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ABSTRACT 

Pharmaceutically active ingredients are amongst the most persistent wastewater contaminants, 

resisting to wastewater treatment plants (WWTP) conventional processes, and some of them are 

proved to pose serious threats to organisms and the environment. In this context, adsorption by 

activated carbons (AC) is one of the most promising methodologies for the removal of 

pharmaceuticals from water due to its versatility and high removal efficiency. However, ACs are 

expensive and therefore not widely applied in WWTP. Primary sludge from paper mills has 

been previously appointed as a potential inexpensive and renewable source of carbon for AC 

production by pyrolysis. Computational chemistry may help shed some light into the molecular 

mechanisms underlying the adsorption of organic pollutants onto ACs. In this context, CarbGen, 

an online tool for Virtual Porous Carbon (VPC) models creation, was developed and made 

available for public use. A quantitatively validated model based on both physical and chemical 

characteristics of an experimentally produced AC is proposed. The produced model is in 

agreement with obtained experimental data in terms of elemental composition, functional group 

content and surface area. Grand Canonical Monte Carlo (GCMC) studies were performed on 

various VPC models with different levels of oxygen content, revealing the importance of 

electrostatic mechanisms in adsorption, with different degrees depending on the pharmaceutical 

molecular characteristics. The results further reinforce the importance of functional groups in 

future VPC models for correct molecular modelling. 

 

Keywords: ADSORPTION; WATER TREATMENT; MOLECULAR DYNAMICS; 

MOLECULAR MODELLING; MONTE-CARLO SIMULATIONS; VIRTUAL POROUS 

CARBONS 
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1. INTRODUCTION 

Both humans and animals have greatly benefited from the last century advances in medicine. 

However, due to several factors, such as the discovery of new drugs, increase in population and 

industrialization levels, demographic ageing and expiration of patents, an increase in drug 

production, consumption and disregarded disposal has been verified (1–3). The current situation 

poses severe threats to human health and non-target organisms and is a serious cause of 

environmental damage (4–7). Therefore, some pharmaceutical compounds are now regarded as 

priority substances in the field of water policy according to European directives (8).  

Wastewater treatment plants (WWTPs) receive contaminated effluents from drug 

manufacturing plants and municipal sewage systems (9). It has been reported that about 64% of 

these emerging contaminants are only partially removed (< 50%) while up to 9% are not 

removed at all by the standard treatment processes in WWTPs (10). Therefore, alternative 

processes for the removal of pharmaceuticals from water have been previously proposed (11–

14). 

In this context, adsorption of contaminants by activated carbons (AC) emerges as an 

optimistic solution, with advantages such as versatile usage, high removal efficiencies and the 

ability to regenerate and reuse spent adsorbents (15), even though it is still not widely used 

because of its high-cost (16) and the fact that it does not mineralize the contaminants (17). 

Traditionally, ACs are produced from fossil feedstocks such as bituminous coal and oil. Multiple 

renewable feedstocks have been previously appointed as potential precursors for the production 

of AC, such as coconut shell (18), eucalyptus wood (19) or sugar cane bagasse (20), among 

others (21,22). Such pursuit has the aim of lowering the production costs, increasing feedstock 

availability and reducing particulate matter generation or heavy metal contamination during 

carbonization processes (23,24). 

More recently, paper industry primary sludge (PS)-based ACs were also produced and 

evaluated for the removal of pharmaceuticals from water, showing promising results (25–32). 
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Over 30 million tons of this waste are produced every year around the globe (33), with its 

disposal being currently a major issue. Traditionally, it involves landfilling or energy production 

through incineration/combustion. However, such solutions are rapidly becoming unsustainable 

based on a number of factors, such as economic disadvantages, leachate production, landfill 

space depletion and atmospheric contamination concerns (34–36). Therefore, harnessing of this 

material for AC production is an innovative handling strategy. 

Optimization of ACs has been an open area of research. Some authors point functional group 

interactions as the main force guiding molecular adsorption, while others assign it to 

microporous structure and specific surface areas (37). Therefore, deeper insights into the 

interactions between adsorbates and the AC are necessary. This would allow the modulation of 

the AC characteristics in order to increase adsorption capacities and rates or target compound 

selectivity. 

Molecular modelling of ACs allows for detailed analysis of the interactions between the 

adsorbent and the target molecules. Virtual Porous Carbon (VPC) models have been previously 

developed and explored to provide insights regarding the adsorption mechanism. In the most 

recent studies, VPC models incorporated complex microcrystallites with some surface 

functional groups (38–41). However, reconstruction methods have commonly relied on multiple 

literature sources of experimental data as the basis for the model parametrization, and have 

mostly focused on physical characteristics of the carbon materials, such as pore distribution, 

often ignoring the importance of surface chemistry on the model (42). The possibility to adapt 

computational models in a quantitative manner to a real sample of AC naturally emerges as an 

interesting development in the field of AC modelling and as a tool for designing improvements 

in AC production.  

Hence, the present work objectives are to produce experimental AC samples from an 

alternative carbon source (PS), fully characterize their structural and chemical nature and use 

the obtained data to parametrize and develop a quantitative computational model of AC in a 

simple and reproducible way. With this aim in mind, CarbGen (carbgen.web.ua.pt), a new 
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computational tool, was developed and made available to the scientific community in an effort 

to expedite quantitative modelling of ACs. Furthermore, the developed VPC models can be 

applied in the exploration of the effect of carbon surface chemistry in the adsorption capacity of 

pharmaceuticals in aqueous systems. The underlying mechanisms behind CarbGen can be 

further explored in the Supporting Information. 

 

2. METHODS AND MATERIALS 

AC samples were prepared using paper mill PS as precursor. The sludge was obtained from a 

Portuguese factory operating an elemental chlorine free kraft process, using Eucalyptus 

globulus. The AC samples were subjected to 6 characterization techniques: Point of Zero 

Charge (PZC) determination, proximate and ultimate analysis, specific surface area 

determination (SBET), X-Ray Photoelectron Spectroscopy (XPS) and Scanning/Transmission 

Electron Microscopy (SEM/TEM). 

The gathered data was then used in the formulation and validation of a new VPC model for 

AC. A clustering process was devised and employed using molecular dynamics approaches, and 

pharmaceutical adsorption was quantified using Grand Canonical Monte Carlo (GCMC) 

techniques, as detailed in the next sections. 

 

2.1) AC sample preparation 

AC production from PS have been previously optimized (32). PS was dried at 60 ºC in an 

oven, for 24h, and grinded with a blade mill before further treatment. ACs were produced by 

chemical activation with potassium carbonate (K2CO3), in a proportion of 1:1 (w/w). The 

activating agent solution was prepared with the proportion of 50 mL of distilled water (H2Od) to 

15 g of K2CO3. PS was impregnated during 1 h in an ultrasonic bath and the impregnated PS 

was left to dry at room temperature. Pyrolysis of the impregnated PS was performed in 

porcelain crucibles in a furnace muffle under inert atmosphere with a nitrogen flow, at 800ºC, 

heating rate of 10 ºC min
-1

 and residence time of 150 minutes. Nitrogen flow was maintained 
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during the cooling of the furnace. A washing step using HCl in a proportion of 1.2 g of AC to 40 

mL of 1.2 M HCl (37%, Panreac) was employed. The carbon material and the washing solution 

were kept in contact for 1 h. The resulting slurry was vacuum filtered and washed with distilled 

water until neutral pH of the washing leachate was achieved. The samples were then dried for 7 

h in an oven at 105 ºC, and subsequently grinded with a blade mill.  

 

2.2) Material characterization 

2.2.1) PZC 

PZC was determined by batch equilibration. 2 mg of the AC sample were shaken in 

polypropylene tubes with 10 mL of NaCl 0.1 M (≥99.5%, Fluka) solution, for 12 h in a 

overhead shaker at 25 ºC, at different pH values (from 2 to 12). Initial pH values were measured 

and adjusted using 0.1 M and 0.05 M HCl (37%, Panreac), and 0.1 M and 0.05 M NaOH 

(99.3%, José Manuel Gomes dos Santos, Portugal). The final pH was measured and the PZC 

was determined by plotting the ∆pH (pHf – pHi) versus the pHi. The PZC is the pH value at 

which the curve intersects the x-axis. 

2.2.2) Proximate and ultimate analysis 

Standard methods to determine the moisture (UNE 32002), volatile matter (UNE 32019) and 

ash content (UNE 32004) were employed in a LECO TGA-601 automatic analyzer, for 

proximate analysis. The remaining fraction after ash and volatile matter (at dry basis) was 

determined to be the fixed carbon content. 

Ultimate analysis was performed in a LECO CHNS-932 analyzer, determining the content in 

carbon (C), hydrogen (H), nitrogen (N) and sulfur (S) in the samples. Oxygen (O) content was 

determined by difference at dry and ash free basis. 

2.2.3) SBET 

SBET was determined on a Micromeritics ASAP2420 apparatus using the N2 adsorption 

isotherm at -196ºC and Brunauer–Emmett–Teller equation in the relative pressure range 0.01–

0.1. Degasification process of the sample was carried overnight. Additionally, average pore 
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width and total pore volume were also determined from the amount of nitrogen adsorbed at a 

relative pressure of 0.99. 

2.2.4) XPS 

Functional group content was determined by XPS analysis. Spectra were acquired in an Ultra 

High Vacuum system with a base pressure of 2x10
-10

 mbar. The system is equipped with a 

hemispherical electron energy analyzer (SPECS Phoibos 150), a delay-line detector and a 

monochromatic AlKα (1486.74 eV) X-ray source. High resolution spectra were recorded at 

normal emission take-off angle and with a pass-energy of 20 eV, which provides an overall 

instrumental peak broadening of 0.5 eV. 

2.2.5) SEM/TEM 

SEM images were obtained at the following magnifications: 300x, 1 000x, 3 000x, 10 000x, 

30 000x and 50 000x, using a Hitachi SU-70. The apparatus was also used to perform EDS 

analysis using a Bruker QUANTAX 400. 

TEM images were obtained using a HR-(EF)TEM JEOL 2200FS microscope at the following 

magnifications: 5 000x, 20 000x, 50 000x, 80 000x, 100 000x, 150 000x and 200 000x. 

 

2.3) VPC Clustering 

Atom types for all molecules used in the present work were extracted from the Generalized 

Amber Force Field (GAFF)(43) and simplified for this model application. For this matter, non-

bonded interactions were considered to be Lennard-Jones pairs, with Lorentz-Berthelot 

combination rules as defined in GAFF. Lennard-Jones and electrostatics 1-4 interactions were 

multiplied by 0.5 and 0.833, respectively. 

AC model parametrization and development is further explored in section 3. All molecule 

optimizations were carried by Density Functional Theory (DFT) at the B3LYP/6-31G* level 

using Gaussian09 (44). Charge determination on the optimized structures was performed at the 

HF/6-31G* level, from which Restrained Electrostatic Potential (RESP) partial charges were 

obtained using Antechamber (45). 
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Molecular dynamics simulations for VPC clustering processes were performed using the 

GROMACS software (46), in 125 nm
3
 cubic boxes (5 nm each side) with periodic boundary 

conditions (PBC) applied. All simulation stages used the Verlet cut-off scheme for neighbor 

searching, particle-mesh Ewald for electrostatics beyond 12 Å cut-off and 12 Å cut-off for van 

der Waals interactions. Water molecules were modeled according to the TIP3P model (47). The 

clustering process is further explained in section 3. 

 

2.4) Model characterization 

Geometric surface area of the modelled materials was computed using Monte Carlo (MC) on 

RASPA 2.0 software (48), where a probe atom (radius σ = 2.958 Å) was “rolled” over the AC 

model surface, and the SBET was considered as the summation of all non-overlapping probe 

spheres after 10
4
 steps. Additionally, void fraction volumes were also computed using MC. 

Helium probes were inserted in the AC model box using Widom particle insertions, and the void 

fraction was determined to be the empty space divided by the total volume. 

Molecular structures were visualized with PyMol (49). Pore studies were performed with the 

aid of MOLE 2.0 software (50), considering only pores with diameters less than 2 nm 

(micropores). A 30 Å surface probe was used to find cavities. 

 

2.5) Monte Carlo adsorption essays 

Within the scope of the present work, sulfamethoxazole (SMX) and carbamazepine (CBZ), 

two pharmaceutical compounds frequently found in the environment (51–53), are proposed as 

target active agents for adsorption. A multi conformational analysis was first employed where 

the molecules were brought up to 1500 K and left to relax, in order to adopt possible new 

conformations. Molecule optimizations of the low energy conformations were then carried by 

DFT at B3LYP/6-31G* level, with RESP charges determination, at pH of 7. 

Monte Carlo adsorption essays were carried out in the GCMC ensemble using RASPA 2.0 

software. Partial pressure values were converted to fugacity using the Peng-Robinson equation 
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of state (54). Critical temperature (TC), critical pressure (PC) and acentric factor (ω) values 

were extracted from available literature for water and ions. SMX and CBZ critical properties 

were estimated using Joback method (55), and acentric factors were predicted using Positional 

Distributive Contribution method (56). The calculated values used in the present work are 

available in Table 1. GCMC essays were performed for 3x10
3
 to 6x10

3
 steps (or until 

equilibrium), at 300 K and 1 atm. Water was used as solvent in all essays. Partial pressures of 

the components in the simulation were tuned to reflect the desired concentration of the 

pharmaceutical molecules in the mixture. 

Simulated concentrations of pharmaceuticals in water were 1, 100 and 1000 ppb, as to reflect 

the values commonly found in literature regarding their concentrations in the environment. Two 

modes of adsorption were studied: single component and competitive adsorption. In competitive 

adsorption, the considered pharmaceuticals were in an equimolar mixture. In the GCMC 

ensemble, four types of moves were employed, with equal probability: translation, rotation, 

reinsertion and identity change. 

 

3. RESULTS AND DISCUSSION 

3.1) Experimental data 

AC production overall yield was 3.5%, resulting in an extremely low-density material 

(apparent density of 0.09 g cm
-3

 (32)). Six characterization techniques were explored. The most 

relevant results are as follows: 

The PZC for the AC sample was determined to be in the pH range between 5 and 6. This 

means that for pH values inferior to the PZC, AC functional groups in the computational model 

should be protonated, and vice-versa. Since, for this work, a pH of 7 was chosen for the 

adsorption medium (since it is the commonly found value in WWTPs), all functional groups are 

negatively charged. 

Ultimate analysis allows for the determination of the elemental composition of the sample. 

For the purpose of modelling the AC sample, values are shown in chemical amount (n, %). The 
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produced AC sample composition in dry and ash free basis is mostly comprised of carbon 

(73.2±0.2%), with a high content of oxygen (24.3±0.4%). The remaining fraction consists of 

hydrogen (1.9±0.6%), nitrogen (0.62±0.04%) and sulphur (0.03±0.01%) atoms (Figure 1). For 

simplification purposes, and considering the relatively low contributions of both elements 

(below 1%), neither nitrogen and sulphur atoms were considered in the proposed model. 

SBET analysis show that the produced AC sample has a specific surface area of 1586 m
2
 g

-1
. 

This value places the produced AC in the present work on pair with available commercial 

products. By comparison, the commercially available PULSORB RD 90 has a SBET of 1100 m
2
 g 

-1 
(57) and the YP50F has a SBET of 1600 m

2
 g 

-1 
(58). Furthermore, the average pore diameter in 

the AC sample was determined to be 2.93 nm, with approximately 32% of the total pore volume 

(0.839 cm
3
 g

-1
) resulting from micropores (0.268 cm

3
 g

-1
). 

Functional group content was determined by XPS. This technique allows for the surface 

characterization with a depth of analysis up to 10 nm. The gathered data shows that the majority 

of the carbon layers are composed of sp
2
 carbon (54.4%) with some functionalization level of 

carbon atoms as -CH (8.5%), ethers (15.9%), carboxylic (2.9%) and carbonyl (8.4%).  

SEM and TEM images are displayed in Figure 2. SEM images allow the visualization of a 

porous network and TEM images show that AC carbon walls are, in fact, amorphous and 

rugged, possibly due to the presence of meso- and micropores. 

In an effort to more accurately simulate AC samples, the complete characterization of the 

experimental material provided a starting point for the development of the proposed 

computational model, albeit a certain level of approximation was required. 
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3.2) VPC model development 

The construction of the proposed VPC model was divided into 2 stages: firstly, the residue 

library assembly and secondly the VPC clustering process. 

As proposed by Rosalin E. Franklin in 1951 (59), and later implemented in the first VPC 

models by Segarra and Glandt in 1994 (60), microcrystallites of carbon layers were employed as 

the building blocks of the AC model. This molecular organization of the AC samples seems to 

be in agreement with TEM imaging (Figure 2). The residues (or platelets) were composed of 1-4 

parallel graphite-like layers (3.14 Å gap), each with approximately 20 Å length and width. 

Residues were then decorated with different functional groups (FG) namely -CH terminations, 

ethers (in both 2- and 3-ring conformations), carboxyls and carbonyls (See F2 in Supporting 

Information). The quantity of each functional group added was in accordance to XPS data.  

Smaller residues were built for atom partial charge determination, and the presence of a single 

functional group was studied at a time. Such residues were optimized by DFT and the charges 

determined by RESP. The employed charges are displayed in the Supporting Information T1. As 

previously stated, carboxyl groups (COO
-
) were left deprotonated and with a negative charge (-1 

e
-
), as reported in PZC determination essays. A random Gaussian distribution was employed in 

the input experimental values to generate small variances in the different residues of each 

library, in an effort to better reproduce the real heterogeneity of the carbon materials. A residue 

library was composed of at least 100 different residue microcrystallites similar to Figure 3. A 

more detailed description of the software developed can be found in the Supporting 

Information. 

A free working version of the developed tool (CarbGen) can be found online, at 

carbgen.web.ua.pt, allowing for an easy assembly of carbon residue libraries with varying sizes 

and different types and quantities of FGs.  

After assembly of an adequate library of residues, it was possible to continue to the VPC 

clustering process by molecular dynamics. A random number of residues was arbitrarily placed 
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inside a cubic simulation box and the carbon atom count limit was placed at 3 000 atoms per 

simulation, in order to keep the complexity of the system and the clustering time as low as 

possible without compromising the relevance of the obtained results. The maximum number of 

insertion attempts of new residues was tuned to ensure that all available space was occupied, 

and the void fraction of the box was solely modulated by the size of the residues. The system 

was then left to minimize through molecular dynamics simulation in vacuum. Simulations were 

performed in the NVT ensemble (no pressure coupling); translation/rotation around the system 

center of mass were removed in all simulations. The proposed residue clustering process was 

composed of 3 distinct stages:  

Minimization: The system was initially relaxed. Minimization criteria were: Fmax < 10 kJ mol
-1

 

nm
-1

, 100 000 steps or ∆F lower than machine tolerance; 

Heating: The system was brought up to 300 K, allowing the molecules to adopt higher energy 

conformations and cluster together during 1 to 2 ns.  

Stabilization: The carbon models were left to stabilize at 300 K for 1 to 2 ns, for data 

gathering (every 1000 steps) and pore development. The LINCS algorithm was applied to 

convert all bonds and angles that involve hydrogen atoms to bond constrains.  

A visual depiction of the clustered AC model is illustrated in Figure 4. 

3.3) Model validation 

Although the experimental sample of AC had an SBET of 1586 m
2
 g

-1
, the computational model 

showed an SBET of 2043 ± 200 m
2
 g

-1
. This difference can be explained by the existence of 

residual and non-simulated impurities, such as carbonates, in the real sample which block access 

to pores in SBET experimental essays, or the existence of enclosed cavities in the AC sample, 

inaccessible to the probe molecule in SBET determination, but accounted for in the computational 

MC method. Nonetheless, given the fact that surface area in the proposed model had no 

parametrization guidelines, resulting solely on the natural minimization of the modeled residues, 

it is considered that the deviation from the experimental value does not critically hinder the 

present work. 
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The agreement of the current model with experimental data was evaluated. As visible in 

Figure 1, elemental composition of both the experimental material and the VPC model are in 

good conformity. Furthermore, functional content was also successfully parametrized in accord 

with experimental data, as shown in Figure 5. The observed difference in -CH group content 

between the experimental sample and the VPC may hint at a lack of disorder in the 

computational model, where an increase in microporous structure would consequentially 

increase –CH content. Also, minor defects (pores) in the outmost layers of each microcrystallite 

can help increase –CH content without contributing to an increase on the microporosity. 

The formation and development of micropores in the proposed model was also studied. Pore 

structure has been appointed as an important factor in different applications, such as adsorption. 

Therefore, the model here proposed should be able to develop an organized, complex and viable 

micropore structure. Such challenge, although not trivial, is considered to be accomplished in 

the developed AC models (Figure 6). 

3.4) Monte Carlo adsorption essays 

With the developed CarbGen tool it is possible to easily create VPC models with different 

surface chemistry characteristics. Distinct residue libraries were built, with different levels of 

oxygen, as shown in Figure 7. 

With the increase of oxygen levels, the resulting microcrystallites progressively diverge from 

the initial planar form, and take a rougher structural shape, due to the sp
3
 hybridization of the 

majority of the functional groups added during functionalization, therefore promoting loss of 

aromaticity of the carbon backbone and planarity of the microcrystallites. This, in turn, results 

in the increase of the carbon surface area, as shown in Figure 8. 

GCMC ensemble simulations were then employed to perform adsorption essays of CBZ and 

SMX onto the produced models (with the designations of minOx, fullOx, maxOx for the models 

who represent the minimum, experimental and maximum value for oxygen, respectively). Three 

replicas were performed for each carbon model, additionally, in order to evaluate both the inter- 

and intra-model variations. Maximum adsorption capacities were calculated for each library 
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model and are shown in Figure 9. For each AC model, two modes of adsorption were 

considered: single component (SC – only 1 pharmaceutical at a time) and competitive 

adsorption (C – both SMX and CBZ were added to the simulation simultaneously). This allows 

for the study of possible competitive or cooperative adsorption mechanisms of these 

pharmaceuticals. Overall, results suggest that pharmaceutical adsorption increases with 

increasing oxygen content (≈ 20x and 6x increase for CBZ and SMX, respectively, in SC mode, 

from minOx to maxOx models). Competitive adsorption showed lower adsorption values for 

each pharmaceutical, as expected, although not significant or within the errors of the SC mode 

essay. This suggests the existence of some degree of cooperative adsorption or double layer 

effects, where a second pharmaceutical molecule is adsorbed onto the surface of a first already 

adsorbed to the carbon surface. Finally, it is possible to observe a clear distinction between the 

adsorption of the two pharmaceuticals. 

For the maxOx model, CBZ had an adsorption capacity ca. 2x superior to SMX. Since the 

simulations were carried at neutral pH of 7, both SMX (pKa1 = 1.8; pKa2 = 5.7 (61)) and the AC 

are negatively charged and repulse each other. This does not apply to CBZ (pKa = 13.9 (61)), 

which is neutral at pH 7. As previously discussed, an increase in oxygen content of the AC 

models resulted in an equal increase in the surface area which, consequently, has positive 

repercussions in adsorption capacities. However, it is possible to infer that the increased SMX 

adsorption by carbons with high oxygen content (and, therefore, charge) is caused by the 

increase in the AC surface area, while an increase in oxygen content has an additional positive 

effect in CBZ adsorption. Although being a neutral species at pH 7, CBZ can have induced 

dipole moments that interact with negatively charged functional groups of the AC. This result 

hints at the importance of functional groups and electrostatic interactions as modulators of 

adsorption and/or specificity in AC adsorbents. 

Further work is envisioned with the experimental determination of the adsorption isotherms, 

both in single component and competitive modes, allowing comparison of the maximum 

adsorption capacities determined experimentally to those calculated with the developed model, 
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which would complement the validation of the physico-chemical characterization of the model, 

described in this study. Also, manipulation of the oxygen content of real samples through 

adequate functionalization will provide the necessary mechanisms to fully assess the influence 

of oxygen content on the adsorption capabilities of organic molecules by activated carbons. 

 

4. CONCLUSION 

In a first instance, AC production from paper mill PS was explored, resulting in an interesting 

material with SBET values competitive with existing commercial solutions. 

Some VPC models of AC have been previously presented. However, literature data from 

different sources was commonly utilized as input for the parametrization of the referred models 

and not much emphasis was given to surface chemistry as a modulator of the final 

characteristics of the model. Therefore, in the present work, AC model development had an 

experimental basis on top of which more quantitatively accurate VPC models were built. It is 

shown that elemental composition, functional group content, surface area and pore structure are 

in good accordance to the gathered experimental data. This constitutes a validated 

computational model of the AC sample. Furthermore, an online tool has been developed and 

made freely available, allowing for easy modeling of ACs with specific surface chemistry 

characteristics. 

Such a model constitutes a workhorse for easily running simulations with the aim of gathering 

evidence about the underlying mechanisms of adsorption of molecules of interest from aqueous 

solutions in a more reproducible way. It was possible to observe the increase in surface area 

with the increase of oxygen content. This resulted in the increase of both SMX and CBZ 

adsorption capacities. Moreover, the additional charged FGs had a further positive effect in the 

adsorption capacity of CBZ, reinforcing the idea that AC adsorption optimization varies in 

accordance to the target molecules. 

The modelling approach described in this work is broad and easily adjustable, paving the way 

for adaptation in future developments. Modifications to the current algorithm will quickly and 
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reliably allow modelling of different materials, such as graphene oxides, clays, ceramics and 

silicates, among others. 
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Table 1. Critical properties and acentric factors calculated for the pharmaceutical molecules 

studied 

 

 

 

 

 

 

 

 

 TC (K) PC 

(kPa) 

ω 

SMX 1006.40 5175.72 0.2389 

CBZ 915.59 3325.84 0.1456 
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Figure captions 

 

Figure 1. Elemental composition comparison between experimental AC sample and the 

proposed computational model. 

Figure 2. SEM and TEM images of the produced AC sample. (a) – SEM, 300x; (b) – SEM, 3 

000x; (c) – SEM, 10 000x; (d) – SEM, 50 000x; (e) – TEM, 5 000x; (f) – TEM, 50 000x; (g) – 

TEM, 100 000x; (h) – TEM, 200 000x. 

Figure 3. Example of an assembled residue. Over 100 different residues were assembled in a 

library for random incorporation in AC models. 

Figure 4. Instance of the proposed AC model after clustering process. 

Figure 5. Functional content comparison between the proposed AC model and experimental 

data. 

Figure 6. Elucidated micropore structure of the proposed model. Top – Model and pore 

structure. Bottom – Pore structure 

Figure 7. Different produced VPC models, with varying levels of oxygen content: Top- minOx, 

1.5% O; Middle – fullOx, 18.9% O; Bottom – maxOx, 24.3% O. 

Figure 8. Surface area evolution with oxygen content. 

Figure 9. GCMC adsorption results for different AC models, regarding CBZ and SMX in single 

component. 
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Highlights 

 

 Activated carbon (AC) was produced from paper mill sludge, with SBET of 1586 m
2
 g

-1 

 A full functional and elemental characterization of the obtained material is given 

 Characterization data was used to parametrize a quantitative AC computational model 

 An online tool for the creation of AC models is made available 

 Monte Carlo simulations were used to study drug adsorption onto the developed model 
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