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Column distances of convolutional codes

over Zpr

Diego Napp Raquel Pinto Marisa Toste

Abstract

Maximum Distance Profile codes over finite non-binary fields have been introduced and thoroughly

studied in the last decade. These codes have the property that their column distances are maximal among

all codes of the same rate and degree. In this paper we aim at studying this fundamental concept in the

context of convolutional codes over a finite ring. We extensively use the concept of p-encoder to establish

the theoretical framework and derive several bounds on the column distances. In particular, a method for

constructing (not necessarily free) Maximum Distance Profile convolutional codes over Zpr is presented.

I. INTRODUCTION

Massey and Mittelholzer [19] showed that the most appropriate codes for phase modulation are the linear

codes over the residue class ring ZM and this class includes the convolutional codes over ZM , where M is

a positive integer. Fundamental results of the structural properties of convolutional codes over finite rings

can be found, for instance, in [7] and [12]. Fagnani and Zampieri [7] studied the theory of convolutional

codes over the ring Zpr in the case when the input sequence space is a free module. The problem of

deriving minimal encoders (left prime and row-reduced) was posed by Solé et al. in [26] and solved by

Kuijper et al. in [16] and [17] using the concept of minimal p-encoder, which is an extension of the concept

of p-basis introduced in [29] to the polynomial context.

The search for and design of good convolutional codes over Zpr have been investigated in several works

in literature. Unit-memory convolutional codes over Z4 that give rise to binary trellis codes with high free

distances together with several concrete constructions of these codes were reported in [2] and [15]. In

[13] two 16-state trellis codes of rate 2/4, again over Z4, were found by computer search. Also worth
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mentioning is the paper of [26] where convolutional codes achieving the Gilbert-Varshamov bound were

presented. However, in contrast to block codes, as in the case of [10] and [23], little is known about

distance properties and constructions of convolutional codes over large rings.

Recently, in [24], a bound on the free distance of convolutional codes over Zpr was derived, generalizing

the bound given in [25] for convolutional codes over finite fields. Codes achieving such a bound were

called Maximal Distance Separable (or MDS). The concrete constructions of MDS convolutional codes

over Zpr presented in [24] were restricted to free codes and general constructions were built in [21].

Column distances of convolutional codes over finite fields have been already studied for decades [14].

However, the concept of Maximum Distance Profile (MDP) convolutional codes over (non-binary) finite

fields have been defined and fully studied by Rosenthal et al. in [9], [11] and [27]. These codes are

characterized by the property that their column distances are optimal. Fast growth of the column distances

is an important property for codes to be used with sequential decoding since they have the potential to

correct a maximal number of errors per time interval. For this reason these codes are very appealing for

streaming applications (see [27]). Despite the importance of the notion, column distances of convolutional

code over a finite ring are yet unexplored.

In this paper we aim at investigating this concept. In particular, we derive upper-bounds on the column

distances and provide explicit novel constructions of (not necessarily free) MDP convolutional codes over

Zpr . We note that the ring size required to build this class of convolutional codes is in general large. In the

proof of these results, an essential role is played by the theory of p-basis and in particular of a canonical

form of the p-encoders. As for the construction of MDP, in contrast with the papers [23] and [24] where the

Hensel lift of a cyclic code was used, in this paper a direct lifting is employed to build MDP convolutional

codes over Zpr from known constructions of MDP convolutional codes over Zp. Note that by the Chinese

Remainder Theorem, results on codes over Zpr can be extended to codes over ZM , see also [12] and [20].

The paper is organized as follows: In the next section we introduce some preliminaries on p-basis of

Zpr [D]-submodules of Z
n
pr [D]. After presenting block codes over Zpr we introduce the new concepts of

p-standard form and r-optimal parameters. We conclude the preliminaries by defining convolutional codes

over Zpr . In section III we define and study column distances of convolutional codes over Zpr . Finally, in

Section IV we propose a method to build MDP convolutional codes over Zpr . The most technical proofs

of our results are in Section V.

II. PRELIMINARIES

This section presents the necessary background to derive the main results of the paper. Some of these are

known in the literature and others are new.
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A. P -basis and p-dimension

Let p be a prime integer. Any element in Zpr can be written uniquely as a linear combination of 1, p, p2, . . .

. . . , pr−1, with coefficients in Ap = {0, 1, . . . , p − 1} (called the p-adic expansion of the element) [3].

Note that all elements of Ap\{0} are units. Let us denote by Zpr [D] (Ap[D]) the ring (set) of polynomials

over Zpr (Ap) in the indeterminate D. In [29], p-basis for Zpr -submodules of Zn
pr were first presented and

later were extended for the module Z
n
pr [D] in [17]. These notions will play an important role throughout

the paper since they will allow us to analyse the distance properties of convolutional codes over Zpr .

Let v1(D), . . . , vk(D) be in Z
n
pr [D]. The vector

k∑

j=1

aj(D)vj(D), with aj(D) ∈ Ap[D], is said to be a

p-linear combination of v1(D), . . . , vk(D) and the set of all p-linear combinations of v1(D), . . . , vk(D)

is called the p-span of {v1(D), . . . , vk(D)}, denoted by p-span (v1(D), . . . , vk(D)). An ordered set of

vectors (v1(D), . . . , vk(D)) in Z
n
pr [D] is said to be a p-generator sequence if p vi(D) is a p-linear

combination of vi+1(D), . . . , vk(D), i = 1, . . . , k − 1, and p vk(D) = 0.

If (v1(D), . . . , vk(D)) is a p-generator sequence, p-span(v1(D), . . . , vk(D)) = span(v1(D), . . . , vk(D))

[17] and consequently the p-span(v1(D), . . . , vk(D)) is a Zpr -submodule of Zn
pr [D]. Moreover, note that

if M = span(v1(D), . . . , vk(D)),

(v1(D), pv1(D) . . . , pr−1v1(D), v2(D), pv2(D), . . . , pr−1v2(D), . . . , vk(D), pvk(D) . . . , pr−1vk(D))

(1)

is a p-generator sequence of M .

The vectors v1(D), . . . , vk(D) in Z
n
pr [D] are said to be p-linearly independent if the only p-linear

combination of v1(D), . . . , vk(D) that is equal to 0 is the trivial one.

An ordered set of vectors (v1(D), . . . , vk(D)) which is a p-generator sequence of M and p-linearly

independent is said to be a p-basis of M . It is proved in [16] that two p-bases of a Zpr [D]-submodule M

of Zn
pr [D] have the same number of elements. This number of elements is called p-dimension of M .

A nonzero polynomial vector v(D) in Z
n
pr [D], written as v(D) =

ν∑
t=0

vtD
t, with vt ∈ Z

n
pr , and vν 6= 0, is

said to have degree ν, denoted by deg v(D) = ν, and vν is called the leading coefficient vector of v(D),

denoted by vlc. For a given matrix G(D) ∈ Z
k×n
pr [D] we denote by Glc ∈ Z

k×n
pr the matrix whose rows

are constituted by the leading coefficient of the rows of G(D). A p-basis (v1(D), . . . , vk(D)) is called a

reduced p-basis if the vectors vlc1 , . . . , v
lc
k are p-linearly independent in Zpr .

Every submodule M of Zn
pr [D] has a reduced p-basis. Algorithm 3.11 in [17] constructs a reduced p-basis

for a submodule M from a generator sequence of M . The degrees of the vectors of two reduced p-bases

of M are the same (up to permutation) and their sum is called the p-degree of M .

31st July 2018 DRAFT



4

B. Block codes over a finite ring

A (linear) block code C of length n over Zpr is a Zpr -submodule of Zn
pr and the elements of C are called

codewords. A generator matrix G̃ ∈ Z
k̃×n
pr of C is a matrix whose rows form a minimal set of generators

of C over Zpr . If G̃ has full row rank, then it is called an encoder of C and C is a free module. If C has

p-dimension k, a p-encoder G ∈ Z
k×n
pr of C is a matrix whose rows form a p-basis of C and therefore

C = ImAp
G = {v = uG ∈ Z

n
pr : u ∈ Ak

p}.

Note that we use k̃ and k for the number of rows of a generator matrix G̃ and a p-encoder G respectively.

Every block code C over Zpr admits (see [23, Theorem 3.3.]) a generator matrix G̃ in standard form,

i.e., in the form

G̃ =




Ik0
A0

1,0 A0
2,0 A0

3,0 · · · A0
r−1,0 A0

r,0

0 pIk1
pA1

2,1 pA1
3,1 · · · pA1

r−1,1 pA1
r,1

0 0 p2Ik2
p2A2

3,2 · · · p2A2
r−1,2 p2A2

r,2

...
...

...
...

. . .
...

...

0 0 0 0 · · · pr−1Ikr−1
pr−1Ar−1

r,r−1




, (2)

where Iki
denotes the identity matrix of size ki and the columns are grouped into blocks with

k0, . . . , kr−1 and n−
∑r−1

i=0 ki columns.

Given a p-basis (v1, . . . , vk) of C there are certain operations that can be applied to (v1, . . . , vk) so that

we obtain another p-basis of C. Some of these elementary operations are described in the following

lemma which is not difficult to prove, see more details in [28].

Lemma 1. Let (v1, . . . , vk) be a p-basis of a submodule M of Zn
pr . Then,

1) If v′i = vi +
∑k

j=i+1 ajvj , with aj ∈ Apr , then (v1, . . . , vi−1, v
′
i, vi+1, . . . , vk) is a p-basis of M .

2) If pvi is a p-linear combination of vj , vj+1, . . . , vk, for some j > i, then

(v1, . . . , vi−1, vi+1, . . . , vj−1, vi, vj , . . . , vk) is a p-basis of M .

Performing the operations described in the previous lemma it is easy to verify that we can transform a
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generator matrix G̃ of C in standard form into a p-encoder G in the following form:

















































































Ik0
A0

1,0 A0

2,0 A0

3,0 · · · A0

r−1,0 A0

r,0

−−−−−− −−−−−− −−−−−− −−−−−− −−−−−− −−−−−− −−−−−−

pIk0
0 pA0

2,1 pA0

3,1 · · · pA0

r−1,1 pA0

r,1

0 pIk1
pA1

2,1 pA1

3,1 · · · pA1

r−1,1 pA1

r,1

−−−−−− −−−−−− −−−−−− −−−−−− −−−−−− −−−−−− −−−−−−

p2Ik0
0 0 p2A0

3,2 · · · p2A0

r−1,2 p2A0

r,2

0 p2Ik1
0 p2A1

3,2 · · · p2A1

r−1,2 p2A1

r,2

0 0 p2Ik2
p2A2

3,2 · · · p2A2

r−1,2 p2A2

r,2

−−−−−− −−−−−− −−−−−− −−−−−− −−−−−− −−−−−− −−−−−−

...
...

...
... · · ·

...
...

−−−−−− −−−−−− −−−−−− −−−−−− −−−−−− −−−−−− −−−−−−

pr−1Ik0
0 0 0 · · · 0 pr−1A0

r,r−1

0 pr−1Ik1
0 0 · · · 0 pr−1A1

r,r−1

0 0 pr−1Ik2
0 · · · 0 pr−1A2

r,r−1

0 0 0 pr−1Ik3
· · · 0 pr−1A3

r,r−1

...
...

...
...

. . .
...

...

0 0 0 0 · · · pr−1Ikr−1
pr−1Ar−1

r,r−1

















































































. (3)

One can verify that the scalars ki, i = 0, 1, . . . , r − 1, are equal for all p-encoders of C in this form, i.e.,

they are uniquely determined for a given code C ⊂ Z
n
pr and coincide with the parameters appearing in (2)

for generator matrices in standard form. We call k0, k1, . . . , kr−1 the parameters of C. If G is in such a

form we say that G is in the p-standard form. The p-standard form will be a useful tool to prove our

results in the same way the standard form was for previous results in the literature, see for instance [3]

and [23]. It is easy to see that if C has p-dimension k then k =
∑r−1

i=0 ki(r − i).

The distance d(C) of a linear block code C over Zpr is given by

d(C) = min{wt(v), v ∈ C, v 6= 0}

where wt(v) is the Hamming weight of v, i.e., the number of nonzero entries of v.

Since the last row of a p-encoder (or of a generator matrix in standard form) in p-standard form is

obviously a codeword we can easily recover the Singleton-type upper bound on the free distance of a

block code over Zpr derived in [23].

Theorem 2. Given a linear block code C ⊂ Z
n
pr with parameters k0, . . . , kr−1, it must hold that

d(C) ≤ n− (k0 + · · ·+ kr−1) + 1.

Among block codes of length n and p-dimension k, we are interested in the ones with largest possible
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distance. For that we need to introduce the notion of an optimal set of parameters of k [28].

Definition 3. Given an integer r ≥ 1 and a non-negative integer k we call an ordered set

(k0, k1, · · · , kr−1), ki ∈ N0, i = 0, · · · , r − 1 an r-optimal set of parameters of k if

k0 + k1 + · · ·+ kr−1 = min
k=rk′

0
+(r−1)k′

1
+···+k′

r−1

(k′0 + k′1 + · · ·+ k′r−1).

Note that when r divides k, (k0, 0, . . . , , 0), with k0 = k
r

, is the unique r-optimal set of parameters of k.

However, in general, the r-optimal set of parameters of k is not necessarily unique for a given k and r.

For instance if k = 25 and r = 6, (4, 0, 0, 0, 0, 1) and (0, 5, 0, 0, 0, 0) are two possible 6-optimal set of

parameters of 25. Note that the computation of the r-optimal set of parameters is the well-known change

making problem [4].

Lemma 4. [21] Let (k0, k1, · · · , kr−1) be an r-optimal set of parameters of k. Then,

k0 + k1 + · · ·+ kr−1 =

⌈
k

r

⌉
.

Hence, for a given C ⊂ Z
n
pr with p-dimension k, a Singleton bound can be defined.

Corollary 5. Given a block code C ⊂ Z
n
pr and p-dimension k,

d(C) ≤ n−

⌈
k

r

⌉
+ 1.

This bound also follows from the fact that, for any block code (not necessarily linear) we have that

|C| ≤ (pr)n−d(C)+1, see [23], and it can also be found in [24].

C. Convolutional codes over a finite ring

Next we introduce the class of convolutional codes considered in this work together with some properties

of p-encoders, namely, catastrophicity, delay-freness and minimality. Minimal p-encoders allow us to

define the p-indices and the p-degree of a convolutional code which are natural extensions of the notions

of Forney indices and degree in the context of finite fields.

We will consider convolutional codes constituted by left compact sequences in Zpr , that is, in which the

elements of the code will be of the form

w : Z → Z
n
pr

t 7→ wt
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where wt = 0 for t < ℓ for some ℓ ∈ Z. These sequences can be represented by Laurent series,

w(D) =
∞∑

t=ℓ

wtD
t ∈ Zpr ((D)).

Let us denote by Zpr (D) the ring of rational functions over Zpr in the indeterminate D. More precisely,

Zpr (D) is the set

{
p(D)

q(D)
: p(D), q(D) ∈ Zpr [D] and the trailing coefficient of q(D) is a unit in Zpr}.

This last condition allows us to treat a rational function as an equivalence class in the relation

p(D)

q(D)
∼

p1(D)

q1(D)
if and only if p(D)q1(D) = p1(D)q(D).

Note that Zpr (D) is a subring of of the ring of Laurent series Zpr ((D)) and, obviously Zpr [D] is a

subring of Zpr (D).

A rational matrix A(D) ∈ Z
ℓ×ℓ
pr (D) is invertible if there exists a rational matrix L(D) ∈ Z

ℓ×ℓ
pr (D) such

that L(D)A(D) = I . Moreover, A(D) is invertible if and only if Ā(D) is invertible in Z
ℓ×ℓ
p (D), where

Ā(D) represents the projection of A(D) into Zp(D) [7].

Most of the literature on convolutional codes over rings considers codewords as elements in the ring of

Laurent series [6], [8], [12], [16], [18], [24]. We shall adopt this approach and define a convolutional

code C over Zpr of length n as a Zpr ((D))-submodule of Zn
pr ((D)) for which there exists a polynomial

matrix G̃(D) ∈ Z
k̃×n
pr [D] such that

C = ImZpr ((D))G̃(D) =
{
u(D)G̃(D) ∈ Z

n
pr ((D)) : u(D) ∈ Z

k̃
p((D))

}
.

The matrix G̃(D) is called a generator matrix of C. If G̃(D) is full row rank then it is called an

encoder of C. Moreover, if

C = ImAp((D))G(D) =
{
u(D)G(D) ∈ Z

n
pr ((D)) : u(D) ∈ Ak

p((D))
}
,

where Ap((D)) = {
∑+∞

i=s aiD
i : ai ∈ Ap and s ∈ Z}, and G(D) ∈ Z

k×n
pr [D] is a polynomial matrix

whose rows form a p-basis, then we say that G(D) is a p-encoder of C and C has p-dimension k.

Remark 6. We emphasize that in this paper we do not assume that C is free. Hence, it is important to

underline that there exists convolutional codes that do not admit an encoder. However, they always admit

a p-encoder. For this reason the concept of p-encoder is more interesting and natural than the standard

concept of the encoder. The difference is that the input vector takes values in Ak
p((D)) for p-encoders

whereas for generator matrices it takes values in Z
k̃
p((D)). This idea of using a p-adic expansion for the
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information input vector is already present in, for instance, [3] and was further developed in [29]

introducing p-generator sequences of vectors in Zpr . In [16] and [17] this idea was extended to

polynomial vectors.

Next lemma is straightforward and states that a convolutional code can be equivalently defined as the

image of a rational matrix.

Lemma 7. [5] Let C = ImZpr ((D))N(D), where N(D) ∈ Z
k̃×n
pr (D). Then C is a convolutional code, and

if N(D) is full row rank, C is a free code of rank k̃.

A generator matrix G̃(D) ∈ Z
k̃×n
pr [D] is said to be noncatastrophic ([16]) if for any u(D) ∈ Z

k̃
pr ((D)),

u(D)G̃(D) ∈ Z
n
pr [D] =⇒ u(D) ∈ Z

k̃
pr [D].

Note that this property is a characteristic of a generator matrix and not a property of the code. For

example in Z4, G1(D) = [1 +D 1 +D] and G2(D) = [1 1] are two encoders of the same convolutional

code, but G2(D) is noncatastrophic and G1(D) is catastrophic. However, there are convolutional codes

that do not admit noncatastrophic generator matrices like illustrated in the following example [16].

Example 8. The convolutional code over Z4 with encoder G̃(D) = [1 +D 1 + 3D] does not admit a

noncatastrophic encoder.

It is clear that a generator matrix that is not full row rank is catastrophic and therefore convolutional

codes that are not free do not admit noncatastrophic encoders.

Analogously, we say that a p-encoder G(D) ∈ Z
k×n
pr [D] is said to be noncatastrophic [16] if for any

u(D) ∈ Ak
p((D)),

u(D)G(D) ∈ Z
n
pr [D] =⇒ u(D) ∈ Ak

p[D].

If a convolutional code C admits a noncatastrophic encoder G̃(D) ∈ Z
k̃×n
pr [D] then, obviously, it also

admits a noncatastrophic p-encoder, namely

G(D) =




G̃(D)

pG̃(D)
...

pr−1G̃(D)



.

However, there are convolutional codes that do not admit noncatastrophic encoders but admit

noncatastrophic p-encoders like it is shown in the next example [16].
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Example 9. Let us consider again the convolutional code C over Z4 of Example 8. The p-encoder

G(D) =


 1 +D 1 + 3D

2 2




of C is noncatastrophic.

We call a convolutional code that admits a noncatastrophic p-encoder a noncatastrophic convolutional

code. Thus, the class of noncatastrophic convolutional codes contain the class of convolutional codes that

admit a noncatastrophic encoder. In [16] it was conjectured that all the convolutional codes admit a

noncatastrophic p-encoder and this is still an open problem.

Another property of p-encoders that is relevant for this work is “delay-freeness”. We say that a p-encoder

G(D) of a convolutional code C is delay-free if for any u(D) ∈ Ak
p((D)) and any N ∈ Z

supp (u(D)G(D)) ⊂ [N,+∞) =⇒ supp (u(D)) ⊂ [N,+∞),

where supp (v(D)) denotes the support of v(D) =
∑

viD
i, i.e., supp (v(D)) = {i : vi 6= 0}.

Lemma 10. [16] Let G(D) ∈ Z
k×n
pr [D] be a p-encoder. Then G(D) is delay-free if and only if the rows

of G(0) are p-linearly independent in Z
n
pr .

All convolutional codes admit a delay-free p-encoder. Moreover, if C is a noncatastrophic convolutional

code, then it admits a delay-free and noncatastrophic p-encoder which rows form a reduced p-basis [16].

Let C be a noncatastrophic convolutional code of length n over Zpr and let G(D) be a delay-free

noncatastrophic p-encoder of C, such that its rows form a reduced p-basis. Then G(D) is called a

minimal p-encoder of C. The degrees of the rows of G(D) are called the p-indices of C and the

p-degree of C is defined as the sum of the p-indices of C. Moreover, if C has p-dimension k and

p-degree δ, C is called an (n, k, δ)-convolutional code.

III. COLUMN DISTANCE OF CONVOLUTIONAL CODES OVER A FINITE RING

In this section we analyse two fundamental distance properties, namely, free distance and column

distance. Once we recall the definition of free distance [21] and [24], we introduce, for the first time, the

concept of column distance of convolutional codes over Zpr . We also derive an upper-bound on these

distances which leads to the notion of Maximum Distance Profile convolutional code. The weight of

v(D) =
∑

i∈Z viD
i ∈ Zpr ((D)) is given by wt(v(D)) =

∑
i∈Z wt(vi) and the free distance of a

convolutional code C is defined as

d(C) = min{wt(v(D)) : v(D) ∈ C, v(D) 6= 0}.
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Theorem 11. [24, Theorem 4.10] The free distance of an (n, k, δ) convolutional code C satisfies

d(C) ≤ n

(⌊
δ

k

⌋
+ 1

)
−

⌈
k

r

(⌊
δ

k

⌋
+ 1

)
−

δ

r

⌉
+ 1. (4)

Similarly to the field case, the bound (4) is called the generalized Singleton bound. As for column

distance [14] we define

v(D)|[i,i+j] = viD
i + vi+1D

i+1 + · · ·+ vi+jD
i+j

and analogously for u(D)|[i,i+j] for u(D) =
∑

ℓ∈Z uℓD
ℓ ∈ Ak

p((D)). The j-th column distance of a

p-encoder G(D) is defined as

dcj(G(D)) = min{wt(v(D)|[i,i+j]) : v(D) = u(D)G(D), ui 6= 0 and uℓ = 0 for ℓ < i}

= min{wt(v(D)|[0,j]) : v(D) = u(D)G(D), u0 6= 0 and ui = 0 for i < 0}.

This is a property of the p-encoder and different p-encoders can have different column distances.

However, the column distances are invariant under the class of delay-free p-encoders of a code and they

are equal to

dcj(G(D)) = min{wt(v(D)|[imin,imin+j]) : v(D) ∈ C},

where v(D) =
∑

ℓ≥imin
vℓD

ℓ ∈ Z
n
pr ((D)) with vimin

6= 0, for j ∈ N0. As every (n, k, δ)-convolutional

code C admits a delay-free p-encoder, we shall define the j-th column distance of C, denoted by dcj(C),

as the column distance of one (and therefore all) of its delay-free p-encoders. If no confusion arises we

use dcj for dcj(C). It is obvious that dcj ≤ dcj+1 for j ∈ N0.

Next definition extends the well-known truncated sliding generator matrix of a convolutional code over a

finite field [9] to convolutional codes over finite rings (Zpr in our case).

Given a p-encoder G(D) = G0 +G1D + · · ·+GνD
ν ∈ Z

k×n
pr [D], we can define, for every j ∈ N0, the

truncated sliding generator matrix Gc
j as

Gc
j =




G0 G1 · · · Gj

G0 · · · Gj−1

. . .
...

G0



∈ Z

(j+1)k×(j+1)n
pr

where Gℓ = 0 whenever ℓ > ν. In terms of the truncated sliding generator matrix the column distance

reads as follows: Given a delay-free p-encoder G(D) of a convolutional code C over Zpr , the j-th
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column distance of C is given by

dcj = min{wt(v) : v = uGc
j ∈ Z

n(j+1)
pr , u = [u0 . . . uj ] ∈ A

k(j+1)
p , u0 6= 0},

for j ∈ N0.

Next, we present a result that allows to decompose a convolutional code over Zpr into simpler

components.

Theorem 12. Every convolutional code C over Zpr admits a generator matrix of the form

G̃(D) =




G̃0(D)

pG̃1(D)
...

pr−1G̃r−1(D)



, (5)

and such that

Ĝ(D) =




G̃0(D)

G̃1(D)
...

G̃r−1(D)




(6)

is full row rank. Thus, Ci := ImZpr ((D)) G̃i(D) is a free convolutional code, for i = 0, 1, . . . , r − 1, and

C = C0 ⊕ pC1 ⊕ · · · ⊕ pr−1Cr−1. (7)

Proof: Let G̃(D) be a generator matrix of C. If G̃(D) is full row rank then C is free and C = C0.

Let us assume now that G̃(D) is not full row rank. Then the projection of G̃(D) into Zp[D],

G̃(D) ∈ Z
k×n
p [D], is also not full row rank and there exists a nonsingular matrix F0(D) ∈ Z

k×k
p [D] such

that

F0(D)G̃(D) =


 G0(D)

0


 mod p,

where G0(D) is full row rank with rank ℓ0. Further, it follows that

F0(D)G̃(D) =


 G̃0(D)

pĜ1(D)


 ,

where G̃0(D) ∈ Z
ℓ0×n
pr [D] is such that G̃0(D) = G0(D) and Ĝ1(D) ∈ Z

(k−ℓ0)×n
pr [D]. Moreover, since
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F0(D) is invertible, it follows that

ImZpr ((D))G̃(D) = ImZpr ((D))


 G̃0(D)

pĜ1(D)




and therefore


 G̃0(D)

pĜ1(D)


 is also a generator matrix of C. Let us now consider

F1(D) ∈ Z
(k−ℓ0)×(k−ℓ0)
p [D] such that

F1(D)Ĝ1(D) =


 G

′
1(D)

0


 mod p,

where G′1(D) is full row rank with rank ℓ̃1 and

F1(D)Ĝ1(D) =


 G′′1 (D)

pĜ2(D)


 ,

with G′′1 (D) ∈ Z
ℓ̃1×n
pr [D] such that G′′1 (D) = G′1(D) and Ĝ2(D) ∈ Z

(k−ℓ0−ℓ̃1)×n
pr [D]. Hence,


 Iℓ0 0

0 F1(D)


F0(D)G̃(D) =




G̃0(D)

pG′′1 (D)

p2Ĝ2(D)


 .

If


 G̃0(D)

G′′1 (D)


 is not full row rank, then there exists a permutation matrix P and a rational matrix

L1(D) ∈ Z
ℓ̃1×ℓ0
pr (D) such that

P


 Iℓ0 0

L1(D) I
ℓ̃1




 G̃0(D)

pG′′1 (D)


 =




G̃0(D)

pG′′′1 (D)

p2G′2(D)


 ,

where G′′′1 (D) ∈ Z
ℓ1×n
pr (D) and G′2(D) ∈ Z

(ℓ̃1−ℓ1)×n
pr (D) are rational matrices and


 G̃0(D)

G′′′1 (D)


 is a full

row rank rational matrix. Since P


 Iℓ0 0

L1(D) I
ℓ̃1


 is nonsingular we also have that

ImZpr ((D))


 G̃0(D)

pG′′1 (D)


 = ImZpr ((D))




G̃0(D)

pG′′′1 (D)

p2G′2(D)


 .
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Let G̃1(D) ∈ Z
ℓ1×n
pr [D] and G′′2 (D) ∈ Z

(ℓ̃1−ℓ1)×n
pr [D] be polynomial matrices (see Lemma 7) such that

ImZpr ((D))




G̃0(D)

pG′′′1 (D)

p2G′2(D)


 = ImZpr ((D))




G̃0(D)

pG̃1(D)

p2G′′2 (D)


 .

Then




G̃0(D)

pG̃1(D)

p2G′′2 (D)

p2Ĝ2(D)




is still a generator matrix of C such that


 G̃0(D)

G̃1(D)


 is full row rank.

Proceeding in the same way we conclude the proof.

Remark 13. The decomposition (7) could have been derived using the fact that Zn
pr ((D)) is a

semi-simple module. Note, however, that Theorem 12 is constructive and its proof provides an algorithm

to build the free modules Ci. Moreover, it states that these submodules of Zn
pr ((D)) are indeed

convolutional codes. Note that submodules of Zn
pr ((D)) do not always admit a polynomial or rational set

of generators and therefore they are not necessarily convolutional codes.

If we denote by ℓi the rank of Ci then {ℓ0, . . . , ℓr−1} are clearly invariants of C. We will call them the

parameters of the convolutional code C.

From now on, in order to simplify the exposition, we assume that the generator matrix G̃(D) is as in (5)

and such that Ĝ(D) in (6) is such that Ĝ(0) is full row rank. Hence, we can directly obtain a delay-free

p-encoder by extending Ĝ(D) as

G(D) =




G̃0(D)

p G̃0(D)

p G̃1(D)

p2 G̃0(D)

p2 G̃1(D)

p2G̃2(D)
...

pr−1 G̃0(D)
...

pr−1G̃r−1(D)




=
∑

i∈N0

GiD
i.

As the rows of G(0) = G0 form a p-basis (over Zpr ) then the parameters of the block code
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C0 = ImAp
G(0) coincide with the parameters of C. Before establishing upper bounds on the column

distances of a convolutional code we present a useful result on the truncated sliding matrix Gc
j of G(D).

Proposition 14. If G(D) ∈ Z
k×n
pr [D] is a p-encoder of a convolutional code C then the rows of Gc

j form

a p-generator sequence, for any j ∈ N0.

Proof: See appendix.

Theorem 15. Let C be a (n, k, δ)-convolutional code with parameters k0, k1, . . . , kr−1. Then, it holds

that

dcj ≤ (j + 1)

(
n−

r−1∑

i=0

ki

)
+ 1.

Proof: See appendix.

Column distances are very appealing for sequential decoding: the larger the column distances the larger

number of errors we can correct per time interval. Hence we seek for codes with optimal column

distances. Selecting an r-optimal set of parameters of a given p-dimension k, (k0, k1, . . . , kr−1), the

following corollary readily follows from Lemma 4.

Corollary 16. Given a convolutional code C with length n and p-dim(C) = k it holds

dcj ≤

(
n−

⌈
k

r

⌉)
(j + 1) + 1.

Let us denote the bound obtained in Corollary 16 for the column distance by

B(j) =

(
n−

⌈
k

r

⌉)
(j + 1) + 1

and the Singleton bound obtained in Theorem 11 for the free distance by

SB = n

(⌊
δ

k

⌋
+ 1

)
−

⌈
k

r

(⌊
δ

k

⌋
+ 1

)
−

δ

r

⌉
+ 1

=

(
n−

k

r

)(⌊
δ

k

⌋
+ 1

)
+

δ

r
− ϕ+ 1,

with ϕ =
⌈
k
r

(⌊
δ
k

⌋
+ 1
)
− δ

r

⌉
−
(
k
r

(⌊
δ
k

⌋
+ 1
)
− δ

r

)
.

Now we are in position to introduce maximum distance profile convolutional codes over a finite ring.

These codes generalize the notion introduced in [9] for maximum distance profile convolutional codes

over finite fields to the ring case.

Definition 17. An (n, k, δ)-convolutional code C over Zpr is said to be Maximum Distance Profile
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(MDP) if dcj = B(j), for j ≤ L, where L = max{j : B(j) ≤ SB}.

A simple counting argument leads to the following result which determines the value of such an L.

Theorem 18. Let C be an MDP (n, k, δ)-convolutional code over Zpr and

X =

(
n− k

r

) ⌊
δ
k

⌋
+ δ

r
− ϕ+

⌈
k
r

⌉
− k

r

n−
⌈
k
r

⌉

with ϕ =
⌈
k
r

(⌊
δ
k

⌋
+ 1
)
− δ

r

⌉
−
(
k
r

(⌊
δ
k

⌋
+ 1
)
− δ

r

)
. Then L = ⌊X⌋ .

IV. CONSTRUCTIONS OF MDP CONVOLUTIONAL CODES OVER Zpr

In this section we will show the existence of MDP convolutional codes over Zpr for any given set of

parameters (n, k, δ) such that k | δ. Moreover, we will do that by building concrete constructions of such

codes. In contrast with other existing constructions of convolutional codes over Zpr with designed

distance [23], [24] where Hensel lifts of a cyclic code were used, we propose a method based on a direct

lifting of an MDP convolutional code from Zp to Zpr . We note that similar lifting techniques can be

applied for different set of parameters (n, k, δ), see for more details [28].

Given the finite ring Zpr and the set of parameters (n, k, δ) with k | δ, we aim to construct an MDP

(n, k, δ)-convolutional code C over Zpr . To this end, denote k0 =
⌊
k
r

⌋
and ν = δ

k
. Take k̃ = k0 + 1 and

δ̃ = k̃ν, and let us consider an MDP convolutional code C̃ with length n, dimension k̃ and degree δ̃ over

Zp. Let G̃(D) ∈ Z
k̃×n
p [D] be a minimal basic encoder of C̃, i.e., with G̃lc full row rank over Zp and left

prime (constructions of such codes can be found in [1], [9], [22]). Therefore,

d̃cj = min{wt(v(D)|[0,j]) : v(D) = u(D)G̃(D), u(D) =
∑

i∈N0

uiD
i ∈ Zp((D)), u0 6= 0}

= (j + 1)(n− k̃) + 1, j ≤ L̃

where L̃ =
⌊
δ̃

k̃

⌋
+
⌊

δ̃

n−k̃

⌋
, see [14], [9].

Let R = k − k0r and decompose G̃(D) as

G̃(D) =


 G̃0(D)

G̃r−R(D)


 =

∑

0≤i≤ν

G̃iD
i

where G̃k0
(D) has k0 rows and G̃kr−R

(D) has 1 row. In the case r|k then G̃(D) = G̃0(D). Next, we

straightforward expand G̃(D) as
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G(D) =




G̃0(D)

p G̃0(D)
...

pr G̃0(D)

pr−R G̃r−R(D)

pr−R+1 G̃r−R(D)
...

pr−1 G̃r−R(D)




=
∑

0≤i≤ν

GiD
i. (8)

Since G̃lc is full row rank over Zp, it immediately follows that G(D) is a p-encoder in reduced form.

Theorem 19. Let C be a convolutional code over Zpr with p-encoder G(D) as in (8). Then, C is an

MDP (n, k, δ)-convolutional code over Zpr .

Proof It is straightforward to verify that C is an (n, k, δ)-convolutional code. It is left to show that it is

an MDP code, i.e., we need to show that

dcj =

(
n−

⌈
k

r

⌉)
(j + 1) + 1.

for j ≤ L as in Theorem 18. It is a matter of straightforward computations to verify that since k | δ,

L = L̃ =
⌊
δ̃

k̃

⌋
+
⌊

δ̃

n−k̃

⌋
.

Let u = [u0 u1 . . . uj ] , with ui ∈ A
k
p , i = 0, . . . , j and u0 6= 0, and let v = [v0 v1 . . . vj ] , with

vi ∈ Z
n
p , i = 0, . . . , j, such that v = uGc

j , where Gc
j is the j-th truncated sliding matrix correspondent to

G(D). The idea of the proof is to multiply v by a power of p such that the resulting nonzero truncated

codeword ṽ is in pr−1
Z
n
pr . Since pr−1

Zpr is isomorphic to Zp then there exists a truncated nonzero

codeword v̂ ∈ C̃ = ImZp((D))G̃(D) such that wt(v̂) = wt(ṽ), and then we can use the fact that C̃ is MDP.

We define the order of v, denoted by ord(v), as the j ∈ {1, 2, . . . , r} such that pjv = 0 and pj−1v 6= 0.

Take ℓ = max0≤t≤j ord(vt) and

i = min

0 ≤ s ≤ j

{s : ord(vs) = ℓ} = min

0 ≤ s ≤ j

{s : pℓ−1vs 6= 0}.

There exists v̂s ∈ A
n
p such that ṽs = pℓ−1vs = pr−1v̂s, s = i, . . . , j and then

pℓ−1v =
[
0 0 . . . 0 ṽi . . . ṽj

]
= pr−1

[
0 0 . . . 0 v̂i . . . v̂j

]
. (9)

Now it can be easily checked that
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pℓ−1v = pr−1
[
ũ0 ũ1 . . . ũi . . . ũj

]




G̃0 G̃1 . . . G̃i . . . G̃j

G̃0 . . . G̃i−1 . . . G̃j−1

. . .
...

...

G̃0 . . . G̃j−i

. . .
...

G̃0




,

for some ũ0, ũ1, . . . , ũi, . . . , ũj ∈ A
k̃
p , with ũ0 = · · · = ũi−1 = 0, because G̃0 is full row rank and

therefore,

[
ṽi . . . ṽj

]
= pr−1

[
ũi . . . ũj

]



G̃0 . . . G̃j−i

. . .
...

G̃0




where ũi 6= 0. Using the fact that C̃ = ImZp[D]G̃(D) is MDP we obtain

wt
([

vi . . . vj

])
≥ wt

([
ṽi . . . ṽj

])
≥ (n− k̃)(j − i+ 1) + 1.

Considering [v0 . . . vi−1] = [u0 . . . ui−1]G
c
i and reasoning in the same way we conclude that

wt ([v0 · · · vi−1]) ≥ (n− k̃)i+ 1

and therefore

wt ([v0 · · · vj ]) ≥ (n− k̃)(j + 1) + 1.

Consequently, dcj = (n− k̃)(j + 1) + 1, i.e., dcj = (n−
⌈
k
r

⌉
)(j + 1) + 1, for j ≤ L. �

V. APPENDIX

Proof of Proposition 14: Let us represent G(D) by

G(D) =




g1(D)

g2(D)
...

gk(D)




where gs(D) =
∑

i∈N0

gisD
i, with s = 1, . . . , k, is the s-th row of G(D). Since G(D) is a p-encoder, its
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rows form a p-generator sequence.Thus, p gs(0) ∈ p-span(gs+1(0), . . . , gk(0)), s = 1, . . . , k − 1, and

p gk(0) = 0, which means that the rows of Gc
0 form a p-generator sequence.

Let us assume now that the rows of Gc
j form a p-generator sequence and let us prove that the rows of

Gc
j+1 also form a p-generator sequence. For that it is enough to prove that

p rows(G
c
j+1) ∈ p-span(rows+1(G

c
j+1), . . . , rowk(j+1)(G

c
j+1)), (10)

s = 1, . . . , k, where rowi(G
c
j+1) denotes the i-th row of Gc

j+1.

Let s ∈ {1, . . . , k − 1}. Since G(D) is a p-encoder, there exists

at(D) =
∑

i∈N0

aitD
i ∈ Ap[D], t = s+ 1, . . . , k,

such that

p gs(D) = as+1(D) · gs+1(D) + as+2(D) · gs+2(D) + · · ·+ ak(D) · gk(D)

which implies that

p
[
g0s g1s · · · g

j+1
s

]
= a0s+1 ·

[
g0s+1 g1s+1 · · · g

j+1
s+1

]
+ · · ·+ a0k

[
g0k g1k · · · g

j+1
k

]
+ a1s+1

[
0 g0s+1 · · · g

j
s+1

]

· · ·+ a1k

[
0 g0k · · · g

j
k

]
+ · · ·+ aj+1

s+1

[
0 · · · 0 g0s+1

]
+ · · ·+ aj+1

k

[
0 · · · 0 g0k

]
,

which proves (10). Finally, let us consider now s = k. Since the rows of G(D) form a p-generator

sequence, p gk(D) = 0 and therefore p rowk(G
c
j+1) = 0. �

Proof of Theorem 15: Let G̃(D) ∈ Z
k×n
pr [D] be a generator matrix of C as in (5) with Ĝ(D) in (6) full

row rank and such that Ĝ(0) is also full row rank. Let us consider the p-encoder

G(D) =




G̃0(D)

p G̃0(D)

p G̃1(D)
...

pr−1 G̃0(D)
...

pr−1G̃r−1(D)




=
∑

i∈N0

GiD
i.

Since Ĝ(0) is full row rank, G(D) is delay-free. Moreover, the last k0 + k1 + · · ·+ kr−1 rows of G(D)

belong to pr−1
Z
n
pr [D] which implies that the last k0 + k1 + · · ·+ kr−1 rows of Gi belong to pr−1

Z
n
pr ,
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for all i. Let us consider the truncated sliding generator matrix Gc
j to obtain

dcj = dcj(G) = min{wt(v) : v = uGc
j , u = [u0 . . . uj ], u0 6= 0, ui ∈ A

k
p, i = 0, . . . , j}.

We can assume without loss of generality that G0 is in p-standard form as in (3), with parameters

k0, k1, . . . , kr−1. Consider u = [u0 u1 · · · uj ] , ui ∈ A
k
p , i = 0, . . . , j with u0 = [0 0 . . . 0 1] and

v = uGc
j = [v0 v1 · · · vj ] with vi ∈ Z

n
pr , i = 0, . . . , j. Then,

v0 = u0G0 =
[
0 . . . 0 1 pr−1Ar−1,k

r,r−1

]
,

where Ar−1,k
r,r−1 represents the last row of Ar−1

r,r−1 as in (3). Then,

wt(v0) ≤ n− (k0 + k1 + · · ·+ kr−1) + 1.

Write g1 as

g1 =
[
g1,k0

g1,k1
. . . g1,kr−1

g1,n−(k0+···+kr−1)

]
,

with g1,i ∈ Z
i
pr , i = k0, k1, . . . , kr−1 and g1,n−(k0+···+kr−1) ∈ Z

n−(k0+···+kr−1)
pr . Let us consider u1 with

its first [(r − 1)k0 + (r − 2)k1 + · · ·+ kr−2] components equal to zero and the remaining

k0 + k1 + · · ·+ kr−1 components equal to
[
α1,k0

α1,k1
· · · α1,kr−1

]
, where α1,ki

∈ Ai
p are such that

−pr−1 g1,ki
= pr−1α1,ki

, i = 0, . . . , r − 1.

So, we obtain v1 with its first (k0 + k1 + · · ·+ kr−1) elements equal to zero, and therefore

wt(v1) ≤ n− (k0 + k1 + · · ·+ kr−1).

In the same way, v2 = pr−1 g2 + u1G1 + u2G0 where pr−1 g2 represent the last row of G2 and

u1G1 ∈ pr−1
Z
n
pr . Take u2 such that its first [(r − 1)k0 + (r − 2)k1 + · · ·+ kr−2] components are zero

and the remaining (k0 + k1 + · · ·+ kr−1) components are equal to
[
α2,k0

α2,k1
· · · α2,kr−1

]
, where

α2,ki
∈ Ai

p are such that

−pr−1 g̃2,ki
= pr−1α2,ki

, i = 0, . . . , r − 1,

where
[
pr−1g2,k0

pr−1g2,k0
· · · pr−1g2,kr−1

]
represent the first k0 + k1 + · · ·+ kr−1 components of

pr−2g2 + u1G1. As before, the first k0 + k1 + · · ·+ kr−1 elements of v2 are zero and therefore

wt(v2) ≤ n− (k0 + k1 + · · ·+ kr−1).

Applying the same reasoning we construct ui ∈ A
k
p such that wt(vi) ≤ n− (k0 + k1 + · · ·+ kr−1),
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i = 3, . . . , j and therefore

dcj ≤ (j + 1)n− (j + 1)(k0 + k1 + · · ·+ kr−1) + 1.

�
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