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Abstract

The original version of Herbrand’s theorem [8] for first-order logic pro-
vided the theoretical underpinning for automated theorem proving, by
allowing a constructive method for associating with each first-order for-
mula y a sequence of quantifier-free formulas x1, x2, X3, so that x
has a first-order proof if and only if some y; is a tautology. Some
other versions of Herbrand’s theorem have been developed for classical
logic, such as the one in [6], which states that a set of quantifier-free
sentences is satisfiable if and only if it is propositionally satisfiable.
The literature concerning versions of Herbrand’s theorem proved in
the context of non-classical logics is meager. We aim to investigate in
this paper two versions of Herbrand’s theorem for hybrid logic, which
is an extension of modal logic that is expressive enough so as to al-
low identifying specific sates of the corresponding models, as well as
describing the accessibility relation that connects these states, thus
being completely suitable to deal with relational structures [3]. Our
main results state that a set of satisfaction statements is satisfiable in
a hybrid interpretation if and only if it is propositionally satisfiable.
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1 Introduction

Hybrid logics [3] are a breed of modal logics that provide appropriate syntax
for referring to the associated possible-worlds semantics through the use of
nominals. The latter, in particular, add to the modal description of rela-
tional structures the ability to refer to specific states. If modal logics have
been successfully employed in specifying reactive systems, the hybrid com-
ponent adds to them enough expressivity so as to refer to individual states
and to reason about the system’s local behavior at each of these states. Hy-
brid logics turn out thus to be strictly more expressive than their modal
fragments. For example, irreflexivity (i — —07), asymmetry (i — —0O1)
or antisymmetry (i — O(Qi — 4)) are properties of the underlying transi-
tion structure which fail to be definable in standard modal logic (see [4]).
Nonetheless, for the propositional case the satisfiability problem for hybrid
logics is still decidable.

An important feature of hybrid logics that will play a central role in
our approach is the fact that they allow for the specification of Robinson
Diagrams [2]. Indeed, in these logics one may: (1) express equality be-
tween states named by ¢ and j (note that @;j intends to affirm that the
states named by ¢ and j are identical, while @;—j, being logically equiv-
alent to =@;j, intends to affirm that states i and j are distinct); (2) talk
about accessibility between states through a modality (note that @;(j in-
tends to affirm that the state named by j is a successor of the state named
by i); (3) formulate satisfiability statements about a specific state (note
that @Q;p intends to affirm that the proposition p is true at the state named
by i, while @;—p, being logically equivalent to —=@;p, intends to deny this).
Consequently, within a hybrid logic one is able to completely describe the
corresponding models using the rich underlying syntax.

Herbrand’s theorem is a fundamental result of mathematical logic. It
essentially allows a certain kind of reduction of first-order logic to proposi-
tional logic. While not aimed at providing an efficient procedure for (semi)-
decidability, Herbrand-like theorems are ordinarily used as useful interme-
diate steps in proving that some theorem-proving resolution-based method
works as intended. Several versions of Herbrand’s theorem are now avail-
able for classical logic; here we present two versions for hybrid logics, using
the concepts of satisfiability and propositional satisfiability, following the
approach described in [6].

Outline of the paper. In Section 2] we start by recalling the basic hybrid
logic. Theorem [2.13] our first Herbrand-like theorem, states that hybrid
satisfiability is equivalent to propositional satisfiability for sets of satisfaction
statements containing the equality axioms. In Section [3| we discuss the
quantified hybrid logic — a logic less known than the basic hybrid logic.
The strategy to establish a Herbrand-like theorem in this case follows the



one for the classical first-order version, by making use of Skolemization to
eliminate the existential quantifiers on world variables. The main result here
is stated on Theorem Section [4] wraps up with some pointers for future
investigation.

2 The Case of the Basic Hybrid Logic

The simplest form of hybrid logic is based on the basic hybrid language, which
adds nominals and the satisfaction operator to the language of propositional
modal logic. This simple upgrade of the usual modal language carries great
power in terms of expressivity.

Definition 2.1. Let £ = (Prop, Nom) be a hybrid signature, where Prop is
a denumerable set of propositional symbols and Nom is a denumerable set of
symbols disjoint from Prop. We use p, ¢, 7 and so on to refer to the elements
in Prop. The elements in Nom are called nominals and we typically write
them as i, j, k, and so on. The hybrid formulas over £, which we denote by
Forma (L), are defined by the following grammar:

pu=i|p|oe o1 N | Op| Qi
where ¢ € Nom and p € Prop.

The formulas with prefix @ are called satisfaction statements. The connec-
tives V, —, and [ are defined as usual. |

Definition 2.2. Let £ = (Prop,Nom) be a hybrid signature. A hybrid
structure M over L is a tuple (W, R, N,V). Here, W is a non-empty set
called domain whose elements are called states or worlds, R C W x W is
called accessibility relation, N : Nom — W is a hybrid nomination and
V : Prop — Pow(W) is a hybrid valuation. The pair (W, R) is called
the frame underlying M, and M is said to be a structure based on this
frame. <

The satisfaction relation, which is defined next, is a generalization of
Kripke-style satisfaction.

Definition 2.3. The satisfaction relation |- between a hybrid structure
M = (W,R,N,V), a state w € W, and a hybrid formula is recursively
defined by:

o M wlriiff w= N(i);
e M,wlkpiff we V(p);

o M,w Ik —¢ iff it is not the case that M, w IF ¢;



o M,wlkF @1 Apy iff M wlkF @1 and M, w IF @9;
e M,wlF Qg iff 3w € W(wRw" and M, w' IF ¢);
o M,wlF Qo iff M,w'IF ¢, where w’ = N ().

If M,w I ¢ we say that ¢ is satisfied in M at w. If @ is satisfied at all
states in a structure M, we write M I- . If ¢ is satisfied at all states in
all structures based on a frame F, then we say that ¢ is valid on F and
we write F IF ¢. If ¢ is valid on all frames, then we simply say that ¢ is
valid and we write IF . We say that a set ® of hybrid formulas is satisfiable
if there exists a model M and a world w € W such that M,w I+ ®, i.e.,
M,w Ik ¢ for all p € ®. For A C Forma(L), we say that M is a model of
A if MIF§ for all § € A. <

Definition 2.4. Let £ be a hybrid signature. The set At(L) of atomic
satisfaction statements (atoms, for short) over L is the set of L-formulas
of the forms @Q;p, @Q;0j, and @Q;j for 7,7 € Nom and p € Prop. We use
BCAt(L) to denote the set of all (finite) Boolean combinations of atomic
satisfaction statements over L, i.e., BCAt(L) is the smallest set containing
At(L£) and closed under A and —. <

Definition 2.5. An L-truth assignment is a mapping v : At(L) — {1, F'}.
Given an L-truth assignment v, one may extend it to v : BCAt(L) — {T, F'}
through the truth-functional interpretation of the propositional connectives.
In order to simplify notation, given that this extension is unique, we will
use v in order to refer both to an L-truth assignment and to its extension .
Let ® C BCAt(L). We say that ® is propositionally satisfiable if there
is an L-truth assignment that simultaneously satisfies every member of ®.
We say that ® is propositionally unsatisfiable if there is no such L-truth
assignment. <

We have now the basis to start investigating a first Herbrand-like theorem
for hybrid logic:

Theorem 2.6. Let ® C BCAt(L). If ® is propositionally unsatisfiable
then ® is unsatisfiable.

Proof. Suppose that ® is satisfiable: then there is a model M and a world
w € W such that M, w IF @, i.e., M,w IF ¢ for all ¢ € ®.

Define vM : At(L) — {T, F'} by setting v (¢) = T iff M, w IF 1.

Let us prove by induction on the structure of ¢ € BCAt(L) that vM(p) =
T ift M,wlF .

e If ¢ € At(L), the result follows from the definition of v.



e Suppose now, by Induction Hypothesis, (IH), that M,w I+ ¢; iff
vM(p;) =T, for i = 1,2.

— If o = 1 A @2, then

Mowlke iff M,wlk o1 Apo
iff M,wlF ¢ and M,w IF o9

if oM =T and oM =T
&H) v (1) and v (2)

iff oMoy Ape) =T
iff oM(p)=T

— If p = =), then
Mwlke iff Mwlk -
it  M,w Wy
iff vM@)=F
Hi (1)
it oM(-y) = T

v
iff oM(p)=T

Since M, w I @, by assumption, we have that v™(p) = T for any ¢ € ®.
Therefore, ® is propositionally satisfiable. |

Example 2.7. Let £ = ({p, ¢}, {3, j}), and ® = {Q;pvQ;q, Q;—q, Q;j, Q;)j}.

The set @ is satisfiable, as there is a model M = (W, R, N, V) such that
W = {w}7 R = {(Z7Z)}7 N(i) = N(j) = w, V(p) = {w} and V(q) = 2,
where M, w |- ®.

Define vM : At(L) — {T, F} by setting vM(¢)) = T iff M, w IF 9. This
implies that vM(Q;p) = T, vM(@;0j5) = T, v (@;§) = T and for all other
atomic satisfaction statements in £, v™ assigns F. The extension of v to
oM s straightforward. Thus ® is propositionally satisfiable. ¢

The converse of the previous theorem is not true in general. Here is a
counter-example:

Example 2.8. Let £ = ({p},{7,j}), and ® = {Q;j, Q;p, @;—p}.

Note that ® is propositionally satisfiable: take v™ : At(L£) — {T, F} to
be such that vM(Q;p) = T, vM(@;5) = T, and v™ assigns the value F to
all other atomic satisfaction statements.

However, ® is not satisfiable, as there is no model M such that M, w I+ ®.
Any model that satisfies the first formula in ® has that N (i) = N(j) = w.
From the second and the third formulas, one must have that w € V(p) and
w ¢ V(p), respectively, which is a contradiction. ¢



As in the case of first-order logic with equality, the characteristic equality
axioms need to be taken into consideration. In hybrid logic we do not have
an explicit symbol of equality in the language; however, there are hybrid
formulas that express the equality axioms over nominals in £ (see [3]):

e Reflexivity: @1, for ¢ € Nom,;
o Symmetry: Q;j — @i, for 4, j € Nom;

e Nom: (Q;p A Q;j) — Q;¢, for i, j € Nom
and @Q;p an atomic satisfaction statement;

e Bridge: (@Q;0j A Q;k) — @Q;Ok, for 4, j, k € Nom.

The set of all equality axioms over the hybrid signature £ is denoted by
Eq(L). It is easy to check that these formulas are all valid in hybrid logic.
Note that Bridge does not follow from the other axioms, as it is the only
axiom where nominals are replaced in formula position.

Lemma 2.9. Let M be a model and ¢ be a formula in BCAt(L). Then,
JweW : Miwlk g iff MIF

Proof. We will check this result by induction on the structure of ¢ € BCAt(L):
e For ¢ = @Q;1) an atomic satisfaction statement:

JweW : Mwlky iff JweW: M,wl- Q)
it M, w' -1, where w' = N(7)
ifft M IF Qv
ift M1k
e Suppose by (IH) that 1 and 6 are such that the result holds. Then,
— For ¢ = —):

JweW Muwle iff FJweW: Mwlk—)
ift JweW: Mywlfy
it MIfy
iff YweW: Mywlfy
ifft YweW : M,wlk -
iff M-
ift MIFep

— For ¢ = 1 A pa:

For one implication:



JweW : Mwlkp
iff FweW: M,wlk o1 Ao
iff JweW:M,wlk ¢ and M,w I ¢3)
implies 3w e W : M,wlk 1 and Jw € W : M, w I+ 9

iff I+ d M IF
iy M1 and M IF o

iff YweW M,wlk o and Vw e W : M,w I+ o9
it YweW: : M,wlkp; and M, wlF ¢

iff YweW: M,wlk o A

iff MIE @1 A @2

it  MlFep
For the converse implication:
MIF iff M 1 A o
iff Yw e W : M,wlF o1 A ps
implies JweW: M,wlk e Apa
(given that W # &)
iff JweW: Mywlkp n

Let us consider next the binary relation ~ defined on Nom by setting
i~giff v(Q5)=T.

Lemma 2.10. The binary relation ~ is an equivalence relation.

Proof. [Reflexivity] is guaranteed by the homonymous axiom stated above,
namely @;i, for ¢ € Nom. Once Eq(L) C @, then v(@;i) = T implies ¢ ~ i.
[Symmetry] holds due to the fact that if i ~ j, then v(@;j) = T, and given
that Eq(£) € ®, we have v(Q;j — @Q;4) = T', which implies that v(Q;i) = T.
So, j ~ i.

[Transitivity] follows from Symmetry and the axiom Nom. Suppose i ~ j
and j ~ k. By [Symmetry] it follows that j ~ i and j ~ k, thus v(Q;i) =T
and v(@;k) = T. Once more, since Eq(L) C ®, we have in particular that
v ((Qji A Qjk) — @Q;k) =T. We conclude that v(Q;k) =T, thusi~ k. W

The above result is crucial in proving Herbrand’s Theorem for languages
containing equality. Next we show that if for a set ® of Boolean combina-
tions of atomic satisfaction statements with equality there is a valuation v
that assigns the value true to all atomic satisfaction statements in ®, then
there is a hybrid structure that satisfies the equality axioms and where ® is
satisfiable.

Theorem 2.11. Assume Eq(L) C & C BCAt(L).
If @ is unsatisfiable then ® is propositionally unsatisfiable.

Proof. Suppose that ® is propositionally satisfiable and let v : At(L) —
{T, F'} be such that v(¢) =T for any ¢ € P.

Let W = Nom. We define the hybrid structure M = (W, Ry, Ny, V)
such that:



o W, =W/r~;

o [i|R,[j] iff v (@;07) =T, for 7,5 € Nom;

e N,(j) =[i] iff v(Q;j) =T, for i,j € Nom; and

o [i] € Vi(p) iff v(Q;p) =T, for i € Nom, p € Prop.

Claim I. R, is well-defined.

We want to prove that if i ~ 5 and k ~ [, then [i]R,[k] implies [j]R,[l].

— Suppose that i ~ j,k ~ [ and [i{|R,[k]. By definition, we know that
[i]Ry[k] means that v (@Q;0k) = T, and i ~ j means that v (Q;j) = T. It
follows that v (@;Ok A @Q;5) = T'. The axiom Nom let us conclude then that
v (@Q;0k) = T. We also know that & ~ [ means that v(Ql) = T. From
the axiom Bridge, since v (Q;0k A @Qil) = T, it follows that v (Q;01) = T.
Therefore, by definition, [j]R,[].

Claim II. V, is well-defined.

We want to prove that if ¢ ~ j then ([i] € V,,(p) iff [j] € Vi(p)).

— Suppose that i ~ j and [i] € V,,(p). By the definition of the equivalence
relation ~, v(@Q;j) = T; and by the definition of V,, v(@Q;p) = T. Then
v(Q;pAQ;j) =T and from Nom it follows that v(Q;p) = T. So, [j] € V,(p).
The converse direction is checked analogously in view of the symmetry of ~.

All that is left to prove now is the satisfiability of ®.

Claim III. For all ¢ € BCAt(L), (M IF g iff v(p) =T).

Below you should recall that for Boolean combinations of atomic satis-
faction statements, satisfiability at one state is equivalent to satisfiability at
all states, by Lemma [2.9

e p=Qp
MIF@p iff M,[i]lFp

° p=0;0j
MIF@0j iff M,[i] I 0

iff 3 | Ry k] and M, [k] IF j

iff 3k : [i]Ry[k] and [k] = [J]

iff  [¢]

iff  o(

iff o

<=

o p=Qyj



e By (IH), let @1, p2 be such that M |- ¢; iff v(p;) =T, for i =1,2.
This part is similar to Theorem so we omit the details.

— Given ¢ = 1 A 9, note that
MIFpr Aps iff v(pr Apa) =T
— Given ¢ = =1, note that
MIF =g iff v(—p) =T

Thus, in particular, M IF &, and this means that ® is satisfiable. |

We finish this section by generalizing the above results to compound
satisfaction statements. Let ¢ be any satisfaction statement. The following
rules allow us to rewrite ¢ by recursively applying the following rules in order
to obtain a semantically equivalent formula ¢° € BCAt(L*), where £* is an
expansion of £ obtained by the addition of new nominals to the initial hybrid
signature. Observe that such extension is possible since we considered Nom
to be a denumerable set.

Rewrite Rules:
1. @,Qjp — Qjp
2. @Qimp — Q5
- Qi AY) > Qip AN QY

. @;0p — @Q;0k A Qip, for k a fresh nominal

- W

As the above rules successively decrease the complexity of satisfaction
statements, it is clear that the associated rewrite system is terminating. In
fact, by using the Knuth-Bendix completion algorithm it is easy to see that
the rewrite system is also confluent. In this respect, it is worth noting that
the formula @;@Q; (¢ may rewrite in two ways, namely as @Q;Qk; A Qg ¢ and
as @;Qko A Qy, . These are the same, however, modulo the introduced fresh
nominals.Moreover, we should point out that Areces and Gorin, in [1], have
investigated labeled resolution calculi for hybrid logics with inference rules
similar to the above rewrite rules; namely our rules 1., 3. and 4. correspond
to their @, A and (r) rules, respectively.

Example 2.12. Consider the formula ¢ = @;@Q;((p A —g) in L. It is clear
that ¢ is not a Boolean combination of atomic satisfaction statements of L.
Applying the rewrite rules yields that:



@;@Q;0(pA—q) = @Q;0(pA—g)

—  Q;0k A Qp(p A —q), k fresh

- @;0k A (Qp A Qpg)

- @;0k A (Qp A =Qpq)

Thus ¢° = Q;0k A (QrpA—Qq). Note that the new formula is in the hybrid
signature £* that expands £ by the addition of the new nominal k. ¢

Theorem 2.13 (Herbrand-like). Let ® be a set of satisfaction statements
such that Eq(L) C ®. Then ® is propositionally unsatisfiable iff ® is unsat-
isfiable.

Proof. We exhaustively apply the previously introduced rules to the formu-
las of ® and transform ® into ®° := {¢° : ¢ € P} UEq(L*). Note that ®° is
a subset of BCAt(L*), which contains the equality axioms in the expanded

language, thus we may apply Theorems and [ |

3 The Case of Quantified Hybrid Logic

In this section we introduce a hybrid logic enriched with operators over
world variables, typically written as s, ¢, u and so on, distinct from both
nominals and propositional variables. We will also resort to an algebraic
similarity type in order to allow function symbols. This logic, which we will
call Algebraic Strong Priorean Logic, shares some similarities with the logic
HLOV(@,V,3) found in [9], namely in the use of quantifiers and functions,
but it differs in the definition of terms; in particular, while HLOV(Q,V, 3)
allows for quantification over both state variables and functional terms, the
Algebraic Strong Priorean Logic restricts quantifications to state variables.

Definition 3.1. An algebraic similarity type ¥ is a tuple (F, o) such that F
is a non-empty set of function symbols, and ¢ assigns to each function symbol
its arity. An algebraic similarity type together with a denumerable set of
world variables, WVar, and a denumerable set of nominals, Nom, induces
the set Term(3, WVar, Nom) of ¥-terms, whose elements are the algebraic
terms given by the grammar:

tu=i]s| f(tl,--- ,ta(f))
where ¢ € Nom,s € WVar and f € F. |

We may now introduce a powerful hybrid language, H (X, @, V), whose
grammar is defined below:

Definition 3.2. A hybrid similarity type L is a tuple (Prop, Nom, WVar),
where Prop and Nom are as usual the set of propositional variables and the
set of nominals of a hybrid signature, and WVar is a denumerable set of

10



world variables. Let ¥ = (F,0) be an algebraic similarity type. The well-
formed formulas Forma v(L, Term(X, WVar, Nom)) over the hybrid similar-
ity type L and the X-terms Term(X, WVar, Nom) are defined by the following
grammar:

pu=plt| -1 A | Op| Q| Vsp|dse
where p € Prop, t € Term(X, WVar, Nom) and s € WVar.

Note that @ can make use of Y-terms, i.e., world variables and functional
terms. The connectives V, —, and [ are defined as usual. |

The earlier definition of a ‘hybrid structure’ is now upgraded as follows:

Definition 3.3. Let L = (Prop,Nom, WVar) and ¥ = (F,0) be, respec-
tively, a hybrid and an algebraic similarity types. A hybrid structure H over
(L,Y) is a tuple (W, R, (fW)feF ,N, V), where W, R, N and V are the do-
main, accessibility relation, hybrid nomination and valuation as introduced
in Definition and ( fW) fer is a family containing for each f € F an

interpretation fV : wel) — w. <

As we need a mechanism for coping with the terms introduced in the
above grammars, we consider now a world assignment g : WVar — W.
Two world assignments g and ¢ are called s-variant iff g(u) = ¢'(u), for all
u € WVar such that u # s; in such case we write g ~ ¢’. We extend ¢ to
Term (X, WVar) in the following way:

g(t), ift € WVar
, if ¢t € Nom

N(t
fW(g(tl), - ,g(tg(f))) Jif t = f(tl, . ,tg(f)), for some f € F

In order to simplify notation, we will use g to denote both a world assignment
and its extension.
The notion of satisfaction is now defined in the following way:

Definition 3.4. The satisfaction relation |- between a hybrid structure H =
(W,R,N,V), a state w € W, a world assignment ¢g and a hybrid formula is
recursively defined by:

e H,g,wlpiff we V(p), for p € Prop;
o H,g,wltiff w=g(t), for t € Term(X, WVar, Nom);

e H,g,wlk —yp iff it is not the case that H, g, w I ;

H,g,wlF o1 Aps iff H,g,wlF 1 and H, g, w IF po;

H,g,w - Op iff Jw' € W(wRw' and H, g, w' IF p);

11



o H,g,wlk @ iff H,g,w' Ik p, where w' = g(t),
for t € Term (X, WVar, Nom);

o H,g,wlF-Vsgiff #,¢',wlF ¢ for all ¢’ such that ¢’ < g;
o H,g,wl-3seiff #,q',wlF ¢ for some ¢’ such that ¢ ~ g.

Here, H, g, w IF ¢ is read as saying that ¢ is satisfied at the state w in the
hybrid structure H under the world assignment g. |

We shall use the appellation Algebraic Strong Priorean Logic to refer to
the logic induced by the above notion of satisfaction. It is worth pointing out
that the Algebraic Strong Priorean Logic contains the logic of the hybrid
language with a binder, as | s.¢ is expressible here by 3s(s A ¢). Such
logic is very expressive. The algebraic structure over the set of worlds may
be useful in several contexts. Here are some examples: on trees, one can
consider a functional symbol for referring to the first common ancestor of
two given nodes; on the graph representations of maps, one can consider a
functional symbol for referring to an intermediate city that minimizes the
distance between two other given cities; on temporal frames, one can consider
functional symbols that allow pointing to a specific time after or before the
current moment, or a function that allows one to say that something happens
periodically.

Definition 3.5. A set ® of formulas in Forma yv(L, Term(¥, WVar, Nom))
is said to be satisfiable if there exists a hybrid structure H over (L,Y), a
w € W and a world assignment g such that H, g, w IF ¢ for all ¢ € &. We say
that ¢ € Forma v (L, Term(X, WVar, Nom)) is satisfiable if the singleton {¢}
is satisfiable. |

Definition 3.6. A literal in H (X, @, V) is a formula of the form: @Q,p, Q,—p,
@,0b, @,—~Ob, where p € Prop, and a,b € Term (X, WVar, Nom). |

Lemma 3.7 (Labelling).
Let ¢ be a formula in Forma y(L, Term(¥X, WVar, Nom)). Then

@ is satisfiable iff Q;p is satisfiable,
where i is a fresh nominal.
Proof.

p is satisfiable iff JH,dg,Jw : H,g,w Ik ¢
iff IH,3g,Fw : H,g,w Ik o, w= N(i)
iff 3IH,3g,3I0 : H, g, @ IF Qi
ifft @, is satisfiable [
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Our goal in what follows is to study the satisfiability of a formula in
the Algebraic Strong Priorean Logic. Since the satisfiability problem of a
formula ¢ is equivalent to the satisfiability problem of a formula @Q;p —
where ¢ does not occur in ¢ — we will prove satisfiability of the latter. In
order to do so, it will be convenient to rearrange formulas so that we end
up with a formula in Prenex Conjunctive Normal Form, i.e., a formula in
which quantifiers appear on the left, prefixing a quantifier-free part that is
a conjunction of clauses, where clauses are disjunctions of literals.

Definition 3.8. A formula is said to be rectified if no world variable occurs
both bound and free and if all quantifiers in the formula refer to different
world variables. |

The renaming of bound world variables follows the same approach as in
first-order logic, whose proof is standard:

Lemma 3.9. It is always possible to perform a systematic renaming of
bound (world) variables such that the result is a rectified formula, equivalent
to the original one in the following way: if s occurs bounded in a formula ¢
and u does not occur at all, then ¢ is equivalent to the formula obtained by
replacing all occurrences of s in the scope of a quantifier in @ with w.

Given a formula ¢ as input, we will refer to the formula ¢ produced by
the above renaming procedure the rectified version of .

Definition 3.10. Let s1,...,s, be the world variables occurring free in ¢.
The [rectified] existential closure of ¢ is the formula which results from
rectifying ¢ and then existentially bounding its free variables, i.e., it is the
formula ds; ... ds, @, where ¢ is the rectified version of ¢. |

Lemma 3.11. A formula ¢ and its existential closure 1 are equisatisfiable.
Proof.

1 is satisfiable
it IH,dg,Fw :H,g,wlF3s;...Isp
iff 3IH,3g,Fw : H, g1, w IF Isy ... 3s,, ¢, for some g1 < g
iff 3H,3g,Fw : H, go, w IF Isz ... 3s, ¢, for some go 2 g1 ~ g
i ..
iff 3,39, 3w : H, g, w IF @, for some gn L gng < -2 g g
iff dH,3dg,,Fw:H, gn,wlF @
ift ¢ is satisfiable ]

Let us apply the latter two results in the following examples:
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Example 3.12. Let p; = @Q;(Op A ~Qgp).
— This formula is rectified.
— The existential closure of ¢; is the formula ¥ = 35 @Q;(Op A ~Qgp).
It is easy to check that ¢ and 1 are equisatisfiable. ¢

Example 3.13. Let o9 = @Q; (= (VsQg—p A Is Qgp) A Qg—p).
— This formula is not rectified.
The renaming of variables leads to @; (= (Vt@Q;—p A Fu@,p) A Qz—p),
which is equivalent to vs.
— The (rectified) existential closure of ¢3 is the formula
Yo = Js @Q; (= (VtQ—p A Fu@,p) A Qg—p).
The formulas o and 9 are equisatifiable. ¢

Example 3.14. Let p3 = @Q;(Vs3tQ,Ot).

— This formula is rectified.

— Since 3 does not have free world variables, it coincides with its exis-
tential closure, 3. ¢

The following theorem allows us to convert a formula into an equivalent
formula in Prenex Conjunctive Normal Form.

Theorem 3.15. Let L = (Prop, Nom, WVar) be a hybrid similarity type,
Y be an algebraic similarity type, and H be a hybrid structure over (L,Y).
For each formula of the form Q;p, where ¢ € Form ay)(L) and i € Nom
does not occur in p, its existential closure ¥ is equivalent to a formula in
Prenex Conjunctive Normal Form.

Proof. Let 1 be a formula in the conditions of the theorem.

Step 1: Use the double negation law, the De Morgan’s laws, the duality
equivalences Vs = —ds—yw and Qp = —-[-p, and the following rewrite
rules until no further transformations apply.

Qu(81 A B2) — Qa0 A Qybs Qu(81 V 02) — @0, V Qufs
-Q@,0 — @,—0 Q,@u0 — Q0

@00 — 3u(QuOu A @,0) @, 3560 — 35@,0

Q00 — Yu(@,O-u Vv @,0) Q,Vsh — Vs@Q,0

where a,b € Nom U Term(X, WVar, Nom) and ©v € WVar does not occur
in .

Step 2: Flush all quantifiers to the prefix position, as usual, and the result
is a formula in Prenex Normal Form (since the variables added in Step 1 are
new, the formula remains rectified). Apply the associative and distributive
laws as necessary in order to reach a formula in Prenex Conjunctive Normal
Form.
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Due to the rectified nature of the formulas over which the transforma-
tions have been applied, the resulting formulas are equivalent to the original
ones. |

We return to the previous examples and apply the latter result:

Example 3.16. Let ¢y = 3s@Q;(Op A ~Qgp):

Step 1:
ds@; (Op A —Qgp) — Fs(Q;Op A Q;—Q4p)
— s (Fu (Q;Qu A Qup) A @Q;Q—p)
—  Js (Fu (Q;Qu A Qup) A Qg—p)
Step 2: JsJu (Q;Qu A Q,p A Qg—p) ¢

Example 3.17. Let ¢ = 35 Q; (= (VtQ;—p A JuQy,p) A Qz—p).
Step 1:

Js @Q; (= (VtQy—p A FuQyp) A Qg—p)

s Q; ((=Vt@Q;—p V =Fu@,p) A Qg—p)
ds @; ((Ft—Q—p V Vu—Q,p) A Qg—p)
s (Q; (FtQ——p V Vu@Q,—p) A Q;Q4—p)
ds ((@;3tQ;p V Q;Yu@,—p) A Qs—p)

Js ((FtQ;Q;p V Yu@;@Q,—p) A Qz—p)

Js ((FtQup V Yu@,—p) A Qg—p)

Step 2: JsItVu ((Qup V Q,—p) A Qg—p) ¢

Ldd b

Example 3.18. Let ¢35 = @Q;(Vs3tQ,Ot).
Step 1:

@i(VSHt@SQt) - Vsﬂt(@i@sot)
- VsTt (Q 0t)

Step 2: Vs3t (Q,0t) ¢

Analogously to the corresponding construction in first-order logic, we
can also resort to Skolemization in the Algebraic Strong Priorean Logic.

Lemma 3.19 (Skolemization in H (3,Q,V)). Let ¢ be a sentence of the
form Vs ...Vsp38n41G(S1,. .., Sn, Snt1) of H(2,Q,Y), where the existen-
tially quantified variable s,11 is preceded by n universally quantified vari-
ables. In case n = 0, augment the underlying hybrid similarity type with a
new nominal ¢ and form the sentence G(c); otherwise, augment the under-
lying hybrid similarity type with a new n-ary function symbol f and form
the sentence Vsi1,...,8,G(81,- -, 8n, [(81,---,8,)). Let ¢ denote this new
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sentence, formed after the appropriate augmentation of the language. Then,
there is an extension H' of the model H such that:

H,g,wlF o iff H g,wl- .

The (standard) proof of the latter result shows how to build the mentioned
extension of the original model.
We now apply Skolemization to the previous examples.

Example 3.20. ¢ = @;0c; A Q. p A Q.,—p ¢
Example 3.21. ¥y = Yu ((Q.,p V @,—p) A Q., —p) ¢
Example 3.22. 3 = Vs (Q,0f(s)) ¢

Definition 3.23. A formula of H (X,@,V) is in conjunctive Skolem form
if it is in Prenex Conjunctive Normal Form and its prefix contains only
universal quantifiers. <

For a given formula ¢, its Skolem Form is the result of applying labelling
(Lemmal[3.7)), followed by the rectification and existential closure of the new
formula (Lemma , then putting it in Prenex Conjunctive Normal Form
(Theorem and finally performing Skolemization (Lemma .

With conjunctive Skolem forms defined, we can state the following re-
sult:

Theorem 3.24. A set ® of formulas in H (X, Q,V) is satisfiable iff the set
of conjunctive Skolem forms of formulas in ® is satisfiable.

Proof. In view of Lemma [3.7] we know that the satisfiability of ® is preserved
when one considers the set {Q;¢|¢ € ®}, with i not occurring in any for-
mula . Recall that such nominal is always possible to find, as we assumed
Nom to be a denumerable set.

From Lemma the satisfiability problem for {Q;p |y € ®} is the
same as for {@;p|p € ®} where @;p represents the existential closure of
@;p. This step is possible to accomplish since we also assumed W Var to be
a denumerable set.

Furthermore, we can use the procedure employed in the proof of Theo-
rem [3.15] in order to put formulas in Prenex Conjuntive Normal Form, and
this is a procedure that strictly preserves the satisfiability of formulas. Thus
we can deal with the satisfiability problem of {PCNF (@Q;¢) |¢ € ®} where
PCNF (v) is the result of applying the steps in the proof of Theorem to
the formula 1. Next we apply Skolemization to all formulas. Beware of the
fact that the Skolem symbols introduced in each formula are to be disjoint.
Let us call the resulting set 3. Clearly, by Lemma the satisfiability
problem for @ is the same as for ®. |
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The above relatively straightforward proof contrasts with proofs of the
analogous result in first-order logic (see, e.g., [3]), which are often involved.

Definition 3.25. A ground instance of a sentence Vsi ...Vs, G(s1,...,Sn),
with G(s1,...,sy) a quantifier-free formula of H (X,@,V), is a formula of
the form G(i1,...,4,) which results from substituting all occurrences of
$1,-..,8p in G with nominals i1, ..., %y,. <

Before presenting our Herbrand-like result for hybrid logic with quan-
tifiers, we find it worth pointing out that hybrid logic can be translated
into first-order logic with equality, and (a fragment of) first-order logic with
equality can be translated back into (a fragment of) hybrid logic (cf. [3]).
Both translations are truth-preserving. First-order logic is compact, which
means that a set of first-order sentences is satisfiable if and only if every finite
subset of it is satifiable. Furthermore, from our earlier Herbrand-like result
(Theorem , we know that for a set of Boolean combination of atomic
satisfaction statements, satisfiability implies propositional satisfiability.

Theorem 3.26 (Herbrand-like). Let L and X be, respectively, a hybrid and
an algebraic similarity type, and let ® C Forma v(L, Term(3, WVar, Nom)).
Then ® is unsatisfiable iff some finite set ®* of ground instances of Skolem
forms of ® UEq(L) is propositionally unsatisfiable.

Proof. By Theorem [3.24] the set ® is unsatisfiable iff the set ¥ of conjunctive
Skolem forms of formulas in ® is unsatisfiable. So, in the present proof we
will deal with V.

Let us now prove the right-to-left direction of the theorem. First observe
that, from Theorem if a set ®* of ground instances of ¥ U Eq(L) is
propositionally unsatisfiable then it is unsatisfiable. Furthermore, notice
that a ground instance of a universal sentence 7 is a logical consequence
of 7. Therefore, if a set ®* of ground instances of ¥ UEq(L) is unsatisfiable,
then U U Eq(L) is unsatisfiable, which yields that ¥ is unsatisfiable. It
follows from the previous paragraph that ® is unsatisfiable.

For the left-to-right direction of the theorem we prove the contraposi-
tive: if every finite set of ground instances of Skolem forms of ® U Eq(L),
i.e., ground instances of ¥ U Eq(L), is propositionally satisfiable, then ® is
satisfiable. Let ®( be the set of all ground instances of WUEq(L). From the
assumption that every finite subset of ®( is propositionally satisfiable, it fol-
lows from compactness that the entire set ®¢ is propositionally satisfiable.
From Theorem we conclude that ®q is satisfiable. Thus ¥ U Eq(L)
is satisfiable, from which W is satisfiable, which finally implies that & is
satisfiable. |
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4 Conclusion

We have proposed two versions of Herbrand’s theorem in the context of
hybrid logic, with a restriction to satisfaction statements, by making use of
rules that rewrite each satisfaction statement as a Boolean combination of
atomic satisfaction statements, and making use also of the fact that each
model can be described by its diagram. We proved that a set of satisfaction
statements is propositionally unsatisfiable if and only if it is unsatisfiable.

Formulas with quantifiers over objects constitute a challenge. In fact,
allowing non-rigidity introduces a new set of problems: when dealing with
non-rigid terms, i.e. terms that can designate different things at different pos-
sible worlds, the act of designation and the act of passing to an alternative
world need not commute. For an example of how this has been dealt with
elsewhere, it is worth to point out Fitting’s version (cf. [7]) of Herbrand’s
theorem for the modal logic K with varying domains. Following the stan-
dard steps for Herbrand-like theorems, after going through Skolemization
one gets non-rigid designators for some formulas and the above mentioned
difficulty concerning non-commutativity ensues. In order to overcome this
issue, Fitting resorted to the concepts of predicate abstraction and validity
functional form. In short, if ¢ is a formula, then (Az.p) is a predicate ab-
straction that is to be applied to terms; loosely speaking, for (Az.¢)(t) to be
true at a world w, ¢ should be true in that world provided we take the value
of x to be whatever the term ¢ designates at w. The predicate abstraction
mechanism does not have an important role to play in classical logic because
all the classical connectives and quantifiers are ‘transparent’ to it. On the
other hand, (Az.0y)(¢) and O(A\z.¢)(t) may have very different meanings,
from a semantical viewpoint. Fitting defines as modal Herbrand transform
of a formula X the formula X’ such that X — X’ can be derived from a
certain calculus that he presents. He later proves equivalence between the
validity problem for a closed formula ¢ and for one of its modal Herbrand
expansions, a notion built over that of modal Herbrand transforms. We are
confident that within the hybrid scenario something similar is to be done: by
adding just nominals and the satisfaction operator, and assuming that nom-
inals are rigid, it would seem that @ is to behave as classical connectives and
quantifiers do when interacting with the predicate abstraction mechanism,
namely, that (Ax.Q;p)(t) and @Q;(Az.p)(t) are to share the same meaning.
If the addition of nominals proves not to be worrisome, then updating the
concept of modal Herbrand transform into hybrid Herbrand transform, after
proper adjustments to the calculus proposed by Fitting in order to incorpo-
rate the hybrid machinery, should be rather trouble-free. The details need
to be checked, of course, and we propose that as future work.

As in [1], we have here investigated a direct path towards the proofs
of our main (Herbrand-like) results, without taking an indirect approach
through first-order translations of the hybrid formulas. However, for a more
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straightforward comparison with the standard formulation of the Herbrand
Theorem and its numerous applications, it might be worth exploring the
connection of our present results concerning Hybrid Logic to the more long
winded route going through its translation into classical first-order logic.
For space reasons, though, we have to leave details of this reconnaissance to
a future opportunity.
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