
 

 

 

 

Universidade de Aveiro 
Ano 2018 

Departamento de Biologia 

Maria Inês Ribeiro 
Ferreira  
 

Nanoplastics toxicity: microalgae and rotifers 
studies  
 
Toxicidade de nanoplásticos: estudos com 
microalgas e rotíferos  

  
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional da Universidade de Aveiro

https://core.ac.uk/display/231953047?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 
 
 
 
 
 
 
 
 

DECLARAÇÃO 

  

 

 
Declaro que este relatório é integralmente da minha autoria, estando devidamente 

referenciadas as fontes e obras consultadas, bem como identificadas de modo claro as 

citações dessas obras. Não contém, por isso, qualquer tipo de plágio quer de textos 

publicados, qualquer que seja o meio dessa publicação, incluindo meios eletrónicos, quer de 

trabalhos académicos. 
 

  



 

 

Universidade de Aveiro 
Ano 2018 

Departamento de Biologia 

Maria Inês Ribeiro 
Ferreira  
 
 

Nanoplastics toxicity: microalgae and rotifers 
studies  
 
Toxicidade de nanoplásticos: estudos com 
microalgas e rotíferos  

  
 
Tese apresentada à Universidade de Aveiro para cumprimento dos requisitos 
necessários à obtenção do grau de Mestre em Biologia Marinha, realizada sob 
a orientação científica do Professor Doutor Marcelino Miguel Guedes de Jesus 
Oliveira, Professor Auxiliar do Departamento de Biologia da Universidade de 
Aveiro e da Professora Doutora Isabel Maria Cunha Antunes Lopes, 
Professora Auxiliar do Departamento de Biologia da Universidade de Aveiro.  
 

   
 
 

  



 

  
 

 
 
 

 
 

o júri   
 

presidente Professor Doutor Ulisses Manuel de Miranda Azeiteiro  
Professor Associado com Agregação, Departamento de Biologia & 
CESAM, Universidade de Aveiro 

  
 

arguente Doutor Marcos Rubal Garcia 
Investigador em Pós-Doutoramento, Faculdade de Ciências, Universidade do 
Porto 

  
 

orientador Professor Doutor Marcelino Miguel Guedes de Jesus Oliveira 
Investigador Auxiliar, Departamento de Biologia & CESAM, Universidade de 
Aveiro 
 
 

  
 

 
  



 

  

  
 

agradecimentos 
 

Em primeiro lugar, quero agradecer ao Professor Miguel Oliveira, orientador 
deste trabalho, por todo o acompanhamento, disponibilidade, apoio e 
confiança ao longo do ano.  
Agradeço também à Doutora Isabel Lopes, co-orientadora deste trabalho por 
toda a ajuda e compreensão ao longo do ano. 
Agradeço à Cátia Venâncio por tudo o que me ensinou, pela amizade, 
paciência, incentivo e sobretudo por toda a ajuda que me deu durante a 
realização deste trabalho.  
Quero também agradecer aos amigos que estiveram sempre presentes 
durante os bons e maus momentos do meu percurso académico, Miguel, 
Catarina, Bruno, Bruno Falcão, André, Mafalda, João, João Silva e Cláudia. 
Por último, mas não menos importante, agradeço aos pais por todo o apoio, 
amor e paciência sem os quais era impossível ter chegado até aqui.  
 
 

 
  



 

  
 
 
 
 
 
 
 
 
 
 

  

palavras-chave 
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resumo 
 
 

Atualmente é cada vez maior a quantidade de plástico produzido 
mundialmente. Este é um fator preocupante, uma vez que o plástico 
representa uma ameaça para o ambiente marinho quando não é devidamente 
descartado ou reciclado. A existência de nanoplásticos (partículas de plástico 
inferiores a 100 nm) no meio aquático constitui um perigo, não só pelas 
substâncias que podem ser adsorvidas, mas também pelos diversos efeitos 
negativos associados ao facto de se apresentarem na forma de nanopartícula. 
Os organismos aquáticos podem estar expostos a vários tipos de plásticos, 
como por exemplo, o polimetilmetacrilato. Deste modo, o primeiro objetivo 
deste trabalho foi realizar uma revisão da literatura e analisar os efeitos dos 
nanoplásticos em animais marinhos. A revisão mostrou que os nanoplásticos 
podem afetar os ecossistemas marinhos desde produtores a consumidores, no 
entanto, a informação disponível é ainda reduzida tornando-se necessário 
continuar a estudar este tema em diferentes organismos e com diferentes tipos 
de plásticos. Assim, o segundo objetivo foi avaliar os efeitos de nanopartículas 
de polimetilmetacrilato (~50 nm), polímero pouco estudado, nas microalgas 
Tetraselmis chuii, Nannochloropsis gaditana, Isochrysis galbana e 
Thalassiosira weissflogii e no rotífero marinho Brachionus plicatilis. Os 
resultados demonstraram que nanoplástico tem a capacidade de afetar tanto o 
crescimento das algas marinhas, sendo que a mais sensível foi a T. weissflogii 
com uma concentração de efeito (EC50) de 83.75 mg/L, como a sobrevivência 
dos rotíferos, sendo que o tipo L da espécie B. plicatilis foi o mais sensível com 
uma concentração letal (LC50) de 13.27 mg/L. A sobrevivência deste 
organismo começa a ser afetada a partir de concentrações superiores a 9.38 
mg/L. Por último, este trabalho teve como objetivo estudar o efeito, nas 
microalgas T. chuii e N. gaditana, da exposição simultânea a 
polimetilmetacrilato e um contaminante ambiental. Para este efeito foi 
selecionada a cafeína, considerada como um marcador de contaminação 
antropogénica. A cafeína afetou o crescimento das algas, tendo sido registada 
uma EC20 de 565.4 mg/L para a T. chuii e uma EC20 de 567.6 mg/L para a N. 
gaditana. O crescimento de ambas as microalgas foi significativamente afetado 
quando expostas à mistura de nanoplásticos com a cafeína.   
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abstract 
 

Nowadays the production of plastic is increasing all around the world. This is a 
worrying situation since plastic constitutes a threat to the marine environment 
when it is not properly discarded or recycled. The existence of nanoplastics 
(particles with less than 100 nm) in the marine environment may became 
dangerous, not only because of the substances that can be adsorbed, but also 
because of their expression as nanoparticles. Marine organisms can be 
exposed to several types of nanoplastics such as polymethylmethacrylate. 
Thus, the first object of this work was to do a literature review on the effects of 
nanoplastics on marine organisms. The review showed that nanoplastics affect 
all marine ecosystems from producers to consumers, however there is still a lot 
of information that is needed regarding different organisms or different types of 
plastics. Therefore, the second goal was to evaluate the effects of 
polymethylmethacrylate nanoplastics (~50 nm), a less studied polymer, on 
marine microalgae, Tetraselmis chuii, Nannochloropsis gaditana, Isochrysis 
galbana and Thalassiosira weissflogii, as well as on the marine rotifer 
Brachionus plicatilis. Nanoplastics significantly affected both growth rate of 
marine microalgae with T. weissflogii being the most sensitive one with an EC50 
of 83.75 mg/L, and rotifers survival, where B. plicatilis type L was the most 
affected one with significantly results from 9.38 mg/L and a LC50 of 13.27 mg/L. 
The last goal of this work was to evaluate the effect, on marine algae T. chuii 
and N. gaditana, of a combined exposure between polymethylmethacrylate and 
an environmental contaminant. For this purpose, caffeine was selected as an 
anthropogenic contamination marker. Caffeine significantly affected the growth 
rate of both algae with an EC20 of 565.4 mg/L for T. chuii and an EC20 of 567.6 
mg/L for N. gaditana. Growth rate of both marine microalgae was significantly 
affected when they were exposed to a mixture of nanoplastics and caffeine.    
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1. General introduction 
Marine environment is exposed to various threats and marine litter, 

nowadays, is one of them. It includes metals, glass, ceramics, textiles, paper, 

timber and plastic which is the most harmful fraction of marine litter (Schneider 

et al., 2018). There are different plastic polymers, such as 

polymethylmethacrylate (PMMA) which is a type of plastic mainly used in 

medicine, automobile manufacturing, computer engineering or network 

configuration (Taguenang et al., 2008), sizes from macroplastics (> 5 mm) to 

nanoplastics (< 100 nm) and shapes of plastic. Microplastics (< 5 mm) have 

been proving to be transferred across trophic levels (e.g. from fish to a marine 

mammal) which may lead to a microplastic ingestion for any species whose 

feeding ecology involves the consumption of a whole prey (Nelms et al., 2018). 

Even in smaller plastics, nanoplastics, it has already been shown that they can 

be transferred through a freshwater food chain (Karin Mattsson et al., 2017), 

however there are no studies regarding marine food chains. Despite the number 

of nanoplastic studies is increasing, there is still a lack of knowledge in what 

concerns the effects of mixtures between nanoplastics and other marine 

contaminants (e.g. caffeine). Caffeine is an anthropogenic marker since it is one 

of the most widely consumed drugs in the world. 

 Plastics can affect all types of marine organisms from bacteria or algae to 

fish and marine mammals. Microalgae are eukaryotic photosynthetic 

microorganisms that can be used to produce high value compounds (Mendes et 

al., 2003). Their rapid growth rate and their high lipid content carbohydrates, 

and proteins make microalgae one of the most promising biomass resources 

(Pleissner et al., 2013; Song et al., 2013). Rotifers constitute a phylum with 

about 2000 described species (Gómez et al., 2002). Brachionus plicatilis occurs 

in brackish habitats and it is considered one of the most common marine rotifers 

around the globe (Fontaneto et al., 2007). This specie has commercial value 

since it is commonly used for aquaculture purposes as live food for marine fish 

(Fontaneto et al., 2006) due to their small size, slow swimming behavior, and 

the way they provide nutrients that are essential for larval fish growth (Best et 

al., 2010). As well as in ecotoxicology assessments to evaluate toxicity on 

marine organisms since it can be cultured in laboratorial conditions and has a 

short reproduce time (Rico-Martínez et al., 2013).  
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Plastics have only been produced for around 100 years so even though 

marine organisms are able to adapt to some environmental conditions (e.g. 

temperature, pH, CO2, salinity or carbonates) or changes that occur over 

geological time the development of adaptive responses of marine organisms to 

plastics have not yet occurred (Deudero & Alomar, 2015). Thus, the main 

objectives of this study were to do a literature review about the effects that 

nanoplastics (<100 nm) can cause to all marine species ever studied (chapter 

II) as well as determine effect and lethal concentrations for marine microalgae 

(Tetraselmis chuii, Nannochloropsis gaditana, Isochrysis galbana and 

Thalassiosira weissflogii) and rotifers (Brachionus plicatilis) when exposed to 

polymethylmethacrylate (PMMA) nanoplastics, furthermore analyze the 

difference between exposing marine algae to nanoplastics and a mixture of 

PMMA and caffeine (chapter III).  
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Abstract 
Nowadays, there is an increased awareness on threats that marine litter 

may pose to the marine environment. This review describes the major concerns 

related to plastic pollution, namely in terms of toxicity of different types and 

sizes of nanoplastics (particles smaller than 100 nm) on marine organisms, 

either producers or consumers. The available data show that nanoplastics may 

negatively affect organisms from different phyla with reported effects ranging 

from alterations in reproduction to lethality. Nevertheless, no information 

regarding marine vertebrates (e.g., fish) was found. Data show a high potential 

for bioaccumulation/biomagnification along marine food chains, since they can 

easily be retained inside organisms. The lack of standardized methodology for 

nanoplastics detection and the poor or inexistent legislation makes nanoplastics 

an environmental challenge.  

 
Keywords: ecological risks; effects; marine organisms; nanoplastic 
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1. Plastics 
Marine litter, any persistent, manufactured or processed solid material 

that ends up in the sea is increasing around the world and becoming a threat to 

the marine ecosystem. Among the different materials that may be found within 

marine litter are plastics, which are nowadays recognized as emerging 

contaminants of concern. Plastics are defined as synthetic organic polymers 

that can be easily molded into different shapes and products (Worm et al., 

2017), with high durability, light weight and cheap. These properties make 

plastics a support for a large variety of applications: from simple plastic bottles, 

containers for food products and consumer goods, up to the sectors of 

transport, construction, telecommunications and health care (Gourmelon et al., 

2015). Their wide use increased their release into the environment, either 

deliberately (e.g., throw domestic and industrial effluents) or unintentionally 

(e.g., run-off) (Todd et al., 2010; Sá et al., 2018). Since the 1990s the annual 

plastic production increased from 1.7 to 335 million tones in 2016 

(PlasticsEurope, 2017). Furthermore, it has been estimated that 4.8 to 12.7 

million tons of plastic debris enter the ocean each year (Jambeck et al., 2015). 

The most produced plastic polymers are polypropylene (PP), low-density 

polyethylene (LDPE), high-density polyethylene (HDPE), polyvinyl chloride 

(PVC), polyurethane (PUR) polyethylene terephthalate (PET) and polystyrene 

(PS), being employed in the several manufacture industries, from electronics to 

health care, as illustrated in Figure 1. For instance, in a field study performed in 

the southern Adriatic sea, of a total of 120 samples (water and sediment), 80.6 

% contained plastic debris, and 38.7% of the samples were composed of 

polystyrene plastics (Šilc et al., 2018). 
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Figure II.1 – Representation of the percentages of the plastic polymers most produced in 2016 

and example of products in which they are commonly employed. PP – polypropylene; LDPE – 

low-density polyethylene; HDPE – high-density polyethylene; PVC – polyvinyl chloride; PUR – 
polyurethane; PET – polyethylene terephthalate and PS – polystyrene. Adapted from 

PlasticsEurope (2017).  

 

One of the concerns associated with plastic pollution is the occurrence of 

particles smaller than 5 mm, particularly in the low micro and nanosizes. 

Although there is no established definition of nanoplastic, it has been assumed 

that they fall within the range of other types of nanoparticles i.e. a size range 

from 1 to 100 nm (Koelmans et al., 2015; Gigault et al., 2018). Microplastics 

and/or nanoplastics may be divided in primary or secondary. Primary 

micro(nano)plastics are those that enter the ecosystem in their originally small 

size associated with a specific application and consumer products, such as, 

synthetic fibers, cosmetics, medicine and raw materials (Bessa et al., 2018; 

Tamminga et al., 2018; Wang et al., 2018). Their release into the environment is 

frequently associated with inadequacy of the disposal infrastructures at 

wastewater treatment plants (WWTP). For example, in a study addressing this 

issue, a WWTP located in the Baltic Sea was able to reduce the burden of 

plastics in wastewaters from hundreds to less than 10 particles per liter of 

wastewater. However, these values of particles per liter of wastewater were still 

25 times higher than those reported for sea water samples (Talvitie et al., 

2015). Alongside the disposal of primary micro(nano)plastics, their 

concentration might increase as a result of the degradation of macroplastics, 

the so called secondary micro(nano)plastics (Andrady, 2011; Cole et al., 2011). 

This process of breakdown happens because once in the environment, 
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polymers are susceptible to biological activity (such as the action of bacteria) 

and/or subjected to several abiotic processes (wind, rain, UV radiation, 

mechanical forces, photo-oxidation) (Andrady, 2003). Their action, solely or 

jointly, may promote a decrease in the size of the particles, first to micro and 

later to nanoplastics (Lambert & Wagner, 2016). The process of 

fragmentation/degradation has already been demonstrated to occur rapidly 

under laboratorial conditions. During the thermal cutting of polystyrene foam 

Zhang et al. (2012) found that most of the particles emitted were of sizes 

between 22 and 220 nm. Using disposable coffee cup lids, Lambert & Wagner 

(2016) showed that 56 days were enough to reach a concentration of 1.26 x 108 

particles/mL of PS particles with an average size of 224 nm. The time required 

to reach particles of nano size depends on the size of the initial plastic 

(Koelmans et al., 2015). The degradation process will drastically reduce the 

average molecular weight of the polymer, further increasing their susceptibility 

to breakdown but at the same time, making them more available to be 

incorporated into the marine biomass (Andrady, 2011). Thus, if not properly 

disposed, reused or recycled, plastics may become a serious threat to the 

aquatic environment. The presence of plastic particles in freshwater, estuarine 

and marine environments has been reported in several studies, as showed in 

Figure 2, with reports of up to thousands of particles/m2 (Carvalho & Neto, 

2016). Nevertheless, the estuarine/marine environment is of most concern as it 

constitutes the final recipient of these particles that reach this environment 

through rivers, water runoff, wastewater discharges and transportation through 

wind. Recreational activities at the beach and ship-generated litter dumped by 

commercial boats, cruises or private vessels or fishing gear may also contribute 

to the discharge of microplastics to the marine/estuary compartment (Pruter, 

1987; Sheavly & Register, 2007).  
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Figure II.2 – World map summarizing field studies that report the presence of plastics in 

freshwater, estuarine or marine environments. Different shaped symbols (squares and circles) 

represent plastics concentration expressed in particles/m2 and particles/m3, respectively. 

References are listed as follows: 1.(Goldstein et al., 2013); 2.3.(Gray et al., 2018); 4.(Eriksen et al., 
2013); 5.(Carvalho & Neto, 2016); 6.(Rayon-viña et al., 2018); 7.(Sadri & Thompson, 2014); 
8.9.10.11.(Tamminga et al., 2018); 12.(Collignon et al., 2012); 13.(Imhof et al., 2013); 14.(Xiong et al., 

2018); 15.(Lee et al., 2013); 16.17.(Zhao et al., 2014). 

 
There are three major problems related to plastics: a) toxicity towards 

biota caused directly by the plastics themselves; b) toxicity caused by additives 

added to plastics during the production process and c) their role as vectors for 

environmental contaminants and invasive/pathogenic organisms. 

There is a huge concern about the additives that are added during 

plastics production. The most commonly used additives are phthalates, [e.g., 

bisphenol A (BPA), polybrominated diphenyl ethers (PBDE) and 

tetrabromobisphenol A (TBBPA)], mainly used as plasticizers, stabilizers and 

brominated flame retardants (Hermabessiere et al., 2017). These additives can 

increase the time of degradation of plastic enduring their permanence in the 

environment and may leach into the marine environment and become available 

to biota (Avio et al., 2017). They have been shown toxic to biota. For example, 

BPA has been reported to affect growth rate and sexual maturation, hormone 

levels in blood, reproductive organ function, immune function, enzyme activity 

and brain structure (vom Saal & Hughes, 2005). 
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The presence of micro and nanoplastics in the marine environment can 

affect biota and the environment through other pathways. Smaller plastics have 

a high surface area and adsorb hydrophobic substances from the marine 

environment, namely persistent organic pollutants (POPs), such as polycyclic 

aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), 

dichlorodiphenyltrichloroethane (DDT), polybrominated diphenyl ethers 

(PBDEs) and perfluorooctanoic acid (PFOA), as well as metals (Moore et al., 

2007; Ashton et al., 2010; Frias et al., 2010; Andrady, 2011; Holmes et al., 

2012; Velzeboer et al., 2014; Li et al., 2018). Rochman et al. (2013) found that 

LDPE, HDPE and PP plastic debris from San Diego Bay had a great affinity for 

chemical pollutants such as PCBs and PAHs. This ability to adsorb 

contaminants and release additives highlights the possibility of transferring 

these contaminants to biota. 

The ubiquity of plastic particles and the recognition that macroplastics 

can be degraded to micro and nanoplastics and thus become more bioavailable 

to biota raises concerns on the molecular and physiological effects that these 

particles may lead to. Effects at behavioral and reproductive levels, in addition 

to the well reported effects of physical damage and false satiation attributed to 

macroplastics are some of the examples (Lazar & Gračan, 2011) and can be 

transversal from marine invertebrates to mammals. The known effects include 

alteration of hormone levels and enzyme activity, oxidative stress, growth 

inhibition, loss of energy and weight, retention on digestive tract as well as in 

immune and reproductive system and even mortality (Jin et al., 2018; Li et al., 

2018; Naji et al., 2018; Xiong et al., 2018).. 

 

2. Nanoplastics 
One of the main problems associated with the presence of plastics in the 

environment is the fact that they may breakdown into smaller fragments, 

increasing their availability to be ingested by marine biota (Santos et al., 2009). 

In addition to being originated from plastic fragmentation, nanoplastics can also 

be produced to be included in products for coatings, biomedical purposes, drug 

delivery, medical diagnostics, electronics, magnetics and optoelectronics 

(Koelmans et al., 2015). Alongside the decrease in size and consequent 



 

13 
 

increase in surface area that promotes the adsorbance of other environmental 

contaminants, as already mentioned above, the particles may become more 

reactive. The nanoparticle formation changes the chemical and physical 

characteristics of the particle and, consequently, its availability and biological 

impact on aquatic organisms (Mattsson et al., 2015). Therefore, it is expected 

that at the nanoscale the characteristics of particles (e.g. strength, conductivity 

and reactivity) will differ substantially from macro and micro-sized ones (Klaine 

et al., 2012). The biological reactivity is frequently also increased with the 

decreased size. The nano size increases the ability of the particles to pass 

throw cellular boundaries and accumulate on organisms and the reactivity of the 

particles (Mattsson et al., 2015; Worm et al., 2017) with more atoms and 

molecules displayed on the surface which can lead to more reactive groups on 

it (Nel, 2006). Although an increasing number of studies are focusing on the 

effects of microplastics, the knowledge of the effects of nanoplastics are still 

scarce, especially regarding marine biota. Considering the hypothesis that 

reactivity increases at the nanoscale and that the marine ecosystems is the final 

recipient, it is urgent to gather the available information to identify knowledge 

gaps and set priorities and lines of investigation that should be addressed. 

Therefore, the objective of this review was to summarize published data on the 

effects of nanoplastics on marine biota, focusing in types of plastic that are 

being used and organisms are being studied, from producers to consumers. 

 

3. Effects of nanoplastic particles  
  A literature review (in Scopus database) revealed 1699 articles focusing 

on microplastics; however, when the search was narrowed to the keyword 

“nanoplastics” the number decreased to 80. There were 26 documents when 

the keywords “nanoplastic” and “marine” were combined and only 20 when 

“nanoplastic” and “marine” are combined with the keyword “effects”. It is evident 

that more information is needed and the knowledge around nanoplastics is 

increasing in the last 2 years. From those 20 results, 14 are from 2017 and 

2018. Gathering the information on the effects of nanoplastics will allow to have 

a broader perspective of what has already been achieved and to where should 

the science efforts on this matter be pointed out to fill knowledge gaps. Thus, a 

compilation of reported effects on marine organisms was included in Table II.1. 
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This review will focus mainly on the toxic effects that nanoplastics are known to 

cause on marine biota. A brief analysis of Table 1 immediately shows that all of 

the studies used PS as a model particle. This fact may be explained by the easy 

synthesis of nanoplastics of this polymer when compared to others. Still, the 

toxic effects exerted by PS may not correspond to the toxic effects caused by 

other polymers, emphasizing the urgent need to further generate information on 

this topic.  

3.1. Effects on bacteria 
  Bacteria constitute a large domain of prokaryotic microorganisms. 

Halomonas alkaliphile is a specie from the Proteobacteria phylum. Sun et al. 

(2018) exposed, for two hours, this halophilic bacterium (bacteria that thrive in 

high salt concentrations) to 50 nm cationic amino (-NH2) PS particles and 55 nm 

PS beads at 20, 40, 80, 160 and 320 μg/mL. For PS-NH2, cell growth was 

significantly affected from 80 μg/mL onwards, with a maximum of inhibition 

(34%) found at 360 μg/mL. Similarly, PS beads decreased the cellular growth 

up to 32.7% at 360 μg/mL. A significant increase in the intracellular levels of 

reactive oxygen species (ROS) was detected after 0.5 and 2 h exposure to both 

types of plastics. 

3.2. Effects on algae 
  Algae are photosynthetic, unicellular or pluricellular organisms, that 

contain chlorophyll, with no tissue differentiation or vascular transport organs. 

These organisms are vital to the wellbeing of marine ecosystems as they are 

the base of food webs, source of oxygen production and other nutrients (Mao et 

al., 2018). The effects of nanoplastics have already been assessed in these 

organisms. PS-NH2 particles (50 nm) caused a significant inhibition on the 

growth rates of the unicellular green microalgae Dunaliella tertiolecta, with an 

estimated EC50,72h of 12.97 ± 0.57 μg/mL, whereas no effect was found after 72 

h exposure to anionic carboxylated (-COOH) PS particles (40 nm) (Bergami et 

al., 2017). The observed effect may be associated with a pernicious effect on 

photosynthesis and ROS formation. In the same line of evidence and for the 

same species, Sjollema et al. (2016) observed a clear reduction on the average 

cell density (about 45%), that was translated in a 57% effect on cellular growth, 

after exposure to 250 μg/mL of 50 nm PS beads. These results suggest that 
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nanoplastics may impair algae growth rates. However, it is crucial to study other 

species. 

3.3. Effects on rotifers  
The Rotifera phylum include around 2200 described species, some of 

them from marine ecosystems. Manfra et al. (2017) exposed the marine rotifer 

Brachionus plicatilis to a concentration range of 0.5, 1, 5, 10, 25 and 50 μg/mL 

of PS-COOH (40 nm) and PS-NH2 (50 nm) nanoplastics. For PS-COOH 

particles, although no mortality was found, gut retention was observed after 48 

h of exposure. For PS-NH2 particles, LC50s of 13.04 ± 0.60 and 6.62 ± 0.87 

μg/mL, were estimated after 24 and 48 h exposures, respectively.   

3.4. Effects on mollusks  
  Mollusks are the largest marine phylum and contains the class Bivalvia 

where clams, oysters, cockles, mussels and scallops, organisms widely used in 

ecotoxicity studies are included (Brandts et al., 2018). Crassostrea gigas 

exposed to 0.1, 1, 10, 100 μg/mL of 100 nm PS-NH2 and PS-COOH did not 

affect the percentage of viable cells in spermatozoa. However, 100 μg/mL of 

PS-COOH particles promoted the aggregation of spermatozoa, resulting in a 

decrease of 32% and 24% of single spermatozoa after 3 and 5 h of exposure, 

respectively. Spermatozoa exposed to 100 μg/mL of PS-COOH and PS-NH2 

showed an increase of 4–5 % in relative size after 1, 3 and 5 h exposure. 

Moreover, ROS levels were not significantly affected by PS-NH2 but PS-COOH 

increased ROS production in 17.4 %, 59.4 % and 121 % after 1 h exposure to 

exposure 1, 10 and 100 μg/mL, respectively (González-Fernández et al., 2018). 

In the common, edible mussel, Mytilus edulis, exposure to 100, 200 and 300 

μg/mL of 30 nm PS particles induced the production of pseudofeses, which 

increased with concentration increase (Wegner et al., 2012). This result 

suggests that PS particles are recognized as non or low nutritional food. A 

reduction in the filtration rate, dependent on the PS concentration was found. In 

M. galloprovincialis, reproduction fitness was affected by nanoplastics. Fertilized 

eggs of M. galloprovincialis exposed to PS-NH2 (50 nm) particles presented a 

decrease in lysosomal membrane stability (50% at 50 μg/mL) as well as 

cytochrome c reduction (Canesi et al., 2015). Thus, this nanoplastics may 

impair cell metabolism/nutrition, signaling and repairing (cellular functions in 
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which the lysosome plays an important role), as well as inhibiting mitochondria 

activity. Canesi et al. (2015) reported also a decreased by 50% in phagocytosis 

at a concentration of 50 μg/mL of PS-NH2. More recently, Balbi et al., (2017) 

reported that 48 h of exposure to 0.001 to 1 μg/mL of PS-NH2 (50 nm) caused 

malformations of the D-larvae (early stage in the development of a veliger) of M. 

galloprovincialis and a delay in development at higher concentrations (2.5 to 10 

μg/mL). An EC50 of 0.142 μg/mL was determined for larval development. A 

decrease in shell length of 20 to 30% was also observed in 48 hpf larvae at 

different concentrations (0.15, 1, 2.5 and 5 μg/mL). 

3.5. Effects on arthropods  

Phylum Arthropoda includes crustaceans and englobes crabs, lobsters, 

crayfish, shrimp and krill. In order to evaluate the lethal and sub-lethal effects of 

nanoplastics Gambardella et al. (2017) exposed two marine crustaceans (II 

stage nauplii of the barnacle Amphibalanus amphitrite and first instar larvae of 

the brine shrimp Artemia franciscana) to 0.001, 0.01, 0.1, 1 and 10 μg/mL of 

100 nm PS particles. No significant effects on survival were found but PS 

nanoparticles affected swimming speed. In A. amphitrite there was a significant 

inhibition at 48 h in higher concentrations (1 and 10 μg/mL) whereas in A. 

franciscana swimming speed was inhibited at 24 h but significantly increased at 

longer exposure and higher concentrations. Both species ingested the 

nanoparticles and accumulated them in the gut after 24 and 48 h exposure. The 

brine shrimp species was also studied in the same larval stage by Bergami et 

al. (2017) although exposed to PS-COOH (40 nm) and PS-NH2 (50 nm) 

particles at 0.5, 1, 1.5, 2.5, 5 and 10 μg/mL, to understand effects of 

nanoplastics at the molecular level. There were no significantly differences on 

organisms exposed to PS-COOH. However, in organisms exposed to 1 μg/mL 

PS-NH2, the expression of two genes (clap and cstb) connected to growth which 

includes molting, organogenesis and tissue remodeling in early larvae was 

increased after 48 h of exposure and related to an increase in the number of 

molts. After 14 days exposure to PS-NH2 nanoparticles, high mortality rates 

were registered, with an LC50 computed around 0.83 μg/mL. Bergami et al. 

(2016) also studied the marine shrimp A. franciscana up to Instar III Nauplius. In 

this study, organisms were exposed to 5, 10, 25, 50, and 100 μg/mL of PS-
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COOH (40 nm) and PS-NH2 (50 nm) with data showing that both nanoplastics 

may accumulate in biota, being retained inside the gut lumen. However, cationic 

particles were more harmful affecting brine shrimp larvae swimming (at 48 h), 

an effect that can limit their feeding ability. Furthermore, an increase of almost 

50% in molts cycle was observed after 48 h exposure to PS-NH2. Lee et al., 

(2013) exposed the marine copepod Tigriopus japonicus to 0.125, 1.25, 12.5 

and 25 μg/mL of 50 nm PS particles and verified that particles could also 

accumulate in the gut lumen in this species. Survival started to be affected at 

concentrations of 1.25 μg/mL. 

3.6. Effects on echinoderms 
  The phylum Echinodermata englobes marine invertebrates such as sea 

stars, sea cucumbers and sea urchins. The available studies with these 

organisms reveal that they may accumulate nanoplastics. Della Torre et al. 

(2014) reported that PS-COOH (50 μg/mL) nanoplastics accumulated inside the 

digestive tract of sea urchin (Paracentrotus lividus) embryos, with no relevant 

malformations in the embryos. However, PS-NH2 (10 μg/mL) nanoplastics 

induced a higher toxicity, though not accumulating as PS-COOH particles. 

Several larvae presented malformations within a period of 6 to 48 hours post 

fertilization (hpf). The reported malformations included thickening and abnormal 

proliferation of the ectodermal membrane (6 hpf), undeveloped embryos (24 

hpf), incomplete or absent skeletal rods, fractured ectoderm and reduced length 

of the arms (48 hpf). The EC50 computed for PS-NH2 beads were of 3.82 μg/mL 

at 24 hpf and 2.61 μg/mL at 48 hpf. More recent studies with the same species 

revealed that, after exposure to 3 μg/mL of PS-NH2 (50 nm) skeleton elongation 

was delayed, and 4 μg/mL induced malformations on skeletal rods and arms 

(Pinsino et al., 2017). 

 

4. Final Considerations 
The available studies with particles smaller than 100 nm were performed 

with PS. Thus, it becomes imperative to assess the effects of other types of 

plastics in a wide range of organisms. Particles that may cause severe damage 

in some organisms (e.g., PS-NH2 to bacteria, algae or echinoderms larval 
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stages), may present a lower threat to others (e.g., rotifers), making it difficult to 

accurately conclude on their toxicity. Although studies have been performed to 

assess the amount of plastics in the marine environment, there is no information 

regarding the number of nanoplastics. Thus, it is hard to predict the ecological 

risk of nanoplastics in the marine environment. The available data shows that 

these particles, alone, may be harmful to the marine ecosystem from producers 

to consumers. However, the available studies are scarce, particularly in what 

concerns to the effects on marine vertebrates like fish that in addition to their 

ecological importance, also present high commercial value. The lack regulatory 

frameworks regarding the emission of plastics into the environment and 

legislation concerning nanoplastics in food may justify the limited available 

studies. Furthermore, detection methodology limitations do not allow the 

establishment of cause/effect associations nor potential links to human and 

environmental health (EFSA, 2016). The analysis of the available studies shows 

that there is a lack of knowledge on generational and long-term effects of 

nanoplastics as well as their potential to be transferred along a marine food 

chain. In microplastics food web transfer was already observed in several 

different marine species such as algae, zooplankton, mussels and crabs (Cole 

et al., 2013; Farrell & Nelson, 2013). The smaller microplastics have higher 

potential for accumulation in the tissues of organisms (Browne et al., 2008). 

Since nanoplastics are smaller particles, there is also a high probability for them 

to be incorporated in the diet of the organisms and, consequently, be 

transferred to other trophic levels. It is also imperative to study the interaction 

between nanoplastics and other contaminants because they may affect 

organisms differently. 
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Table II.1 – Effects of nanoplastic particles on marine organisms according to the type, size and 

concentration of the nanoplastic. Only studies about marine organisms and particles with less 

than 100 nm were included. Abbreviations stand for: PS - polystyrene; PS-COOH - anionic 

carboxylated polystyrene; PS-NH2 – cationic amino polystyrene; nsw – natural sea water; asw – 

artificial sea water; LC/ECx – lethal or sublethal concentration causing x % of effect; hpf – hours 

post fertilization; µ = growth rate. 

Phylum/
Order 

Organism 
Type 

of 
plastic 

Size 
(nm) 

Concentra-
tion (μg/mL) 

Effects Reference 

Proteo-
bacteria 

Oceanos
pirillales 

Halomonas 

alkaliphila 

PS 

PS-NH2 

55 

50 

20, 40, 80, 
160, 320 

Intracellular ROS levels 

significantly increased. µ 

inhibited by 32.7% at 320 

μg/mL for PS and 34% at 

320 μg/mL for PS-NH2 

(Sun et al., 

2018) 

Chloro-

phyta 

Chlamy-
domona

dales 

Dunaliella 

tertiolecta 

PS 50 25, 250 

µ inhibited by 57%, at 250 

μg/mL 

cell density reduced by 

45% at 250 μg/mL 

(Sjollema et 

al., 2016) 

PS-

COOH 

PS-NH2 

40 

50 

0.5, 1, 5, 10, 
25, 50 in 

nsw 

EC50 for µ of 12.97 ± 0.57 

μg/mL 
(Bergami et 

al., 2017) 

Echino-
dermata 

Camaro-
donta 

Paracentrotus 

lividus 

(embryos) 

PS-NH2 50 3, 4 in nsw 

Delay in development 

Deficient skeleton rods 

and arms 

(Pinsino et 

al., 2017) 

PS-
COOH 

PS-NH2 

40 

50 

50 

10 

in nsw 

Larval malformations 

EC50 24 hpf of 3.82 μg/mL; 
EC50 48 hpf of 2.61 μg/mL, 

for PS-NH2 

(Della Torre 

et al., 2014) 

Rotifera 

Ploimida 

Brachionus 

plicatilis 

PS-

COOH 

PS-NH2 

40 

50 

0.5, 1, 5, 10, 
20, 50 

in nsw 

PS-COOH accumulation in 
organisms; 

LC50 24h of 13.04 ± 0.60 
μg/mL and LC50 48h of 6.62 

± 0.87 μg/mL for PS-NH2 

(Manfra et 

al., 2017) 

Mollusca 

Ostreoi-
da 

Crassostrea 

gigas  

PS-

COOH 

PS-NH2 

100 
0.1, 1, 10, 

100 

PS-COOH aggregates 

attached to the cells; 

decrease in the number of 

spermatozoa and ROS 
levels significantly 

increased in PS-COOH. 

(González-

Fernández 

et al., 2018) 
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Mytilus edulis PS 30 

0, 100, 200, 

300 

in asw 

Reduce filtering activity. 

Particles adsorbed to the 

gills. 

(Wegner et 

al., 2012) 

Mytilus 

galloprovincia-

lis 

PS-NH2 50 
1, 5, 50 in 

asw 

Cytochrome c reduced. 

Decrease in phagocytosis 

Strong lysosomal 

destabilization. 

(Canesi et 

al., 2015) 

Mytilus 

galloprovincia-

lis 

(48hpf larvae) 

PS-NH2 50 

0.001, 0.01, 

0.05, 0.1, 

0.25, 0.5, 1, 
2.5, 5, 10, 20 

in asw 

EC50, growth of 0.142 μg/mL. 

Malformed and immature 

embryos. Decrease in 
shell length by 20 to 30%. 

(Balbi et al., 

2017) 

Arthro-

poda 

Sessilia 

Amphibalanus 

amphitrite 

(II stage) 

PS 100 
0.001, 0.01, 
0.1, 1, 10 in 

nsw 

Decreased swimming 

speed 

Particles aggregation in 

the gut 

(Gambardell

a et al., 

2017) 

Arthro-
poda 

Anostra-
ca 

Artemia 

franciscana 

(1st instar 

larvae) 

PS 100 

0.001, 0.01, 

0.1, 1, 10 in 
nsw 

Decreased swimming 

speed 

Particles aggregation in 

the gut 

(Gambardell

a et al., 

2017) 

Artemia 

franciscana 

(1st instar 
larvae) 

PS-

COOH 

PS-NH2 

40 

50 

0.5, 1, 1.5, 

2.5, 5, 10 in 

nsw 

LC50,14days of 0.83 μg/mL. 

Induction of clap and cstb 

genes 

(Bergami et 

al., 2017) 

Artemia 

franciscana 

(up to instar III 
Nauplius) 

PS-

COOH 

PS-NH2 

40 

50 

5, 25, 50, 

100 

in nsw 

Difficulties in swimming: 

increase the number of 
molts; aggregation in the 

gut lumen. 

(Bergami et 

al., 2016) 

Arthro-

poda 

Harpacti-

coida 

Tigriopus 

japonicus 
PS 50 

0.125, 1.25, 
12.5, 25 in 

nsw 

Gut retention; Survival 
affected at concentrations 

higher than 1.25 μg/mL. 

(K. Lee et 

al., 2013) 



 

21 
 

5.  Acknowledgements  
CESAM (UID/AMB/50017/2013) received financial support by FCT/MEC 

through national funds, and co-funding by the FEDER (POCI-01-0145-FEDER-

00763), within the PT2020 Partnership Agreement and Compete 2020. IL and 

MO had financial support of the program Investigador FCT (IF/00475/2013 and 

IF/00335-2015, respectively), co-funded by the Human Potential Operational 

Programme and European Social Fund. 

   



 

22 
 

6. References 
Andrady, A. L. (2003). Plastics and the Environment. Wiley Interscience a John 

Wiley & Sons Publication. Wiley-Interscience.  

Andrady, A. L. (2011). Microplastics in the marine environment. Marine Pollution 

Bulletin, 62(8), 1596–1605. http://doi.org/10.1016/j.marpolbul.2011.05.030 

Ashton, K., Holmes, L., & Turner, A. (2010). Association of metals with plastic 

production pellets in the marine environment. Marine Pollution Bulletin, 

60(11), 2050–2055. http://doi.org/10.1016/j.marpolbul.2010.07.014 

Avio, C. G., Gorbi, S., & Regoli, F. (2017). Plastics and microplastics in the 

oceans: From emerging pollutants to emerged threat. Marine 

Environmental Research, 128, 2–11. 

http://doi.org/10.1016/j.marenvres.2016.05.012 

Balbi, T., Camisassi, G., Montagna, M., Fabbri, R., Franzellitti, S., Carbone, C., 

… Canesi, L. (2017). Impact of cationic polystyrene nanoparticles (PS-NH2) 

on early embryo development of Mytilus galloprovincialis: Effects on shell 

formation. Chemosphere, 186(July), 1–9. 

http://doi.org/10.1016/j.chemosphere.2017.07.120 

Bergami, E., Bocci, E., Vannuccini, M. L., Monopoli, M., Salvati, A., Dawson, K. 

A., & Corsi, I. (2016). Nano-sized polystyrene affects feeding, behavior and 

physiology of brine shrimp Artemia franciscana larvae. Ecotoxicology and 

Environmental Safety, 123, 18–25. 

http://doi.org/10.1016/j.ecoenv.2015.09.021 

Bergami, E., Pugnalini, S., Vannuccini, M. L., Manfra, L., Faleri, C., Savorelli, F., 

… Corsi, I. (2017). Long-term toxicity of surface-charged polystyrene 

nanoplastics to marine planktonic species Dunaliella tertiolecta and Artemia 

franciscana. Aquatic Toxicology, 189, 159–169. 

http://doi.org/10.1016/j.aquatox.2017.06.008 

Bessa, F., Barría, P., Neto, J. M., Frias, J. P. G. L., Otero, V., Sobral, P., & 

Marques, J. C. (2018). Occurrence of microplastics in commercial fish from 

a natural estuarine environment. Marine Pollution Bulletin, 128(January), 

575–584. http://doi.org/10.1016/j.marpolbul.2018.01.044 

Brandts, I., Teles, M., Gonçalves, A. P., Barreto, A., Franco-martinez, L., & 



 

23 
 

Tvarijonaviciute, A. (2018). Effects of nanoplastics on Mytilus 

galloprovincialis after individual and combined exposure with 

carbamazepine. Science of the Total Environment, 643, 775–784. 

http://doi.org/10.1016/j.scitotenv.2018.06.257 

Browne, M. A., Dissanayake, A., Galloway, T. S., Lowe, D. M., & Thompson, R. 

C. (2008). Ingested microscopic plastic translocates to the circulatory 

system of the mussel, Mytilus edulis (L.). Environmental Science and 

Technology, 42(13), 5026–5031. http://doi.org/10.1021/es800249a 

Canesi, L., Ciacci, C., Bergami, E., Monopoli, M. P., Dawson, K. A., Papa, S., 

… Corsi, I. (2015). Evidence for immunomodulation and apoptotic 

processes induced by cationic polystyrene nanoparticles in the hemocytes 

of the marine bivalve Mytilus. Marine Environmental Research, 111, 34–40. 

http://doi.org/10.1016/j.marenvres.2015.06.008 

Carvalho, D. G. De, & Neto, J. A. B. (2016). Microplastic pollution of the 

beaches of Guanabara Bay, Southeast Brazil. Ocean & Costal Managemnt, 

128, 10–17. http://doi.org/10.1016/j.ocecoaman.2016.04.009 

Cole, M., Lindeque, P., Fileman, E., Halsband, C., Goodhead, R., Moger, J., & 

Galloway, T. S. (2013). Microplastic Ingestion by Zooplankton. 

http://doi.org/10.1021/es400663f 

Cole, M., Lindeque, P., Halsband, C., & Galloway, T. S. (2011). Microplastics as 

contaminants in the marine environment: A review. Marine Pollution 

Bulletin, 62(12), 2588–2597. http://doi.org/10.1016/j.marpolbul.2011.09.025 

Collignon, A., Hecq, J., Glagani, F., Voisin, P., Collard, F., & Goffart, A. (2012). 

Neustonic microplastic and zooplankton in the North Western 

Mediterranean Sea. Marine Pollution Bulletin, 64(4), 861–864. 

http://doi.org/10.1016/j.marpolbul.2012.01.011 

de Sá, L. C., Oliveira, M., Ribeiro, F., Rocha, T. L., & Futter, M. N. (2018). 

Studies of the effects of microplastics on aquatic organisms: What do we 

know and where should we focus our efforts in the future? Science of the 

Total Environment. http://doi.org/10.1016/j.scitotenv.2018.07.207 

Della Torre, C., Bergami, E., Salvati, A., Faleri, C., Cirino, P., Dawson, K. A., & 

Corsi, I. (2014). Accumulation and embryotoxicity of polystyrene 



 

24 
 

nanoparticles at early stage of development of sea urchin embryos 

Paracentrotus lividus. Environmental Science and Technology, 48(20), 

12302–12311. http://doi.org/10.1021/es502569w 

EFSA. (2016). Presence of microplastics and nanoplastics in food, with 

particular focus on seafood. EFSA Journal. 

http://doi.org/10.2903/j.efsa.2016.4501 

Eriksen, M., Mason, S., Wilson, S., Box, C., Zellers, A., Edwards, W., … Amato, 

S. (2013). Microplastic pollution in the surface waters of the Laurentian 

Great Lakes. Marine Pollution Bulletin, 77(1–2), 177–182. 

http://doi.org/10.1016/j.marpolbul.2013.10.007 

Farrell, P., & Nelson, K. (2013). Trophic level transfer of microplastic: Mytilus 

edulis (L.) to Carcinus maenas (L.). Environmental Pollution, 177, 1–3. 

http://doi.org/10.1016/j.envpol.2013.01.046 

Frias, J. P. G. L., Sobral, P., & Ferreira, A. M. (2010). Organic pollutants in 

microplastics from two beaches of the Portuguese coast. Marine Pollution 

Bulletin, 60(11), 1988–1992. http://doi.org/10.1016/j.marpolbul.2010.07.030 

Gambardella, C., Morgana, S., Ferrando, S., Bramini, M., Piazza, V., Costa, E., 

… Faimali, M. (2017). Effects of polystyrene microbeads in marine 

planktonic crustaceans. Ecotoxicology and Environmental Safety, 

145(September), 250–257. http://doi.org/10.1016/j.ecoenv.2017.07.036 

Gigault, J., Halle, A. ter, Baudrimont, M., Pascal, P. Y., Gauffre, F., Phi, T. L., … 

Reynaud, S. (2018). Current opinion: What is a nanoplastic? Environmental 

Pollution, 235, 1030–1034. http://doi.org/10.1016/j.envpol.2018.01.024 

Goldstein, M. C., Titmus, A. J., & Ford, M. (2013). Scales of spatial 

heterogeneity of plastic marine debris in the Northeast Pacific Ocean, 

8(11). http://doi.org/10.1371/journal.pone.0080020 

González-Fernández, C., Tallec, K., Le Goïc, N., Lambert, C., Soudant, P., 

Huvet, A., … Paul-Pont, I. (2018). Cellular responses of Pacific oyster 

(Crassostrea gigas) gametes exposed in vitro to polystyrene nanoparticles. 

Chemosphere, 208, 764–772. 

http://doi.org/10.1016/j.chemosphere.2018.06.039 

Gourmelon, G., Mármol, Z., Páez, G., Rincón, M., Araujo, K., & Aiello, C. 



 

25 
 

(2015). Global plastic production rises, recycling lags. World Watch 

Institute. http://doi.org/2244-775X 

Gray, A. D., Wertz, H., Leads, R. R., & Weinstein, J. E. (2018). Microplastic in 

two South Carolina Estuaries: Occurrence, distribution, and composition. 

Marine Pollution Bulletin, 128(October 2017), 223–233. 

http://doi.org/10.1016/j.marpolbul.2018.01.030 

Hermabessiere, L., Dehaut, A., Paul-Pont, I., Lacroix, C., Jezequel, R., 

Soudant, P., & Duflos, G. (2017). Occurrence and effects of plastic 

additives on marine environments and organisms: A review. Chemosphere, 

182, 781–793. http://doi.org/10.1016/j.chemosphere.2017.05.096 

Holmes, L. A., Turner, A., & Thompson, R. C. (2012). Adsorption of trace metals 

to plastic resin pellets in the marine environment. Environmental Pollution, 

160, 42–48. http://doi.org/10.1016/j.envpol.2011.08.052 

Imhof, H. K., Schmid, J., Niessner, R., & Laforsch, C. (2013). Contamination of 

beach sediments of a subalpine lake with microplastic particles. Current 

Biology, 23(19), R867–R868. http://doi.org/10.1016/j.cub.2013.09.001 

Jambeck, J. B., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, 

A., … Law, K. L. (2015). Plastic waste inputs from land into the ocean. 

Science, 347(6223), 768–771. 

http://doi.org/10.1017/CBO9781107415386.010 

Jin, Y., Xia, J., Pan, Z., Yang, J., Wang, W., & Fu, Z. (2018). Polystyrene 

microplastics induce microbiota dysbiosis and inflammation in the gut of 

adult zebrafish. Environmental Pollution, 235, 322–329. 

http://doi.org/10.1016/j.envpol.2017.12.088 

Klaine, S. J., Koelmans, A. A., Horne, N., Carley, S., Handy, R. D., Kapustka, 

L., … von der Kammer, F. (2012). Paradigms to assess the environmental 

impact of manufactured nanomaterials. Environmental Toxicology and 

Chemistry, 31(1), 3–14. http://doi.org/10.1002/etc.733 

Koelmans, A. A., Besseling, E., & Shim, W. J. (2015). Nanoplastics in the 

aquatic environment. Critical review. In  Marine Anthropogenic Litter (pp. 

325–340). Cham: Springer International Publishing. 

http://doi.org/10.1007/978-3-319-16510-3_12 



 

26 
 

Lambert, S., & Wagner, M. (2016). Characterisation of nanoplastics during the 

degradation of polystyrene. Chemosphere, 145, 265–268. 

http://doi.org/10.1016/j.chemosphere.2015.11.078 

Lazar, B., & Gračan, R. (2011). Ingestion of marine debris by loggerhead sea 

turtles, Caretta caretta, in the Adriatic Sea. Marine Pollution Bulletin. 

http://doi.org/10.1016/j.marpolbul.2010.09.013 

Lee, J., Hong, S., Kyung, Y., Hee, S., Chang, Y., Jang, M., … Joon, W. (2013). 

Relationships among the abundances of plastic debris in different size 

classes on beaches in South Korea. Marine Pollution Bulletin, 77(1–2), 

349–354. http://doi.org/10.1016/j.marpolbul.2013.08.013 

Lee, K., Shim, W. J., Kwon, O. Y., & Kang, J. (2013). Size-dependent effects of 

micro polystyrene particles in the marine copepod Tigriopus japonicus. 

Environmental Science & Technology, 47(August), 11278–11283. 

http://doi.org/dx.doi.org/10.1021/es401932b 

Li, J., Zhang, K., & Zhang, H. (2018). Adsorption of antibiotics on microplastics. 

Environmental Pollution, 237, 460–467. 

http://doi.org/10.1016/j.envpol.2018.02.050 

Li, S., Liu, H., Gao, R., Abdurahman, A., Dai, J., & Zeng, F. (2018). Aggregation 

kinetics of microplastics in aquatic environment: Complex roles of 

electrolytes, pH, and natural organic matter. Environmental Pollution, 237, 

126–132. http://doi.org/10.1016/j.envpol.2018.02.042 

Manfra, L., Rotini, A., Bergami, E., Grassi, G., Faleri, C., & Corsi, I. (2017). 

Comparative ecotoxicity of polystyrene nanoparticles in natural seawater 

and reconstituted seawater using the rotifer Brachionus plicatilis. 

Ecotoxicology and Environmental Safety, 145(July), 557–563. 

http://doi.org/10.1016/j.ecoenv.2017.07.068 

Mao, Y., Ai, H., Chen, Y., Zhang, Z., Zeng, P., Kang, L., & Li, W. (2018). 

Phytoplankton response to polystyrene microplastics: Perspective from an 

entire growth period. Chemosphere, 208, 59–68. 

http://doi.org/10.1016/j.chemosphere.2018.05.170 

Mattsson, K., Hansson, L.-A., & Cedervall, T. (2015). Nano-plastics in the 

aquatic environment. Environment Science: Processes Impacts, 17(10), 



 

27 
 

1712–1721. http://doi.org/10.1039/C5EM00227C 

Moore, C. J., Lattin, G. L., & Zellers,  a F. (2007). A Brief Analysis of Organic 

Pollutants Sorbed to Pre and Post- Production Plastic Particles from the 

Los Angeles and San Gabriel River Watersheds. October, (January 2005). 

Retrieved from 

http://5gyres.org/media/Brief_Analysis_of_Organic_Pollutants.pdf 

Naji, A., Nuri, M., & Vethaak, A. D. (2018). Microplastics contamination in 

molluscs from the northern part of the Persian Gulf. Environmental 

Pollution, 235, 113–120. http://doi.org/10.1016/j.envpol.2017.12.046 

Nel, A. (2006). Toxic Potential of Materials at the Nanolevel. Science, 

311(5761), 622–627. http://doi.org/10.1126/science.1114397 

Pinsino, A., Bergami, E., Della Torre, C., Vannuccini, M. L., Addis, P., Secci, M., 

… Corsi, I. (2017). Amino-modified polystyrene nanoparticles affect 

signalling pathways of the sea urchin (Paracentrotus lividus) embryos. 

Nanotoxicology, 11(2), 201–209. 

http://doi.org/10.1080/17435390.2017.1279360 

PlasticsEurope Market Research Group (PEMRG) / Consultic Marketing & 

Industrieberatung GmbH. (2017). Plastics – the Facts 2017. Association of 

Plastics Manufacturers, 16. http://doi.org/10.1016/j.marpolbul.2013.01.015 

Pruter, A. T. (1987). Sources, quantities and distribution of persistence plastics 

in the marine environment, 18(611), 305–310. 

Rayon-viña, F., Miralles, L., Gómez-agenjo, M., & Dopico, E. (2018). Marine 

litter in south Bay of Biscay: Local differences in beach littering are 

associated with citizen perception and awareness. Marine Pollution 

Bulletin, 131(February), 727–735. 

http://doi.org/10.1016/j.marpolbul.2018.04.066 

Rochman, C. M., Hoh, E., Hentschel, B. T., & Kaye, S. (2013). Long-term field 

measurement of sorption of organic contaminants to five types of plastic 

pellets: Implications for plastic marine debris. 

http://doi.org/10.1021/es303700s 

Sadri, S. S., & Thompson, R. C. (2014). On the quantity and composition of 

floating plastic debris entering and leaving the Tamar Estuary, Southwest 



 

28 
 

England. Marine Pollution Bulletin, 81(1), 55–60. 

http://doi.org/10.1016/j.marpolbul.2014.02.020 

Santos, I. R., Friedrich, A. C., & Ivar do Sul, J. A. (2009). Marine debris 

contamination along undeveloped tropical beaches from northeast Brazil. 

Environmental Monitoring and Assessment, 148(1–4), 455–462. 

http://doi.org/10.1007/s10661-008-0175-z 

Sheavly, S. B., & Register, K. M. (2007). Marine debris & plastics: 

Environmental concerns, sources, impacts and solutions. Journal of 

Polymers and the Environment, 15(4), 301–305. 

http://doi.org/10.1007/s10924-007-0074-3 

Šilc, U., Küzmič, F., Caković, D., & Stešević, D. (2018). Beach litter along 

various sand dune habitats in the southern Adriatic (E Mediterranean). 

Marine Pollution Bulletin, 128(January), 353–360. 

http://doi.org/10.1016/j.marpolbul.2018.01.045 

Sjollema, S. B., Redondo-Hasselerharm, P., Leslie, H. A., Kraak, M. H. S., & 

Vethaak, A. D. (2016). Do plastic particles affect microalgal photosynthesis 

and growth? Aquatic Toxicology, 170, 259–261. 

http://doi.org/10.1016/j.aquatox.2015.12.002 

Sun, X., Chen, B., Li, Q., Liu, N., Xia, B., Zhu, L., & Qu, K. (2018). Toxicities of 

polystyrene nano- and microplastics toward marine bacterium Halomonas 

alkaliphila. Science of the Total Environment, 642, 1378–1385. 

http://doi.org/10.1016/j.scitotenv.2018.06.141 

Talvitie, J., Heinonen, M., Pääkkönen, J. P., Vahtera, E., Mikola, A., Setälä, O., 

& Vahala, R. (2015). Do wastewater treatment plants act as a potential 

point source of microplastics? Preliminary study in the coastal Gulf of 

Finland, Baltic Sea. Water Science and Technology. 

http://doi.org/10.2166/wst.2015.360 

Tamminga, M., Hengstmann, E., & Fischer, E. K. (2018). Microplastic analysis 

in the South Funen Archipelago, Baltic Sea, implementing manta trawling 

and bulk sampling. Marine Pollution Bulletin, 128(January), 601–608. 

http://doi.org/10.1016/j.marpolbul.2018.01.066 

Todd, P. A., Ong, X., & Chou, L. M. (2010). Impacts of pollution on marine life in 



 

29 
 

Southeast Asia. Biodiversity and Conservation, 19(4), 1063–1082. 

http://doi.org/10.1007/s10531-010-9778-0 

Velzeboer, I., Kwadijk, C. J. A. F., & Koelmans, A. A. (2014). Strong Sorption of 

PCBs to Nanoplastics, Microplastics, Carbon Nanotubes, and Fullerenes. 

Environmental Science & Technology, 48(9), 4869–4876. 

http://doi.org/10.1021/es405721v 

vom Saal, F. S., & Hughes, C. (2005). An extensive new literature concerning 

low-dose effects of bisphenol A shows the need for a new risk assessment. 

Environmental Health Perspectives. http://doi.org/10.1289/ehp.7713 

Wang, T., Zou, X., Li, B., Yao, Y., Li, J., Hui, H., … Wang, C. (2018). 

Microplastics in a wind farm area: A case study at the Rudong Offshore 

Wind Farm, Yellow Sea, China. Marine Pollution Bulletin, 128(January), 

466–474. http://doi.org/10.1016/j.marpolbul.2018.01.050 

Wegner, A., Besseling, E., Foekema, E. M., Kamermans, P., & Koelmans, A. A. 

(2012). Effects of nanopolystyrene on the feeding behavior of the blue 

mussel (Mytilus edulis L.). Environmental Toxicology and Chemistry, 

31(11), 2490–2497. http://doi.org/10.1002/etc.1984 

Worm, B., Lotze, H. K., Jubinville, I., Wilcox, C., & Jambeck, J. (2017). Plastic 

as a persistent marine pollutant. Annual Review of Environment and 

Resources, 42(1), null. http://doi.org/10.1146/annurev-environ-102016-

060700 

Xiong, X., Zhang, K., Chen, X., Shi, H., Luo, Z., & Wu, C. (2018). Sources and 

distribution of microplastics in China’s largest inland lake – Qinghai Lake. 

Environmental Pollution, 235, 899–906. 

http://doi.org/10.1016/j.envpol.2017.12.081 

Zhang, H., Kuo, Y. Y., Gerecke, A. C., & Wang, J. (2012). Co-release of 

hexabromocyclododecane (HBCD) and nano- and microparticles from 

thermal cutting of polystyrene foams. Environmental Science and 

Technology, 46(20), 10990–10996. http://doi.org/10.1021/es302559v 

Zhao, S., Zhu, L., Wang, T., & Li, D. (2014). Suspended microplastics in the 

surface water of the Yangtze Estuary System, China: First observations on 

occurrence, distribution. Marine Pollution Bulletin, 86(1–2), 562–568. 



 

30 
 

http://doi.org/10.1016/j.marpolbul.2014.06.032 

  



 

31 
 

 
 
 
 
 

CHAPTER III 
 
 
 
 

Nanoplastic effects on microalgae and rotifers 
 
 

Inês Ferreira, Isabel Lopes, Cátia Venâncio, Miguel Oliveira 

2018 

 

 

 
 
 
 

 
 
 



 

32 
 

Abstract 
 The biota of marine ecosystems is currently exposed to plastics of 

different types, sizes and shapes and other environmental contaminants that 

may compromise their health status and consequently, ecosystems. 

Polymethylmethacrylate (PMMA) is a type of plastic for which little information is 

available in terms of potential effects to aquatic organisms, despite its use in 

different human activities. Caffeine is included in the high production volume 

chemicals, one of the most widely consumed drugs in the world, thus proposed 

as an anthropogenic marker. In this perspective, the study of the effects of 

PMMA alone and combined with caffeine may provide important information on 

the interaction of these particles with environmental contaminants. Accordingly, 

two specific objectives were defined for this study: i) to assess the effects of 

increasing concentrations of PMMA on four marine algae species (Tetraselmis 

chuii, Nannochloropsis gaditana, Isochrysis galbana and Thalassiosira 

weissflogii) and on three types of one marine rotifer species (Brachionus 

plicatilis type SS, S and L); ii) to verify if there is an interaction between PMMA 

and environmental contaminants, namely caffeine. The first objective was 

achieved by performing a battery of standard monospecific bioassays. To tackle 

the second objective, the growth rates of T. chuii and N. gaditana were 

evaluated when exposed to caffeine alone and when combined caffeine with 

PMMA. PMMA was able to influence the growth rate of all microalgae species 

with T. weissflogii being the most sensitive one (EC50 = 83.75 mg/L) while T. 

chuii was the less affected one (EC50 = 132.52 mg/L). PMMA also affected the 

survival of the rotifers with a LC50 of 13.27 mg/L for the most sensitive type of 

rotifer. Concerning caffeine an EC20 of 565.4 mg/L and 567.6 mg/L was 

estimated for T.chuii and N. gaditana, respectively. In the combined exposure, 

results showed than the mixture was able to significantly affect the growth rate 

of marine algae. 
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1. Introduction 
Aquatic organisms are exposed to a variety of natural and anthropogenic 

stresses. Plastic debris are an example of anthropogenic-derived stressors due 

to their widespread use and durability (Abidli et al., 2018). Considering that 

there are several types of plastics polymers, their effects to marine biota can be 

very distinct, affecting organisms in different ways. Since there are no 

evidences that the amount of plastic ending up on the oceans is decreasing 

(Law et al., 2010; Goldstein et al., 2012), it becomes imperative to analyze the 

impacts of these debris. Polymethylmethacrylate (PMMA) is a plastic polymer 

that may be able to affect marine organisms and/or interact with other 

contaminants affecting organisms differently as other polymers do (Caron et al., 

2018; Compa et al., 2018). Those contaminants can either be related to plastic 

production processes, or related to other pollution sources (Gauquie et al., 

2015). Caffeine is a xanthine alkaloid compound and a central nervous system 

stimulant, consumed daily in coffee, tea, soft drinks, and chocolate. Thus, it one 

of the most widely consumed psychoactive substances in the world (Knee et al., 

2010; Paíga & Delerue-Matos, 2017) which makes it being discharge through 

wastewaters and, later, discard into coastal waters (Comeau et al., 2008). 

Caffeine is one of the most commonly found organic chemicals in surface 

waters (Pollack et al., 2009) and as Dafouz et al., (2018) stated, caffeine levels 

present a chronic risk quotient higher than one for almost one third of seawater 

samples. 

Microalgae are primary producers, so they are responsible for producing 

energy, oxygen and food. Microalgae have been used in toxicity tests to assess 

the toxic effects of compounds like metals (Hamed et al., 2017; Cameron et al., 

2018) or drugs (Teixeira & Granek, 2017; Bácsi et al., 2018). However, no 

studies have been found concerning the toxic effects of nanoplastics to marine 

microalgae. Rotifers are aquatic invertebrates that have crucial roles such as 

energy transfer between producers and consumers in aquatic food chains (Han 

et al., 2018). Since they are small, they are also suitable for the earliest stages 

of fish and shrimp larvae (Dhont et al., 2013). Despite its importance in the 

aquatic environment, few studies are found in terms of the effects of 

nanoplastics to marine rotifers.  
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Therefore, the aim of this study was to evaluate the effects of PMMA 

nanoplastics, on the growth rates of four marine microalgae (Tetraselmi chuii, 

Nannochloropsis gaditana, Isochrysis galbana and Thalassiosira weissflogii) 

and one marine rotifer (Brachionus plicatilis) through standard bioassays. Two 

types of assessment were performed: a) species (microalgae and rotifers) were 

exposed to PMMA nanoplastics solely; and b) species (microalgae) were 

exposed PMMA nanoplastics combined with caffeine. 

 
2. Materials and methods 

2.1.   Nanoplastics 
 Polymethylmethacrylate (PMMA) characterization was performed in 

ultrapure water as well as seawater through dynamic light scattering (DLS) in 

order to analyze the nanoplastics behavior. PMMA in ultrapure water had an 

average size of 49.49 nm (Figure III.1-a) however, when the same nanoplastics 

are in saltwater its size increases as shown in figure III.1-b. Particles size 

increased immediately after being placed in saltwater to approximately 58.6 nm. 

After 1 hour the average size was 97.3 nm and they reached a size of 120.3 nm 

after 24 h. Their suspension stability was also evaluated through zeta potential 

assessment, with particles presenting a value of -22.3 mV in seawater. All 

executed tests used the same stock solution of PMMA (0.4395 g/mL). 

 

 
Figure III.1 – Characterization of polymethylmethacrylate (PMMA). a) PMMA nanoparticles seen 

at an electron microscope. b) Size characterization (after 0, 1 and 24 h) of PMMA nanoparticles 

in saltwater through dynamic light scattering (DLS). 
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2.2.  Selection of test organisms 
Microalgae (e.g. Tetraselmis chuii and Nannochloropsis gaditana) are 

used in aquaculture as a primary food source for larval and juvenile bivalves, as 

well as larvae of crustaceans and fish species (Brown et al., 1997). T. chuii is a 

prasinophyceae algae with cylindrical shape that has between 8 and 16 μm. It 

has a large distribution among various applications in laboratorial cultures 

(Cordero et al., 2005). N. gaditana belongs to the phylum Heterokonta and is a 

marine microalga that has gained increasing attention due to its promising role 

in biofuel production systems, because of its fatty acid profile and high lipid 

content (Alboresi et al., 2017; Jackson et al., 2018; Moraes et al., 2018). 

Isochrysis galbana is another example of a microalgae that is potentially 

promising to the food industry due to its significantly high lipid content (Bonfanti 

et al., 2018). This specie can grow at high temperatures, such as 30 ºC so it is 

used as food in tropical aquaculture (Silitonga et al., 2017). Marine diatoms are 

also an important part of microalgae. Approximately 20 % of total global primary 

production are due to marine diatoms (Gao et al., 2018). Thalassiosira 

weissflogii is a primary producer diatom widely used in toxicity tests as a 

sensitive test organism (Araújo & Souza-Santos, 2013). 

The marine rotifer Brachionus plicatilis is an important organism for 

ecophysiology, ecotoxicology and environmental genomics (Dahms et al., 2011; 

Hagiwara & Yoshinaga, 2017) and it has already been used in many toxicity 

tests due to its small size, short generation cycle, high fecundity, and easy 

laboratory maintenance (Zheng et al., 2017; Han et al., 2018; Ponce et al., 

2018). 

 

2.3.  Maintenance of test organisms 
Four marine microalgae, Tetraselmis chuii, Nannochloropsis gaditana, 

Isochrysis galbana and Thalassiosira weissflogii were used in this study. All 

species were maintained in F/2 medium (Guillard, 1975) made with natural 

seawater (NSW), previously filtered through a 200 nm filter and then autoclaved 

for 20 minutes at 121 ºC, 1 BAR (Uniclave 88, AJC). After sterilization, the 

medium was supplied with vitamins (B1, B12 and H). In the case of the diatom, 

culture medium was supplied with silica (22.5 g/L). Algae were kept under 

laboratorial conditions both of light (24 h light) and temperature (23 ± 1 ºC). 



 

36 
 

The marine rotifer Brachionus plicatilis was selected as a primary 

consumer. This species can be divided in three types according to their size: SS 

from 100 to 160 µm, S from 140 to 220 µm and L from 190 to 320 µm (Rahman 

et al., 2018). They were maintained in NSW, previously filtered through a 200 

nm filter to remove organisms and suspended particles, and with salinity 

adjusted to 20, an optimal value for the growth of rotifers. Organisms were fed 

three times a week with Tetraselmis chuii (~2 * 105 cell/mL) (Kaneko et al., 

2016) and maintained under laboratorial control conditions of temperature (23 ± 

1 ºC) and light (24 h light). 

 

2.4.  Ecotoxicity assays   

2.4.1. Methodology used to count microalgae 
Cell counting is a precise method but rather time-consuming. Thus, for 

each algae species, a calibration curve was performed relating the absorbance 

of the samples with the number of cells present in that same sample, in the 

absence of contaminants. For each alga, a calibration curve was performed 

throughout an 8 days growth test. An algae concentration of 104 cell/mL was 

used to start the test and then, every day, algae were counted with a Neubauer 

chamber and absorbance (ABS) read in a spectrophotometer (Thermo Scientific 

Multiskan Spectrum). The cell density (number of cells/mL) was calculated 

through the absorbance measurements, obtained at specific wavelengths 

according to each algae species: 540 nm in T. chuii (Enache, 2013); 640 nm 

and 682 nm for N. gaditana (Gentile & Blanch, 2001; Santos-Ballardo et al., 

2015); 660 nm and 680 nm for I. galbana (Sánchez et al., 2000; Lin et al., 

2007); and 440, 462 and 490 nm for T. weissflogii (Taguchi & Fujiki, 2001).  

 

2.4.2. Growth inhibition assays of marine algae exposed to 
PMMA 

The 96-h growth rate inhibition assays started after the establishment of 

the curves for the growth rates of each algae species (Fig. III.2). After 

performing several range-finding tests, to determine concentrations ranges 

inducing effects on algae growth, seven definitive concentrations of PMMA were 

chosen to allow a more accurate determination of LC50,96h: 150.0, 168.8, 189.8, 
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213.6, 240.3, 270.3 and 304.1 mg/L for T. chuii, N. gaditana and I. galbana and 

75.0, 94.1, 118.1, 148.3, 186.1, 233.5, 293.0 mg/L for the diatom T. weissflogii. 

The assays were performed according to the OECD guideline 201 (OECD, 

2011), adapted to 24-well microplates. Three replicates were established per 

concentration plus a control (F/2 medium solely). Each replicate contained 900 

μL of the nanoplastics solution (prepared in F/2 medium) and 100 μL of algal 

inoculum (at an initial cell concentration of 105 cells/mL). The tests lasted for 96 

h and during the incubation period, test plates were kept at 20 ± 0.1 ºC with 

continuous light. At the end of the assays, cell density (number of cells/mL) for 

all tests was calculated through the Absorbance (ABS) measurements and 

average growth rate (μ), for each species (equation 2, 3, 4 and 5), was 

determined through equation 1: 

 

1. 𝜇ab	 = 	 ('()b*'()a)
,b*,a

	× 	100, where Db is the cell density at the end of the assay, 

Da is the cell density at the beginning of the assay and tb − ta is the exposure 

time interval (96 h). 

 

2.4.3. Growth inhibition assays of marine algae exposed to 
PMMA and caffeine 

For the combined exposure assays, only two of the four species of 

marine microalgae were selected: T. chuii and N. gaditana. Firstly, the growth 

rates of the two algae species were evaluated under exposure to the following 

concentrations of caffeine (based on Aguirre-Martínez et al., (2015)): 350, 400, 

450, 500, 550, 600 and 650 mg/L. To assess the toxicity of the mixture of 

caffeine and PMMA the selected concentrations were: 100 (P1) and 115 (P2) 

mg/L of PMMA and 250 (C1) and 350 (C2) mg/L of caffeine. 

The test procedure followed the OECD guideline 201 (OECD, 2011) and 

it was executed as described in the previous section. Briefly, three replicates 

were established, each one had 900 μL of caffeine or PMMA combined with 

caffeine and 100 μL of algae inoculum. The same method as before was used 

to calculate cell density and determinate the average growth rate (equation 1). 
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2.4.4. Effect of PMMA on the survival of rotifers 
The 48-h survival assays with rotifers were based on Rotoxkit M protocol 

(MicroBioTests Inc., Ghent, Belgium). Tests were performed in 24-well plates. 

Five PMMA concentrations (based on range finding tests) were tested 4.7, 9.4, 

18.9, 37.5, 75.0 mg/L plus a negative control. Concentrations were obtained by 

diluting a stock solution of NP (439500 mg/L) with filtered NSW at a salinity of 

20. Each well was filled with 1 mL of the nanoplastics desired concentration. 

Four replicates were assembled per treatment, with five organisms per 

replicate. Organisms were kept at 20 ± 1 ºC, in the dark and were not feed 

during this test. Percentage of survival was determined after 48 h of exposure.   

 

2.5.  Data analysis   
Each data set of algae was checked for normality (Shapiro-Wilk) and an 

Equal Variance Test (Brown-Forsythe) If the algae passed both tests, then a 

one-way variance analysis (one-way ANOVA) was performed followed by the 

Dunnett test to assess possible differences between treatments and the 

respective control (with no nanoplastics added). If the algae did not pass the 

normality and equal variance tests a non-parametric ANOVA was calculated. 

For the combined exposure a Tukey test was used instead of a Dunnett test, in 

order to test differences between mixture and control, mixture and caffeine and 

mixture and PMMA. p < 0.05 was taken as the significant cutoff. Statistical 

analysis was performed using the software SigmaStat 4.0.  

Effective concentration of nanoplastics and caffeine causing 50 % and 20 

% of inhibition on algae growth (EC50 and EC20, respectively) were calculated 

using the software Statistica. The concentrations causing 50 %, 20 % an 10 % 

of mortality on rotifers (LC50, LC20 and LC10, respectively) were computed using 

the software Probit.  

 
3. Results  

3.1.  Calibration curves for marine algae 
Calibration curves are showed in Fig. III.2 and the concentration of each 

algae in number of cells per milliliter can be determined through equations 2, 3, 

4 and 5:  
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2. Conc (cells/mL) = ABS / 0.0000004 – 0.0088 (R2 = 0.92), Tetraselmis chuii  

3. Conc (cells/mL) = ABS / 0.0000004 – 0.0117 (R2 = 0.97), Nannochloropsis gaditana 

4. Conc (cells/mL) = ABS / 0.0000003 – 0.006 (R2 = 0.96), Isochrysis galbana  

5. Conc (cells/mL) = ABS / 0.0000002 – 0.0006 (R2 = 0.99), Thalassiosira weissflogii  

 

where ABS correspond to the absorbance read at 540 nm for T. chuii, 682 nm 

for N. gaditana, 680 nm for I. galbana and 490 nm for T. weissflogii. 

 

 
Figure III.2 – Calibrations curves for each of the studied algae species.   

 
3.2.  Growth inhibition assays of marine algae exposed to PMMA 
After 96 h of exposure to PMMA nanoplastics, growth rate was 

significantly affected in every algae specie (Fig. III.3). Growth rate in T. chuii 

significantly decreased when compared to the control at all tested 

concentrations and growth rate was even 0 % at 189.8, 213.6, 240.3 and 304.1 

mg/L. The same applies to N. gaditana which presented a growth rate of 0% at 

213.6, 270.3 and 304.1 mg/L. The diatom T. weissflogii was also significantly 

affected at all concentrations of nanoplastics with the lower growth rate at 233.5 

mg/L. For I. galbana growth rate was only significantly decreased at 240.3 and 

304.1 mg/L of PMMA. Effective concentrations for algae exposed to 
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polymethylmethacrylate nanoplastics and caffeine are shown in Table III.1. The 

green microalgae T. chuii was found to be the most tolerant marine algae to 

PMMA with an EC50 of 132.52 mg/L, while the diatom T. weissflogii was found 

to be the most sensitive one with an EC50 of 83.40 mg/L.  

 

 
Figure III.3 – Bar plots representing the growth rate (μ) of algae exposed for 96 h to increase 

concentrations of polymethylmethacrylate (PMMA) nanoplastics. Vertical bars correspond to the 

error (n=3). *p < 0.05 (Dunnett's test). 
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Table III.1 – Effective concentrations causing X % of effect (ECx) on the growth rate of marine 

algae after 96 h of exposure to polymethylmethacrylate nanoplastics (PMMA). Inside brackets 

represent the 95 % confidence limits. n.d. – not determined. 

 

 

 

 

 

 

 

 

 

 

3.3.  Growth inhibition assays of marine algae exposed to PMMA 
and caffeine 

Firstly, regarding the exposure to caffeine, after 96 h the growth rate of 

both marine microalgae was significantly affected (Fig. III.4). The growth rate of 

T. chuii was significantly decreased at 350, 500, 550, 600 and 650 mg/L when 

compared to control (p < 0.001 for every concentration). For N. gaditana growth 

rate was significantly decreased only at 550, 600 and 650 mg/L when compared 

to control (p = 0.025 for 550 mg/L; p < 0.001 for 600 and 650 mg/L). Effective 

concentrations for algae exposed to caffeine are shown in Table III.2. The 

results were very similar in the two algae, with T. chuii displaying and EC20 of 

565.4 mg/L and N. gaditana an EC20 of 567.6 mg/L.  

 

 
Figure III.4 – Bar plots representing the growth rate (μ) of algae exposed for 96 h to increase 

concentrations of caffeine. Vertical bars correspond to the error (n=3). *p < 0.05 (Dunnett's test). 

 Species ECx (mg/L) 

EC50 EC20 

PM
M

A 

Tetraselmis chuii 
132.5 

(124.5-140.5) 

117.4 

(104.5-130.2) 

Nannochloropsis gaditana 
116.5 

(102.9-131.0) 
n.d. 

Isochrysis galbana 
123.8 

(116.6-131.1) 

106.3 

(95.9-116.2) 

Thalassiosira weissflogii 
83.4 

(72.5-94.4) 

48.9 

(36.3-61.4) 
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Table III.2 – Effective concentrations causing X % of effect (ECx) on the growth rate of marine 

algae after 96 h of exposure to caffeine. Inside brackets represent the 95 % confidence limits. 

n.d. – not determined; n.c. – not calculated. 

 

 

 

 

 

 

 

 The results from the growth inhibition assay with the combined exposure 

of caffeine and PMMA are shown in Fig. III.5. For T. chuii growth rate was not 

significantly affected by exposure to the least amount of caffeine (C1), while for 

N. gaditana, growth rate was not significantly affected by exposure to caffeine 

(C1 and C2) when compared to control conditions; however, the growth rates of 

the two microalgae species, were significantly reduced at both PMMA 

concentrations (P1 and P2), as well as when exposed to the mixtures when 

compared to the control. Moreover, show that for T. chuii there were no 

significant differences in growth rate between P1 and P1 + C2, as well as 

between P2 and P2 + C2. However, there were significant differences between 

P1 and P1 + C1 and between P2 and P2 + C1. Regarding N. gaditana there 

were no differences only between the mixtures P2 + C1 and P2 + C2. 

 

 

 

 

 

 

 Species ECx (mg/L) 

EC50 EC20 

C
af

fe
in

e Tetraselmis chuii n.c. 
565.4 

(554.3-578.7) 

Nannochloropsis gaditana n.c. 
567.6 

(n.d.-582.2) 
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Figure III.6 – Bar plots representing the growth rate (%), with growth rate of control being 

considered 100 %, of algae exposed for 96 h to caffeine (C1 = 250 mg/L; C2 = 350 mg/L), 

polymethylmethacrylate (PMMA) (P1 = 100 mg/L; P2 = 115 mg/L) and a mixture of PMMA and 

caffeine (P1+C1 = 100 mg/L of PMMA with 250 mg/L of caffeine; P1+C2 = 100 mg/L of PMMA 

with 350 mg/L of caffeine; P2+C1 = 115 mg/L of PMMA with 250 mg/L of caffeine; P2+C2 = 115 
mg/L of PMMA with 350 mg/L of caffeine). Different letters represent significative differences 

between the means (p < 0.05) recorded in the several concentrations (Tukey’s test). 

 
3.4.  Survival assay with PMMA 
The survival of rotifers was affected when they were exposed to PMMA 

nanoplastics for 48 h (Fig. III.6). Brachionus plicatilis type S and SS organisms 

were less affected, with significant effects on survival detected at the highest 

concentration, 75 mg/L (p < 0.001 and p = 0.008, respectively). On the other 

hand, type L rotifers shown significant decreased survival at concentrations 

equal or above 9.38 mg/L and 0 % at 75 mg/L (p = 0.039 for 9.38 mg/L; p = 

0.003 for 18.75 mg/L; p = 0.007 for 37.5 mg/L and p < 0.001 for 75 mg/L). The 

survival of rotifers allowed the estimation of lethal concentrations for rotifers 

exposed for 48 h to PMMA nanoplastics (Table III.3). Type S rotifers was 

discovered to be the more tolerant species (LC50 = 37.59 mg/L), while L was 

discovered to be the most sensitive one with an LC50 of 13.27 mg/L).  
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Figure III.6 – Bar plots indicating the percentage of survival after 48 h of three size categories of 

Brachionus plicatilis exposed to polymethylmethacrylate (PMMA). Vertical bars correspond to 

the error (n=4). *p < 0.05 (Dunnett's test). 

 
Table III.3 – Lethal concentrations of polymethylmethacrylate (PMMA) nanoplastics causing X 

% of effect (LCx) for each specie studied. Mortality was measure after 48 h. Inside brackets are 

represented the 95 % confidence limits. n.d. – not determined.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

4. Discussion 
Nanoplastics have been found to affect marine organisms from bacteria 

to mollusks (Balbi et al., 2017; Sun et al., 2018). The PMMA nanoplastics 

appear to affect growth and mortality of marine microalgae and rotifers, 

respectively. It is difficult to find a report on PMMA effects on marine organisms, 

 Species LCx (mg/L) 

LC50 LC20 LC10 

PM
M

A 

Brachionus plicatilis 

Type S 

37.6 

(27.2-61.6) 

13.8 

(8.6-19.0) 

8.18 

(4.0-12.1) 

Brachionus plicatilis 

Type SS 

29.3 

(10.3-n.d.) 

6.7 

(n.d.-16.1) 

3.1 

(n.d.-9.3) 

Brachionus plicatilis 

Type L 

13.3 
(8.1-19.7) 

3.8 
(1.1-6.6) 

2.0 
(0.4-4.1) 
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so this may be the first report of PMMA effects on marine algae and rotifers. 

The exposure of microalgae to PMMA showed that this type of plastic can affect 

the growth at concentrations higher than 75 mg/L (T. weissflogii), 150 mg/L (T. 

chuii and N. gaditana) and 240.3 mg/L (I. galbana). The estimated EC 

confirmed that the diatom T. weissflogii was the most sensitive with an EC50 of 

83.4 mg/L, followed by N. gaditana with an EC50 of 116.5 mg/L, I. galbana with 

an EC50 of 123.8 mg/L and the more resistant was T. chuii with an EC50 of 132.5 

mg/L. Additionally, the diatom was the marine algae species where significant 

effects of PMMA started at lower concentrations (EC20 = 48.90 mg/L). 

Comparing the obtained data with those obtained in other studies, PMMA (~50 

nm) appears to have more impact on microalgae growth rate more than 

polystyrene (PS) (50 nm) when comparing with the data obtained by Sjollema et 

al., (2016) in Dunaliella tertiolecta where a 57% decrease was observed at 250 

mg/L. However, PMMA was less harmful for marine algae than cationic amino (-

NH2) PS particles (50 nm) where an EC50 of 12.97 mg/L was registered for D. 

tertiolecta after only 72h of exposure (Bergami et al., 2017). Thus, PMMA 

appears to be more dangerous than PS and less harmful than PS-HN2 for 

marine microalgae. However, this comparison is not straightforward as species 

specific sensitivity must be taken into account. Studies of T. chuii exposed to 

microplastics (1-5 μm) show that the growth of this marine algae is not affected 

up to 41.5 mg/L (Davarpanah & Guilhermino, 2015; Prata et al., 2018) which 

seems to happen for T. chuii exposed to PMMA as well, considering that an 

EC20 of 117.4 mg/L was observed.  

 Effects of caffeine on marine organisms, such as mollusks and 

arthropods have already been studied (Aguirre-Martínez et al., 2013; Capolupo 

et al., 2016), but there are no studies concerning effects on T. chuii and N. 

gaditana. Growth rate of T. chuii was decreased at 350, 500, 550, 600 and 650 

mg/L, as for N. gaditana growth rate was decreased at 550, 600 and 650 mg/L. 

Both algae appear to be more resistant to caffeine than I. galbana which had 

significant growth inhibition upon 96 h of exposure to 100 and 500 mg/L 

(Aguirre-Martínez et al., 2015). An EC20 of 565.4 mg/L for T. chuii and an EC20 

of 567.6 mg/L for N. gaditana was found for caffeine, demonstrating that algae 

were more sensitive to PMMA than to caffeine.  
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There are no studies published about the effects on marine organisms of 

combined exposure of mixtures of PMMA with any other environmental 

contaminant. Thus, this report is the first regarding the effects of an exposure of 

PMMA and caffeine on marine organisms. Since both PMMA and caffeine 

independently affected the growth rate of T. chuii and N. gaditana, it was 

expected that when the microalgae were exposed to a mixture of those 

contaminants the growth inhibition was even higher. This hypothesis was 

verified for both T. chuii and N. gaditana in the mixture with the less amount of 

PMMA and caffeine (P1 + C1) and in the highest amount of PMMA and less 

caffeine (P2 + C1), as well as in the highest amount of PMMA and caffeine (P2 

+ C2) for N. gaditana. Regarding the effects of P1 + C2 and P2 + C2 for T. 

chuii, results showed that there are no significative differences between the 

mixture and the exposure to PMMA solely. On the other hand, for N. gaditana 

the mixture P1 + C2 appears to have an antagonistic effect when compared to 

PMMA exposure solely, this may be due to the mixture causing an intermediate 

level of stress which promotes a peak on the growth rate of this marine algae.  

In the 48-h acute toxicity test, survival of Brachionus plicatilis type SS, S 

and L was affected by PMMA (~50 nm). Type L rotifers, the bigger sized ones, 

were significantly affect from 9.38 mg/L, while type S and SS were only affected 

at 75 mg/L. Since it had already been proved that nanoplastics are ingested and 

retained by rotifers (Manfra et al., 2017), the observed differences in survival of 

this marine rotifer can be due to the different sizes of the organism, being easier 

for the largest type of rotifers to incorporate PMMMA particles and, 

consequently, be more affected by them. Therefore, B. plicatilis type L was the 

most sensitive one with a LC50 of 13.3 mg/L and also the one that was affected 

at lower concentrations (LC10 = 1.97 mg/L), then type SS with a LC50 of 29.3 

mg/L and, lastly, type S with a LC50 of 37.6 mg/L. These results show that 

PMMA is less harmful than PS-NH2 (50 nm), since a LC50 of 6.62 mg/L was 

observed for the same rotifer specie by Manfra et al. (2017). On the other hand, 

B. plicatilis exposed to PS nanoplastics (100 nm) did not show any significant 

effect on mortality in concentrations up to 10 mg/L (Gambardella et al., 2018), 

suggesting a size related toxicity.  

In summary, marine microalgae revealed to be more tolerant to PMMA 

than all types of B. plicatilis. In fact, the most sensitive microalgae (T. 
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weissflogii) was twice more tolerant than the most tolerant type of marine rotifer 

(B. plicatilis type S).  

Nanoplastics affect, in different ways, organisms from several habitats 

and trophic levels. These data contribute to scientific knowledge about 

nanoplastics effects, however it is important to expose these species to different 

sizes and polymers of nanoplastics in order to evaluate the bioavailability, as 

well as combined exposures with different contaminants. Also, there is a need 

to investigate the effect of nanoplastics through the food chain and the 

mechanisms of bioaccumulation in order to see if these particles could be 

dangerous even for humans. 
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1. General discussion and future perspectives 
 Plastic are becoming a serious threat to marine environment regardless 

their type, size and shape. All marine ecosystems are affected by them, species 

from zooplankton to whales are exposed to plastic. The literature review 

showed that currently, there is considerable amount of information concerning 

the effects of macro- and microplastics. However, and even though studies 

show that these macro- and microplastics can degrade into nanoplastics, few 

studies have focused on the effects of these particles to marine organisms. 

Regarding marine organisms the most studied organisms are arthropods and 

mollusks but, for algae and rotifers, a single species has been studied. 

Polystyrene is the most commonly studied plastic in the literature, however 

different kinds of plastic may cause different effects on the same organism, 

justifying further studies with other types of polymers like PMMA.  

 The effects of PMMA nanoplastics on marine microalgae and rotifers are 

completely unknown. This lack of knowledge justified the study of the effects of 

PMMA on producers (Tetraselmi chuii, Nannochloropsis gaditana, Isochrysis 

galbana and Thalassiosira weissflogii) and primary consumers (Brachionus 

plicatilis) in chapter III. The results from ecotoxicological assays showed that 

PMMA significantly affects algae growth with an EC50 from 83.4 (T. weissflogii) 

to 132.5 mg/L (T. chuii) with T. weissflogii being the most sensitive one. In order 

to evaluate the effects of a combined exposure to nanoplastics and an 

environment contaminant, T. chuii, and N. gaditana were exposed to caffeine. 

The results showed an EC20 of 565.4 mg/L for T. chuii and an EC20 of 567.6 

mg/L for N. gaditana. The results from the combined exposure of PMMA and 

caffeine showed that the mixture was able to affect both marine microalgae. 

Rotifers appeared to be more sensitive to PMMA than algae. The type L of 

Brachionus plicatilis was the most affected one with a LC50 of 13.3 mg/L and its 

survival was significantly affected even at 2.0 mg/L.  

 Overall this work shows the need to assess the effects of nanoplastics on 

different type of organism, present in different habitats. There is however the 

need for a proper characterization of the environmental levels, behavior and 

incorporation on biota in order to being possible to perform assays that provide 

environmentally relevant information. Furthermore, it is necessary to see the 

effects of nanoplastics in multigenerational studies as well as evaluate 
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epigenetics effects and not only lethality and reproductive ones. Considering the 

diversity of plastic polymers and that they can cause different effects on 

organisms it is important to test of more polymers and size ranges especially of 

the polymers more used by man.  

 


