter
can prove very powerful by simultaneously handling complexities such as age-structure, overlapping
generations, sexual antagonism or environmental heterogeneity on selection in a particularly efficient
manner. Also, previous results report estimates of changes in breeding values that actually occurred.
These will have a component attributable to a response to selection, but also a component due to
drift. There is an equal chance of drift occurring in the same versus opposite direction as the partial
change owing to the response to selection. My inferences average over many runs to estimate the
component due only to the response to selection. Thus, it is quite possible that the apparent discrep-
ancy is mostly due to drift.

In addition to the results of Coltman et al. (2003) and Pigeon et al. (2016), Darimont et al. (2009)
reviewed phenotypic rates of change associated to harvesting that were considerably higher than the
estimates provided in this chapter. Darimont et al. (2009), arguing that the pace of change is ex-
ceptionally high under harvest selection (exerted by fishers, hunters, and plant harvesters), estimated
an overall decrease in morphological traits of 18.3%. Although there is a clear and pragmatic inter-
est in obtaining statistics like this one, interpretation should not go beyond the phenotype towards
evolutionary change. In systems subject to heterogeneous environmental conditions, overlapping
generations and density-dependent responses, demographic models coupled with quantitative ge-
netics tools have the potential to provide the means to infer about what evolutionary change may be
contributing to such phenotypic trends.

The individual-based model adopted here is a compromise between describing the complexity of the
ecology and life history of the bighorn sheep and parsimony attending to computational limitations.
As a result, several limitations can be identified. The model presented is particularly useful in track-
ing changes in breeding values when population dynamics are changing over time. However, it does
not quantify the demographic contribution to phenotypic adaptation. For each individual a record of
its horn length and associated breeding values is generated, but the scope for population density-
mediated response is not quantified. Males are known to grow longer horns or antlers at low density
because of weaker intraspecific competition (Jorgenson et al., 1998; Festa-Bianchet et al., 2004),
and the Ram Mountain bighorn sheep population has gone through larger fluctuations in ecological
conditions than my IBM is designed to study. Additionally, despite the high flexibility of computer sim-
ulations, I simplified the implementation of the IBM by not making entire use of the variance partition
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I used in the statistical models of horn length, annual breeding success and annual survival. Additive
genetic and permanent environment (co)variation were implemented but other sources of variation,
e.g. heterogeneity in vital rates among cohorts, were grouped together as residual variance. Finally,
the results presented in this chapter are based in a modest number of simulations, leading to esti-
mates that, although clear, are noisier than one would consider ideal.

6.6 Summary

The individual-based model parameterised according to the life history of the bighorn sheep popu-
lation at Ram Mountain corroborates the results by Coltman et al. (2003) and Pigeon et al. (2016),
showing that selective harvest in this population should result in evolutionary change towards smaller
horn length. Under a selective pressure with the magnitude of that imposed at Ram Mountain until
1996, a yearly decrease of up to -0.035 cm is expected in breeding values. This rate of change is
smaller than previous estimates for the same population. The reason for such difference might lie in
the use of a population model that can predict microevolutionary dynamics under realistic assump-
tions of population structure and individual life histories. In the IBM adopted in this chapter, life history
traits vary yearly according not only to horn length, but also to population size and structure, which is
challenging, if not impossible in practice, in non-dynamic approaches.
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CHAPTER 7
General discussion

7.1 Summary of findings

The ultimate goal of this thesis is to identify potential sources of bias and error in the prediction of evo-
lutionary change in size and to provide methodological alternatives that could alleviate those biases
and errors. In Chapter 3 I provide evidence that a trade-off between viability and fecundity selection
is regulating body mass in Soay sheep (Ovies aries) female lambs. Mechanistically, this trade-off lies
on the additive genetic correlation between pregnancy during the first year of life and body mass. I
determined that failing to recognise and account for such correlation leads to an overestimation of
the strength of the selection acting on body mass, an effect that increases with population density,
potentially contributing to the paradox of stasis observed in this species (Ozgul et al., 2009). While
Chapter 3 refers to a single age only, there is evidence that this mechanism could play a role at reg-
ulating body mass in the entire population, an effect that would be mediated by correlations among
ages and sexes that are known to exist in this species (Wilson et al., 2007; Robinson et al., 2009).

The remaining chapters of the thesis focus on the ontogenetic trajectories of size, and particularly of
body mass and horn length. Chapter 4 identifies sources of error in estimating similarity across ages
within individuals and between individuals and their relatives in typical applications of integral projec-
tion models (IPMs). Rather than being a generalisation of the notion of inheritance, the cross-age
parent-offspring regression (Coulson et al., 2010; Coulson, 2012; Rees et al., 2014; Schindler et al.,
2013; Traill et al., 2014; Bassar et al., 2016) represents an extremely limited mathematical model
of inheritance, with little or no relation to known biological mechanics of inheritance (Fisher, 1918,
1930; Wright, 1922, 1931). This lack of correspondence emerges from three different features: a)
regression to the mean acting on ancestral regressions other than offspring on parent, b) the slope
of a cross-age biometric inheritance function does not correspond to half the heritability, as does the
slope of a same-age parent-offspring regression of a single parent (Falconer, 1981, Ch. 9), and c)
the static nature of the inheritance regression does not allow evolution to occur. I also show that
regression to the mean occurs in the antedependence structure of the development functions and is
compounded over ages, also diminishing the degree of similarity among ages recovered. I provide an
empirical example using female body mass in bighorn sheep (Ovies canadensis) that follows closely
the theoretical predictions.
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In Chapter 5, the analytical results of Chapter 4 were subjected to further empirical testing using,
once again, the bighorn sheep population from Ram Mountain, Canada. In this chapter, I compared
different statistical approaches to modelling the genetics of ontogenetic trajectories of horn length in
males, including the development and inheritance functions used in IPMs, but also pedigree-based
methods, like random regression and factor analysis coupled to the animal model (Henderson, 1975),
which estimate quantitative genetics parameters with known interpretation (Fisher, 1918; Bulmer,
1980). In addition, I used a multivariate model (sensu Lande & Arnold, 1983), which, together with
the random regression model, provided strong evidence of horn length being heritable across the
lifespan of bighorn rams. Contrarily to these approaches, the cross-age parent-offspring regression,
coupled with the antedependence structure typical of IPMs, implies heritabilities across ages from 1
to 8 years that are essentially zero. The random regression model, which also outperformed two im-
plementations of factor analytic models, was fitted using a total of 12 parameters to describe both the
additive genetic and the among-individual covariance functions. Although unquestionably less eco-
nomical in terms of the number of parameters used (compared to typical implementations of IPMs),
random regression is likely to be much more tractable then, for example, unstructured models, when
confronted with finite data.

Finally, in Chapter 6 I built a two-sex IBM of horn length mimicking the bighorn sheep population
from Ram Mountain. I used this model to assess the effect of trophy hunting in the evolution of
horn length. After estimating the vital rates, annual breeding success and annual winter survival for
both males and females, as well as the probability of being shot for rams of particular age and horn
length, I adopted the modelling strategies for horn length estimation from Chapter 5 in the simula-
tions. As expected, given the results from the previous chapter, only the random regression model
predicted a significant change in horn length compatible with evolutionary change, provided a selec-
tive pressure similar to that existing at Ram Mountain until 1996. Adopting the random regression
approach, I could quantify a decrease of up to -0.035 cm/year in the breeding values for horn length
(corresponding to the change at age of 5 years). Although the amount of change in horn length
(phenotype and breeding values) varies across the ontogeny of bighorn sheep rams, it is observable
from very early ages (as early as horn length was recorded, i.e., by the age of one year), suggesting
that this genetic adaptation occurs by decreasing the rate at which horns grow. In fact, both breeding
values for slopes and curvatures become more positive with hunting, also suggesting delayed growth.

7.2 Bias in inference of selection and the genetics of size

Explanations for the frequently observed mismatch between actual dynamics of body size and the-
oretical predictions lie on the estimation of the strength of operating natural selection or on how
apparent genetic variability might not be available (Merilä et al., 2001). The former is investigated in
Chapter 3, where I provide evidence of the existence of a trade-off between viability and fecundity
selection involving an additive genetic correlation between body size and pregnancy in female Soay
sheep lambs. Genetic correlations among traits might increase or decrease the rate of adaptive evo-
lution, depending on the sign of the correlation with respect to the fitness landscape (Arnold et al.,
2001). Nonetheless, complexity, or the number of correlated traits responding to selection, tends to
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slow down the rate of adaptation (Fisher, 1930; Orr, 2000), which is shown to occur in Chapter 3,
through the comparison between selection of and for lamb body mass (Sober, 1986). The existence
of correlated responses to selection is potentially a conspicuous source of bias, mainly because
these are very difficult to detect in the wild (Kruuk et al., 2008), particularly when the traits involved
are determined by an overall acquisition resource, which may be largely or entirely non-genetic (De
Jong & Van Noordwijk, 1992). In that case, at the phenotypic level, both traits may covary posi-
tively, despite the existence of an inherent trade-off (Morrissey et al., 2012c). Indeed, at very low
population densities, lamb body mass and the probability of pregnancy are both maximised and are
associated with increased first-year survival. The existence of trade-offs adds a layer of methodolog-
ical complexity in predicting evolutionary change. As theory and methods addressing multivariate
problems sustains substantial advances since the last decades, it is the lack of sufficient data usually
the limiting condition. In Chapter 3, I use a methodology that handles genetic constraints in a fairly
phenotypic perspective and therefore has the potential to be very useful when estimating GGG is not
feasible.

One of the key explanations for the paradox of stasis is that studies often focus on specific compo-
nents of the life cycle, but opposing selection at different stages may cause net stabilising selection,
or at least little net directional selection (Schluter et al., 1991; Rollinson & Rowe, 2015). Particularly,
antagonist selection across different phases of the life cycle has been attributed to stronger directional
selection for larger size in juveniles than in adults (Rollinson & Rowe, 2015). The individual-based
model built in Chapter 6 explicitly handles this potential source of bias by incorporating the entire life
cycle of the bighorn sheep. Notably, in this particular case, before hunting is applied, a stable horn
length at each age is predicted by the model, hence, avoiding the paradox of stasis. Indeed, variation
in the strength of selection across the ontogeny has been observed in the bighorn rams from Ram
Mountain. Nonetheless, the opposite pattern to that suggested by Rollinson & Rowe (2015) has
been detected, with both overall and sexual selection on horn length being stronger (more positive)
in mature than young males, as horn size plays a much smaller role in the success of younger males
(Martin et al., 2016).

The third chapter of the thesis draws attention to another challenge in measuring natural selection.
The above-mentioned trade-off between viability and fecundity selection in the Soay Sheep is medi-
ated by the covariation between body mass and pregnancy occurring during the first year of life of
these sheep. As correlations exist between lamb body mass and the body mass at older ages (Wil-
son et al., 2007) and between female and male body mass (Robinson et al., 2009), this mechanism
is expected to also affect traits expressed in males and older individuals of both sexes. Nonethe-
less, lamb pregnancy, which is associated with low probability of first-year survival, is only expressed
during the first annual cycle of females. In fact, the viability selection that occurs in juveniles lead-
ing to adult trait not being measured was coined by Grafen (1988) as invisible fraction, referring to
the individuals that are missing from the adult data set. This is essentially a missing data problem
(Hadfield, 2008), not limited to ontogenetic incompleteness, but also affecting sex-limited characters.
As Grafen (1988) outlines, if the focal trait is genetically correlated with other characters in the sex
they are not expressed, the whole sex may belong to the invisible fraction. As a result, measuring the
strength of selection in Soay sheep body mass in adults and/or males will potentially lead to upwardly
biased estimates. Incompleteness of information not at random has not been given much attention in
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observational studies, where it is more prone to occur. However, experimental work has shown that
the unmeasured component of selection can be very strong (e.g. Mojica & Kelly, 2010), suggesting it
can represent a serious bias when estimating the strength of selection in wild populations (Hadfield,
2008; Nakagawa & Freckleton, 2008).

The last potential bias in estimating natural selection that was briefly covered in this thesis relates to
variability in selection, which has the potential to convolute the interpretation of the strength of selec-
tion. Chapter 3, and implicitly Chapter 6 given the density-dependent effect of horn length on survival
and breeding success, constitute empirical examples of density-dependent selection. In Chapter 3
I explicitly provide selection gradients of body mass and pregnancy across different values of popu-
lation density, showing that, accordingly to general theory (reviewed by Mueller, 1997), selection is
stronger in years of higher population density. In fact, this had already been demonstrated for differ-
ent size-related traits in Soay sheep (Milner et al., 1999). In general, variation in selection implies
variation of optimal trait values and, therefore, that trait values within populations are rarely at the
adaptive optimum at any given point in time (Bell, 2010). This rational has been identified as a possi-
ble explanation for the general lack of response to documented selection (Merilä et al., 2001), given
that the selection measured at one point in time may not persist across generations or even across
life stages within generations (Merilä et al., 2001). Nonetheless, this argument should be carefully
investigated, as evidence exists suggesting that most observed temporal variation in selection is ac-
counted for by sampling error, precluding that temporal variation in the actual underlying selection
coefficients is low (Morrissey & Hadfield, 2012).

Although analytical solutions extending the Lande’s equation (Lande, 1979) to allow the prediction of
evolutionary change under some of the non-standard conditions mentioned above exist (e.g. Russell,
1980; Lande, 1982; Kirkpatrick & Lande, 1989; Lande et al., 2017), population demographic models
coupled with quantitative genetics tools can prove very useful in overcoming these challenges (e.g.
Reeve, 2000). Population models, as IPMs and IBMs, provide a very convenient solution to handle
the simultaneous effect of complexities such as age-structure, overlapping generations, sexual an-
tagonism or environmental heterogeneity on selection in a particular efficient manner. An example of
such a solution is provided in Chapter 6, where I used an individual-based model to infer what evo-
lution of horn length is expected to have taken place while the bighorn population of Ram Mountain
was subject to trophy hunting (Festa-Bianchet et al., 2014). In bighorn sheep, as in other ungulates,
high population densities are associated with higher mortality, stronger selection and smaller horn
size (Kruuk et al., 2002; Bonenfant et al., 2009a; Hunter et al., 2018). This model transparently ac-
commodates age structure, sex structure, density-dependent fitness functions, and multi-dimensional
phenotype. This could explain why the evolutionary predictions of Chapter 6, although quantitatively
very similar in magnitude, are lower when compared to previous studies (Coltman et al., 2003; Pigeon
et al., 2016). This would be in agreement with results from simulations of fish populations, precluding
rates of evolution that are lower than observed rates (Audzijonyte et al., 2013). These results, put
together, suggest that plastic responses to harvesting may also account for an important fraction of
documented trends at the level of the phenotype (Kuparinen & Festa-Bianchet, 2017).

The study system of the bighorn sheep population at Ram Mountain is of particular relevance due
to political considerations in shaping policy related to trophy hunting in Alberta, Canada, as the only
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population simultaneously subject to trophy hunting, individual-based monitoring, and having a pedi-
gree available (Pelletier et al., 2012). Science-based policy making has had the contribution of an
IPM, using this population, aiming at evaluating the contribution of evolution to the observed phe-
notypic decrease in horn size due to trophy hunting (but in fact using body mass as a proxy, Traill
et al., 2014). This IPM was built using a cross-age parent-offspring regression as a measure of in-
heritance, maintaining (necessarily) that the observed change in horn length in bighorn rams was
purely demographic. Although I have not aimed at providing a formal comparison between the exact
model used by Traill et al. (2014) and an alternative based on quantitative genetics, the joint results of
Chapters 4, 5, and 6 strongly suggest that the conclusions reached by these authors are an artefact
of an erroneous analysis. Theoretical demonstration of the lack of correspondence between a cross-
age parent-offspring regression and known biological mechanics of inheritance (Fisher, 1918, 1930;
Wright, 1922, 1931) is the preeminent contribution of this thesis regarding errors in estimating the
genetic contribution to evolutionary change (Chapter 4). This finding has important consequences to
the implementation of IPMs and eventually other population models. Most empirical applications of
IPMs incorporating inheritance have been based on the cross-age regression of offspring values at
birth or recruitment on parental values at conception or parity (Coulson, 2012; Schindler et al., 2013;
Traill et al., 2014; Bassar et al., 2016), which is superficially particularly efficient as it uses a single
parameter. This feature is particularly convenient in IPMs, as these models rely on discretising dis-
tributions by approximating them with large matrices, which increase in size exponentially (Caswell
& John, 1992). In Chapter 5 I model the ontogenetic trajectories of horn length in the bighorn rams
at Ram Mountain as an intermediate step to building an IBM also aiming at quantifying the genetic
contribution to the observed decrease in horn length that occurred in this population as a result of
selective harvesting (Coltman et al., 2003; Festa-Bianchet et al., 2014; Pigeon et al., 2016). Potential
management implications of these analyses are: (1) male horn length is heritable across the entire
ontogeny, as shown in Chapter 5 and previously established (Coltman et al., 2003, 2005; Poissant
et al., 2012; Pigeon et al., 2016), in contrast to the predictions of a cross-age parent-offspring regres-
sion for the same data (also shown in Chapter 5); (2) as illustrated in Chapters 4 and 6, an IPM or an
IBM using a cross-age parent offspring regression as its concept of inheritance is bound to predict no
evolutionary change; and (3), also as illustrated in Chapter 6, an IPM or an IBM using an adequate
quantitative genetic approach as its concept of inheritance predicted that evolutionary change has
occurred in the horn length of the population at Ram Mountain population.

Data availability is still of concern in the field of evolutionary quantitative genetics. As the prediction
of evolutionary change shifts from using a single heritability estimate to GGG matrices (Arnold, 1994),
this becomes an increasingly relevant concern. Data availability determines sampling errors in the
estimation of genetic quantities and selection, and the power to infer on various evolutionary ques-
tions (Lynch & Walsh, 1998, Ch. 21; Steppan et al., 2002; Jones et al., 2004). An example of
practical application is the ongoing controversy about the relative constancy of the GGG matrix (see
Steppan et al., 2002; Jones et al., 2004; Arnold et al., 2008), which in turn determines the suitability
of various expressions used to predict evolutionary change (Arnold, 1994). Although this thesis is not
concerned with the technical aspects of estimating GGG, Chapter 3 provides a means of predicting evo-
lutionary change in correlated traits while avoiding estimating the genetic architecture among traits.
Such approach could be of potential advantage where estimating GGG matrices with usable precision is
not possible, as it specifically takes advantage from the phenotypic relationship between lamb body
mass and early pregnancy, and builds it into a formal model of selection.
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7.3 Challenges and future work

An important limitation of the results presented here is associated with measurement and data avail-
ability, either due to information not missing at random (Chapters 3 and 5) or due to the particular
effect of horn breakage in estimating ontogenetic trajectories of horn length and how it constitutes
measurement error (Chapter 5). The analyses presented in Chapter 5, and possibly in Chapter 3, are
potentially biased by not accounting for a fraction of individuals missing not at random. In Chapter
3 only around half the pregnant lambs were phenotyped for body mass and, therefore, included in
the analyses, mostly due to neonatal mortality. Although there is no obvious mechanism generat-
ing missing information not at random, as the August catch is likely to be highly non-random with
respect to body mass and subsequent pregnancy, given the important fraction excluded, an oppor-
tunity for bias should be acknowledged. In Chapter 5 most of the ontogenetic trajectories of horn
length are incomplete. I identified three different processes generating missing data, where one pro-
duces incompleteness of data that is known not to be at random - selective harvesting of rams with
larger horns. As a result, alternatives to these analyses should be considered. Instead of the path
analysis presented in Chapter 3, a similar approach could be adopted using breeding values rather
than realised lamb body mass, as no phenotype would be necessary in the analysis (accounting for
prediction error, see Hadfield et al., 2010). A similar approach has been implemented by Sinervo
& McAdam (2008), who quantified selection acting on an invisible fraction by measuring selection
on predicted breeding values for clutch size in lizards. Regarding the data missing not at random
in Chapter 5, the incompleteness in horn length trajectories could be addressed by explicitly mod-
elling the drop-out mechanism, in this case, size-dependent harvest of male bighorn sheep (Hadfield,
2008).

An unexpected result in this thesis is the poor performance obtained by modelling ontogenetic trajec-
tories using factor analytic models (Chapter 5). The particular implementation of this methodology
might have been inadequate given that an important fraction of trajectories are likely to have been
shaped by horn breakage, and the factor analysis might have been more affected by this than other
approaches. During the rut, bighorn rams display different types of social interactions, including front
kicking and mounting, but also frontal horn clashing, to establish social ranking (Pelletier & Festa-
Bianchet, 2006). This latter behaviour leads to horn breakage, a damage that tends to increase with
age and can be very substantial (Pigeon et al., 2016). Factor analysis was implemented as a mere
description of the variability in the data, simply relying on principal components, and not assuming
any shape for the additive genetic architecture of horn length. In a situation where the size of the horn
that would have existed if not for breakage is of interest, such approach might have been disadvan-
tageous. Alternatively, implementations of factor analysis where eigenfunctions are used instead of
eigenvectors, in a rational that is similar to using random polynomial functions in random regression
(Kirkpatrick & Meyer, 2004; Meyer, 2005) are expected to yield better results. Another alternative
would be modelling the process of horn breakage itself, which would allow to disentangle additional
aspects of sexual selection in bighorn rams.
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7.4 Conclusion

Application of evolutionary quantitative genetic theory to empirical problems relies on a collection of
statistical tools, used either to measure the strength of selection or the genetic aspects of the potential
populations have to evolve. Any statistical inference approach can only be unbiased within a certain
number of assumptions. When applied to wild populations, those assumptions are frequently not
guaranteed to hold due to the complexity of natural systems, and the effects of such violations are
often difficult to assess. In this thesis I aimed at providing a contribution to identifying and solving few
of the issues arising from such mismatches between biology and statistics, focusing on the evolution
of size. Given its nature, this thesis covered a broad range of subjects within the field of evolutionary
quantitative genetics. Briefly, in this thesis: (1) I adopt a methodology to handle genetic constraints
in a fairly phenotypic perspective, allowing to quantify the bias that would exist if such constraint
was not accounted for; (2) I provide analytical proofs of several issues with applications of IPMs that
incorporate inheritance and development, concluding that these will predict no evolutionary change
regardless of whether it should, will, or has occurred; and (3) I build a two-sex individual-based
model equivalent to an IPM that uses quantitative genetics theory to model trait transmission, which
provides an addition to an ongoing controversy about the quantitative contribution of evolution in
the response to selective harvesting in bighorn sheep, accounting for a large number of ecological
complexities.
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quantitative analysis of modelling and empirical studies. Evolutionary Applications 6: 585–595.

Barfield, M., Holt, R.D. & Gomulkiewicz, R. 2011. Evolution in stage-structured populations. The

American Naturalist 177: 397–409.

Barnett, A.G., van der Pols, J.C. & Dobson, A.J. 2005. Regression to the mean: what it is and how
to deal with it. International Journal of Epidemiology 34: 215–20.

Bassar, R.D., Childs, D.Z., Rees, M., Tuljapurkar, S., Reznick, D.N. & Coulson, T. 2016. The effects
of asymmetric competition on the life history of Trinidadian guppies. Ecology Letters 19: 268–278.

Bell, G. 2010. Fluctuating selection: the perpetual renewal of adaptation in variable environments.
Philosophical Transactions of the Royal Society of London B: Biological Sciences 365: 87–97.

Benthem, K.J., Bruijning, M., Bonnet, T., Jongejans, E., Postma, E. & Ozgul, A. 2017. Disentan-
gling evolutionary, plastic and demographic processes underlying trait dynamics: a review of four
frameworks. Methods in Ecology and Evolution 8: 75–85.

115



BIBLIOGRAPHY

Bérénos, C., Ellis, P.A., Pilkington, J.G. & Pemberton, J.M. 2014. Estimating quantitative genetic
parameters in wild populations: a comparison of pedigree and genomic approaches. Molecular

Ecology 23: 3434–3451.

Bermejo, J.L., Roehe, R., Schulze, V., Rave, G., Looft, H. & Kalm, E. 2003. Random regression to
model genetically the longitudinal data of daily feed intake in growing pigs. Livestock Production

Science 82: 189–199.

Blanckenhorn, W. 2000. The evolution of body size: what keeps organisms small? Quarterly Review

of Biology 75: 385–407.

Bonenfant, C., Gaillard, J.M., Coulson, T., Festa-Bianchet, M., Loison, A., Garel, M., Loe, L.E.,
Blanchard, P., Pettorelli, N., Owen-Smith, N., Toit, J.D. & Duncan, P. 2009a. Empirical evidence of
density-dependence in populations of large herbivores. vol. 41 of Advances in Ecological Research,
pp. 313 – 357. Academic Press.

Bonenfant, C., Pelletier, F., Garel, M. & Bergeron, P. 2009b. Age-dependent relationship between
horn growth and survival in wild sheep. Journal of Animal Ecology 78: 161–171.

Bonnet, T., Wandeler, P., Camenisch, G. & Postma, E. 2017. Bigger is fitter? quantitative genetic
decomposition of selection reveals an adaptive evolutionary decline of body mass in a wild rodent
population. PLOS Biology 15: 1–21.

Bradshaw, A.D. 1991. The Croonian Lecture, 1991 Genostasis and the limits to evolution. Philosoph-

ical transactions of the Royal Society of London. Series B, Biological sciences 333: 289–305.

Bulmer, M.G. 1980. The mathematical theory of quantitative genetics. Clarendon Press, Oxford.

Campbell, D.T. & Kenny, D.A. 1999. A primer on regression artifacts. The Guilford Press, New York.

Castellani, M., Heino, M., Gilbey, J., Araki, H., Svåsand, T. & Glover, K.A. 2015. Ibsem: An individual-
based atlantic salmon population model. PLOS ONE 10: 1–35.

Caswell, H. 2001. Matrix population models. Oxford University Press, Oxford.

Caswell, H. & John, M. 1992. From the individual to the population in demographic models. In:
Individual-based models and approaches in ecology: populations, communities and ecosystems (D.L.
DeAngelis & L.J. Gross, eds). CRC Press.

Charmantier, A. & Garant, D. 2005. Environmental quality and evolutionary potential: lessons from
wild populations. Proceedings of the Royal Society of London B: Biological Sciences 272: 1415–1425.

Charmantier, A., Kruuk, L.E.B., Blondel, J. & Lambrechts, M.M. 2004. Testing for microevolution in
body size in three blue tit populations. Journal of Evolutionary Biology 17: 732–43.

Cheverud, J.M. 1988. A comparison of genetic and phenotypic correlations. Evolution 42: 958–968.

Chevin, L.M. 2015. Evolution of adult size depends on genetic variance in growth trajectories: A com-
ment on analyses of evolutionary dynamics using integral projection models. Methods in Ecology

and Evolution 6: 981–986.

Childs, D.Z., Coulson, T.N., Pemberton, J.M., Clutton-Brock, T.H. & Rees, M. 2011. Predicting trait
values and measuring selection in complex life histories: Reproductive allocation decisions in Soay
sheep. Ecology Letters 14: 985–992.

116



BIBLIOGRAPHY

Childs, D.Z., Rees, M., Rose, K.E., Grubb, P.J. & Ellner, S.P. 2003. Evolution of complex flowering
strategies: an age- and size-structured integral projection model. Proceedings of the Royal Society

of London B: Biological Sciences 270: 1829–1838.

Childs, D.Z., Sheldon, B.C. & Rees, M. 2016. The evolution of labile traits in sex- and age-structured
populations. Journal of Animal Ecology 85: 329–342.

Clutton-Brock, T., Price, O., Albon, S. & Jewell, P. 1992. Early development and population fluctua-
tions in soay sheep. Journal of Animal Ecology 61: 381–396.

Clutton-Brock, T. & Sheldon, B.C. 2010. Individuals and populations: the role of long-term, individual-
based studies of animals in ecology and evolutionary biology. Trends in Ecology & Evolution 25: 562
– 573. Special Issue: Long-term ecological research.

Clutton-Brock, T.H., Grenfell, B.T., Coulson, T., MacColl, A.D.C., Illius, A.W., Forchhammer, M.C.,
Wilson, K., Lindström, J., Crawley, M.J. & Albon, S.D. 2004a. Population dynamics in soay sheep.
In: Soay sheep: dynamics and selection in an island population (T.H. Clutton-Brock & J.M. Pemberton,
eds). Cambridge University Press.

Clutton-Brock, T.H. & Pemberton, J.M. 2004a. Individuals and populations. In: Soay sheep: dynam-

ics and selection in an island population (T.H. Clutton-Brock & J.M. Pemberton, eds). Cambridge
University Press.

Clutton-Brock, T.H. & Pemberton, J.M. 2004b. Soay Sheep Dynamics and Selection in an Island Popu-

lation. Cambridge University Press, Cambridge.

Clutton-Brock, T.H., Pemberton, J.M., Coulson, T., Stevenson, I.R. & MacColl, A.D.C. 2004b. The
sheep of St Kilda. In: Soay sheep: dynamics and selection in an island population (T.H. Clutton-Brock
& J.M. Pemberton, eds). Cambridge University Press.

Clutton-Brock, T.H., Stevenson, I.R., Marrow, P., MacColl, a.D., Houston, a.I. & McNamara, J.M.
1996. Population fluctuations, reproductive costs and life-history tactics in female Soay sheep.
Journal of Animal Ecology 65: 675–689.

Coltman, D.W., Festa-Bianchet, M., Jorgenson, J.T. & Strobeck, C. 2002. Age-dependent sexual
selection in bighorn rams. Proceedings of the Royal Society of London B: Biological Sciences 269:
165–172.

Coltman, D.W., O’Donoghue, P., Hogg, J.T. & Festa-Bianchet, M. 2005. Selection and genetic
(co)variance in bighorn sheep. Evolution; international journal of organic evolution 59: 1372–1382.

Coltman, D.W., O’Donoghue, P., Jorgenson, J.T., Hogg, J.T., Strobeck, C. & Festa-Bianchet, M. 2003.
Undesirable evolutionary consequences of trophy hunting. Nature 426: 655–658.

Cope, E.D. 1896. The Primary Factors of Organic Evolution’. Open Court Publishing, Chicago, IL.

Coulson, T. 2012. Integral projections models, their construction and use in posing hypotheses in
ecology. Oikos 121: 1337–1350.

Coulson, T.N., MacNulty, D.R., Stahler, D.R., VonHoldt, B., Wayne, R.K. & Smith, D.W. 2011. Mod-
eling effects of environmental change on wolf population dynamics, trait evolution, and life history.
Science 334: 1275–8.

117



BIBLIOGRAPHY

Coulson, T.N., Tuljapurkar, S. & Childs, D.Z. 2010. Using evolutionary demography to link life history
theory, quantitative genetics and population ecology. The Journal of Animal Ecology 79: 1226–40.

Crawley, M.J., Albon, S.D., Bazely, D.R., Milner, J.M., Pilkington, J.G. & Tuke, A.L. 2004. Vegetation
and sheep population dynamics. In: Soay sheep: dynamics and selection in an island population

(T.H. Clutton-Brock & J.M. Pemberton, eds). Cambridge University Press.

Darimont, C.T., Carlson, S.M., Kinnison, M.T., Paquet, P.C., Reimchen, T.E. & Wilmers, C.C. 2009.
Human predators outpace other agents of trait change in the wild. Proceedings of the National

Academy of Sciences 106: 952–954.

De Jong, G. & Van Noordwijk, A.J. 1992. Acquisition and allocation of resources: genetic (co)
variances, selection, and life histories. The American Naturalist 139: 749–770.

de los Campos, G. & Gianola, D. 2007. Factor analysis models for structuring covariance matrices
of additive genetic effects: a Bayesian implementation. Genetics, selection, evolution 39: 481–494.

DeAngelis, D.L. & Grimm, V. 2014. Individual-based models in ecology after four decades.
F1000prime reports 6: 39.

DeAngelis, D.L. & Gross, L.J. (eds) 1992. Individual-based models and approaches in ecology: popula-

tions, communities and ecosystems. Chapman and Hall/CRC.

Dmitriew, C.M. 2011. The evolution of growth trajectories: what limits growth rate? Biological reviews

of the Cambridge Philosophical Society 86: 97–116.

Easterling, M.R., Ellner, S.P. & Dixon, P.M. 2000. Size-specific sensitivity: applying a new structured
population model. Ecology 81: 694–708.

Eldridge, W.H., Hard, J.J. & Naish, K.A. 2010. Simulating fishery-induced evolution in chinook
salmon: the role of gear, location, and genetic correlation among traits. Ecological Applications

20: 1936–1948.

Ellner, S.P. & Rees, M. 2006. Integral projection models for species with complex demography. The

American Naturalist 167: 410–428.

Endler, J. 1986. Natural Selection in the Wild. Monographs in population biology. Princeton University
Press.

Estes, S. & Arnold, S.J. 2007. Resolving the paradox of stasis: models with stabilizing selection
explain evolutionary divergence on all timescales. The American Naturalist 169: 227–244.

Fairbairn, D.J. 1997. Allometry for sexual ssze dimorphism: pattern and process in the coevolution
of body size in males and females. Annual Review of Ecology and Systematics 28: 659–687.

Falconer, D. 1981. Introduction to Quantitative Genetics, 2nd edn. Longman, New York.

Festa-Bianchet, M. 1988. Birthdate and survival in bighorn lambs (ovis canadensis). Journal of

Zoology 214: 653–661.

Festa-Bianchet, M., Coltman, D.W., Turelli, L. & Jorgenson, J.T. 2004. Relative allocation to horn and
body growth in bighorn rams varies with resource availability. Behavioral Ecology 15: 305–312.

Festa-Bianchet, M., Coulson, T., Gaillard, J.M., Hogg, J.T. & Pelletier, F. 2006. Stochastic predation

118



BIBLIOGRAPHY

events and population persistence in bighorn sheep. Proceedings of the Royal Society of London B:

Biological Sciences 273: 1537–1543.

Festa-Bianchet, M., Gaillard, J. & Jorgenson, J.T. 1998. Mass- and density-dependent reproductive
success and reproductive costs in a capital breeder. The American Naturalist 152: 367–379.

Festa-Bianchet, M., Jorgenson, J.T., Lucherini, M. & Wishart, W.D. 1995. Life history consequences
of variation in age of primiparity in bighorn ewes. Ecology 76: 871–881.

Festa-Bianchet, M. & King, W.J. 2007. Age–related reproductive effort in bighorn sheep ewes. Eco-

science 14: 318–322.

Festa-Bianchet, M., Pelletier, F., Jorgenson, J.T., Feder, C. & Hubbs, A. 2014. Decrease in horn size
and increase in age of trophy sheep in Alberta over 37 years. Journal of Wildlife Management 78:
133–141.

Feulner, P.G.D., Gratten, J., Kijas, J.W., Visscher, P.M., Pemberton, J.M. & Slate, J. 2013. Intro-
gression and the fate of domesticated genes in a wild mammal population. Molecular Ecology 22:
4210–4221.

Fisher, R.A. 1918. The correlation between relatives on the supposition of mendelian inheritance.
Transactions of the Royal Society of Edinburgh 52: 399–433.

Fisher, R.A. 1930. The genetical theory of natural selection. Clarendon Press„ Oxford, U.K.

Franklin, O.D. & Morrissey, M.B. 2017. Inference of selection gradients using performance measures
as fitness proxies. Methods in Ecology and Evolution 8: 663–677.

Fussmann, G.F., Loreau, M. & Abrams, P.A. 2007. Eco-evolutionary dynamics of communities and
ecosystems. Functional Ecology 21: 465–477.

Galton, F. 1886. Regression Towards Mediocrity in Heriditary Stature. Journal of the Anthropological

Institute XV: 246–263.

Gelman, A. 2006. Prior distributions for variance parameters in hierarchical models. Bayesian Analysis

1: 515–533.

Gianola, D. & Sorensen, D. 2004. Quantitative genetic models for describing simultaneous and
recursive relationships between phenotypes. Genetics 167: 1407–1424.

Gjerde, B., Terjesen, B., Barr, Y., Lein, I. & Thorland, I. 2004. Genetic variation for juvenile growth
and survival in Atlantic cod (Gadus morhua). Aquaculture 236: 167–177.

Godfrey-Smith, P. 2007. Conditions for evolution by natural selection. The Journal of Philosophy CIV:
489–516.

Gould, S.J. & Eldredge, N. 1993. Punctuated equilibrium comes of age. Nature 366: 223 EP –.

Grafen, A. 1988. On the uses of data on lifetime reproductive success. In: Reproductive Success

(T.H. Clutton-Brock, ed), pp. 454–471. University of Chicago Press, Chicago, IL.

Grimm, V. 1999. Ten years of individual-based modelling in ecology: what have we learned and what
could we learn in the future? Ecological Modelling 115: 129 – 148.

119



BIBLIOGRAPHY

Gunay, F., Alten, B. & Ozsoy, E.D. 2011. Narrow-sense heritability of body size and its response
to different developmental temperatures in Culex quinquefasciatus (Say 1923). Journal of Vector

Ecology 36: 348–54.

Hadfield, J.D. 2008. Estimating evolutionary parameters when viability selection is operating. Pro-

ceedings of the Royal Society of London B: Biological Sciences 275: 723–734.

Hadfield, J.D. 2010. MCMC methods for multi-response generalized linear mixed models: the MCM-
Cglmm R package. Journal of Statistical Software 33: 1–22.

Hadfield, J.D., Heap, E.A., Bayer, F., Mittell, E.A. & Crouch, N.M.A. 2013. Disentangling genetic
and prenatal sources of familial resemblance across ontogeny in a wild passerine. Evolution 67:
2701–2713.

Hadfield, J.D., Richardson, D.S. & Burke, T. 2006. Towards unbiased parentage assignment: com-
bining genetic, behavioural and spatial data in a bayesian framework. Molecular Ecology 15: 3715–
3730.

Hadfield, J.D., Wilson, A.J., Garant, D., Sheldon, B.C. & Kruuk, L.E.B. 2010. The misuse of BLUP in
ecology and evolution. The American Naturalist 175: 116–25.

Haller, B.C. & Hendry, A.P. 2014. Solving the paradox of stasis: squashed stabilizing selection and
the limits of detection. Evolution 68: 483–500.

Hansen, T.F. 2012. Adaptive landscapes and macroevolutionary dynamics. In: The adaptive land-

scape in evolutionary biology (E.I. Svensson & R. Carlsbeek, eds). Oxford University Press.

Hansen, T.F., Armbruster, W., Carlson, M. & Pelabon, C. 2003. Evolvability and genetic constraints in
Dalechampia Blossoms: genetic correlations and conditional evolvability. Journal of Experimental

Zoology 296B: 23–39.

Hansen, T.F. & Houle, D. 2004. Evolvability, stabilizing selection, and the problem of stasis. In: Phe-

notypic integration (M. Pigliucci & K. Preston, eds), pp. 130–150. Oxford University Press, Oxford.

Hansen, T.F., Pélabon, C. & Houle, D. 2011. Heritability is not evolvability. Evolutionary Biology 38:
258–277.

Harris, R.B., Wall, W.A. & Allendorf, F.W. 2002. Genetic consequences of hunting: What do we know
and what should we do? Wildlife Society Bulletin (1973-2006) 30: 634–643.

Hedrick, P.W., Coltman, D.W., Festa-Bianchet, M. & Pelletier, F. 2014. Not surprisingly, no inheritance
of a trait results in no evolution. Proceedings of the National Academy of Sciences 111: E4810–
E4810.

Henderson, C.R. 1975. Best linear unbiased estimation and prediction under a selection model.
Biometrics 31: 423–447.

Hendry, A.P., Gotanda, K.M. & Svensson, E.I. 2017. Human influences on evolution, and the eco-
logical and societal consequences. Philosophical Transactions of the Royal Society of London B:

Biological Sciences 372.

Hereford, J. 2009. A quantitative survey of local adaptation and fitness trade-offs. The American

Naturalist 173: 579–588.

120



BIBLIOGRAPHY

Hereford, J., Hansen, T.F. & Houle, D. 2004. Comparing strengths of directional selection: how strong
is strong? Evolution 58: 2133–2143.

Hine, E., Chenoweth, S.F., Rundle, H.D. & Blows, M.W. 2009. Characterizing the evolution of genetic
variance using genetic covariance tensors. Philosophical transactions of the Royal Society of London.

Series B, Biological sciences 364: 1567–78.

Honek, A. 1993. Intraespecific variation in body size and fecundity in insects: a general relationship.
Oikos 66: 483–492.

Houle, D. 1992. Comparing evolvabiliy and variability of quantitative traits. Genetics 130: 195–204.

Huchard, E., Charmantier, a., English, S., Bateman, a., Nielsen, J.F. & Clutton-Brock, T. 2014. Ad-
ditive genetic variance and developmental plasticity in growth trajectories in a wild cooperative
mammal. Journal of Evolutionary Biology 27: 1893–1904.

Hunt, G. 2007. The relative importance of directional change, random walks, and stasis in the evo-
lution of fossil lineages. Proceedings of the National Academy of Sciences of the United States of

America 104: 18404–8.

Hunter, D.C., Pemberton, J.M., Pilkington, J.G. & Morrissey, M.B. 2018. Quantification and decom-
position of environment-selection relationships. Evolution 72: 851–866.

Huston, M., DeAngelis, D. & Post, W. 1988. New computer models unify ecological theory. BioScience

38: 682–691.

Hutchings, J.A. & Fraser, D.J. 2008. The nature of fisheries- and farming-induced evolution. Molecular

Ecology 17: 294–313.

Illius, A., Albon, S., Pemberton, J., Gordon, I. & Clutton-Brock, T. 1995. Selection for foraging effi-
ciency during a population crash in soay sheep. Journal of Animal Ecology 64: 481–492.

Jacquard, A. 1983. Heritability: one word, three concepts. Biometrics 39: 465–477.

Jakobsen, J.H., Madsen, P., Jensen, J., Pedersen, L.G., Christensen, L.G. & Sorensen, D.A. 2002.
Genetic parameters for milk production and persistency for danish holsteins estimated in random
regression models using reml. Journal of Dairy Science 85: 1607–1616.

Johnson, D.W. & Hixon, M.A. 2011. Sexual and lifetime selection on body size in a marine fish: the
importance of life-history trade-offs. Journal of Evolutionary Biology 24: 1653–1663.

Johnson, V.A., Biever, K.J., Haunold, A. & Schmidt, J.W. 1966. Inheritance of plant height, yield
of grain, and other plant and seed characteristics in a cross of hard red winter wheat, Triticum
aestivum L. Crop Science 6: 336–338.

Johnston, S.E., Beraldi, D., McRae, A.F., Pemberton, J.M. & Slate, J. 2010. Horn type and horn
length genes map to the same chromosomal region in soay sheep. Heredity 104: 196 EP –.

Johnston, S.E., Gratten, J., Berenos, C., Pilkington, J.G., Clutton-Brock, T.H., Pemberton, J.M. &
Slate, J. 2013. Life history trade-offs at a single locus maintain sexually selected genetic variation.
Nature 502: 93–5.

Jones, A.G., Arnold, S.J. & Bürger, R. 2004. Evolution and stability of the g-matrix on a landscape
with a moving optimum. Evolution 58: 1639–1654.

121



BIBLIOGRAPHY

Jorgenson, J.T., Festa-Bianchet, M., Gaillard, J.M. & Wishart, W.D. 1997. Effects of age, sex, disease,
and density on survival of bighorn sheep. Ecology 78: 1019–1032.

Jorgenson, J.T., Festa-Bianchet, M. & Wishart, W.D. 1993. Harvesting bighorn ewes: consequences
for population size and trophy ram production. The Journal of Wildlife Management 57: 429–435.

Jorgenson, J.T., Festa-Bianchet, M. & Wishart, W.D. 1998. Effects of population density on horn
development in bighorn rams. The Journal of Wildlife Management 62: 1011–1020.

Kelly, C. & Price, T.D. 2005. Correcting for regression to the mean in behavior and ecology. The

American Naturalist 166: 700–707.

Kingsolver, J.G. & Pfennig, D.W. 2004. Individual-level selection as a cause of Cope’s rule of phyletic
size increase. Evolution 58: 1608–1612.

Kirkpatrick, M. & Heckman, N. 1989. A quantitative genetic model for growth, shape, reaction norms,
and other infinite-dimensional characters. Journal of Mathematical Biology 27: 429–450.

Kirkpatrick, M., Hill, W.G. & Thompson, R. 1994. Estimating the covariance structure of traits during
growth and aging, illustrated with lactations in dairy cattle. Genetics Research 64: 57–69.

Kirkpatrick, M. & Lande, R. 1989. The evolution of maternal characters. Evolution 43: 485–503.

Kirkpatrick, M., Lofsvold, D. & Bulmer, M. 1990. Analysis of the inheritance, selection and evolution
of growth trajectories. Genetics 124: 979–93.

Kirkpatrick, M. & Meyer, K. 2004. Direct estimation of genetic principal components. Genetics 168:
2295–2306.

Knouft, J.H. & Page, L.M. 2003. The evolution of body size in extant groups of North American
freshwater fishes: speciation, size distributions, and Cope’s rule. The American Naturalist 161:
413–421.

Kruuk, L., Charmantier, A. & Garant, D. 2014. The study of quantitative genetics in wild populations.
In: Quantitative Genetics in the Wild (A. Charmantier, D. Garant & L.E. Kruuk, eds), pp. 1–15. Oxford
University Press, Oxford, UK.

Kruuk, L.E.B. 2004. Estimating genetic parameters in natural populations using the "animal model".
Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 359: 873–
890.

Kruuk, L.E.B. & Hadfield, J.D. 2007. How to separate genetic and environmental causes of similarity
between relatives. Journal of Evolutionary Biology 20: 1890–1903.

Kruuk, L.E.B., Slate, J., Pemberton, J.M., Sue, B., Guinness, F. & CluttonâĂŘBrock, T. 2002. Antler
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APPENDIX A
Supplementary material to Chapter 3

A.1 Supplementary tables

Table A.1.1: Coefficients of the bivariate model of lamb body mass and early pregnancy in Soay
sheep ewes. Model description can be found in Equation (3.1), in the main text.

parameter posterior mode 95% CrI

fixed effects

body mass

intercept 13.710 (13.232; 14.270)
density -0.002 (-0.005; 0.001)
density2 0.000 (0.000; 0.000)
twin -2.909 (-3.216; -2.619)
maternal age 0.377 (0.330; 0.436)
maternal age2 -0.109 (-0.127; -0.096)
birth date -0.061 (-0.072; -0.045)
measurement date 0.083 (0.042; 0.119)

pregnancy

intercept 0.012 (-0.897; 0.677)
density -0.004 (-0.009; -0.001)
density2 0.000 (0.000; 0.000)
twin 1.727 (1.023; 2.306)
maternal age -0.160 (-0.273; -0.026)
maternal age2 0.037 (-0.004; 0.068)

random effects

breeding values
body mass 0.721 (0.184; 1.301)
body mass:pregnancy 0.628 (-0.017; 1.505)
pregnancy 1.632 (0.000; 5.930)

cohort
body mass 0.526 (0.264; 1.148)
body mass:pregnancy 0.464 (0.115; 1.167)
pregnancy 0.931 (0.115; 1.167)

maternal ID
body mass 0.626 (0.342; 1.017)
body mass × pregnancy 0.001 (-0.143; 0.432)
pregnancy 0.003 (0.000; 0.889)

residuals
body mass 1.788 (1.368; 2.224)
body mass × pregnancy 1.038 (0.697; 1.254)
pregnancy 1.000 (1.000; 1.000)
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A.2 Details on solving derivatives and integrals

Estimating average trait values (Eqn. 3.3, main text) and variances (Eqn. 3.4), main text) on the ex-
pected scale implies solving integrals of high dimensionality in the context of the path analysis, and
particularly when these equations are applied to the vector-valued function f (l)f (l)f (l) in Equation (3.11).

In such circumstances, solving integrals using Monte Carlo simulations is particularly useful as the
error is independent from the integrand dimensionality, but mainly because other numerical meth-
ods are likely to fail. Monte Carlo integration relies on the fact that the integral

∫
L
g(l) f (l)dl (or∫

L
g−1(l) f (l)dl if applied to an inverse link function) corresponds to the expectation of g, E f [g(L)].

As a consequence, a random sample of latent values, L, generated using its density f can be used
to approximate de empirical average of g,

ḡ ≈
1
n

n∑
i=1

g(li ), (A.1)

where n is the number of draws from L. ḡ is also an approximation to
∫
L
g(l) f (l)dl. This approxi-

mation converges to the real value of the integral, by the law of large numbers as n → ∞ (Robert
& Casella, 2005). I sampled nMC = 2000 values from the distribution of the latent traits on which I
evaluated f (l)f (l)f (l). Since the statistical models were fitted in a Bayesian framework, this procedure was
applied to npost = 2000 posterior independent samples.

For lower dimensional integrals, and particularly to obtain Φ (average derivative of the expected val-
ues with respect to the latent ones) in Equation (3.6), in the main text, I used function cuhre from R
package R2CubaR2CubaR2Cuba that implements a deterministic algorithm that uses cubature rules of polynomial
degree, also allowing for multidimensional integration.

Likewise, the differentiation in the calculation of extended selection gradients (Eqn. 3.12, main text)
was accomplished by numerical linear approximation,

W ′(l) ≈
W (l + h) −W (l)

h
, (A.2)

where h is some small value. So, the extended selection gradient for mass would be obtained by
evaluating W for a certain value of latent mass l and at for l + h. This procedure was applied to
nMC = 2000 values from the distribution of the latent distributions on which I evaluated f (l)f (l)f (l) times
npost = 2000 posterior independent samples.
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B.1 Deriving biometric relationships from growth models

B.1.1 Development

The principles of path analysis McArdle & McDonald (1984) were applied to variance-covariance ma-
trices for growth and path coefficient matrices matching Figures 4.1a and 4.1b (main text), both for
the general scenario and for the simplification suggested in the main text. In the latter, the obtained
variances and covariances in true size across ages are 1 and for the observed size, variances are 1
and covariances r2.

General 4-age example

Latent true size modelLatent true size modelLatent true size model I define a variance-covariance matrix for growth, VVV , that includes both the
variances on growth, σ2

g , and the measurement error on observed size, σ2
ε , as well as a path

coefficient matrix, bbb, as follows

VVV =



σ2
g1 0 0 0 0 0 0 0

0 σ2
g2 0 0 0 0 0 0

0 0 σ2
g3 0 0 0 0 0

0 0 0 σ2
g4 0 0 0 0

0 0 0 0 σ2
ε1 0 0 0

0 0 0 0 0 σ2
ε2 0 0

0 0 0 0 0 0 σ2
ε3 0

0 0 0 0 0 0 0 σ2
ε4



bbb =



0 0 0 0 0 0 0 0
bz1 0 0 0 0 0 0 0

0 bz2 0 0 0 0 0 0
0 0 bz3 0 0 0 0 0
r1 0 0 0 0 0 0 0
0 r2 0 0 0 0 0 0
0 0 r3 0 0 0 0 0
0 0 0 r4 0 0 0 0



.

These two matrices are built to match the path diagrams in Figure 4.1a (main text), so that the
tracing rules of path analysis can be applied to obtain variances and covariances in size among
ages. Particularly, a phenotypic variance-covariance matrix for size among ages, ΣΣΣ, is obtained
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using

ΣΣΣ = ϕϕϕVVVϕϕϕT (a1)

and

ϕϕϕ = (III − bbb)−1, (a2)

where ϕϕϕ is a matrix with the regressions of each age on every other age and III is an identity matrix
of order equal to the number of different ages. The phenotypic variance-covariance matrix for true
sizes is therefore given by

ΣzΣzΣz =




σ2
g1 σ2

g1 bz1

σ2
g1 bz1 σ2

g1 b2
z1
+ σ2

g2

σ2
g1 bz1 bz2 σ2

g1 b2
z1

bz2 + σ
2
g2 bz2

σ2
g1 bz1 bz2 bz3 σ2

g1 b2
z1

bz2 bz3 + σ
2
g2 bz2 bz3

σ2
g1 bz1 bz2 σ2

g1 bz1 bz2 bz3

σ2
g1 b2

z1
bz2 + σ

2
g2 bz2 σ2

g1 b2
z1

bz2 bz3 + σ
2
g2 bz2 bz3

σ2
g1 b2

z1
b2
z2
+ σ2

g2 b2
z2
+ σ2

g3 σ2
g1 b2

z1
b2
z2

bz3 + σ
2
g2 b2

z2
bz3 + σ

2
g3 bz3

σ2
g1 b2

z1
b2
z2

bz3 + σ
2
g2 b2

z2
bz3 + σ

2
g3 bz3 σ2

g1 b2
z1

b2
z2

b2
z3
+ σ2

g2 b2
z2

b2
z3
+ σ2

g3 b2
z3
+ σ2

z4



, (A1)

and the phenotypic variance-covariance matrix for observed sizes is as follows

ΣxΣxΣx =




σ2
g1r2

1 + σ
2
ε1 σ2

g1 bz1r1r2
σ2

g1 bz1r1r2 σ2
g1 b2

z1
r2

2 + σ
2
g2r2

2 + σ
2
ε2

σ2
g1 bz1 bz2r1r3 σ2

g1 b2
z1

bz2r2r3 + σ
2
g2 bz2r2r3

σ2
g1 bz1 bz2 bz3r1r4 σ2

g1 b2
z1

bz2 bz3r2r4 + σ
2
g2 bz2 bz3r2r4

σ2
g1 bz1 bz2r1r3 σ2

g1 bz1 bz2 bz3r1r4
σ2

g1 b2
z1

bz2r2r3 + σ
2
g2 bz2r2r3 σ2

g1 b2
z1

bz2 bz3r2r4 + σ
2
g2 bz2 bz3r2r4

σ2
g1 b2

z1
b2
z2

r2
3 + σ

2
g2 b2

z2
r2

3 + σ
2
g3r2

3 + σ
2
ε3 σ2

g1 b2
z1

b2
z2

bz3r3r4 + σ
2
g2 b2

z2
bz3r3r4 + σ

2
g3 bz3r3r4

σ2
g1 b2

z1
b2
z2

bz3r3r4 + σ
2
g2 b2

z2
bz3r3r4 + σ

2
g3 bz3r3r4 σ2

g1 b2
z1

b2
z2

b2
z3

r2
4 + σ

2
g2 b2

z2
b2
z3

r2
4 + σ

2
g3 b2

z3
r2

4 + σ
2
g4r2

4 + σ
2
ε4



.

(A2)

Observed size model implemented into IPMsObserved size model implemented into IPMsObserved size model implemented into IPMs Similarly to the true underlying model, I set the variance-
covariance matrix with variances in growth and the matrix with the path coefficients estimated with
the standard approach used in IPMs (matching Fig. 4.1b in the main text), respectively, as

VI PMVI PMVI PM =



s2
g1

0 0 0
0 s2

g2
0 0

0 0 s2
g3

0
0 0 0 s2

g4



bI PMbI PMbI PM =



0 0 0 0
bx1 0 0 0
0 bx2 0 0
0 0 bx3 0


.

As such, the resulting phenotypic variance-covariance matrix for size at age is
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ΣxI PMΣxI PMΣxI PM =




s2
g1 s2

g1bx1
s2
g1bx1 s2

g1b
2
x1 + s2

g2
s2
g1bx1bx2 s2

g1b
2
x1bx2 + s2

g2bx2
s2
g1bx1bx2bx3 s2

g1b
2
x1bx2bx3 + s2

g2bx2bx3

s2
g1bx1bx2 s2

g1bx1bx2bx3
s2
g1b

2
x1bx2 + s2

g2bx2 s2
g1b

2
x1bx2bx3 + s2

g2bx2bx3
s2
g1b

2
x1b

2
x2 + s2

g2b
2
x2 + s2

g3 s2
g1b

2
x1b

2
x2bx3 + s2

g2b
2
x2bx3 + s2

g3bx3
s2
g1b

2
x1b

2
x2bx3 + s2

g2b
2
x2bx3 + s2

g3bx3 s2
g1b

2
x1b

2
x2b

2
x3 + s2

g2b
2
x2b

2
x3 + s2

g3b
2
x3 + s2

g4



. (A3)

Simplified 4-age example

Analogous matrices for the simplified example set in the main text are shown here. In this example,
size-dependent growth coefficients for any age a are one (bza = 1,∀a), the variance in true growth at
age one is one (σ2

g1
= 1) and the subsequent are zero (σ2

ga = 0,a > 1). Finally, the square root of
the repeatabilities (ra) and the variances in measured size (σ2

εa ) take the same value, r and 1 − r2,
respectively.

Latent true size modelLatent true size modelLatent true size model The matrices with true variances and path coefficients correspond to

VVV =



1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 − r2 0 0 0
0 0 0 0 0 1 − r2 0 0
0 0 0 0 0 0 1 − r2 0
0 0 0 0 0 0 0 1 − r2



bbb =



0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
r 0 0 0 0 0 0 0
0 r 0 0 0 0 0 0
0 0 r 0 0 0 0 0
0 0 0 r 0 0 0 0



,

resulting in the following phenotypic variance-covariance matrix for size at age, where the upper left
4 × 4 block corresponds to true sizes and the lower right to observed sizes

ΣΣΣ =



1 1 1 1 r r r r
1 1 1 1 r r r r
1 1 1 1 r r r r
1 1 1 1 r r r r
r r r r 1 r2 r2 r2

r r r r r2 1 r2 r2

r r r r r2 r2 1 r2

r r r r r2 r2 r2 1



.

Observed size model implemented into IPMsObserved size model implemented into IPMsObserved size model implemented into IPMs Similar matrices estimated by the methods normally
used in IPMs are given below

VI PMVI PMVI PM =



1 0 0 0
0 1 − r4 0 0
0 0 1 − r4 0
0 0 0 1 − r4


bI PMbI PMbI PM =



0 0 0 0
r2 0 0 0
0 r2 0 0
0 0 r2 0


,

resulting in a variance-covariance matrix for size across ages as follows
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ΣI PMΣI PMΣI PM =



1 r2 r22 r24

r2 1 r2 r22

r22 r2 1 r2

r24 r22 r2 1


.

B.1.2 Inheritance

As for development, the principles of path analysis were applied to the variance-covariance matrix
with the path coefficient matrix, in this case matching Figures 4.5a and 4.5b from the main text.

The cross-age structure of the inheritance function

Expressions for true parent-offspring regressionsExpressions for true parent-offspring regressionsExpressions for true parent-offspring regressions Let the additive genetic, GPOGPOGPO, and the residual,
EPOEPOEPO, variance-covariance matrices matching Figure 4.5a be defined as

GPOGPOGPO =



σ2a J σa J,A
σ2a J

2
σa J,A

2

σa J,A σ2a A
σa J,A

2
σ2a A

2
σ2a J

2
σa J,A

2 σ2a J σa J,A
σa J,A

2
σ2a A

2 σa J,A σ2a A



EPOEPOEPO =



σ2e J σe J,A 0 0
σe J,A σ2e A 0 0

0 0 σ2e B σe J,A
0 0 σe J,A σ2e A


,

where σ2a J and σ2e J correspond to the additive genetic and environmental variances in size as a
juvenile, respectively; and σ2a A and σ2e A correspond to similar quantities for variance in growth. Note
that, in both matrices, the upper left 2 × 2 square corresponds to parental quantities, whereas the
bottom right corresponds to offspring’s and the off-diagonals to the correlation between them. In
GPO, the genetic covariance of a parent with its offspring was taken as 1

2 Lynch & Walsh (1998).

Assuming that, regardless of the generation, the regression of adult size on juvenile size is given by
b, a matrix of path coefficients bbb can be defined as

bbb =


0 0 0 0
b 0 0 0
0 0 0 0
0 0 b 0


.

The resulting phenotypic variance-covariance matrix for size is given by

ΣPOΣPOΣPO =



σ2
z J σ2

z J b + σz J,A
σ2a J

2
σ2a J

2 b + σa J,A

2

σ2
z J b + σz J,A σ2

z J b2 + 2σz J,Ab + σ2
z A

σ2a J

2 b + σa J,A

2
σ2a J

2 b2 + σa J,Ab + σ2a A

2
σ2a J

2
σ2a J

2 b + σa J,A

2 σ2
z J σ2

z J b + σz J,A

σ2a J

2 b + σa J,A

2
σ2a J

2 b2 + σa J,Ab + σ2a A

2 σ2
z J b + σz J,A σ2

z J b2 + 2σz J,Ab + σ2
z A



.
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Considering that the estimator for the slope of a linear regression is just the quotient of the covariance
between the response and the predictor by the variance of the predictor, the parent-offspring regres-
sions, βOJ ,PJ and βOA,PA , are easily calculated using ΣPOΣPOΣPO, as well as the other two true regressions
discussed in the main text.

Expressions for parent-offspring regressions recovered by IPMsExpressions for parent-offspring regressions recovered by IPMsExpressions for parent-offspring regressions recovered by IPMs Similarly to what was done for the
theoretical values, a residual variance-covariance matrix, EPOI PM

EPOI PMEPOI PM , and a matrix with path coefficients,
bPOI PM
bPOI PMbPOI PM ,

EPOI PM
EPOI PMEPOI PM =



s2
g J

0 0 0
0 s2

g A
0 0

0 0 s2
g J

0
0 0 0 s2

g A



bPOI PM
bPOI PMbPOI PM =



0 0 0 0
bdev 0 0 0

0 binh 0 0
0 0 bdev 0


,

were defined so to match the path diagram in Figure 4.5b (main text). s2 was used to denote vari-
ances, and in matrix bPOI PM

bPOI PMbPOI PM , bdev and binh correspond to coefficients for ontogenic development and
cross-age inheritance, respectively. Using Equations (a1) and (a2), a phenotypic variance-covariance
matrix for size,

ΣPOI PM
ΣPOI PMΣPOI PM =




s2
g J

s2
g J

bdev
s2
g J

bdev s2
g J

bdev2 + s2
g A

s2
g J

bdevbinh s2
g J

bdev2binh + s2
g A

binh
s2
g J

bdev2binh s2
g J

bdev3binh + s2
g A

bdevbinh

s2
g J

bdevbinh s2
g J

bdev2binh
s2
g J

bdev2binh + s2
g A

binh s2
g J

bdev3binh + s2
g A

bdevbinh
s2
g J
+ s2

g J
bdev2binh2 + s2

g A
binh2 s2

g J
bdev + s2

g J
bdev3binh2 + s2

g A
bdevbinh2

s2
g J

bdev + s2
g J

bdev3binh2 + s2
g A

bdevbinh2 s2
g J

bdev2 + s2
g J

bdev4binh2 + s2
g A

bdev2binh2 + s2
g A



, (B.1)

is obtained. According to this matrix, the parent-offspring regression, regardless of the ontogenic
stage, is given by bdev · binh ,

βOJ ,PJ IPM
=

s2
g J

bdevbinh

s2
g J

= bdevbinh (A2a)

βOA,PA IPM
=

s2
g J

bdev3binh + s2
g A

bdevbinh

s2
g J

bdev2 + s2
g J

= bdevbinh . (A2b)

As pointed out in the main text, an IPM recovers the true values for the regression of juvenile size
on adult size (βOJ ,OA and βPJ ,PA , or just βJ,A) and also for offspring juvenile size on parent adult
size (βOJ ,PA ), as they are estimated directly from the data. As a result, bdev and binh correspond to
true βJ,A and βOJ ,PA , respectively, and therefore the product βJ,A · βOJ ,PA corresponds to the IPM’s
estimator of the parent-offspring regression for both juveniles and adults.

vii



APPENDIX B. SUPPLEMENTARY MATERIAL TO CHAPTER 4

viii



APPENDIX B. SUPPLEMENTARY MATERIAL TO CHAPTER 4

B.2 Supplementary tables and figures

B.2.1 Tables
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Table B.2.2: Covariances in size among ages i and j ( j > i) recovered by typically-constructed
IPMs. s2

g correspond to variances growth and b to path coefficients. The subscripts 1,2, ... denote
corresponding ages.

Covariance(age i, age j) observed size (x)

cov(1, j) s2
g1

j−1∏
i=1

bxi

cov(2, j) s2
g1

b2
x1

j−1∏
i=2

bxi + s2
g2

j−1∏
i=2

bxi

cov(3, j) s2
g1

b2
x1

b2
x2

j−1∏
i=3

bxi + s2
g2

b2
x2

j−1∏
i=3

bxi + s2
g3

j−1∏
i=3

bxi

cov(..., j) ...
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Figure B.2.1: Proportion of parent-offspring regression recovered by IPMs, in juveniles, (A)(A)(A), and
adults, (B)(B)(B), as a function of the size-dependent growth regression (b) and the additive genetic covari-
ance in growth (σa J,A ). The remaining parameters were set to σ2a J = 1, σ2a A = 1, σ2e J = 1, σ2e A = 1,
and σe J,A = 0. The true values were used as reference.
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Table C.1.1: JAGS code for the factor analytic model described in equation (5.3) including a single
additive genetic axis, fa(1).

------------------------------------------------------------------------------------------------
modelCode<-"
model {
##### A. Breeding values
#unknown parents
for(i in 1:NKnownNeither) {a.mum[i]~dnorm(0,tau_a)}
for(i in (NKnownNeither+NKnownMum+1):(NKnownNeither+NKnownMum+NKnownDad)) {a.mum[i]~dnorm(0,tau_a)}
for(i in 1:(NKnownNeither+NKnownMum)) {a.dad[i]~dnorm(0,tau_a)}
#known parents
for(i in (NKnownNeither+1):(NKnownNeither+NKnownMum)) {a.mum[i]<-a[mum[i]]}
for(i in (NKnownNeither+NKnownMum+NKnownDad+1):Nped) {a.mum[i]<-a[mum[i]]}
for(i in (NKnownNeither+NKnownMum+1):Nped) {a.dad[i]<-a[dad[i]]}
#offspring
for(i in 1:Nped) {a[i]~dnorm((a.mum[i]+a.dad[i])/2,tau_a2)}
#bv for the sheep being modelled
for(i in 1:N) {fa[i]<-a[id[i]]} #id in phenotypic data

##### B. the model
# state model
for(i in 1:N) {
fe[i]~dnorm(0, 1)
for(j in 1:Nage){
z[i,j]~dnorm(mu[j]+beta*dens[i]+lambda_a[j]*fa[i]+lambda_e[j]*fe[i] + u[Mum[i]] + w[cohort[i]],
tau[agecat[j]])
}
}
# observation model
for(k in 1:n.obs){y[k]~dnorm(z[id2[k],age[k]], meas.tau[age[k]])}

##### C. Prior distributions
tau_a[1]<-1
tau_a2[1]<-2

beta~dnorm(0,0.00001)
for (i in 1:Nmum) {u[i]~dnorm(0,tauMum)}
for (i in 1:Ncohort) {w[i]~dnorm(0,tauCohort)}
tauMum~dgamma(0.001,0.001)
sigmaMum<-1/tauMum
tauCohort~dgamma(0.001,0.001)
sigmaCohort<-1/tauCohort

for (j in 1:Nage){
mu[j]~dnorm(0,0.00001)
meas.tau[j]<-1000
meas.sigma[j]<-1/meas.tau[j]
lambda_a[j]~dnorm(0,0.00001)
lambda_e[j]~dnorm(0,0.00001)
}
for (j in 1:4){
tau[j]~dgamma(0.001,0.001)
sigma[j]<-1/tau[j]
}
}
"
------------------------------------------------------------------------------------------------
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Table C.1.2: JAGS code for the factor analytic model described in equation (5.3) including two additive
genetic axes, fa(2).

------------------------------------------------------------------------------------------------
modelCode<-"
model {
##### A. Breeding values
#unknown parents
for (j in 1:2){
for(i in 1:NKnownNeither) {a.mum[i,j]~dnorm(0,tau_a[j])}
for(i in (NKnownNeither+NKnownMum+1):(NKnownNeither+NKnownMum+NKnownDad)) {a.mum[i,j]~dnorm(0,tau_a[j])}
for(i in 1:(NKnownNeither+NKnownMum)) {a.dad[i,j]~dnorm(0,tau_a[j])}
#known parents
for(i in (NKnownNeither+1):(NKnownNeither+NKnownMum)) {a.mum[i,j]<-a[mum[i],j]}
for(i in (NKnownNeither+NKnownMum+NKnownDad+1):Nped) {a.mum[i,j]<-a[mum[i],j]}
for(i in (NKnownNeither+NKnownMum+1):Nped) {a.dad[i,j]<-a[dad[i],j]}
#offspring
for(i in 1:Nped) {a[i,j]~dnorm((a.mum[i,j]+a.dad[i,j])/2,tau_a2[j])}}
#genetic common factors for the sheep being modelled
for(i in 1:N) {fa1[i]<-a[id[i],1]} #id
for(i in 1:N) {fa2[i]<-a[id[i],2]} #id

##### B. the model
# state model
for(i in 1:N) {
fe[i]~dnorm(0, 1)
for(j in 1:Nage){
z[i,j]~dnorm(mu[j]+beta*dens[i]+lambda_a[j,1]*fa1[i]+lambda_a[j,2]*fa2[i]+lambda_e[j]*fe[i] +
u[Mum[i]] + w[cohort[i]], tau[agecat[j]])
}
}
# observation model
for(k in 1:n.obs){y[k]~dnorm(z[id2[k],age[k]], meas.tau[age[k]])}

##### C. Prior distributions
tau_a[1]<-1
tau_a2[1]<-2
tau_a[2]<-1
tau_a2[2]<-2

beta~dnorm(0,0.00001)
for (i in 1:Nmum) {u[i]~dnorm(0,tauMum)}
for (i in 1:Ncohort) {w[i]~dnorm(0,tauCohort)}
tauMum~dgamma(0.001,0.001)
sigmaMum<-1/tauMum
tauCohort~dgamma(0.001,0.001)
sigmaCohort<-1/tauCohort

for (j in 1:Nage){
mu[j]~dnorm(0,0.00001)
meas.tau[j]<-1000
meas.sigma[j]<-1/meas.tau[j]
lambda_a[j,1]~dnorm(0,0.00001)
lambda_e[j]~dnorm(0,0.00001)
}
lambda_a[1,2]<-0
for (j in 2:Nage) {lambda_a[j,2]~dnorm(0,0.00001)}
for (j in 1:4){
tau[j]~dgamma(0.001,0.001)
sigma[j]<-1/tau[j]
}
}
"
------------------------------------------------------------------------------------------------
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C.2 Model outputs

Table C.2.1: Parameter estimates from the multivariate model (mvt) on horn length fitted to the
bighorn sheep males from the population of Ram Mountain. Values correspond to posterior means
and lower (ll) and upper (ul) limits of 95% HPD credible intervals. Additive genetic and phenotypic
(co)variances and correlations are available in Appendix C.4.

parameter mean ll ul

fixed effects
yearling 21.43 20.24 22.62
2 years-old 37.55 36.32 38.85
3 years-old 52.13 50.87 53.51
4 years-old 63.77 62.38 65.19
5 years-old 72.67 71.25 74.27
6 years-old 79.01 77.44 80.65
7 years-old 82.59 80.87 84.44
8 years-old 84.74 82.98 86.86
population density (yearlings) (×100) 6.39 1.59 11.96
population density (2 year-olds) (×100) -3.10 -5.23 -0.87
population density (3 year-olds) (×100) -4.93 -7.54 -1.93
population density (older) (×100) -6.55 -9.63 -2.94

random effects
maternal ID 3.85 0.65 7.26
cohort 11.41 3.69 19.98
year of measurement 1.10 0.41 2.00
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Table C.2.2: Parameter estimates from the random regression model (rr) on horn length fitted to the
bighorn sheep males from the population of Ram Mountain. Values correspond to posterior means
and lower (ll) and upper (ul) limits of 95% HPD credible intervals. Additive genetic and phenotypic
(co)variances and correlations are available in Appendix C.4.

parameter mean ll ul

fixed effects
yearling 21.66 20.30 23.12
2 years-old 38.27 36.65 39.72
3 years-old 53.23 51.61 55.08
4 years-old 65.18 63.25 67.01
5 years-old 74.10 72.18 76.02
6 years-old 80.29 78.36 82.26
7 years-old 83.51 81.38 85.69
8 years-old 85.22 82.83 87.69
population density (yearlings) (×100) 6.56 1.88 11.35
population density (2 year-olds) (×100) -3.50 -5.39 -1.67
population density (3 year-olds) (×100) -5.41 -8.14 -2.86
population density (older) (×100) -7.98 -11.28 -4.74

random effects
breeding values
intercept 20.57 0.00 43.68
age 3.84 0.00 6.42
age2 0.12 0.05 0.20
intercept × age -4.36 -8.27 0.30
intercept × age2 -1.10 -1.87 -0.22
age × age2 0.65 0.17 1.19
permanent environment
intercept 15.88 0.00 33.93
age 0.61 0.00 2.57
age2 0.01 0.00 0.04
intercept × age 1.74 -0.73 5.41
intercept × age2 -0.07 -0.67 0.47
age × age2 0.04 -0.04 0.31
maternal ID 0.85 0.00 2.72
cohort 13.00 4.75 23.14
year of measurement 1.20 0.48 2.16
residual
population density (yearlings) 1.46 0.41 2.73

population density (2 year-olds) 2.36 1.51 3.20
population density (3 year-olds) 1.51 0.83 2.36
population density (older) 1.87 1.30 2.49
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Table C.2.3: Estimates of the age-specific parameters from the factor analytic model with a single
additive genetic common factor (fa(1)) on horn length fitted to the bighorn sheep males from the
population of Ram Mountain. Values correspond to posterior means and lower (ll) and upper (ul)
limits of 95% HPD credible intervals of age-specific intercepts (µ), factor loadings associated to the
additive genetic common factor (λa) and factor loadings associated to the permanent environment
common factor (λe). Additive genetic and phenotypic (co)variances and correlations are available in
Appendix C.4.

µ λa λe

age mean ll ul mean ll ul mean ll ul

yearling 22.36 21.60 23.21 2.52 0.19 4.53 -2.86 -4.08 -1.60
2 years-old 38.22 37.06 39.43 3.39 -0.76 7.05 -6.66 -6.91 -3.58
3 years-old 52.29 50.95 53.55 2.75 -2.25 7.48 -6.66 -8.15 -4.78
4 years-old 63.22 61.69 64.69 1.91 -4.39 7.06 -7.92 -9.56 -5.91
5 years-old 71.91 70.33 73.37 0.70 -5.25 5.96 -7.92 -9.85 -6.37
6 years-old 78.02 76.29 79.53 -0.53 -6.15 4.79 -7.77 -9.93 -5.97
7 years-old 81.44 79.68 83.19 -2.67 -6.74 0.75 -5.61 -8.44 -2.84
8 years-old 83.67 81.77 85.49 -2.94 -6.67 0.58 -5.34 -7.91 -2.19

Table C.2.4: Estimates of the non-age-specific parameters from the factor analytic model with a
single additive genetic common factor (fa(1)) on horn length fitted to the bighorn sheep males from
the population of Ram Mountain. Values correspond to posterior means and lower (ll) and upper (ul)
limits of 95% HPD credible intervals.

parameter mean ll ul

fixed effects
population density (yearlings) (×100) -1.14 -3.32 1.19
population density (2 year-olds) (×100) -0.08 -3.08 3.38
population density (3 year-olds) (×100) 1.00 -2.80 5.28
population density (older) (×100) 2.69 -2.05 7.32

random effects
maternal ID 0.13 0.00 0.63
cohort 0.12 0.00 0.52
year of measurement 0.26 0.00 1.17
residual
population density (yearlings) 4.51 3.23 5.95
population density (2 year-olds) 2.92 1.63 4.30
population density (3 year-olds) 3.33 1.99 4.90
population density (older) 2.82 2.00 3.76
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Table C.2.5: Estimates of the age-specific parameters from the factor analytic model with two additive
genetic common factor (fa(2)) on horn length fitted to the bighorn sheep males from the population
of Ram Mountain. Values correspond to posterior means and lower (ll) and upper (ul) limits of 95%
HPD credible intervals of age-specific intercepts (µ), factor loadings associated to the additive genetic
common factors (λa) and factor loadings associated to the permanent environment common factor
(λe). Additive genetic and phenotypic (co)variances and correlations are available in Appendix C.4.

µ λa1 λa2 λe

age mean ll ul mean ll ul mean ll ul mean ll ul

yearling 22.32 21.49 23.12 3.22 1.23 4.64 0.00 0.00 0.00 -2.54 -4.12 -1.15
2 years-old 38.13 36.92 39.25 4.11 1.52 6.67 0.58 -1.01 2.10 -6.47 -6.60 -3.15
3 years-old 52.19 50.97 53.70 3.38 0.20 6.98 0.63 -2.59 3.19 -6.47 -7.89 -4.56
4 years-old 63.14 61.64 64.62 2.91 -0.90 7.51 -0.24 -4.21 3.63 -7.59 -9.13 -5.63
5 years-old 71.85 70.23 73.36 2.25 -2.06 6.80 -1.19 -5.39 3.07 -7.49 -9.35 -5.47
6 years-old 78.13 76.43 79.79 1.84 -2.80 6.33 -2.05 -6.06 2.31 -7.20 -9.31 -4.71
7 years-old 81.95 79.84 83.82 0.86 -3.43 5.81 -3.51 -6.81 0.40 -5.16 -7.83 -1.62
8 years-old 84.82 82.41 87.46 2.19 -3.29 7.31 -4.60 -7.73 -1.17 -4.76 -8.39 -0.91

Table C.2.6: Estimates of the non-age-specific parameters from the factor analytic model with two
additive genetic common factors (fa(2)) on horn length fitted to the bighorn sheep males from the
population of Ram Mountain. Values correspond to posterior means and lower (ll) and upper (ul)
limits of 95% HPD credible intervals.

parameter mean ll ul

fixed effects
population density (yearlings) (×100) -0.74 -3.12 1.56
population density (2 year-olds) (×100) 0.66 -2.76 3.94
population density (2 year-olds) (×100) 1.78 -2.11 5.82
population density (older) (×100) 3.38 -1.36 8.06

random effects
maternal ID 0.11 0.00 0.51
cohort 0.08 0.00 0.37
year of measurement 0.18 0.00 0.87
residual
population density (yearlings) 3.37 1.18 5.54
population density (2 year-olds) 2.26 0.00 3.63
population density (3 year-olds) 2.93 1.40 4.46
population density (older) 2.06 1.41 2.76
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Table C.2.7: Estimates of the age-specific parameters from the antedependence model (ant) on horn
length fitted to the bighorn sheep males from the population of Ram Mountain. Values correspond
to posterior means and lower (ll) and upper (ul) limits of 95% HPD credible intervals of age-specific
intercepts (µ), age-specific slopes on previous horn length (βdev) and residual variances (σ2

r ). Phe-
notypic (co)variance and correlation matrices are available in Appendix C.4.

µ βdev σ2
r

age mean ll ul mean ll ul mean ll ul

yearling 16.97 10.67 23.49 6.62 3.78 9.66
2 years-old 15.10 12.35 17.57 1.03 0.92 1.15 4.59 3.22 6.11
3 years-old 19.56 15.93 23.04 0.87 0.77 0.96 3.59 2.36 4.89
4 years-old 19.04 13.99 24.38 0.87 0.76 0.97 3.05 1.67 4.38
5 years-old 18.83 12.38 25.26 0.86 0.76 0.96 3.27 1.69 4.90
6 years-old 16.74 9.33 23.42 0.87 0.78 0.98 2.32 1.13 3.77
7 years-old 26.67 12.16 41.10 0.71 0.53 0.90 3.36 1.39 5.93
8 years-old 35.18 20.66 50.88 0.60 0.40 0.78 3.53 1.28 6.33

Table C.2.8: Estimates of the non-age-specific parameters from the antedependence model (ant)
on horn length fitted to the bighorn sheep males from the population of Ram Mountain. Values
correspond to posterior means and lower (ll) and upper (ul) limits of 95% HPD credible intervals.

parameter mean ll up

fixed effects
inheritance 0.09 -0.04 0.21
population density (yearlings) (×100) -4.95 -8.95 -0.63
population density (2 year-olds) (×100) 1.44 -1.93 4.62
population density (3 year-olds) (×100) 1.77 -1.47 5.18
population density (older) (×100) 2.45 -1.37 6.03

random effects
permanent environment 1.22 0.32 2.20
maternal ID 0.12 0.00 0.42
cohort 0.80 0.00 2.38
year of measurement 4.63 1.78 7.97
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Table C.2.9: Estimates of the age-specific parameters from an IPM-like antedependence model on
horn length fitted to the bighorn sheep males from the population of Ram Mountain. This model differs
from one shown in the main text as its inheritance function is of parental horn length at conception,
rather than at 3 years-old. Values correspond to posterior means and lower (ll) and upper (ul) limits
of 95% HPD credible intervals of age-specific intercepts (µ), age-specific slopes on previous horn
length (βdev) and residual variances (σ2

r )..

µ βdev σ2
r

age mean ll ul mean ll ul mean ll ul

yearling 31.64 26.06 37.53 5.02 2.47 7.84
2 years-old 14.40 11.97 16.99 1.07 0.96 1.18 4.96 3.46 6.39
3 years-old 18.09 14.66 21.67 0.91 0.82 1.00 3.82 2.52 5.11
4 years-old 16.87 12.42 22.08 0.91 0.81 1.00 3.21 1.86 4.72
5 years-old 16.59 9.97 22.19 0.89 0.80 1.00 3.41 1.92 5.33
6 years-old 14.41 7.93 21.00 0.90 0.81 0.99 2.33 1.14 3.79
7 years-old 23.94 8.73 37.68 0.75 0.58 0.95 3.53 1.44 6.30
8 years-old 32.54 18.27 48.77 0.63 0.43 0.81 3.57 1.37 6.48

Table C.2.10: Estimates of the non-age-specific parameters from an IPM-like antedependence model
on horn length fitted to the bighorn sheep males from the population of Ram Mountain. This model
differs from one shown in the main text as its inheritance function is of parental horn length at con-
ception, rather than at 3 years-old. Values correspond to posterior means and lower (ll) and upper
(ul) limits of 95% HPD credible intervals.

parameter mean ll up

fixed effects
inheritance -0.14 -0.22 -0.07
population density (yearlings) (×100) -6.38 -11.09 -1.54
population density (2 year-olds) (×100) 3.04 -1.42 7.09
population density (3 year-olds) (×100) 3.62 -0.48 8.13
population density (older) (×100) 4.40 0.07 8.61

random effects
permanent environment 0.86 0.09 1.64
maternal ID 0.10 0.00 0.38
cohort 0.44 0.00 1.32
year of measurement 4.63 1.99 7.52
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C.3 Additive genetic and permanent environment variation across
ages

Table C.3.1: Additive genetic and permanent environment contributions to the phenotypic
variance across the horn length ontogeny of males from the bighorn sheep population of
Ram Mountain. Absolute values, σ2

a and σ2
e , proportions of phenotypic variance, h2 and e2,

and coefficients of variation, CVa and CVe , are shown for the different models.

yearling 2 years-old 3 years-old 4 years-old 5 years-old 6 years-old 7 years-old 8 years-old

σ2
a

mvt 11.22 (5.54;16.95) 27.19 (19.07;36.44) 30.77 (21.18;40.56) 37.58 (25.17;51.42)

rr 10.03 (4.78; 15.47) 19.22 (10.99; 27.74) 29.80 (15.45; 43.03) 36.28 (16.65; 53.09) 36.12 (12.02; 54.74) 29.76 (5.83; 51.42) 20.57 (0.00; 43.68) 14.91 (0.14; 40.45)

fa(1) 7.78 (0.00; 15.51) 15.25 (0.00; 33.36) 12.60 (0.00; 33.73) 9.90 (0.00; 31.87) 6.21 (0.00; 23.40) 5.52 (0.00; 22.85) 10.20 (0.00; 31.73) 11.57 (0.00; 34.13)

fa(2) 11.08 (0.00; 19.57) 19.82 (0.38; 38.21) 17.18 (0.01; 40.73) 17.30 (0.01; 45.94) 16.60 (0.00; 47.14) 18.23 (0.01; 52.91) 22.37 (0.03; 55.29) 36.27 (0.74; 76.46)

ant∗ 2.46 (-1.02; 6.32) 4.89 (-2.02; 12.44) 4.99 (-2.23; 12.87) 4.78 (-2.11; 13.02) 4.44 (-1.98; 12.84) 4.06 (-2.49; 11.50) 2.43 (-1.35; 7.55) 1.08 (-0.58; 3.44)

h2

mvt 0.29 (0.12;0.45) 0.50 (0.32;0.68) 0.53 (0.35;0.71) 0.57 (0.38;0.74)

rr 0.32 (0.15; 0.51) 0.46 (0.26; 0.65) 0.57 (0.34; 0.77) 0.59 (0.35; 0.82) 0.57 (0.28; 0.82) 0.50 (0.17; 0.81) 0.38 (0.00; 0.72) 0.28 (0.00; 0.70)

fa(1) 0.35 (0.00; 0.65) 0.31 (0.00; 0.65) 0.20 (0.00; 0.51) 0.12 (0.00; 0.39) 0.08 (0.00; 0.31) 0.07 (0.00; 0.30) 0.21 (0.00; 0.60) 0.24 (0.00; 0.68)

fa(2) 0.50 (0.07; 0.86) 0.40 (0.02; 0.74) 0.27 (0.00; 0.59) 0.22 (0.00; 0.53) 0.21 (0.00; 0.56) 0.24 (0.00; 0.66) 0.40 (0.01; 0.87) 0.54 (0.11; 0.97)

ant∗ 0.18 (-0.08; 0.43) 0.19 (-0.07; 0.45) 0.16 (-0.07; 0.39) 0.14 (-0.06; 0.36) 0.12 (-0.05; 0.32) 0.11 (-0.04; 0.29) 0.08 (-0.03; 0.22) 0.05 (-0.02; 0.14)

CV ∗∗
a

mvt 0.15 (0.11;0.19) 0.14 (0.12;0.16) 0.11 (0.09;0.13) 0.10 (0.08;0.12)

rr 0.14 (0.10; 0.18) 0.12 (0.09; 0.14) 0.11 (0.08; 0.13) 0.10 (0.07; 0.12) 0.09 (0.06; 0.11) 0.07 (0.04; 0.10) 0.05 (0.02; 0.09) 0.04 (0.01; 0.08)

fa(1) 0.12 (0.03; 0.19) 0.10 (0.01; 0.16) 0.06 (0.00; 0.11) 0.04 (0.00; 0.09) 0.03 (0.00; 0.07) 0.02 (0.00; 0.06) 0.03 (0.00; 0.07) 0.04 (0.00; 0.07)

fa(2) 0.15 (0.06; 0.21) 0.11 (0.05; 0.18) 0.08 (0.02; 0.13) 0.06 (0.01; 0.11) 0.05 (0.01; 0.10) 0.05 (0.00; 0.09) 0.05 (0.01; 0.10) 0.07 (0.02; 0.11)

σ2
e

mvt 12.54 (9.60;15.64) 27.70 (20.83;34.51) 32.21 (22.85;41.69) 39.37 (27.56;51.42) 44.29 (31.51;59.39) 44.77 (29.99;62.78) 36.66 (19.99;54.84) 32.34 (17.27;52.88)

rr 4.97 (0.73; 9.37) 5.06 (0.51; 10.65) 6.24 (0.12; 14.80) 8.05 (0.07; 20.65) 10.24 (0.02; 26.27) 12.79 (0.00; 29.89) 15.88 (0.00; 33.93) 19.94 (0.01; 40.77)

fa(1) 8.73 (2.24; 16.23) 29.34 (10.75; 46.27) 46.47 (24.50; 65.72) 65.46 (40.46; 88.54) 66.04 (44.29; 89.37) 64.10 (42.61; 90.62) 34.91 (11.42; 60.68) 31.78 (8.63; 56.99)

fa(2) 6.99 (0.06; 14.13) 19.82 (9.17; 42.41) 17.18 (19.33; 60.80) 17.30 (31.01; 82.38) 16.60 (27.94; 84.05) 18.23 (19.44; 83.16) 22.37 (0.00; 53.92) 36.27 (0.01; 58.20)

e2
mvt 0.44 (0.28;0.59) 0.63 (0.48;0.78) 0.66 (0.50;0.82) 0.71 (0.56;0.85) 0.73 (0.59;0.87) 0.73 (0.58;0.87) 0.69 (0.53;0.85) 0.66 (0.48;0.83)

rr 0.16 (0.02; 0.32) 0.12 (0.01; 0.27) 0.12 (0.00; 0.30) 0.13 (0.00; 0.35) 0.17 (0.00; 0.43) 0.22 (0.00; 0.53) 0.30 (0.00; 0.64) 0.39 (0.00; 0.71)

fa(1) 0.41 (0.13; 0.77) 0.62 (0.28; 0.94) 0.74 (0.43; 0.97) 0.83 (0.57; 0.97) 0.88 (0.65; 0.97) 0.88 (0.66; 0.97) 0.72 (0.33; 0.96) 0.68 (0.25; 0.95)

fa(2) 0.33 (0.00; 0.67) 0.54 (0.19; 0.90) 0.68 (0.35; 0.95) 0.75 (0.43; 0.97) 0.76 (0.41; 0.97) 0.73 (0.31; 0.98) 0.55 (0.08; 0.95) 0.42 (0.00; 0.84)

CVe

mvt 0.16 (0.14; 0.18) 0.14 (0.12; 0.16) 0.11 (0.09; 0.13) 0.10 (0.08; 0.12) 0.10 (0.08; 0.11) 0.09 (0.07; 0.10) 0.07 (0.06; 0.09) 0.07 (0.05; 0.09)

rr 0.10 (0.05; 0.15) 0.06 (0.02; 0.09) 0.05 (0.01; 0.08) 0.04 (0.01; 0.08) 0.04 (0.01; 0.08) 0.04 (0.00; 0.07) 0.05 (0.00; 0.07) 0.05 (0.00; 0.08)

fa(1) 0.13 (0.08; 0.19) 0.14 (0.09; 0.18) 0.13 (0.10; 0.16) 0.13 (0.10; 0.15) 0.12 (0.10; 0.14) 0.10 (0.08; 0.12) 0.07 (0.05; 0.10) 0.07 (0.04; 0.09)

fa(2) 0.12 (0.05; 0.19) 0.13 (0.08; 0.17) 0.13 (0.09; 0.15) 0.12 (0.09; 0.15) 0.11 (0.08; 0.13) 0.09 (0.06; 0.12) 0.06 (0.02; 0.10) 0.06 (0.01; 0.10)

∗ derived from the model, not estimated.
∗∗ not shown for the ant model because it implied the calculation of square roots of negative values (some posterior samples for the
cross-age parent-offspring regression).

C.4 PPP and GGG matrices estimates

This appendix contains additive genetic and phenotypic covariance and correlation matrices derived
from the multivariate, random regression, factor analytic (fa(1) and fa(2)), and antedependence
models. To see how the PPP and GGG matrices were derived from model parameters see the Methods
section in the main text.
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Table C.4.1: Additive genetic covariance and correlation matrix of male horn length across ages in
the bighorn population of Ram Mountain, estimated with the multivariate model (mvt). The diagonal
correspond to variances in horn length at different ages, the upper diagonal to covariances and
the lower diagonals to correlations. Values correspond to means of the corresponding posterior
distributions.

1 2 3 4
1 11.22 14.95 15.07 16.75
2 0.86 27.19 27.72 30.65
3 0.82 0.96 30.77 33.05
4 0.83 0.96 0.97 37.58

Table C.4.2: Additive genetic covariance and correlation matrix of male horn length across ages
in the bighorn population of Ram Mountain, estimated by the random regression model (rr). The
diagonal correspond to variances in horn length at different ages, the upper diagonal to covariances
and the lower diagonals to correlations. Values correspond to means of the corresponding posterior
distributions.

1 2 3 4 5 6 7 8
1 10.03 12.42 13.66 13.76 12.72 10.53 7.20 2.73
2 0.90 19.22 23.46 25.16 24.30 20.89 14.93 6.41
3 0.80 0.98 29.80 32.67 32.06 27.99 20.45 9.44
4 0.73 0.95 0.99 36.28 36.00 31.84 23.78 11.83
5 0.68 0.93 0.98 1.00 36.12 32.43 24.91 13.57
6 0.63 0.89 0.95 0.98 0.99 29.76 23.84 14.66
7 0.54 0.79 0.86 0.89 0.93 0.96 20.57 15.11
8 0.22 0.35 0.41 0.45 0.50 0.58 0.73 14.91

Table C.4.3: Additive genetic covariance and correlation matrix of male horn length across ages in
the bighorn population of Ram Mountain, estimated by the factor analytic model with a single additive
genetic common factor (fa(1)). The diagonal correspond to variances in horn length at different
ages, the upper diagonal to covariances and the lower diagonals to correlations. Values correspond
to means of the corresponding posterior distributions.

1 2 3 4 5 6 7 8
1 7.78 10.79 9.47 7.52 4.21 0.76 -5.73 -6.38
2 0.96 15.25 13.60 11.09 6.62 1.94 -7.08 -7.99
3 0.87 0.90 12.60 10.73 7.04 3.13 -4.75 -5.54
4 0.71 0.74 0.84 9.90 7.18 4.35 -1.84 -2.43
5 0.39 0.43 0.53 0.69 6.21 4.89 1.52 1.21
6 -0.10 -0.07 0.03 0.19 0.50 5.52 4.88 4.88
7 -0.86 -0.82 -0.72 -0.56 -0.25 0.25 10.20 10.58
8 -0.88 -0.84 -0.75 -0.59 -0.27 0.23 0.93 11.57
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Table C.4.4: Additive genetic covariance and correlation matrix of male horn length across ages in
the bighorn population of Ram Mountain, estimated by the factor analytic model with two additive
genetic common factors (fa(2)). The diagonal correspond to variances in horn length at different
ages, the upper diagonal to covariances and the lower diagonals to correlations. Values correspond
to means of the corresponding posterior distributions.

1 2 3 4 5 6 7 8
1 11.08 14.24 12.15 10.91 8.80 7.46 3.93 8.35
2 0.94 19.82 17.67 15.82 12.56 10.20 4.19 8.59
3 0.83 0.93 17.18 16.20 13.58 11.39 5.45 8.32
4 0.71 0.79 0.90 17.30 15.98 14.88 10.42 13.42
5 0.56 0.60 0.72 0.90 16.60 16.61 14.36 17.59
6 0.41 0.41 0.51 0.72 0.89 18.23 17.75 21.53
7 0.10 0.02 0.07 0.30 0.53 0.74 22.37 26.71
8 0.30 0.18 0.17 0.35 0.53 0.70 0.92 36.27

Table C.4.5: Phenotypic covariance and correlation matrix of male horn length across ages in the
bighorn population of Ram Mountain, estimated with the multivariate model (mvt). The diagonal
correspond to variances in horn length at different ages, the upper diagonal to covariances and
the lower diagonals to correlations. Values correspond to means of the corresponding posterior
distributions.

1 2 3 4 5 6 7 8
1 28.94 30.07 28.83 29.26 28.72 27.46 21.60 19.41
2 0.84 44.11 42.43 44.36 43.44 41.07 31.66 29.36
3 0.77 0.92 48.61 49.19 48.84 46.85 36.50 33.95
4 0.73 0.89 0.94 55.77 54.69 53.13 42.79 39.14
5 0.68 0.84 0.90 0.94 60.70 57.93 49.11 45.30
6 0.65 0.79 0.86 0.91 0.95 61.17 51.57 46.38
7 0.55 0.65 0.72 0.79 0.87 0.91 53.06 46.30
8 0.51 0.63 0.70 0.75 0.83 0.85 0.91 48.74

Table C.4.6: Phenotypic covariance and correlation matrix of male horn length across ages in the
bighorn population of Ram Mountain, estimated by the random regression model (rr). The diagonal
correspond to variances in horn length at different ages, the upper diagonal to covariances and
the lower diagonals to correlations. Values correspond to means of the corresponding posterior
distributions.

1 2 3 4 5 6 7 8
1 31.50 30.89 31.80 31.55 30.16 27.63 23.94 19.11
2 0.85 41.68 42.67 44.56 43.77 40.31 34.18 25.38
3 0.78 0.91 52.60 53.43 53.31 49.53 42.08 30.96
4 0.72 0.88 0.94 61.25 58.80 55.28 47.64 35.87
5 0.67 0.85 0.92 0.94 63.29 57.57 50.87 40.10
6 0.64 0.81 0.89 0.92 0.94 59.47 51.75 43.65
7 0.58 0.72 0.79 0.83 0.87 0.92 53.38 46.52
8 0.47 0.54 0.59 0.64 0.70 0.78 0.88 51.78
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Table C.4.7: Phenotypic covariance and correlation matrix of male horn length across ages in the
bighorn population of Ram Mountain, estimated by the factor analytic model with a single additive
genetic common factor (fa(1)). The diagonal correspond to variances in horn length at different
ages, the upper diagonal to covariances and the lower diagonals to correlations. Values correspond
to means of the corresponding posterior distributions.

1 2 3 4 5 6 7 8
1 21.53 26.97 29.67 31.31 27.95 23.95 10.88 9.36
2 0.84 48.01 50.67 54.90 50.42 44.81 23.75 21.27
3 0.81 0.92 62.90 66.03 62.45 57.48 34.55 31.81
4 0.76 0.89 0.94 78.69 73.07 69.10 45.16 42.26
5 0.69 0.84 0.91 0.95 75.57 70.06 49.01 46.39
6 0.61 0.76 0.85 0.91 0.94 72.94 51.87 49.64
7 0.34 0.49 0.63 0.73 0.81 0.87 48.43 43.84
8 0.30 0.45 0.59 0.70 0.78 0.85 0.92 46.67

Table C.4.8: Phenotypic covariance and correlation matrix of male horn length across ages in the
bighorn population of Ram Mountain, estimated by the factor analytic model with two additive genetic
common factors (fa(2)). The diagonal correspond to variances in horn length at different ages, the
upper diagonal to covariances and the lower diagonals to correlations. Values correspond to means
of the corresponding posterior distributions.

1 2 3 4 5 6 7 8
1 21.81 27.69 29.23 30.76 28.32 26.20 17.38 21.00
2 0.85 48.11 50.80 54.43 50.55 46.68 30.30 32.86
3 0.79 0.92 63.10 66.22 62.88 58.77 39.42 39.77
4 0.74 0.89 0.94 78.24 73.97 70.72 50.70 50.76
5 0.69 0.83 0.91 0.96 76.36 72.07 54.63 55.00
6 0.65 0.78 0.86 0.93 0.96 74.16 56.90 58.02
7 0.50 0.59 0.68 0.78 0.85 0.90 54.10 54.29
8 0.56 0.59 0.62 0.71 0.78 0.84 0.92 65.21

Table C.4.9: Phenotypic covariance and correlation matrix of male horn length across ages in the
bighorn population of Ram Mountain, implied by the antedependence model (ant). The diagonal
correspond to variances in horn length at different ages, the upper diagonal to covariances and
the lower diagonals to correlations. Values correspond to means of the corresponding posterior
distributions.

1 2 3 4 5 6 7 8
1 13.38 13.81 12.02 10.45 9.03 7.90 5.70 3.47
2 0.74 25.66 22.33 19.41 16.76 14.66 10.56 6.42
3 0.60 0.81 29.85 25.93 22.38 19.57 14.10 8.56
4 0.50 0.67 0.83 32.41 27.97 24.44 17.60 10.69
5 0.42 0.56 0.70 0.84 34.26 29.92 21.54 13.06
6 0.36 0.48 0.60 0.72 0.86 35.29 25.39 15.38
7 0.29 0.39 0.48 0.57 0.68 0.79 28.70 17.36
8 0.20 0.27 0.34 0.40 0.48 0.55 0.70 21.05
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APPENDIX D
Supplementary material to Chapter 6

D.1 Supplementary figures

Appendix D.1 includes figures of model predictions, for breeding success and survival, plotted against
observed data. The predictions shown correspond to predicted values for each individual used to
estimate the model averaged by age.
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Figure D.1.1: Observed and predicted annual breeding success in bighorn ewes of Ram Mountain.
Black dots correspond to observed data, whereas the grey line corresponds to model predictions.
The predictions are based on the model represented in Equation (6.1), for which parameter estimates
are shown in Tab. 6.1 (both in the main text).
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Figure D.1.2: Observed and predicted annual survival probability as a function of age in the bighorn
sheep population of Ram Mountain; male harvest survival (a), and male (b) and female (c) winter
survival are shown. Black dots correspond to observed values, whereas grey lines are predicted val-
ues for the individuals in the population, averaged by age. The corresponding models are described
by Equations 6.5, 6.7, and 6.6, and the corresponding parameter estimates are shown in Tab. 6.2
(main text).
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D.2 Model code

Table D.2.1: JAGS code for the multinomial model fitting annual male breeding success, as described
in Equations (6.2)-(6.4).

------------------------------------------------------------------------------------------------
modelCode<-"
model{
for(y in 1:n.years){
#ramYearData[,,1]: ID
#ramYearData[,,3]: age
#ramYearData[,,4]: number of lambs
#ramYearData[,,5]: horn length
#ramYearData[,,6]: maternal ID
#ramYearData[,,7]: cohort
ramYearData[y,1:(n.rams[y]),4]~dmulti(p[1:(n.rams[y]),y],totalRS[y])
for(i in 1:(n.rams[y])){
p[i,y] <- p.prime[i,y] / sum(p.prime[1:(n.rams[y]),y])
p.prime[i,y]<-exp(betaAge[1]*(ramYearData[y,i,3]-mid.age)+

betaHorn[1]*(ramYearData[y,i,5]-mid.horn)+
betaInt*(ramYearData[y,i,3]-mid.age)*(ramYearData[y,i,5]-mid.horn)+
ramb[ramYearData[y,i,1]]+cohortb[ramYearData[y,i,7]]+
mumb[ramYearData[y,i,6]])

}
}

betaAge[1]~dnorm(0,0.0001)
#betaAge[2]~dnorm(0,0.0001)
betaHorn[1]~dnorm(0,0.0001)
#betaHorn[2]~dnorm(0,0.0001)
betaInt~dnorm(0,0.0001)

# random effect for rams
ramTau~dgamma(0.001,0.001)
mumTau~dgamma(0.001,0.001)
cohortTau~dgamma(0.001,0.001)
for (i in 1:n.rams.total) {ramb[i]~dnorm(0,ramTau)}
for (i in 1:n.mums) {mumb[i]~dnorm(0,mumTau)}
for (i in 1:n.cohorts) {cohortb[i]~dnorm(0,cohortTau)}
ramVar<-1/ramTau
mumVar<-1/mumTau
cohortVar<-1/cohortTau
}
"
------------------------------------------------------------------------------------------------

D.3 Model checks

Before actual analyses, results from simulations running for 1000 years (iterations) were analysed
against observed parameters from the bighorn sheep population inhabiting Ram Mountain. These
simulations were used to identify the duration of the burn-in period and to inspect population density
and structure, horn length dynamics and the vital rates against observed values. I present both
results from simulations without and with an inheritance mechanism.
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D.3.1 Scenario with no inheritance

Population size stabilizes very fast, potentially in less than 100 iterations, an indication that the start-
ing values of 50 females and 50 males were not very distant from the values at equilibrium (Fig.
D.3.1). The age structure recovered in the simulations is very similar to the observed in the bighorn
sheep population at Ram Mountain, for both females and males (Fig. D.3.2, D.3.3). Overall, in
scenarios in which the inheritance mechanism is switched off, a burn-in of 200 years is likely to be
sufficient.
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Figure D.3.1: Population dynamics and sex ratio obtained along 1000 iterations in a scenario with
no inheritance mechanism built-in. Results are shown for each approach to modelling horn length
trajectories, random regression (rr), factor analysis (fa), and the antedependence model (ant). Grey
lines correspond to 50 individual simulations, whereas the line in teal corresponds to the average of
those simulations.
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Figure D.3.2: Female population structured by age, observed in the bighorn sheep population of
Ram Mountain (top panel) and simulated over 1000 years (iterations), in a scenario with no inheri-
tance mechanism built-in (lower panels). Simulation results are shown for the three approaches to
modelling size trajectories, random regression (rr), factor analytic (rr) and antedependence (ant)
models, for three independent simulations, as examples, and the average of 50 simulations. In each
plot different colours represent age structure at different years (iterations), suggesting that not only
simulated results match the the observed age structure, but also that this match occurs at least as
soon as after 200 iterations.
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Figure D.3.3: Male population structured by age, observed in the bighorn sheep population of Ram
Mountain (top panel) and simulated over 1000 years (iterations), in a scenario with no inheritance
mechanism built-in (lower panels). Simulation results are shown for the three approaches to mod-
elling size trajectories, random regression (rr), factor analytic (rr) and antedependence (ant) mod-
els, for three independent simulations, as examples, and the average of 50 simulations. In each plot
different colours represent age structure at different years, suggesting that not only simulated results
match the the observed age structure, but also that this match occurs at least as soon as after 200
iterations.
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Figure D.3.4: Horn length dynamics over 1000 years (iterations) under a scenario with no inheritance
mechanism built-in. Results are shown for 3 different ages and the three approaches to modelling
horn length trajectories, random regression (rr), factor analytic (fa) and antedependence (ant) mod-
els. Grey lines correspond to 50 individual simulations, whereas the line in teal correspond to the
average of those simulations.
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Figure D.3.5: Male horn length ontogenetic trajectories, observed in the bighorn sheep population
of Ram Mountain (upper panel) and simulated over 1000 years (iterations) under a scenario with
no inheritance mechanism built-in (lower panels). Results are shown for four different t and for the
three approaches to modelling size trajectories, random regression (rr), factor analytic (rr) and
antedependence (ant) models. Grey lines correspond to individual trajectories (observed data) and
to averages of simulations (simulated data), whereas lines in teal correspond to overall averages.
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Figure D.3.6: Observed and simulated average breeding success as a function of age in a sce-
nario with no inheritance mechanism built-in. Results are shown for the three approaches used to
modelling size trajectories, random regression (rr), factor analytic (rr) and antedependence (ant)
models, and correspond to averages of 50 independent simulations. Each simulation was run for
1000 iterations, and results are shown for years 200, 400, 600 and 1000. Black points correspond to
observed values.
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Figure D.3.7: Observed and simulated average winter survival as a function of age in a scenario with
no inheritance mechanism built-in. Results are shown for the three approaches used to modelling
size trajectories, random regression (rr), factor analytic (rr) and antedependence (ant) models, and
correspond to averages of 50 independent simulations. Each simulation was run for 1000 iterations,
and results are shown for iterations 200, 400, 600 and 1000. Black points correspond to observed
values.

D.3.2 Scenario with inheritance

Population size stabilizes very fast, potentially in less than 200 iterations (Fig. D.3.8). The age struc-
ture recovered in the simulations is very similar to the observed in the bighorn sheep population at
Ram Mountain, for both females and males (Fig. D.3.9, D.3.10). Horn length and breeding value
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dynamics seem to have reasonably stabilised after 1000 iterations (Fig. D.3.11, D.3.12). Overall, in
scenarios with an inheritance mechanism, a burn-in of 1000 years is likely to be sufficient.
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Figure D.3.8: Population dynamics and sex ratio obtained along 1000 years (iterations) with an inheri-
tance mechanism built-in. Results are shown for each approach to modelling horn length trajectories,
random regression (rr), factor analysis (fa), and the antedependence model (ant). Grey lines cor-
respond to 50 individual simulations, whereas the line in teal corresponds to the average of those
simulations.
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Figure D.3.9: Female population structured by age, observed in the bighorn sheep population of Ram
Mountain (top panel) and simulated over 1000 years (iterations) (lower panels), in a scenario with an
inheritance mechanism built-in. Simulation results are shown for the three approaches to modelling
size trajectories, random regression (rr), factor analytic (rr) and antedependence (ant) models, for
three independent simulations, as examples, and the average of 50 simulations. In each plot different
colours represent age structure at different t, suggesting that not only simulated results match the
observed age structure, but also that this match occurs at least as soon as after 200 iterations.
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Figure D.3.10: Male population structured by age, observed in the bighorn sheep population of Ram
Mountain (top panel) and simulated over 1000 iterations (lower panels), in a scenario with an in-
heritance mechanism built-in. Simulation results are shown for the three approaches to modelling
size trajectories, random regression (rr), factor analytic (rr) and antedependence (ant) models, for
three independent simulations, as examples, and the average of 50 simulations. In each plot different
colours represent age structure at different t, suggesting that not only simulated results match the
observed age structure, but also that this match occurs at least as soon as after 200 iterations.
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Figure D.3.11: Male horn length dynamics over 1000 years (iterations) in a scenario with an in-
heritance mechanism built-in. Results are shown for 3 different ages and the three approaches to
modelling horn length trajectories, random regression (rr), factor analytic (rr) and antedependence
(ant) models. Grey lines correspond to 50 individual simulations, whereas the line in teal correspond
to the average of those simulations.
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Figure D.3.12: Breeding values dynamics, including intercepts, slopes and curvatures, over 1000
years (iterations) for the random regression model. Grey lines correspond to 50 individual simula-
tions, whereas the line in teal correspond to the average of those simulations.
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Figure D.3.13: Male horn length trajectories, observed in the bighorn population of Ram Mountain
(upper panel) and simulated for 1000 years (iterations) under a scenario with an inheritance mecha-
nism built-in (lower panels). Results are shown for four different years and the three approaches to
modelling size trajectories, random regression (rr), factor analytic (rr) and antedependence (ant)
models. Grey lines correspond to individual trajectories (observed data) and to averages of individual
simulations (simulated data), whereas lines in teal correspond to overall averages.
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Figure D.3.14: Observed and simulated average breeding success as a function of age in a sce-
nario with an inheritance mechanism built-in. Results are shown for the three approaches used to
modelling size trajectories, random regression (rr), factor analytic (rr) and antedependence (ant)
models, and correspond to averages of 50 independent simulations. Each simulation was run for
1000 iterations, and results are shown for iterations (years) 200, 400, 600 and 1000. Black points
correspond to observed values.
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Figure D.3.15: Observed and simulated winter survival as a function of age in a scenario with an
inheritance mechanism built-in. Results are shown for the three approaches used to modelling size
trajectories, random regression (rr), factor analytic (rr) and antedependence (ant) models, and
correspond to averages of 50 independent simulations. Each simulation was run for 1000 iterations,
and results are shown for iterations (years) 200, 400, 600 and 1000. Black points correspond to
observed values.
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