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Mg/Al/Ln (Ln = Nd, Sm, Eu) layered double hydroxides (LDHs) were synthesized using sol-gel method for
the first time to the best our knowledge. The obtained materials were characterized by X-ray diffraction analysis
and fluorescence spectroscopy. The phase composition and luminescent properties of these LDHs were investigated
and discussed. The Ln®* substitution effects were investigated in the MgzAl; _,Ln, LDHs by changing the Ln3*
concentration in the metal cation layers up to 10 mol%. It was demonstrated that only MgsAl; _, Eu, LDHs showed
luminescence properties, however, no any light emission was observed for the MgszAl;_,Nd, and MgsAl;_,Sm,

LDH samples.
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1. Introduction

LDHs are compounds with a general chemical formula
of M, M3+ (OH)o]*" (A¥7),, - zH20, where M+ and
M3+ are divalent and trivalent metal cations and AY
is an intercalated anion which compensates the positive
charge created by the partial substitution of M2+ by M3+
in a brucite-type M?*(OH)y hydroxide [1]. LDHs are
widely used in commercial products as adsorbents, cat-
alyst support precursors, anion exchangers, acid residue
scavengers, flame retardants, osmosis membranes, sen-
sors and other [2-4].

Considerable attention has been focused on incorporat-
ing of rare earth elements into LDHs host layers to de-
velop new functional materials, which resemble designed
optical properties [5-11|. The rare earth doped lumines-
cent materials have drawn increasing attention as poten-
tial phosphor materials for use in optical devices [12].
The main aim of this study was to investigate Nd3t,
Sm?3* and Eu®* substitution effects in the Mg/Al; _,Ln,
systems (the Ln3* concentration in the crystal lattice was
changed from 0.05 to 10 mol.%) fabricated for the first
time to the best our knowledge by sol-gel synthesis route.

2. Experimental

The Mg/Al and Mg/Al/Iln (Ln = Nd, Sm,
Eu) LDH samples were synthesized from solutions
of Mg(NO3)26H207 AI(NO3)39HQO (Wlth molar ra-
tio of 321), 1\1(1(1\103,)36H2()7 Sm(N03)36H20 and

*corresponding author; e-mail: aivaras.kareiva@chf.vu.lt

Eu(NO3)3-6H20. The metal nitrates were dissolved in
50 ml of distilled water, then a 0.2 M citric acid solution
was added and the mixture was stirred for 1 h at 80°C.
Next, 2 ml of ethylene glycol have been added to the re-
sulted mixture with continuous stirring at 150°C until
the complete evaporation of solvent. The obtained gels
were dried at 105°C for 24 h. The mixed metal oxides
(MMO) were obtained by calcination of the gels at 650 °C
for 4 h. The Mg/Al and Mgz /Al _,Ln, LDH specimens
were obtained by reconstruction of MMO powders in wa-
ter at 50°C for 6 h under stirring.

X-ray diffraction (XRD) patterns were recorded using
a MiniFlex II diffractometer (Rigaku) in Cu K, radiation
in the 20 range from 8 to 80° (step of 0.02°) with the
exposition time of 0.4 s per step. Excitation and emission
spectra were recorded on an Edinburg Instruments FLS
900.

3. Results and discussion

The XRD patterns of synthesized by sol-gel method
Mg/Al/Nd 1-10 mol% LDHs are shown in Fig. 1. The
LDHs synthesized by sol-gel method were found to be es-
sentially similar to that of standard hydrotalcite. Three
basal reflections typical of an LDH structure were ob-
served at 26 of about 11.5° (003), 23° (006) and 35° (009).
Besides, two characteristic LDH peaks were clearly seen
at about 60.2° and 61.5° which correspond to the re-
flections from the (110) and (113) planes. However, the
XRD patterns of the Mg/Al/Nd 5 mol.% sample exhib-
ited also reflections of a Nd(OH)3 phase. As seen from
Fig. 1, with increase of amount of neodymium the in-
tensity of these diffraction peaks monotonically also in-
creases. XRD patterns of synthesized by sol-gel method
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Mg/Al/Sm 1-10 mol.% LDHs are shown in Fig. 2. Inter-
estingly, the XRD patterns confirm formation of almost
single phase Mg/Al/Sm LDH. Only at higher concentra-
tions of samarium (> 7 mol.%) the synthesized samples
contained also reflections attributable to the Sm(OH)3
phase. The monophasic Mg/Al/Eu LDHs were also ob-
tained with amount of Eu less than 5 mol.%. With in-
crease of concentration of europium till 7.5 mol.% the
negligible amount of side Eu(OH)3 phase has formed.
Thus, these results confirmed that highly crystalline
lanthanide-substituted LDHs could be synthesized dur-
ing hydroxylation of sol-gel derived crystalline MMO
samples in aqueous media. The lattice parameters of
the Mg/Al/Ln LDH samples prepared by sol-gel method
were also determined. The lattice parameters grow from
about 3.065 to 3.076 A (a-parameter) and from about
23.699 to 23.899 A (c-parameter) with increase of amount
of lanthanide elements was observed. The obtained crys-
tallographic data suggest that the observed variation in
the lattice parameters of the Mg/Al/Ln LDHs are caused
by substitution of aluminium by lanthanide elements in
the host layers.
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Fig. 1. XRD patterns of synthesized by sol-gel method

Mg/Al/Nd 1-10 mol.% LDHs. The Nd(OH)s phase is
marked as .

The luminescent properties of the obtained LDHs were
also investigated. The emission spectra obtained at room
temperature of all the Mg/Al/Eu LDH samples under
excitation at 320 nm are presented in Fig. 3. The emis-
sion spectra of Mg/Al/Eu LDHs shows three main emis-
sions in the wavelength range of 500-740 nm. The emis-

——— 10mol%Sm
——— 7.5mol%Sm
- 5mol%Sm

—— 1mol%Sm
—— MgAIl LDH

Intensity

10 20 30 40 50 60 70 80
26 (°)

Fig. 2. XRD patterns of synthesized by sol-gel method
Mg/Al/Sm 1-10 mol% LDHs. The Sm(OH)s phase is
marked as *.

sion peaks are referred to the typical three °Dy — "I}
(591 nm) 5Dy — "F3 (615 nm) and ®Dy — “Fy (703 nm)
transitions of Eu®t ion. The emission due to ®>Dy — " Fq
transition is the strongest, indicating that Eu®t ions
occupy a low-symmetry site. It is clear that the pho-
toluminescence intensity in the Mg/Al/Eu LDH phase
increases with increase of the Eu™ concentration, and
reaches the maximum when the concentration of Eu?t is
7.5%. With further increasing amount of europium the
intensity of emission decreases due to the concentration
quenching. Surprisingly, the Mg/Al/Nd and Mg/Al/Sm
LDH samples did not show any luminescence. Recently,
the organic-inorganic hybrid phosphors have been de-
signed and assembled by the intercalation of organic com-
pounds, as sensitizer, into the layered lanthanide hydrox-
ides or by changing the doping concentration of the acti-
vator ions [13-17]. This approach is currently under in-
vestigation to stimulate light emission in the Mg/Al/Nd
and Mg/Al/Sm LDH samples.

4. Conclusions

The Mg/Al;_,Ln, (Ln®*T-Nd3**, Sm®** and Eu") lay-
ered double hydroxides (LDHs) with the substitution rate
from 0.05 to 10 mol.% were successfully synthesized by
sol—gel preparation technique. In this novel aqueous sol—
gel processing route, the LDHs were obtained as a result
of decomposition (calcination) of the precursor gels at
650 °C followed by rehydration of the intermediate crys-
talline MMO powders in water. The luminescent prop-
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Fig. 3. Photoluminescence emission spectra  of
Mg/Al/Eu®t LDHs (e = 320 nm).

erties of the obtained LDHs were also investigated. The
emission spectra of Mg/Al/Eu LDHs showed three main
emissions in the wavelength range of 500-740 nm corre-
sponding to the typical ® Dy — "F; (591 nm) °Dy — "F3
(615 nm) and 5Dy — "Fy (703 nm) transitions of Eu®*
ion. However, the Mg/Al/Nd and Mg/Al/Sm LDH sam-
ples did not show any luminescence.
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