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Abstract. Let 1 ≤ r ≤ n and suppose that, when the Depth-first Search Algorithm is
applied to a given rooted labeled tree on n + 1 vertices, exactly r vertices are visited
before backtracking. Let R be the set of trees with this property. We count the number
of elements of R.

For this purpose, we first consider a bijection, due to Perkinson, Yang and Yu, that
maps R onto the set of parking function with center (defined by the authors in a previous
article) of size r. A second bijection maps this set onto the set of parking functions with
run r, a property that we introduce here. We then prove that the number of length n
parking functions with a given run is the number of length n rook words (defined by
Leven, Rhoades and Wilson) with the same run. This is done by counting related lattice
paths in a ladder-shaped region. We finally count the number of length n rook words
with run r, which is the answer to our initial question.

1. Introduction

Let Tn be the set of rooted labeled trees on the set of vertices {0, 1, . . . , n} with root
r = 0, and let T ∈ Tn. Suppose that the Depth-first Search Algorithm (DFS) is applied to
T by starting at r and by visiting at each vertex the unvisited neighbor of highest label.
If T is not a path with endpoint r, at a certain moment the algorithm will backtrack.
In this paper we are concerned with the number of vertices that are visited before this
happens.

More precisely, let v = v(T ) = (v1, . . . , vk) be the ordered set of vertices different from
the root that are visited before backtracking, and let arm(T ) = k be the length of v. We
evaluate explicitly the enumerator

ALT n(t) =
∑
T∈Tn

tarm(T ) .

It is well-known that |Tn| = (n + 1)n−1 = |PFn|, where PFn is the set of parking
functions of length n, consisting of the n-tuples a = (a1, . . . , an) of positive integers such
that the ith entry in ascending order is always at most i ∈ [n] := {1, . . . , n}.

Given any a ∈ [n]n, which we denote either as a word, a = a1 · · · an, or as a function,
a : [n]→ [n] such that a(i) = ai,

• let z(a) be the maximum k for which there exist 1 ≤ i1 < · · · < ik ≤ n such that
ai1 ≤ 1, . . . , aik ≤ k;
• let run(a) be the maximum k for which [k] ⊆ {a1, . . . , an};
• let a be a rook word if a1 ≤ run(a), and let RWn be the set of (length n) rook

words.

This work was partially supported by CMUP (UID/MAT/00144/2019) and CIDMA
(UID/MAT/04106/2019), which are funded by FCT (Portugal) with national (ME) and European
structural funds through the programs FEDER, under the partnership agreement PT2020.
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The purpose of this paper is to prove that∑
T∈Tn

tarm(T ) =
∑

a∈PFn

tz(a) =
∑

a∈PFn

trun(a) =
∑

a∈RWn

trun(a) ,

with which we evaluate this function.

Parking functions are important combinatorial structures with several connections to
other areas of mathematics (see e.g. Haglund [6] and the excellent survey by Yan [15]).
In particular, starting with Kreweras [9], various bijections between trees on n+1 vertices
and parking functions of length n were defined where the reversed sum enumerator for
parking functions is the counterpart to the inversion enumerator for trees [7, 5, 12, 15].
In a recent paper, Perkinson, Yang and Yu [11] constructed a very general algorithm that
gives us as a particular case a new bijection with this property.

We show in Section 2 (cf. [3]) that, for this bijection, the counterpart of the statistics
arm(T ) is z(a) = |Z(a)|, where Z(a) is the center of a defined in [2]. We recall that,
for any a ∈ [n]n, the center of a is the largest subset X = {x1, . . . , x`} of [n] such that
1 ≤ x1 < · · · < x` ≤ n and axi

≤ i for every i ∈ [`]. Namely, we prove that if T 7→ a
under our bijection and v(T ) = (v1, . . . , vk), then the set Z(a) is exactly {v1, . . . , vk}.
Hence, we obtain the following result, if we consider the enumerator

ZPFn(t) =
∑

a∈PFn

tz(a) ,

Theorem 2.1. For every n ∈ N,

ALT n(t) = ZPFn(t) .

The evaluation of this new enumerator was indeed part of our initial twofold purpose
for its role in the theory of parking functions, described as follows. Consider the Shi
arrangement, formed by all the hyperplanes defined in Rn by equations of the form
xi − xj = 0 and of the form xi − xj = 1, where 1 ≤ i < j ≤ n. Let R0 be the
chamber of the arrangement consisting of the intersection of all the open slabs defined
by the condition 0 < xi − xj < 1. Pak and Stanley [13] defined a bijective labeling of
the chambers of this arrangement by parking functions, in which R0 is labeled with the
parking function (1, . . . , 1) and, along a shortest path from R0 to any other chamber, for
any crossed hyperplane of the form xi−xj = 0 the jth coordinate of the label is increased
by one, and for any crossed plane of the form xi − xj = 1 it is the ith coordinate that is
increased by one. The bijection is defined from chambers (represented by permutations
of [n] decorated with arcs following certain rules) to parking functions. See [4] for a very
general perspective of this bijection. It is from the center of any parking function that
we may recover the chamber labeled by it in the Pak-Stanley labeling [2].

For example, consider the region R of the Shi arrangement in R9 defined by

x8 < x4 < x3 < x9 < x6 < x7 < x1 < x2 < x5 ,

x8 + 1 > x7, x3 + 1 > x2, x7 + 1 > x5 ,

x4 + 1 < x1, x6 + 1 < x5 .

Following Stanley [13], we represent R by the sequence of indices of coordinates in in-
creasing order, decorated with non-nested arcs such that the integers j > i, with j on
the left side of i, are covered with the same arc if and only if xj + 1 > xi in R. In the
previous example, we have
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8 4 3 9 6 7 1 2 5 .

By the Pak-Stanley bijection, R is associated with the parking function

a = 341183414 .

To obtain R from a, according to [2], note that the center of this parking function,
Z = {3, 4, 6, 7, 8, 9}, is formed by the elements of the first arc, and their positions in the
permutation π = 8 4 3 9 6 7 1 2 5 can be determined step by step by knowing that ai− 1 is
the number of elements of Z less than i that are on the left side of i in π. In our example,
since a4 = 1, 4 must precede 3; since a6 = 3, 6 must follow 43, etc. Graphically,

3 � π 7−→
x4=1

43 � π 7−→
x6=3

436 � π 7−→
x7=4

4367 � π 7−→
x8=1

84367 � π 7−→
x9=4

843967 � π ,

where, given a =a1 · · · ak and b = b1 · · · bn, a � b if k ≤ n and whenever i precedes j in
a, i also precedes j in b 1. This is the starting point for the recovery of R in [2], since it
enables the replacement of the parking function by another one of shorter length, and so
to proceed recursively.

We now consider a third statistic. Let, for a = (a1, . . . , an) ∈ [n]n such that 1 ∈
{a1, . . . , an},

run(a) = max
{
i ∈ [n] | [i] ⊆ {a1, . . . , an}

}
,

and let run(a) = 0 if 1 /∈ {a1, . . . , an}. We prove the following result in Section 3. Let

RPFn(t) =
∑

a∈PFn

trun(a).

Theorem 3.3. For every n ∈ N,

ZPFn(t) = RPFn(t) .

Now, consider the set RWn of rook words of length n defined by Leven, Rhoades and
Wilson [10], that is, the ordered sets a = (a1, . . . , an) ∈ [n]n such that a1 ≤ run(a). Let

RRWn(t) =
∑

a∈RWn

trun(a)

The key to our enumeration is developed in Section 4, where we prove the following result.
Theorem 4.11. For every n ∈ N,

RPFn(t) = RRWn(t) .

In this case we do not consider all parking functions and all rook words at once. Instead,
we only consider those for which the sets of elements with the same image are the same,
i.e., with the same coimage (see Definition 4.7 below).

We count parking functions by counting nonnegative sequences that are componentwise
bounded above by a given positive sequence. Based on results of independent interest we
prove that their number is the number of rook words defined in the same way.

1We assume that, as functions, both a and b are injective.
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Example 1.1. We consider in Table 1.1 the case where n = 3 and hence

ALT 3(t) = ZPF3(t) = RPF3(t) = RRW3(t) = 4t+ 6t2 + 6t3

by classifying the corresponding trees and parking functions according to the various
statistics and the corresponding bijections. Note that for n = 3 rook words are parking
functions and vice-versa, except that 311 ∈ PF3 \ RW3 whereas 133 ∈ RW3 \ PF3. But
run(311) = run(133) = 1.

k 1 2 3

Trees T
with arm(T ) = k

0

1

23

0

1

23

0

1

23

0

1

23

0

1

23

0

1

23

0

1

23

0

1

23

0

1

23

0

1

23

0

1

23

0

1

23

0

1

23

0

1

23

0

1

23

0

1

23

Parking functions a 213 221 131 132 211 111 112 113
with z(a) = k 231 321 212 311 312 121 122 123

Parking functions a 113 111 211 122 221 321 231 213
with run(a) = k 131 311 112 121 212 312 132 123
Rook words a 113 111 211 122 221 321 231 213

with run(a) = k 131 133 112 121 212 312 132 123

Table 1. The case where n = 3

Finally, by directly counting rook words with a given run, we are able to present in
Section 5 an expression for all the (equal) previous enumerators.
Theorem 5.1. For all integers 1 ≤ r ≤ n,

[tr]
(
ALT n(t)

)
= r!

∑
i1+···+ir=n−r

(n− 1)i1(n− 2)i2 · · · (n− r)ir

= r

r−1∑
j=0

(−1)j
(
r − 1

j

)
(n− 1− j)n−1 .

It is perhaps worth noting that rook words were introduced in order to label the
chambers of the Ish arrangement, defined in Rn by all the hyperplanes with equations of
the form xi − xj = 0, as before, and of the form x1 − xj = i, where again 1 ≤ i < j ≤ n.
Several bijections, which preserve different properties, have been defined between the
chambers of the Shi arrangement and the chambers of the Ish arrangement, particularly
by Leven, Rhoades and Wilson using rook words [10]. In fact, our work here may be
presented as another example of a general statement by Armstrong and Rhoades [1],
saying that “The Ish arrangement is something of a ‘toy model’ for the Shi arrangement”,
in the sense that several properties are shared by both arrangements, but are easier to
prove in case of the Ish arrangement than in the case of the Shi arrangement.

2. From labeled trees to parking functions: arms vs. centers

We reproduce here the algorithm (Algorithm 1, below) of Perkinson, Yang and Yu [11],
in our case applied to the complete graph G = Kn+1 on V . When the algorithm takes as
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input a parking function a (or, more precisely, takes as input P = a− 1: [n]→ N ∪ {0}
such that P(i) = ai − 1) it returns the list tree edges of edges of a spanning tree of G.
This correspondence is a bijection.

Note that, in general, a spanning tree T of G is seen as a directed graph in which all
paths lead away from the root. So, edge ij is written (i, j) if i is in the (unique) path
from 0 to j (with no vertex between them). Note also that, by definition (cf. Line 7),
if after running the algorithm both edges (i, j) and (i, k) belong to T and j > k then
dfs from(j) has been called before dfs from(k).

Algorithm 1 DFS-burning algorithm.

algorithm
Input: P : V \ {r} → N ∪ {0}

1: burnt vertices = {r}
2: tree edges = { }
3: execute dfs from(r)

Output: burnt vertices and tree edges

auxiliary function
4: function dfs from(i)
5: foreach j adjacent to i in G, from largest numerical value to smallest do
6: if j /∈ burnt vertices then
7: if P(j) = 0 then
8: append j to burnt vertices

9: append (i, j) to tree edges

10: dfs from(j)
11: else
12: P(j) = P(j)− 1

Theorem 2.1. For every n ∈ N,

ALT n(t) = ZPFn(t)

Proof. We show that there exist a bijection ϕ : PFn → Tn such that, for every a ∈ PFn,
if T = ϕ(a) ∈ Tn, then arm(T ) = z(a).

Let T be the tree given by Algorithm 1 with input P = a− 1 (we know this defines a
bijection from PFn to Tn by [11, Theorem 3]). Now, let ` be the first value of i where,
when dfs from(i) is called, P(j) > 0 whenever j /∈ burnt vertices. If this never
occurs, let ` be the last vertex joined to burnt vertices.

Let B =
(
0=v0, . . . , vk = i

)
= burnt vertices and E = tree edges at the end of

the loop of dfs from(i) (the end of Line 12) for i = `, and note that, by definition,
E =

(
(v0, v1), . . . , (vk−1, vk)

)
. Hence, v(T ) = (v1, . . . , vk) and arm(a) = k.

Now, let X = {x1, . . . , xk} = {v1, . . . , vk} with x1 < · · · < xk.
We must prove that X = Z(a), i.e., that:

(1) for every m ∈ [k], a(xm) ≤ m;
(2) X is maximal for this property.

Clearly, if xi1 = v1, then a(xi1) ≤ i1 since, by definition, v1 = max
(
P−1({0})

)
and

so a(xi1) = 1. Now, suppose that the same holds true for xi2 = v2, . . . , xi`−1
= v`−1,

consider xi` = v` and note that, when dfs from(v`−1) is called, v` is the largest value
of j /∈ {v0, v1, . . . , v`−1} with P(j) = 0. Since P(v`) has been reduced in earlier calls to
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dfs from(vm) (at Line 12) exactly when vm < v`, since it is now zero, and since new
additions to burnt vertices will not decrease the order of v` in the corresponding set,
a(xi`) ≤ i`.

When finally dfs from(vk) is called, P(j) > 0 for all j /∈ X. In particular, if Y ) X,
Y = {y1, . . . , yk′} with y1 < · · · < yk′ , j is the smallest element of Y \ X and m is the
number of elements of X less that y, then j = ym but a(j) > m. �

More precisely, if v(T ) = (v1, . . . , vk), then clearly

a(vi) =
∣∣{t ∈ [i] | vt ≤ vi

}∣∣ .
Compare with Definition 3.1 below.

Example 2.2. Let a = 341183414 ∈ PF9. We apply Algorithm 1 to a by drawing aj empty
boxes for each j ∈ [9] that are filled with i during the execution of dfs from(i), at Line 14
and at Line 10. Below, dfs from(i) has been called for, in this order, i = 0, 8, 4, 3, 9, 6, 7.
Hence, at the moment, i = 7 and burnt vertices = (0, 8, 4, 3, 9, 6, 7). Since P(j) > 0
for j /∈ burnt vertices (i.e., for j = 1, 2, 5), ` = i = 7, and so v = (8, 4, 3, 9, 6, 7).

8
4
7

7 8 0
7 8 4 8

4 9 4
4 8 9 6 0 3

1 2 3 4 5 6 7 8 9
a 3 4 1 1 8 3 4 1 4

3. Within parking functions: centers vs. runs

Definition 3.1. Consider, for a positive integer n and for a permutation w = (w1, . . . , wn) ∈
Sn,

fwi
=
∣∣{k ∈ [i] | wk ≤ wi

}∣∣ , i = 1, . . . , n ,

and

tn(w) = (f1, . . . , fn) ∈ [1]× [2]× · · · × [n] .

According to [2], tn is a bijection between Sn and [1]× [2]× · · · × [n].

Example 3.2. If w = 521634, then f1 = fw3 = 1, f2 = fw2 = 1, f3 = fw5 = 3, f4 = fw6 = 4,
f5 = fw1 = 1 and f6 = fw4 = 4. Hence t(w) = 113414 ∈ [1]× · · · × [6].

Given a ∈ [n]n, let

Run(a) =
{

max a−1({j}) | 1 ≤ j ≤ run(a)
}

if run(a) > 0, and let Run(a) = ∅ if run(a) = 0. Then |Run(a)| = run(a).
For A ⊆ [n], let

Zn
−1(A) =

{
a ∈ [n]n | Z(a) = A

}
and

Runn
−1(A) =

{
a ∈ [n]n | Run(a) = A

}
.
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Now let A = {i1, i2, . . . , ik} 6= ∅ with i1 < i2 < · · · < ik and take i0 = 0 and
ik+1 = n+ 1. Then a = (a1, a2, . . . , an) ∈ Zn

−1(A) if and only if

• (ai1 , ai2 , . . . , aik) ∈ [1]× [2]× · · · × [k],
• aj ∈ {`+ 1, . . . , n} = [n] \ [`], if i`−1 < j < i`, with ` ∈ [k + 1].

6=1 ai1≤1 6=
{

1

2
ai2≤2 6=


1

2

3

6=

1
...
k

aik≤k 6=


1
...
k+1

i1 i2

. . .
ik

On the other hand, a = (a1, a2, . . . , an) ∈ Runn
−1(A) if and only if

• (ai1 , ai2 , . . . , aik) ∈ Sk,
• aj ∈ [n] \ {k + 1, ai1 , . . . , ai`−1

}, if i`−1 < j < i`, with ` ∈ [k + 1].

6=k+1 ai1 6=
{
k+1

ai1
ai2 6=


k+1

ai1
ai2

6=

k+1
...

aik−1

aik 6=


k+1
...
aik

i1 i2

. . .
ik

Clearly, both Zn
−1(A) and Runn

−1(A) have size

k!(n− 1)i1−i0−1(n− 2)i2−i1−1 · · · (n− k − 1)ik+1−ik−1

if |A| = k > 0, and (n− 1)n if A = ∅. We have the following result.

Theorem 3.3. For every n ∈ N,

ZPFn(t) = RPFn(t) .

For completeness sake, we define two mappings Φ,Ψ : [n]n → [n]n with the following
properties.

Lemma 3.4.

(1) For all a ∈ [n]n, z(a) = run(Φ(a)), Z(a) = Run(Φ(a)), run(a) = z(Ψ(a)), and
Run(a) = Z(Ψ(a)),

(2) Φ and Ψ are bijections and Ψ = Φ−1,
(3) Φ(PFn) = PFn.

Definition 3.5. If Z(a) = ∅, we define Φ(a) := a. Otherwise, if Z(a) = {i1, i2, . . . , ik} 6=
∅ with i1 < i2 < · · · < ik, we define Φ(a) as follows. Let b := b1b2 . . . bk = tk

−1(ai1ai2 . . . aik) ∈
Sk and σa ∈ Sn be the permutation of length n defined by

σa(j) =


k + 1, if j = 1;

bj−1, if 2 ≤ j ≤ k + 1;

j, if k + 2 ≤ j ≤ n.

and let

(Φ(a))(j) :=

{
b`, if j = i` ∈ Z(a);

σa(aj), if j /∈ Z(a).
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If Run(a) = ∅, we define Ψ(a) := a. Otherwise, if Run(a) = {i1, i2, . . . , ik} 6= ∅ with
i1 < i2 < · · · < ik, we define Ψ(a) as follows. Let c := c1c2 . . . ck = tk(ai1ai2 . . . aik) ∈
[1]× [2]× · · · × [k] and τa ∈ Sn be the permutation of length n defined by

τa(j) =


`+ 1, if j = ai` ∈ [k];

1, if j = k + 1;

j, if k + 2 ≤ j ≤ n.

and let

(Ψ(a))(j) :=

{
c`, if j = i` ∈ Run(a);

τa(aj), if j /∈ Run(a).

Proof of Lemma 3.4.
(1) Let Z(a) = {i1, . . . , ik} with i1 < · · · < ik and Φ(a) =: d = d1 · · · dn. On the one

hand, k ≤ run(d) since {di1 , . . . , dik} = [k]. On the other hand, k + 1 /∈ {d1, . . . , dn}
because k + 1 /∈ {di1 , . . . , dik} and there is no j ∈ [n] \ Z(a) such that aj = 1. Hence
z(a) = k = run(d). Finally, let ij ∈ Z(a). Then [dij ] ⊆ [k] ⊆ {d1, . . . , dn}, which proves
that Z(a) is a subset of Run(d) with the same size.

Similarly, one can show that run(a) = z(Ψ(a)) and Run(a) = Z(Ψ(a)).
(2) Given a ∈ [n]n, we have Z(a) = Run(Φ(a)), Run(a) = Z(Ψ(a)), τΦ(a) = σa

−1 and
σΨ(a) = τa

−1. Hence (Ψ ◦ Φ)(a) = a = (Φ ◦Ψ)(a).
(3) Let a ∈ PFn and k = z(a). If j ≤ k, |Φ(a)−1([j])| ≥ j, since [j] ⊆ [k] ⊆ Φ(a)([n]). If

j > k, then Φ(a)−1([j]) = a−1([j]) and so |Φ(a)−1([j])| = |a−1([j])| ≥ j because a ∈ PFn.
Since Φ(PFn) ⊆ PFn and Φ is a bijection, Φ(PFn) = PFn. �

Example 3.6. Let a = 341183414 ∈ [9]9. On the one hand, Z(a) = {3, 4, 6, 7, 8, 9},
t6
−1(a3a4a6a7a8a9) = t6

−1(113414) = 521634 ∈ S6, so σa = 752163489 and Φ(a) =
215281634.

a = 3 4 1 1 8 3 4 1 4

3 4 6 7 8 9

Φ(a) = 2 1 5 2 8 1 6 3 4

3 4 6 7 8 9

On the other hand, Run(a) = {8}, c = t1(a8) = t1(1) = 1, so τa = 213456789 and
Ψ(a) = 342283414. Note that a belongs to PF9, as well as Φ(a) and Ψ(a).

4. From parking functions to rook words

4.1. Restricted integer sequences. We start this section by considering a general
situation of independent interest.

Definition 4.1. Let, for a positive integer k and for ` = (`1, . . . , `k) ∈ Nk, L =
(L1, . . . , Lk) ∈ Nk be the cumulative sum of `, i.e.,

Li = `1 + `2 + · · ·+ `i , i = 1, . . . , k ,

and consider the set

〈`1, . . . , `k〉 =
{

(x0, x1, . . . , xk) ∈ Zk+1 | x0 = 0;∀1 ≤ i ≤ k , xi−1 < xi ≤ Li

}
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Lemma 4.2. For all positive integers k, `1, . . . , `k, if i < k and `i+1 > 1, then∣∣〈`1, . . . , `i−1, `i + 1, `i+1 − 1, `i+2, . . . , `k〉
∣∣

=
∣∣〈`1, . . . , `k〉

∣∣+
∣∣〈`1, . . . , `i−1〉

∣∣∣∣〈`i+1 − 1, `i+2, . . . , `k〉
∣∣

whereas∣∣〈`1, . . . , `k−1, `k + 1〉
∣∣ =

∣∣〈`1, . . . , `k〉
∣∣+
∣∣〈`1, . . . , `k−1〉

∣∣
and, if `1 > 1,∣∣〈`1 − 1, `2, . . . , `k〉

∣∣ =
∣∣〈`1, . . . , `k〉

∣∣− ∣∣〈`1 + `2 − 1, `3, . . . , `k〉
∣∣ .

Proof. We present here a bijective proof. Note that, for every i < k,

〈`1, . . . , `k〉 ⊆ 〈`1, . . . , `i−1, `i + 1, `i+1 − 1, `i+2, . . . , `k〉 .
But, by definition,

(x0, . . . , xk) ∈ 〈`1, . . . , `i−1, `i + 1, `i+1 − 1, `i+2, . . . , `k〉 \ 〈`1, . . . , `k〉

⇐⇒

 x0 = 0
xi = Li + 1
xj−1 < xj ≤ Lj for every j 6= i with 1 ≤ j ≤ k,

⇐⇒

{
(x0, . . . , xi−1) ∈ 〈`1, . . . , `i−1〉
(xi − Li − 1, . . . , xk − Li − 1) ∈ 〈`i+1 − 1, `i+2, . . . , `k〉

For the second statement, note that also 〈`1, . . . , `k〉 ⊆ 〈`1, . . . , `k−1, `k + 1〉 and that
(x0, . . . , xk) ∈ 〈`1, . . . , `k−1, `k + 1〉\〈`1, . . . , `k〉 if and only if xk = Lk+1 and (x0, . . . , xk−1) ∈
〈`1, . . . , `k−1〉.

Finally, for the third statement, note that, by definition, if

(0, x1, . . . , xk) ∈ 〈`1 − 1, `2, . . . , `k〉 ,
then {

x1 + 1 > 1

(0, x1 + 1, . . . , xk + 1) ∈ 〈`1, `2, . . . , `k〉 .
In fact, given a k-tuple (y1, . . . , yk) ∈ Nk,{

(0, y1, . . . , yk) ∈ 〈`1, `2, . . . , `k〉
(0, y1 − 1, . . . , yk − 1) /∈ 〈`1 − 1, `2, . . . , `k〉

if and only if {
y1 = 1

(0, y2 − 1, . . . , yk − 1) ∈ 〈`1 + `2 − 1, `3, . . . , `k〉 . �

Remark 4.3. Let, for any x = (0, x1, . . . , xk) ∈ Zk+1, y = (y1, . . . , yk) = (x1 − 1, x2 −
2, . . . , xk − k). Then x ∈ 〈`1, . . . , `k〉 if and only if 0 ≤ y1 ≤ L1 − 1 and yi ≤ yi+1 ≤
Li+1 − (i+ 1) for every i = 1, 2, . . . , k − 1.

Hence, if (`1, . . . , `k) is a composition of n (i.e., n = Lk) we may represent the elements
of 〈`1, . . . , `k〉 by lattice paths from (0, 0) to (k, n − k) that are contained in the region
between the x axis and the path P that has the same ends and the property that the
height of the ith horizontal step is Li − i for every i = 1, 2, . . . , k. See Figure 1 for an
example. Hence,

(4.3.1)
∣∣〈`1, . . . , `k〉

∣∣ = det
1≤i,j≤k

((
`1 + · · ·+ `i − i+ 1

j − i+ 1

))
.
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follows (cf. [8, Theorem 10.7.1]). Note that Lemma 4.2 may easily be proved by using
the characteristic properties of determinants.

Definition 4.4. Given integers t, r and k such that 0 < r < k < n, and a k-composition
` = (`1, . . . , `k) ∈ Nk of n, let

s(`, t) :=
k−1∑
i=0

∣∣〈(∑r
j=1 `i+j) + t, `i+r+1, . . . , `i+k−1

〉∣∣ ,
where indices are to be read modulo k.

Example 4.5. Note that (0, 1, 2) is a subsequence of x = (0, 1, 2, 7, 9) but (0, 1, 2, 3) is not.
Let S be the set of elements of 〈3, 1, 5, 2〉 with this property,

S = {(0, 1, 2, x3, x4) ∈ 〈3, 1, 5, 2〉 | x3 > 3}

and note that the lattice paths associated with the elements of S are those which start
by 2 horizontal steps, followed by a vertical step (cf. Figure 1). Now, (0, 1, 2, x3, x4) 7→
(0, x3 − 3, x4 − 3) defines a bijection between S and 〈(3 + 1 + 5)− 3, 2〉 = 〈6, 2〉.

P↓

0 0

4

5

Figure 1. Lattice path representation of (0, 1, 2, 7, 9) ∈ 〈3, 1, 5, 2〉.

Consider the 5-composition (3, 1, 5, 2, 4) of 15, define similarly to S the four sets T ⊆
〈1, 5, 2, 4〉, U ⊆ 〈5, 2, 4, 3〉, V ⊆ 〈2, 4, 3, 1〉 and W ⊆ 〈4, 3, 1, 5〉. Then |S| + |T | + |U | +
|V | + |W | = | 6 15

1 7 | + | 5 10
1 8 | + | 8 28

1 10 | + | 6 15
1 6 | + | 5 10

1 9 | = 27 + 30 + 52 + 21 + 35 = 165. A
similar construction for another 5-composition c of 15 gives again this number. If, e.g.,
c = (2, 1, 7, 3, 2), we obtain in the same manner | 7 21

1 9 | + | 8 28
1 9 | + | 9 36

1 10 | + | 4 6
1 4 | + | 2 1

1 8 | =
42 + 44 + 54 + 10 + 15 = 165.

Theorem 4.6. The value of s(`, t) does not depend on the k-composition `.

Proof. Note that, by definition, if we cyclically permute the elements of ` the value of
s(`, t) does not change. Hence, it is sufficient to prove that, given two k-compositions,
m = (m1, . . . ,mk) and ` = (`1, . . . , `k) such that

(m1,m2, . . . ,mk−1,mk) = (`1 − 1, `2, . . . , `k−1, `k + 1) ,

we must have s(m, t) = s(`, t).
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Let si(`, t) =
∣∣〈(∑r

j=1 `i+j) + t, `i+r+1, . . . , `i+k−1

〉∣∣ and define si(m, t) similarly. Then

s0(m, t) − s0(`, t) = 〈Lr + t− 1, `r+1, . . . , `k−1〉 − 〈Lr + t, `r+1, . . . , `k−1〉, which is the
opposite of 〈Lr+1 + t− 1, `r+2, . . . , `k−1〉 by Lemma 4.2.

In general, by subtracting and subsequently applying Lemma 4.2 term by term, we
obtain

k−1∑
i=0

(si(m, t)− si(`, t)) =
k−r∑
i=0

(si(m, t)− si(`, t))

=−
∣∣〈Lr+1 + t− 1, `r+2, . . . , `k−1

〉∣∣
+
∣∣〈(∑r

j=1 `j+1) + t, `r+2, . . . , `k−1

〉∣∣
+
∣∣〈(∑r

j=1 `j+2) + t, `r+3, . . . , `k−1

〉∣∣ ∣∣〈`1 − 1
〉∣∣

...
...

+
∣∣〈(∑r

j=1 `j+k−r−1) + t
〉∣∣ ∣∣〈`1 − 1, `2, . . . , `k−r−2

〉∣∣
+
∣∣〈`1 − 1, `2, . . . , `k−r−1

〉∣∣
We prove that this number is zero by proving that the opposite of the first summand,
the size of X = 〈Lr+1 + t− 1, `r+2, . . . , `k−1〉, is the sum of the other summands, each of
which counts the elements with the same image by the function f : X→ [k− r] such that

f(0, x1, . . . , xk−r−1) =

{
k − r, if xi < Li, ∀ i ≤ k − r − 1;

min{i | xi ≥ Li}, otherwise.

First, note that f(X) = k − r if and only if X ∈ 〈`1 − 1, `2, . . . , `k−r−1〉. If X /∈
〈`1 − 1, `2, . . . , `k−r−1〉, then

f(X) ≥ i ⇐⇒ min{t | xt ≥ Lt} ≥ i

⇐⇒ ∀j<i , xj < Lj

and hence

f(X) = i ⇐⇒ (∀j<i , xj < Lj) ∧ xi ≥ Li .

Finally,

(0, x1, . . . , xk−r−1) 7→
(

(0, x1, . . . , xi−1), (0, xi − Li + 1, . . . , xk−r−1 − Li + 1)
)

defines a bijection between f−1({i}) ⊆ X and the set

〈`1 − 1, `2, . . . , `i−1〉 ×
〈
(
∑r

j=1 `j+i) + t, `r+i+1, . . . , `k−1

〉
. �

4.2. Counting parking functions and rook words with a given type. Recall that
a parking function of length n is a tuple a = (a1, . . . , an) ∈ [n]n such that the ith entry
in ascending order is always at most i ∈ [n]. In other words,

a ∈ PFn if, for every i ∈ [n],
∣∣a−1([i])

∣∣ ≥ i .

Definition 4.7. Let a = (a1, . . . , an) ∈ Nn and suppose that {a1, . . . , an} = {x1, . . . , xk}
with xi < xj whenever 1 ≤ i < j ≤ k.

The reduced image of a is

rim(a) = (x1 − 1, . . . , xk − 1) ∈ (N ∪ {0})k ;
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the coimage of a is the quotient set

coim(a) =
{
x̄ | x ∈ [n]

}
,

where x̄ := a−1(a(x)), ordered by

x̄ < ȳ ⇐⇒ a(x) < a(y) .

Let A = (A1, . . . , Ak) be an ordered (set) partition of [n]. The length-vector of A is

`(A) = (|A1|, . . . , |Ak−1|) .

Lemma 4.8. Let A be an ordered partition of [n] with length-vector `(A) = (`1, . . . , `k−1)
and let a : [n]→ [n] be such that coim(a) = A.
Then a is a parking function if and only if

rim(a) ∈ 〈`1, . . . , `k−1〉
and a is a run r parking function if and only if{

rim(a) = (0, 1, . . . , r − 1, xr+1, . . . , xk)

(0, xr+1 − r, . . . , xk − r) ∈ 〈(
∑r

i=1 `i)− r, `r+1, . . . , `k−1〉

Proof. Follows immediately from the definitions. �

Note that a = (a1, . . . , an) ∈ RWn if and only if, for i = a1 − 1, rim(a) belongs to the set〈
1, . . . , 1︸ ︷︷ ︸
i times

, n− k + 1, 1, . . . , 1︸ ︷︷ ︸
k − i− 2 times

〉
=

=
{

(0, 1, . . . , i, xi+1, . . . , xk−1) ∈ [n− 1]k | i < xi+1 < · · · < xk−1 ≤ n− 1
}
.

Hence, if we denote by PFr
n the set of run r parking functions of length n, for A =

(A1, . . . , Ak), according to (4.3.1) and by definition∣∣PFn ∩ coim−1(A)
∣∣ = det

1≤i,j≤k−1

((
|A1|+ · · ·+ |Ai| − i+ 1

j − i+ 1

))
∣∣PFr

n ∩ coim−1(A)
∣∣ = det

r≤i,j≤k−1

((
|A1|+ · · ·+ |Ai| − i

j − i+ 1

))
∣∣RWn ∩ coim−1(A)

∣∣ =

(
n− 1− i
k − 1− i

)
Definition 4.9. Given an ordered partition A of [n] and a ∈ [n]n, we say that a is of
type A if the coimage of a is a cyclic permutation of A.

We denote the set of type A elements of [n]n by

coim−1(A) = coim−1(A1, A2, . . . , Ak) ∪
coim−1(A2, A3, . . . , A1) ∪ · · · ∪
coim−1(Ak, A1, . . . , Ak−1) .

Theorem 4.10. Let A = (A1, . . . , Ak) be an ordered partition of [n] and let 1 ≤ r ≤ n
for a natural number n. Then

• the number of parking functions of type A, as well as the number of rook

words of type A, is

(
n

k − 1

)
;
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• the number of run r parking functions of type A, as well as the number of

run r rook words of type A, is r

(
n− r − 1

k − r

)
.

Proof. Consider the two ordered k-compositions of [n], C = (|A1|, |A2|, . . . , |Ak|) and
D = (n− k + 1, 1, . . . , 1), and apply Theorem 4.6 with different values of r and t.

For the first statement, take r = 1 and t = 0; in the notation thereof,∣∣PFn ∩ coim−1(A)
∣∣ = s(C) =

k−1∑
i=0

(
n− 1− i
k − 1− i

)
= s(D) =

∣∣RWn ∩ coim−1(A)
∣∣ .

For the second statement, by taking r = 1, . . . , k and t = −r we obtain that∣∣PFr
n ∩ coim−1(A)

∣∣ = s(D) = r
∣∣〈n− k, 1, . . . , 1︸ ︷︷ ︸

k − r − 1 times

〉∣∣+ 0 ,

since, for `1 = n− k + 1 and `2 = · · · = `k = 1,∣∣〈∑r
j=1 `i+j − r, `i+r+1, . . . , `i+k−1〉

∣∣ =

{∣∣〈n− k, 1, . . . , 1〉∣∣, if i = 0 or k − i ∈ [r − 1];

0, otherwise.

This shows that the number of run r parking functions of type A is r
(
n−r−1
k−r

)
, since

〈n− k, 1, . . . , 1〉 =
{

(x1, . . . , xk−r) | 0 < x1 < · · · < xk−r ≤ n− r − 1
}
.

Finally, note that, for example, all the type A elements a = (a1, a2, . . . , an) ∈ [n]n with
a1 = 1 share the same coimage, and that there are

(
n−r−1
k−r

)
such rook words with run r,

since they are determined by the last k − r strictly increasing coordinates of rim(a), all
of them greater than r and less than n. The same happens if a1 = i for 1 ≤ i ≤ r, and
a1 cannot be greater than r, by definition. �

We note that the first part of Theorem 4.10 can be obtained directly from [10, Cyclic
Lemma], where the following bijection is defined. Let b = a if a ∈ PFn ∩ RWn and, if
a ∈ PFn \ RWn and m = max

(
[a1] \ a([n])

)
, let b = (b1, . . . , bn) ∈ [n]n be such that

ai ≡ bi +m (mod n) ;

then a 7→ b defines a bijection between the set of parking functions and the set of rook
words of a given type.

Theorem 4.11. For every n ∈ N,

RPFn(t) = RRWn(t) .

Proof. Follows immediately from Theorem 4.10. �

5. Counting rook words with a given run

Given positive integers n and r such that r ≤ n, let

RWr
n = {f ∈ RWn | run(f) = r}

and for a = (a1, . . . , an) ∈ RWr
n let

r = r(a) = (i1, . . . , ir)

where ij = min{i ∈ [n] | ai = j} for every j ∈ [r] (compare with the definition of Run in
page 6).
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Theorem 5.1. For all integers 1 ≤ r ≤ n,

[tr]
(
ALT n(t)

)
= r!

∑
e1+···+er=n−r

(n− 1)e1(n− 2)e2 · · · (n− r)er(5.1.1)

= r

r−1∑
j=0

(−1)j
(
r − 1

j

)
(n− 1− j)n−1 .(5.1.2)

Proof. We have seen before that

[tr]
(
ALT n(t)

)
= [tr]

(
RRWn(t)

)
=
∣∣RWr

n

∣∣.
Given a ∈ RWr

n and π ∈ Sr, let πa be the element of [n]n defined by

(πa)(j) =

{
π(aj) if aj ≤ r ;

aj if aj > r .

Note that πa ∈ RWr
n if and only if a ∈ RWr

n. Owing to this, the left-hand side of (5.1.1)
is equal to r! times the number of elements of

A = {a ∈ RWr
n | r(a) = (i1, . . . , ir) with 1 = i1 < i2 < · · · < ir}.

Now, for a fixed sequence 1 = i1 < · · · < ir, a = (a1, . . . , an) ∈ A with r(a) = (i1, . . . , ir)
if and only if, for every 1 ≤ j ≤ r,

• aij = j,

and for every 1 ≤ ` ≤ n,

• a` /∈ {j + 1, . . . , r, r + 1}, if ij < ` < ij+1 for some j ∈ [r − 1] ;
• a` 6= r + 1, if ` > ir.

This gives (5.1.1) for ej = ir+2−j − ir+1−j − 1 with 1 < j ≤ r, and e1 = n− ir.
We note that the right-hand side of (5.1.2) is, by the Inclusion-Exclusion Principle, r

times the number of elements of

B =
{
f : [n− 1]→ [n− 1] | [r − 1] ⊆ f([n− 1])

}
.

Given ` ∈ [n] with ` ≤ r < n, consider the bijection ϕ` : [n] \ {r + 1} → [n − 1] such
that

ϕ`(j) =


j, if j < ` ;

r, if j = ` ;

j − 1, if j > ` .

and note that [r − 1] ⊆ ϕ`([r]). Now, F (a1, . . . , an) = (a1, ϕa1(a2), . . . , ϕa1(an)) clearly
defines a bijection from RWr

n to [r]×B. �
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