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Abstract  15 

Mg/Al/Ce layered double hydroxides (LDHs) intercalated with carbonate and hydroxide anions 16 

were synthesized using co-precipitation and sol-gel method. The obtained materials were 17 

characterized by thermogravimetric (TG) analysis, X-ray diffraction (XRD) analysis, fluorescence 18 

spectroscopy (FLS) and scanning electron microscopy (SEM). The chemical composition, 19 

microstructure and luminescent properties of these LDHs were investigated and discussed. The Ce3+ 20 

substitution effects were investigated in the Mg3Al1-xCex LDHs by changing the Ce3+ concentration 21 

in the metal cation layers from 0.05 to 10 mol%. It was demonstrated, that luminescence properties 22 

of cerium-substituted LDHs depend on the morphological features of the host lattice. 23 
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1. Introduction 33 

Layered double hydroxides (LDHs) are compounds composed of positively charged brucite-like 34 

layers with an interlayer gallery containing charge compensating anions and water molecules. The 35 

metal cations occupy the centres of shared oxygen octahedra whose vertices contain hydroxide ions 36 

that connect to form infinite two-dimensional sheets (Jayaraj et al., 1999; Klemkaite et al., 2011; Bi 37 

et al., 2014; Wu et al., 2016). A general chemical formula of an LDH can be expressed as [M2+
1-38 

xM
3+

x(OH)2]
x+(Ay-)x/y·zH2O, where M2+ and M3+ are divalent and trivalent metal cations and Ay− is 39 

an intercalated anion which compensates the positive charge created by the partial substitution of 40 

M2+ by M3+ in a brucite-type M2+(OH)2 hydroxide. The anions in the interlayer are not strictly 41 

limited to their nature. LDHs with many different anionic species have been reported: both 42 

inorganic anions (carbonate, chloride, nitrate, sulphate, molybdate, phosphate etc.) and organic 43 

anions (terephthalate, acrylate, lactate, etc.) (Miyata et al., 1983; Newman and Jones, 1998; 44 

Jaubertie et al., 2006; Klemkaite-Ramanauske et al., 2014; Kuwahara et al., 2016). The commonly 45 

found cations are Mg2+, Zn2+, Co2+, Ni2+, Cu2+ or Mn2+ as divalent cations and Al3+, Cr3+, Co3+, 46 

Fe3+, V3+, Y3+ or Mn3+ among the trivalent ones. 47 

After calcination at temperatures from 300 to 600°C, an LDH is converted to the mixed metal 48 

oxides (MMO) with high specific surface area and basic properties. An ability of MMO to recover 49 

the original layered structure is a property known as „memory effect” (Rives et al., 2001; Klemkaite 50 

et al., 2011; Cosano et al., 2016). When MMO is immersed into an aqueous solution which contains 51 

some anions, the layered structure can be recovered with those anions intercalated into the 52 

interlayer. A more irregular structure of agglomerated flake-like platelets or amorphous phase have 53 

been observed after such a reconstruction (Alvarez et al., 2013; Mascolo, 2015).  54 

LDHs have a well-defined layered structure within nanometre scale (0.3-3 nm) interlayer and 55 

contain important functional groups in both the metal hydroxide layers and interlayers. LDHs are 56 

widely used in commercial products as adsorbents, catalyst support precursors, anion exchangers, 57 

acid residue scavengers, flame retardants, osmosis membranes, sensors (Salak et al., 2012; Carneiro 58 

et al., 2015; Li et al., 2016; Lu et al., 2016; Serdechnova et al., 2016). The formation and 59 

exploitation of new types of layered double hydroxide (LDH)/polymer NC hydrogels with high 60 

performance has been also investigated (Hu and Chen, 2014). Moreover, the LDHs have an HCl 61 

absorption capacity, and may be used as PVC thermal stabilizer (Liu et al., 2008). Recently, 62 

considerable attention has been focused on incorporating rare earth elements into LDH host layers 63 

to develop new functional materials, which resemble designed optical properties (Binnemans, 64 

2009). LDHs doped with Tb3+ ions in the brucite-like layers were prepared by a simple one-step co-65 
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precipitation method. When 4-biphenylacetate anions were intercalated in the interlayer space, a big 66 

amount of Tb3+ up to about 19 wt.% was incorporated in the oxygen octahedral layers of the LDH. 67 

The luminescence study indicated that energy transfer from the excited state of the intercalated 68 

anion guest molecules to Tb3+ centres in the host layers takes place (Gunawan and Xu, 2009). The 69 

samples (both as-prepared and calcined) containing Tb3+ exhibited green fluorescence (William et 70 

al., 2006). Nanosize LDHs doped with Eu3+, Yb3+, Tb3+ and Nd3+ were prepared through the 71 

microemulsion method (Posati et al., 2012, Vicente et al., 2016). It was concluded that the 72 

lanthanide content in the LDH samples depends on the ionic radius of the lanthanide cation and on 73 

fabrication conditions. Eu3+ and Nd3+ were incorporated also into hydrocalumite and mayenite 74 

(Domínguez, 2011). The Zn/Al/Eu LDHs were reported as perspective and efficient luminescent 75 

materials (Zhang et al., 2014; Gao et al., 2014).  76 

Rare earth doped luminescent materials have drawn increasing attention as potential phosphor 77 

materials for use in optical devices (Maqbool et al., 2006; Maqbool et al., 2007; Stanulis et al., 78 

2014; Zabiliute et al., 2014; Skaudzius et al., 2016). The rare-earth metal ions offer the possibility 79 

of obtaining blue, green and red colours, which are necessary for RGB devices (Okamoto et al., 80 

1988; Katelnikovas et al., 2012). The organic-inorganic hybrid phosphors have been designed and 81 

assembled by the intercalation of salicylic acid, as sensitizer, into the layered lanthanide hydroxides 82 

with the compositions of Gd/Tb/Eu/OH/NO3/H2O through ion-exchange reaction under 83 

hydrothermal condition (Liu et al., 2013). The luminescence colour of a rare-earth doped LDH can 84 

be easily tuned from green to red due to the energy transfer from the Tb3+ to Eu3+ ions by changing 85 

the doping concentration of the activator ions. Luminescent ordered multilayer transparent ultrathin 86 

films based on inorganic rare earth elements doped layered double hydroxides Mg/Al/Eu 87 

nanosheets and organic ligand were recently fabricated via layer-by-layer assembly method (Zhang 88 

et al., 2016).   89 

Vargas et al., 2013, has reported a doping of the layers of a Zn/Al LDH with Dy3+ ions. 90 

Photoluminescence spectra of the nitrate intercalated LDH showed a wide emission band with 91 

strong intensity in the yellow region (around 574 nm), originated from symmetry distortion of the 92 

octahedral coordination in dysprosium centres. The emission spectra of Ce-doped different 93 

inorganic matrixes are often characterized by a broad emission band with quite symmetric 94 

photoluminescence peak at around 530 nm, which is assigned to the 5d1 (2A1g) → 4f
1 (2F5/2 and 95 

2F7/2) transitions of Ce3+ (Katelnikovas et al., 2007; Katelnikovas et al., 2008; Katelnikovas et al., 96 

2011; Misevicius et al., 2012; Katelnikovas et al., 2013). Cerium-doped hydrotalcite-like precursors 97 

were recently synthesized by co-precipitation method (Tamboli et al., 2015). However, these 98 
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compounds were studied only as efficient catalysts for hydrogen production. In this work, the LDHs 99 

with the metal cation composition of Mg3Al1-xCex (with the Ce3+ substitution rate from 0.05 to 10 100 

mol%) were synthesized using co-precipitation and sol-gel method. The main aim of this study was 101 

to investigate an effect of Ce3+ substitution on crystal structure of the obtained layered double 102 

hydroxides and estimate the maximal cerium-to-aluminium substitution rage. The luminescent 103 

properties of the Mg3Al1-xCex LDH samples were also investigated in this study for the first time to 104 

the best our knowledge. 105 

 106 

2. Experimental 107 

2.1. Synthesis by co-precipitation method 108 

LDH samples were synthesized by adding a mixture of Mg(NO3)2
.6H2O and Al(NO3)3

.9H2O 109 

(with molar ratio of 3:1) drop by drop to the solution of NaHCO3 (1.5 M). pH of the resulting 110 

solution was measured and kept at 8-9 using NaOH (2 M) under continuous stirring. To separate the 111 

slurry from the solution, the mixture was centrifuged at 3000 rpm for 2 min. The precipitated LDH 112 

was washed with distilled water and centrifuged again. Process was repeated three or four times 113 

depending on the sample. The formed LDH was dried at 75-80°C for 12 h. The mixed-metal oxide 114 

(MMO) was achieved by heat treatment at 650°C for 4 h. Synthesis of Mg/Al/Ce compounds was 115 

performed in the same way as Mg/Al LDH, keeping the pH of the solution about 10 during the 116 

synthesis and using Ce(NO3)3·6H2O as cerium source.  117 

2.2. Synthesis by sol-gel method 118 

The Mg/Al and Mg/Al/Ce LDH samples were synthesised from solutions of the same reagents as 119 

those used in the co-precipitation method. The metal nitrates were dissolved in 50 ml of distilled 120 

water, then a 0.2 M citric acid solution was added and the mixture was stirred for 1 h at 80°C. At 121 

the next step, 2 ml of ethylene glycol have been added to the resulted mixture with continues 122 

stirring at 150°C until the complete evaporation of solvent. The obtained gel was dried at 105°C for 123 

24 h. The MMO was obtained by calcination of the gel at 650°C for 4 h.  124 

2.3. Rehydration/Reconstruction 125 

The MMO powders obtained by co-precipitation and sol-gel methods followed by heat treatment 126 

at 650°C were reconstructed in water at 50°C for 6 h under stirring (2 g of the powder per 40 ml of 127 

water). The commercial hydrotalcite PURAL MG63HT powder (Brunsbüttel, Germany) which is 128 

chemically a Mg3Al LDH intercalated with CO3
2- was also analysed for comparison. 129 

2.4. Characterization  130 
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X-ray diffraction (XRD) patterns were recorded using a MiniFlex II diffractometer (Rigaku) in 131 

Cu Kα radiation in the 2θ range from 8 to 80° (step of 0.02°) with the exposition time of 0.4 s per 132 

step. Rietveld analysis of the XRD data was performed using the PANalytical HighScore Plus suite. 133 

Thermal analysis was carried out using a simultaneous thermal analyser 6000 (Perkin-Elmer) in air 134 

atmosphere at scan rate of 10°C/min over the temperature range of 30°C to 900°C. Excitation and 135 

emission spectra were recorded on an Edinburg Instruments FLS 900. Morphology of the LDH 136 

powders was investigated using a scanning electron microscope (SEM) Hitachi SU-70. The Fourier 137 

transform infrared (FT-IR) spectra were recorded using Perkin-Elmer spectrometer from the LDH 138 

samples dispersed in KBr and pressed into pellets. 139 

 140 

3. Results and discussion  141 

The XRD pattern of the Mg/Al LDH synthesized by co-precipitation method was found to be 142 

essentially similar to that of the commercial hydrotalcite PURAL MG63HT. Three basal reflections 143 

typical of an LDH structure were observed: at 2q of about 10° (003), 23° (006) and 35° (009). 144 

Besides, two characteristic LDH peaks were clearly seen at about 60.2° and 61.5° which correspond 145 

to the reflections from the (110) and (113) planes. Evidently, that only amorphous Mg-Al-O gel has 146 

formed during the sol-gel preparation of LDH. 147 

As seen from Fig. 1, increasing amount of cerium results in a monotonic decrease of the intensity 148 

of these diffraction peaks. In addition, the reflections are shifted to a lower 2θ range. The observed 149 

shift of the (110) and (113) reflections certainly suggests incorporation of this lanthanide ion in 150 

metal hydroxide layers of the LDHs prepared by co-precipitation. At the same time, the broad 151 

diffraction peaks that can be attributed to a CeO2 phase are seen in the patterns of the LDHs with a 152 

non-zero Ce content (Fig. 1). Intensities of these peaks slightly increase with increasing the nominal 153 

Ce content indicating that although the Al-to Ce substitution rate grows, the difference between the 154 

nominal and actual rate grows as well.  155 

Thermal treatment of an LDH at elevated temperatures results in loss of interlayer water 156 

molecules, charge-compensating anions and dehydroxylation of brucite-like layers. Mg/Al LDH 157 

decomposes followed by formation of MMO with the a rock-salt like magnesium oxide as the only 158 

crystalline phase (Fig. 2) with Al atoms randomly dispersed throughout the solid, that is often 159 

described as an Mg(Al)O phase (Zhao et al., 2012).  160 

The XRD patterns of the Mg3Al LDHs (including the Ce-substituted ones) fabricated by co-161 

precipitation method and calcined at 650°C are shown in Fig. 3. The formation of poorly crystalline 162 

magnesium oxide is evident in all cases. However, the XRD patterns of the samples containing 163 
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cerium exhibited also reflections of a CeO2 phase. The XRD patterns of the Mg-Al-O precursor gels 164 

calcined at the same temperature are given in Fig. 4. Apparently, in comparison with the MMO 165 

obtained from LDHs prepared by co-precipitation method, the MMO from the sol-gel precursors 166 

have formed with higher crystallinity despite of no LDH phase formed during the sol-gel 167 

processing. In order to complete crystallization and obtain the material suitable for a quantitative 168 

XRD phase analysis (Salak et al., 2013; Carneiro et al., 2015) the formed MMO were heat-treated at 169 

higher temperature, namely at 1000°C for 6 h. Fig. 3 and Fig. 4 demonstrate the XRD patterns of 170 

the resulting products. It is seen that along with the diffraction reflections from MgO and CeO2, the 171 

peaks attributed to the cubic spinel MgAl2O4 phase are present. The Mg/(Al+Ce) molar ratios were 172 

estimated from the Rietveld analysis of the XRD data to be 3.22±0.15 and 2.92±0.11 for the MMO 173 

obtained from LDHs prepared by co-precipitation method and for the MMO from the sol-gel 174 

derived powders, respectively.   175 

The ability of MMO to (re)form the LDH structure in water or water solutions was tested. The 176 

XRD patterns of the LDH samples formed as a result of hydration of the MMO obtained via co-177 

precipitation and sol-gel methods are shown in Fig. 5 and 6, respectively.  178 

The XRD patterns of the Mg/Al samples (cerium free) synthesized by co-precipitation, calcined 179 

and then immersed in water (Fig. 5) indicate a complete transformation of mixed-metal oxides into 180 

an LDH phase. Thus, the reconstruction of layered structure of LDH initially prepared by co-181 

precipitation method occurs in water. The calcined LDHs with a non-zero cerium content 182 

demonstrate, however, a less complete regeneration: reflections of the CeO2 phase are observed in 183 

the respective XRD patterns. Besides, it is clearly seen that the considerable amount of the 184 

amorphous part of the MMO product which contribute to a very broad peak of the XRD background 185 

remains uncrystallised.  186 

The samples obtained by rehydration of the sol-gel derived samples show the typical LDH 187 

structure (Fig. 6), although no traces of an LDH phase has been detected at any stage of the sol-gel 188 

processing. Heat treatment of the sol-gels resulted in high crystalline MMO powders, which were 189 

hydroxylated in aqueous media providing well-crystallized LDH phase. According to the XRD 190 

patterns presented in Fig. 6, the mixed-metal oxides transformed fully to layered double hydroxides. 191 

Interestingly, the formation of LDH from the sol-gel derived powders does not depend on the Ce 192 

concentration in the samples. The XRD patterns of the reconstructed (hydroxylated) MMO powders 193 

demonstrate the sharp diffraction lines associated with an LDH crystalline phase only. No other 194 

crystalline phases have been detected. The (110) reflections of the LDHs are regularly shifted to a 195 

lower 2θ range as the cerium content is increased. Actually, the term “reconstruction” we use is not 196 



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

7 

 

fully correct in the case of LDHs obtained from the sol-gel derived samples. In fact, this is a novel 197 

synthesis approach for the fabrication of LDHs, which is based on an aqueous sol-gel processing 198 

route.  199 

The basal spacing (which are the distance between the adjacent hydroxide layers) and the lattice 200 

parameters of the LDH samples prepared by two different methods are listed in Table 1. The lattice 201 

parameter a reflects an average cation-cation distance and can be calculated as a = 2d(110) from the 202 

interplanar distance corresponded to the (110) reflections in the brucite-like layers. Parameter a is a 203 

function of both size and ratio of cations M2+ and M3+. Parameter c depends mainly on size, charge 204 

and orientation of the intercalated species: anions and water molecules (Salak et al, 2014). In order 205 

to minimize the experimental error caused by the 2θ scale shift, c-parameter is usually calculated 206 

using the interplanar distances of at least two basal reflections: typically, (003) and (006), as c = 3/2 207 

[d(003) + 2d(006)]. The obtained crystallographic data (Table 1) suggest that the observed variation in 208 

the lattice parameters of the Mg/Al/Ce LDHs are caused by substitution of aluminium by cerium in 209 

the host layers.   210 

Because of the relatively large ionic radius of Ce3+ (1.01 Å), substitution of Al3+ (0.53 Å) by 211 

Ce3+ is expected to lead to an expansion of the cation-cation distance in the brucite-like layers 212 

(Shannon, 1976). Therefore, as a result of the aluminium-to-cerium substitution, the a-parameter 213 

grows. Besides, the c-parameter increases as well, since because of such a substitution the layers 214 

become thicker. The effect of increase of both lattice parameters induced by this isovalent Al-to-Ce 215 

substitution is qualitatively the same as that in the case of an increase of the Mg/Al cation ratio 216 

since Mg2+ is bigger than Al3+. Dependences of lattice parameters of the carbonate-intercalated 217 

Mg/Al LDHs on the Mg/Al ratio have been reported (Newman and Jones 2001). It has been shown 218 

that when the ratio is increased from 1:1 to 3.5:1, the lattice parameters grow from about 3.02 to 219 

3.07 Å (a-parameter) and from about 22.6 to 23.7 Å (c-parameter). In this work, the Mg/Al/Ce 220 

LDHs prepared by co-precipitation were most likely intercalated with CO3
2-, as the synthesis was 221 

conducted in a NaHCO3 solution (see Experimental). As regards of the Mg/Al/Ce layered double 222 

hydroxides formed via hydroxylation of the sol-gel derived MMO, these LDHs can be intercalated 223 

with OH- and CO3
2-, because the water used for the rehydration procedure was not specially 224 

decarbonized. Indeed, the presence of carbonate in the LDH samples prepared using either co-225 

precipitation or via sol-gel method was confirmed by FT-IR study. A spectral band at about 1360 226 

cm-1 associated with n'3 vibration of CO3
2- was detected in the samples regardless of the preparation 227 

method used (Fig. S1 in Supplementary Material). At the same time, the presence of intercalated 228 
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OH- cannot be unambiguously confirmed nor discarded by FT-IR, since one can hardly distinguish 229 

between the intercalated hydroxyl groups and those in the brucite-like layers.  230 

In terms of the most compact (flat-laying) orientation, the anions OH- and CO3
2- give the same 231 

height of the interlayer gallery, which is equal to the double van der Waals radius of oxygen (Salak 232 

et al., 2014). Therefore, the values reported by Newman and Jones can be used as references for our 233 

LDHs. It is seen from Table 1 that the obtained lattice parameters of the Ce-substituted Mg3Al 234 

LDHs are above the aforementioned ranges. The obtained values of both a- and c-parameters 235 

cannot be associated with any deviation in the Mg/Al ratio and certainly indicate the gradual 236 

substitution of aluminium by cerium in the brucite-like layers. 237 

The Al-to-Ce isomorphic substitution rate in the obtained Mg/Al/Ce LDHs was estimated 238 

using the expression based on that proposed by Richardson (Richardson, 2012) for case of 239 

substitution by two different trivalent cations:  240 

2

2 3 3
( )

1
sin( )[ ( ) (1 ) ( ) ( )]

2 2
LDH Mg OHa a r Mg x r Al xr Ce

a + + +
= - - - -  241 

Values of the parameter a for Mg(OH)2 and the angle α were taken from the paper by Brindley and 242 

Kao (Brindley and Kao, 1984) and the Shannon’s ionic radii (Shannon, 1976) were used. The 243 

calculated a-parameter value for the ideal Mg/Al/Ce 10 mol.% LDH (3.089 Å) was compared with 244 

the experimentally obtained values. It was found that the real amount of cerium that substituted 245 

aluminium in the Mg/Al/Ce 10 mol.% LDHs is about 8 and 6 mol.% for the samples prepared by 246 

co-precipitation and through sol-gel, respectively.  247 

Based on the obtained results, the methods of fabrication of the Mg/Al/Ce LDH applied in this 248 

work can be compared. As seen from Fig. 1 and Fig. 6, both the co-precipitation method and the 249 

sol-gel method provide a gradual Al-to-Ce substitution, although some amount of Ce does not 250 

incorporate into the LDH layers and crystallize as cerium oxide. It follows from a comparison of the 251 

lattice parameters of LDHs of the same nominal composition but prepared by different methods that 252 

when the nominal composition is 5-10 mol.% of Ce, the sol-gel method of the LDH preparation 253 

provides higher substitution rates. At the same time, in the case of small-rate substitutions, both 254 

methods give similar results. Our idea was the following: if we prove that at least 5 mol.% of Al can 255 

be substituted by Ce, it guarantees that smaller-rate substitutions are successful a fortiori. In the 256 

study of the luminescence properties, where LDHs with the small substitution rates (1 mol.% and 257 

less) were used, we considered the LDHs of the same nominal composition but prepared by 258 

different methods as chemically equal.  259 

The results of the thermogravimetric analysis of the LDHs synthesised by two different methods 260 

are shown in Figs. 7 and 8. The initial mass loss was observed in the temperature ranges of 30-261 
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150°C (~18%) and 30-200°C (~17%) for the Mg/Al/Ce 10 mol% LDH prepared by co-precipitation 262 

and sol-gel methods, respectively. Some decrease in mass occurs even below 100oC because of 263 

evolution of the adsorbed water. (Tang et al., 2002). The main decomposition of Mg/Al/Ce 10 264 

mol% sample prepared by co-precipitation method occurs via two steps in the temperature ranges of 265 

290-350oC and 350-600oC. These thermal behaviours result from the loss of the coordinated water 266 

and the intercalated anions (in the lower temperature range) and dehydroxylation of the layers 267 

followed by collapse of the layered structure (in the higher temperature range). However, the main 268 

decomposition of Mg/Al/Ce 10 mol% sample prepared by sol-gel method occurs in one step by 269 

monotonic weight decrease in the temperature range of 200-600oC.  270 

The luminescent properties of the obtained LDHs were also investigated. The luminescence 271 

wavelengths of Ce3+ ions change widely from near UV to the red range depending on the nature of 272 

the host lattices (Kompe et al., 2003; Li et al., 2003). The emission spectra of Mg/Al/Ce samples 273 

fabricated by co-precipitation method is shown in Fig. 9. All powders were excited at 340 nm for 274 

taking the emission spectra. The major emission lines are peaked at ~370-390 nm. The broad bands 275 

are attributed to [Xe]5d1-[Xe]5f1 transition of Ce3+ ions (Katelnikovas et al., 2010). Surprisingly, 276 

the highest intensity of 5D0 → 7F2 transition was observed for Mg/Al/Ce 0.05 mol% specimen. It 277 

turned out that emission intensity decreases with increasing concentration of Ce3+ up to 1 mol%. 278 

The emission maximum was also slightly shifted towards a red spectral region when more Ce3+ was 279 

introduced into the host lattice. This is in a good agreement with the results obtained in the Ce3+- 280 

doped garnet-type phosphors. In the emission spectra of the sol-gel derived Mg/Al/Ce samples (Fig. 281 

10), the bands are broader and more intensive. Moreover, the maximum of the emission of the 282 

LDHs synthesized using sol-gel technique is red shifted (390-430 nm) in comparison with the LDH 283 

phosphors prepared by co-precipitation method. Fig. 9 also shows the emission spectra of the 284 

Mg/Al/Ce LDHs synthesized by co-precipitation method, calcined and then reconstructed. It is 285 

interesting to note the light output is much stronger in the reconstructed cerium-doped LDHs. 286 

Moreover, the red-shift of the emission maximum of the reconstructed Mg/Al/Ce sample is also 287 

evident. On the other hand, the highest intensity of 5D0 → 7F2 transition still is determined for 288 

Mg/Al/Ce 0.05 mol% specimen. With further increasing cerium content up to 1% the concentration 289 

quenching was observed (Devaraju et al., 2009). 290 

   The morphology of the synthesized Mg/Al and Mg/Al/Ce samples was examined using scanning 291 

electron microscopy. The characteristic feature of synthesized LDH should be formation of plate-292 

like particles with hexagonal shape (Costa et al., 2008; Xu et al., 2010). The rehydration results in 293 

(re)generation of the metal hydroxide sheets and the plate-like geometry of the primary particles. 294 
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The SEM micrographs represent the cerium-free Mg/Al LDH powders synthesized by co-295 

precipitation method (Fig. 11). The typical LDH microstructure is evident from this SEM 296 

micrograph. The surface is composed of the agglomerated small plate-like particles of 50-100 nm in 297 

diameter. After calcination of Mg/Al LDH at 650oC, the network of spherical nanoparticles (50 to 298 

100 nm) have formed. Rehydration of these nanopowders results in formation of plate-like particles 299 

with hexagonal shape (Fig. 11c). However, after such a reconstruction, the average particle size of 300 

the LDHs increases to ~100-150 nm. The surface morphology of the Ce3+-substituted samples is 301 

very similar for all the specimens independent of the substitution rate. The representative SEM 302 

micrographs (Fig. 12) of the Mg/Al/Ce 1 mol% sample synthesized by co-precipitation method, 303 

calcined and then reconstructed show small fibrous plate-like particles that are aggregated as in the 304 

case of a cerium-free LDH sample. The SEM micrographs of the Mg/Al/Ce 1 mol% and Mg/Al/Ce 305 

10 mol% LDHs fabricated by sol-gel method followed by hydration are shown in Fig. 12. It is seen 306 

that the sol-gel derived Mg/Al/Ce LDHs consist of the larger hexagonally shaped particles varying 307 

in size from approximately 150 to 200 nm. The good connectivity between the grains is also 308 

observed. These nanograins show tendency to form larger agglomerates. On the whole, 309 

nanocrystalline nature of powders with the narrow size distribution of crystallites is observed for all 310 

the obtained LDH samples. 311 

The luminescence properties are expected to depend on the closest coordination of Ce in the 312 

layer and hardly on the interlayer distance. The main difference between the LDHs prepared using 313 

either co-precipitation method or sol-gel-method is in size and regularity of the crystallites. It is 314 

known that the LDH crystallites obtained as a result of (re)hydration of the calcined powders are 315 

more irregular than those obtained by co-precipitation. Therefore we consider that the observed 316 

differences in the luminescence properties are caused by differences in morphology of the LDHs.  317 

 318 

4. Conclusions 319 

The Mg/Al layered double hydroxides (LDHs) were successfully synthesized by co-precipitation 320 

method and using sol-gel preparation technique. To the best our knowledge the latter was 321 

successfully applied for production of LDHs for the first time. In this novel aqueous sol-gel 322 

processing route, the LDHs were obtained as a result of decomposition (calcination) of the 323 

precursor gels at 650oC followed by rehydration of the intermediate crystalline MMO powders in 324 

water. The same synthesis methods were successfully applied for production of cerium-substituted 325 

LDHs (Mg/Al/Ce) with the substitution rate from 0.05 to 10 mol%. It was found that in case of the 326 

Mg/Al/Ce LDHs prepared by co-precipitation followed by calcination, the regeneration rate 327 

c) 
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decreases with increase of cerium content, while the conversion of the rehydrated sol-gel derived 328 

MMO into LDH does not depend on the concentration of cerium and is close to 100%. The 329 

proposed sol-gel synthesis route for LDHs has some benefits over conventional method such as 330 

simplicity, high homogeneity of the end products, effectiveness, suitability to study substitution 331 

effects for different multinary metal systems and cost efficiency.  332 

The luminescent properties of the obtained LDHs were also investigated. The major emission 333 

lines attributed to the [Xe]5d1-[Xe]5f1 transition of Ce3+ ions were peaked at ~370-390 nm and 390-334 

430 nm for the Mg/Al/Ce samples fabricated by co-precipitation and by sol-gel methods, 335 

respectively. The emission bands were broader, more intensive and red-shifted in the case of the 336 

sol-gel derived LDHs.  337 

The typical LDH microstructure was observed in all the obtained samples. The surfaces of the 338 

LDHs prepared by co-precipitation were composed of agglomerated small plate-like particles of 50-339 

100 nm in diameter. After calcination followed by reconstruction (rehydration), the particle size of 340 

obtained LDH was observed to increase to 100-150 nm. Even larger particles formed in case of the 341 

LDHs prepared by hydration from the sol-gel derived MMO powders.  342 

Luminescence properties of cerium doped LDHs were found to depend on the morphology of the 343 

host lattice. The observed compositional behaviours of lattice parameters and the luminescence 344 

characteristics indicate the successful isomorphic incorporation of Ce3+ into the brucite-like layers 345 

of the Mg3Al1-xCex LDHs at least when x≤0.01. 346 
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approaches to fabricate cerium-substituted Mg-Al layered 2 

double hydroxides with luminescence properties 3 
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Abstract  15 

Mg/Al/Ce layered double hydroxides (LDHs) intercalated with carbonate and hydroxide anions 16 

were synthesized using co-precipitation and sol-gel method. The obtained materials were 17 

characterized by thermogravimetric (TG) analysis, X-ray diffraction (XRD) analysis, fluorescence 18 

spectroscopy (FLS) and scanning electron microscopy (SEM). The chemical composition, 19 

microstructure and luminescent properties of these LDHs were investigated and discussed. The Ce3+ 20 

substitution effects were investigated in the Mg3Al1-xCex LDHs by changing the Ce3+ concentration 21 

in the metal cation layers from 0.05 to 10 mol%. It was demonstrated, that luminescence properties 22 

of cerium-substituted LDHs depend on the morphological features of the host lattice. 23 

 24 

Keywords: Layered double hydroxides; co-precipitation, sol-gel processing; cerium substitution 25 

effects; luminescent properties  26 

 27 
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1. Introduction 33 

Layered double hydroxides (LDHs) are compounds composed of positively charged brucite-like 34 

layers with an interlayer gallery containing charge compensating anions and water molecules. The 35 

metal cations occupy the centres of shared oxygen octahedra whose vertices contain hydroxide ions 36 

that connect to form infinite two-dimensional sheets (Jayaraj et al., 1999; Klemkaite et al., 2011; Bi 37 

et al., 2014; Wu et al., 2016). A general chemical formula of an LDH can be expressed as [M2+
1-38 

xM
3+

x(OH)2]
x+(Ay-)x/y·zH2O, where M2+ and M3+ are divalent and trivalent metal cations and Ay− is 39 

an intercalated anion which compensates the positive charge created by the partial substitution of 40 

M2+ by M3+ in a brucite-type M2+(OH)2 hydroxide. The anions in the interlayer are not strictly 41 

limited to their nature. LDHs with many different anionic species have been reported: both 42 

inorganic anions (carbonate, chloride, nitrate, sulphate, molybdate, phosphate etc.) and organic 43 

anions (terephthalate, acrylate, lactate, etc.) (Miyata et al., 1983; Newman and Jones, 1998; 44 

Jaubertie et al., 2006; Klemkaite-Ramanauske et al., 2014; Kuwahara et al., 2016). The commonly 45 

found cations are Mg2+, Zn2+, Co2+, Ni2+, Cu2+ or Mn2+ as divalent cations and Al3+, Cr3+, Co3+, 46 

Fe3+, V3+, Y3+ or Mn3+ among the trivalent ones. 47 

After calcination at temperatures from 300 to 600°C, an LDH is converted to the mixed metal 48 

oxides (MMO) with high specific surface area and basic properties. An ability of MMO to recover 49 

the original layered structure is a property known as „memory effect” (Rives et al., 2001; Klemkaite 50 

et al., 2011; Cosano et al., 2016). When MMO is immersed into an aqueous solution which contains 51 

some anions, the layered structure can be recovered with those anions intercalated into the 52 

interlayer. A more irregular structure of agglomerated flake-like platelets or amorphous phase have 53 

been observed after such a reconstruction (Alvarez et al., 2013; Mascolo, 2015).  54 

LDHs have a well-defined layered structure within nanometre scale (0.3-3 nm) interlayer and 55 

contain important functional groups in both the metal hydroxide layers and interlayers. LDHs are 56 

widely used in commercial products as adsorbents, catalyst support precursors, anion exchangers, 57 

acid residue scavengers, flame retardants, osmosis membranes, sensors (Salak et al., 2012; Carneiro 58 

et al., 2015; Li et al., 2016; Lu et al., 2016; Serdechnova et al., 2016). The formation and 59 

exploitation of new types of layered double hydroxide (LDH)/polymer NC hydrogels with high 60 

performance has been also investigated (Hu and Chen, 2014). Moreover, the LDHs have an HCl 61 

absorption capacity, and may be used as PVC thermal stabilizer (Liu et al., 2008). Recently, 62 

considerable attention has been focused on incorporating rare earth elements into LDH host layers 63 

to develop new functional materials, which resemble designed optical properties (Binnemans, 64 

2009). LDHs doped with Tb3+ ions in the brucite-like layers were prepared by a simple one-step co-65 
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precipitation method. When 4-biphenylacetate anions were intercalated in the interlayer space, a big 66 

amount of Tb3+ up to about 19 wt.% was incorporated in the oxygen octahedral layers of the LDH. 67 

The luminescence study indicated that energy transfer from the excited state of the intercalated 68 

anion guest molecules to Tb3+ centres in the host layers takes place (Gunawan and Xu, 2009). The 69 

samples (both as-prepared and calcined) containing Tb3+ exhibited green fluorescence (William et 70 

al., 2006). Nanosize LDHs doped with Eu3+, Yb3+, Tb3+ and Nd3+ were prepared through the 71 

microemulsion method (Posati et al., 2012, Vicente et al., 2016). It was concluded that the 72 

lanthanide content in the LDH samples depends on the ionic radius of the lanthanide cation and on 73 

fabrication conditions. Eu3+ and Nd3+ were incorporated also into hydrocalumite and mayenite 74 

(Domínguez, 2011). The Zn/Al/Eu LDHs were reported as perspective and efficient luminescent 75 

materials (Zhang et al., 2014; Gao et al., 2014).  76 

Rare earth doped luminescent materials have drawn increasing attention as potential phosphor 77 

materials for use in optical devices (Maqbool et al., 2006; Maqbool et al., 2007; Stanulis et al., 78 

2014; Zabiliute et al., 2014; Skaudzius et al., 2016). The rare-earth metal ions offer the possibility 79 

of obtaining blue, green and red colours, which are necessary for RGB devices (Okamoto et al., 80 

1988; Katelnikovas et al., 2012). The organic-inorganic hybrid phosphors have been designed and 81 

assembled by the intercalation of salicylic acid, as sensitizer, into the layered lanthanide hydroxides 82 

with the compositions of Gd/Tb/Eu/OH/NO3/H2O through ion-exchange reaction under 83 

hydrothermal condition (Liu et al., 2013). The luminescence colour of a rare-earth doped LDH can 84 

be easily tuned from green to red due to the energy transfer from the Tb3+ to Eu3+ ions by changing 85 

the doping concentration of the activator ions. Luminescent ordered multilayer transparent ultrathin 86 

films based on inorganic rare earth elements doped layered double hydroxides Mg/Al/Eu 87 

nanosheets and organic ligand were recently fabricated via layer-by-layer assembly method (Zhang 88 

et al., 2016).   89 

Vargas et al., 2013, has reported a doping of the layers of a Zn/Al LDH with Dy3+ ions. 90 

Photoluminescence spectra of the nitrate intercalated LDH showed a wide emission band with 91 

strong intensity in the yellow region (around 574 nm), originated from symmetry distortion of the 92 

octahedral coordination in dysprosium centres. The emission spectra of Ce-doped different 93 

inorganic matrixes are often characterized by a broad emission band with quite symmetric 94 

photoluminescence peak at around 530 nm, which is assigned to the 5d1 (2A1g) → 4f
1 (2F5/2 and 95 

2F7/2) transitions of Ce3+ (Katelnikovas et al., 2007; Katelnikovas et al., 2008; Katelnikovas et al., 96 

2011; Misevicius et al., 2012; Katelnikovas et al., 2013). Cerium-doped hydrotalcite-like precursors 97 

were recently synthesized by co-precipitation method (Tamboli et al., 2015). However, these 98 
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compounds were studied only as efficient catalysts for hydrogen production. In this work, the LDHs 99 

with the metal cation composition of Mg3Al1-xCex (with the Ce3+ substitution rate from 0.05 to 10 100 

mol%) were synthesized using co-precipitation and sol-gel method. The main aim of this study was 101 

to investigate an effect of Ce3+ substitution on crystal structure of the obtained layered double 102 

hydroxides and estimate the maximal cerium-to-aluminium substitution rage. The luminescent 103 

properties of the Mg3Al1-xCex LDH samples were also investigated in this study for the first time to 104 

the best our knowledge. 105 

 106 

2. Experimental 107 

2.1. Synthesis by co-precipitation method 108 

LDH samples were synthesized by adding a mixture of Mg(NO3)2
.6H2O and Al(NO3)3

.9H2O 109 

(with molar ratio of 3:1) drop by drop to the solution of NaHCO3 (1.5 M). pH of the resulting 110 

solution was measured and kept at 8-9 using NaOH (2 M) under continuous stirring. To separate the 111 

slurry from the solution, the mixture was centrifuged at 3000 rpm for 2 min. The precipitated LDH 112 

was washed with distilled water and centrifuged again. Process was repeated three or four times 113 

depending on the sample. The formed LDH was dried at 75-80°C for 12 h. The mixed-metal oxide 114 

(MMO) was achieved by heat treatment at 650°C for 4 h. Synthesis of Mg/Al/Ce compounds was 115 

performed in the same way as Mg/Al LDH, keeping the pH of the solution about 10 during the 116 

synthesis and using Ce(NO3)3·6H2O as cerium source.  117 

2.2. Synthesis by sol-gel method 118 

The Mg/Al and Mg/Al/Ce LDH samples were synthesised from solutions of the same reagents as 119 

those used in the co-precipitation method. The metal nitrates were dissolved in 50 ml of distilled 120 

water, then a 0.2 M citric acid solution was added and the mixture was stirred for 1 h at 80°C. At 121 

the next step, 2 ml of ethylene glycol have been added to the resulted mixture with continues 122 

stirring at 150°C until the complete evaporation of solvent. The obtained gel was dried at 105°C for 123 

24 h. The MMO was obtained by calcination of the gel at 650°C for 4 h.  124 

2.3. Rehydration/Reconstruction 125 

The MMO powders obtained by co-precipitation and sol-gel methods followed by heat treatment 126 

at 650°C were reconstructed in water at 50°C for 6 h under stirring (2 g of the powder per 40 ml of 127 

water). The commercial hydrotalcite PURAL MG63HT powder (Brunsbüttel, Germany) which is 128 

chemically a Mg3Al LDH intercalated with CO3
2- was also analysed for comparison. 129 

2.4. Characterization  130 
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X-ray diffraction (XRD) patterns were recorded using a MiniFlex II diffractometer (Rigaku) in 131 

Cu Kα radiation in the 2θ range from 8 to 80° (step of 0.02°) with the exposition time of 0.4 s per 132 

step. Rietveld analysis of the XRD data was performed using the PANalytical HighScore Plus suite. 133 

Thermal analysis was carried out using a simultaneous thermal analyser 6000 (Perkin-Elmer) in air 134 

atmosphere at scan rate of 10°C/min over the temperature range of 30°C to 900°C. Excitation and 135 

emission spectra were recorded on an Edinburg Instruments FLS 900. Morphology of the LDH 136 

powders was investigated using a scanning electron microscope (SEM) Hitachi SU-70. The Fourier 137 

transform infrared (FT-IR) spectra were recorded using Perkin-Elmer spectrometer from the LDH 138 

samples dispersed in KBr and pressed into pellets. 139 

 140 

3. Results and discussion  141 

The XRD pattern of the Mg/Al LDH synthesized by co-precipitation method was found to be 142 

essentially similar to that of the commercial hydrotalcite PURAL MG63HT. Three basal reflections 143 

typical of an LDH structure were observed: at 2q of about 10° (003), 23° (006) and 35° (009). 144 

Besides, two characteristic LDH peaks were clearly seen at about 60.2° and 61.5° which correspond 145 

to the reflections from the (110) and (113) planes. Evidently, that only amorphous Mg-Al-O gel has 146 

formed during the sol-gel preparation of LDH. 147 

As seen from Fig. 1, increasing amount of cerium results in a monotonic decrease of the intensity 148 

of these diffraction peaks. In addition, the reflections are shifted to a lower 2θ range. The observed 149 

shift of the (110) and (113) reflections certainly suggests incorporation of this lanthanide ion in 150 

metal hydroxide layers of the LDHs prepared by co-precipitation. At the same time, the broad 151 

diffraction peaks that can be attributed to a CeO2 phase are seen in the patterns of the LDHs with a 152 

non-zero Ce content (Fig. 1). Intensities of these peaks slightly increase with increasing the nominal 153 

Ce content indicating that although the Al-to Ce substitution rate grows, the difference between the 154 

nominal and actual rate grows as well.  155 

Thermal treatment of an LDH at elevated temperatures results in loss of interlayer water 156 

molecules, charge-compensating anions and dehydroxylation of brucite-like layers. Mg/Al LDH 157 

decomposes followed by formation of MMO with the a rock-salt like magnesium oxide as the only 158 

crystalline phase (Fig. 2) with Al atoms randomly dispersed throughout the solid, that is often 159 

described as an Mg(Al)O phase (Zhao et al., 2012).  160 

The XRD patterns of the Mg3Al LDHs (including the Ce-substituted ones) fabricated by co-161 

precipitation method and calcined at 650°C are shown in Fig. 3. The formation of poorly crystalline 162 

magnesium oxide is evident in all cases. However, the XRD patterns of the samples containing 163 
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cerium exhibited also reflections of a CeO2 phase. The XRD patterns of the Mg-Al-O precursor gels 164 

calcined at the same temperature are given in Fig. 4. Apparently, in comparison with the MMO 165 

obtained from LDHs prepared by co-precipitation method, the MMO from the sol-gel precursors 166 

have formed with higher crystallinity despite of no LDH phase formed during the sol-gel 167 

processing. In order to complete crystallization and obtain the material suitable for a quantitative 168 

XRD phase analysis (Salak et al., 2013; Carneiro et al., 2015) the formed MMO were heat-treated at 169 

higher temperature, namely at 1000°C for 6 h. Fig. 3 and Fig. 4 demonstrate the XRD patterns of 170 

the resulting products. It is seen that along with the diffraction reflections from MgO and CeO2, the 171 

peaks attributed to the cubic spinel MgAl2O4 phase are present. The Mg/(Al+Ce) molar ratios were 172 

estimated from the Rietveld analysis of the XRD data to be 3.22±0.15 and 2.92±0.11 for the MMO 173 

obtained from LDHs prepared by co-precipitation method and for the MMO from the sol-gel 174 

derived powders, respectively.   175 

The ability of MMO to (re)form the LDH structure in water or water solutions was tested. The 176 

XRD patterns of the LDH samples formed as a result of hydration of the MMO obtained via co-177 

precipitation and sol-gel methods are shown in Fig. 5 and 6, respectively.  178 

The XRD patterns of the Mg/Al samples (cerium free) synthesized by co-precipitation, calcined 179 

and then immersed in water (Fig. 5) indicate a complete transformation of mixed-metal oxides into 180 

an LDH phase. Thus, the reconstruction of layered structure of LDH initially prepared by co-181 

precipitation method occurs in water. The calcined LDHs with a non-zero cerium content 182 

demonstrate, however, a less complete regeneration: reflections of the CeO2 phase are observed in 183 

the respective XRD patterns. Besides, it is clearly seen that the considerable amount of the 184 

amorphous part of the MMO product which contribute to a very broad peak of the XRD background 185 

remains uncrystallised.  186 

The samples obtained by rehydration of the sol-gel derived samples show the typical LDH 187 

structure (Fig. 6), although no traces of an LDH phase has been detected at any stage of the sol-gel 188 

processing. Heat treatment of the sol-gels resulted in high crystalline MMO powders, which were 189 

hydroxylated in aqueous media providing well-crystallized LDH phase. According to the XRD 190 

patterns presented in Fig. 6, the mixed-metal oxides transformed fully to layered double hydroxides. 191 

Interestingly, the formation of LDH from the sol-gel derived powders does not depend on the Ce 192 

concentration in the samples. The XRD patterns of the reconstructed (hydroxylated) MMO powders 193 

demonstrate the sharp diffraction lines associated with an LDH crystalline phase only. No other 194 

crystalline phases have been detected. The (110) reflections of the LDHs are regularly shifted to a 195 

lower 2θ range as the cerium content is increased. Actually, the term “reconstruction” we use is not 196 
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fully correct in the case of LDHs obtained from the sol-gel derived samples. In fact, this is a novel 197 

synthesis approach for the fabrication of LDHs, which is based on an aqueous sol-gel processing 198 

route.  199 

The basal spacing (which are the distance between the adjacent hydroxide layers) and the lattice 200 

parameters of the LDH samples prepared by two different methods are listed in Table 1. The lattice 201 

parameter a reflects an average cation-cation distance and can be calculated as a = 2d(110) from the 202 

interplanar distance corresponded to the (110) reflections in the brucite-like layers. Parameter a is a 203 

function of both size and ratio of cations M2+ and M3+. Parameter c depends mainly on size, charge 204 

and orientation of the intercalated species: anions and water molecules (Salak et al, 2014). In order 205 

to minimize the experimental error caused by the 2θ scale shift, c-parameter is usually calculated 206 

using the interplanar distances of at least two basal reflections: typically, (003) and (006), as c = 3/2 207 

[d(003) + 2d(006)]. The obtained crystallographic data (Table 1) suggest that the observed variation in 208 

the lattice parameters of the Mg/Al/Ce LDHs are caused by substitution of aluminium by cerium in 209 

the host layers.   210 

Because of the relatively large ionic radius of Ce3+ (1.01 Å), substitution of Al3+ (0.53 Å) by 211 

Ce3+ is expected to lead to an expansion of the cation-cation distance in the brucite-like layers 212 

(Shannon, 1976). Therefore, as a result of the aluminium-to-cerium substitution, the a-parameter 213 

grows. Besides, the c-parameter increases as well, since because of such a substitution the layers 214 

become thicker. The effect of increase of both lattice parameters induced by this isovalent Al-to-Ce 215 

substitution is qualitatively the same as that in the case of an increase of the Mg/Al cation ratio 216 

since Mg2+ is bigger than Al3+. Dependences of lattice parameters of the carbonate-intercalated 217 

Mg/Al LDHs on the Mg/Al ratio have been reported (Newman and Jones 2001). It has been shown 218 

that when the ratio is increased from 1:1 to 3.5:1, the lattice parameters grow from about 3.02 to 219 

3.07 Å (a-parameter) and from about 22.6 to 23.7 Å (c-parameter). In this work, the Mg/Al/Ce 220 

LDHs prepared by co-precipitation were most likely intercalated with CO3
2-, as the synthesis was 221 

conducted in a NaHCO3 solution (see Experimental). As regards of the Mg/Al/Ce layered double 222 

hydroxides formed via hydroxylation of the sol-gel derived MMO, these LDHs can be intercalated 223 

with OH- and CO3
2-, because the water used for the rehydration procedure was not specially 224 

decarbonized. Indeed, the presence of carbonate in the LDH samples prepared using either co-225 

precipitation or via sol-gel method was confirmed by FT-IR study. A spectral band at about 1360 226 

cm-1 associated with n'3 vibration of CO3
2- was detected in the samples regardless of the preparation 227 

method used (Fig. S1 in Supplementary Material). At the same time, the presence of intercalated 228 
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OH- cannot be unambiguously confirmed nor discarded by FT-IR, since one can hardly distinguish 229 

between the intercalated hydroxyl groups and those in the brucite-like layers.  230 

In terms of the most compact (flat-laying) orientation, the anions OH- and CO3
2- give the same 231 

height of the interlayer gallery, which is equal to the double van der Waals radius of oxygen (Salak 232 

et al., 2014). Therefore, the values reported by Newman and Jones can be used as references for our 233 

LDHs. It is seen from Table 1 that the obtained lattice parameters of the Ce-substituted Mg3Al 234 

LDHs are above the aforementioned ranges. The obtained values of both a- and c-parameters 235 

cannot be associated with any deviation in the Mg/Al ratio and certainly indicate the gradual 236 

substitution of aluminium by cerium in the brucite-like layers. 237 

The Al-to-Ce isomorphic substitution rate in the obtained Mg/Al/Ce LDHs was estimated 238 

using the expression based on that proposed by Richardson (Richardson, 2012) for case of 239 

substitution by two different trivalent cations:  240 

2

2 3 3
( )

1
sin( )[ ( ) (1 ) ( ) ( )]

2 2
LDH Mg OHa a r Mg x r Al xr Ce

a + + +
= - - - -  241 

Values of the parameter a for Mg(OH)2 and the angle α were taken from the paper by Brindley and 242 

Kao (Brindley and Kao, 1984) and the Shannon’s ionic radii (Shannon, 1976) were used. The 243 

calculated a-parameter value for the ideal Mg/Al/Ce 10 mol.% LDH (3.089 Å) was compared with 244 

the experimentally obtained values. It was found that the real amount of cerium that substituted 245 

aluminium in the Mg/Al/Ce 10 mol.% LDHs is about 8 and 6 mol.% for the samples prepared by 246 

co-precipitation and through sol-gel, respectively.  247 

Based on the obtained results, the methods of fabrication of the Mg/Al/Ce LDH applied in this 248 

work can be compared. As seen from Fig. 1 and Fig. 6, both the co-precipitation method and the 249 

sol-gel method provide a gradual Al-to-Ce substitution, although some amount of Ce does not 250 

incorporate into the LDH layers and crystallize as cerium oxide. It follows from a comparison of the 251 

lattice parameters of LDHs of the same nominal composition but prepared by different methods that 252 

when the nominal composition is 5-10 mol.% of Ce, the sol-gel method of the LDH preparation 253 

provides higher substitution rates. At the same time, in the case of small-rate substitutions, both 254 

methods give similar results. Our idea was the following: if we prove that at least 5 mol.% of Al can 255 

be substituted by Ce, it guarantees that smaller-rate substitutions are successful a fortiori. In the 256 

study of the luminescence properties, where LDHs with the small substitution rates (1 mol.% and 257 

less) were used, we considered the LDHs of the same nominal composition but prepared by 258 

different methods as chemically equal.  259 

The results of the thermogravimetric analysis of the LDHs synthesised by two different methods 260 

are shown in Figs. 7 and 8. The initial mass loss was observed in the temperature ranges of 30-261 
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150°C (~18%) and 30-200°C (~17%) for the Mg/Al/Ce 10 mol% LDH prepared by co-precipitation 262 

and sol-gel methods, respectively. Some decrease in mass occurs even below 100oC because of 263 

evolution of the adsorbed water. (Tang et al., 2002). The main decomposition of Mg/Al/Ce 10 264 

mol% sample prepared by co-precipitation method occurs via two steps in the temperature ranges of 265 

290-350oC and 350-600oC. These thermal behaviours result from the loss of the coordinated water 266 

and the intercalated anions (in the lower temperature range) and dehydroxylation of the layers 267 

followed by collapse of the layered structure (in the higher temperature range). However, the main 268 

decomposition of Mg/Al/Ce 10 mol% sample prepared by sol-gel method occurs in one step by 269 

monotonic weight decrease in the temperature range of 200-600oC.  270 

The luminescent properties of the obtained LDHs were also investigated. The luminescence 271 

wavelengths of Ce3+ ions change widely from near UV to the red range depending on the nature of 272 

the host lattices (Kompe et al., 2003; Li et al., 2003). The emission spectra of Mg/Al/Ce samples 273 

fabricated by co-precipitation method is shown in Fig. 9. All powders were excited at 340 nm for 274 

taking the emission spectra. The major emission lines are peaked at ~370-390 nm. The broad bands 275 

are attributed to [Xe]5d1-[Xe]5f1 transition of Ce3+ ions (Katelnikovas et al., 2010). Surprisingly, 276 

the highest intensity of 5D0 → 7F2 transition was observed for Mg/Al/Ce 0.05 mol% specimen. It 277 

turned out that emission intensity decreases with increasing concentration of Ce3+ up to 1 mol%. 278 

The emission maximum was also slightly shifted towards a red spectral region when more Ce3+ was 279 

introduced into the host lattice. This is in a good agreement with the results obtained in the Ce3+- 280 

doped garnet-type phosphors. In the emission spectra of the sol-gel derived Mg/Al/Ce samples (Fig. 281 

10), the bands are broader and more intensive. Moreover, the maximum of the emission of the 282 

LDHs synthesized using sol-gel technique is red shifted (390-430 nm) in comparison with the LDH 283 

phosphors prepared by co-precipitation method. Fig. 9 also shows the emission spectra of the 284 

Mg/Al/Ce LDHs synthesized by co-precipitation method, calcined and then reconstructed. It is 285 

interesting to note the light output is much stronger in the reconstructed cerium-doped LDHs. 286 

Moreover, the red-shift of the emission maximum of the reconstructed Mg/Al/Ce sample is also 287 

evident. On the other hand, the highest intensity of 5D0 → 7F2 transition still is determined for 288 

Mg/Al/Ce 0.05 mol% specimen. With further increasing cerium content up to 1% the concentration 289 

quenching was observed (Devaraju et al., 2009). 290 

   The morphology of the synthesized Mg/Al and Mg/Al/Ce samples was examined using scanning 291 

electron microscopy. The characteristic feature of synthesized LDH should be formation of plate-292 

like particles with hexagonal shape (Costa et al., 2008; Xu et al., 2010). The rehydration results in 293 

(re)generation of the metal hydroxide sheets and the plate-like geometry of the primary particles. 294 
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The SEM micrographs represent the cerium-free Mg/Al LDH powders synthesized by co-295 

precipitation method (Fig. 11). The typical LDH microstructure is evident from this SEM 296 

micrograph. The surface is composed of the agglomerated small plate-like particles of 50-100 nm in 297 

diameter. After calcination of Mg/Al LDH at 650oC, the network of spherical nanoparticles (50 to 298 

100 nm) have formed. Rehydration of these nanopowders results in formation of plate-like particles 299 

with hexagonal shape (Fig. 11c). However, after such a reconstruction, the average particle size of 300 

the LDHs increases to ~100-150 nm. The surface morphology of the Ce3+-substituted samples is 301 

very similar for all the specimens independent of the substitution rate. The representative SEM 302 

micrographs (Fig. 12) of the Mg/Al/Ce 1 mol% sample synthesized by co-precipitation method, 303 

calcined and then reconstructed show small fibrous plate-like particles that are aggregated as in the 304 

case of a cerium-free LDH sample. The SEM micrographs of the Mg/Al/Ce 1 mol% and Mg/Al/Ce 305 

10 mol% LDHs fabricated by sol-gel method followed by hydration are shown in Fig. 12. It is seen 306 

that the sol-gel derived Mg/Al/Ce LDHs consist of the larger hexagonally shaped particles varying 307 

in size from approximately 150 to 200 nm. The good connectivity between the grains is also 308 

observed. These nanograins show tendency to form larger agglomerates. On the whole, 309 

nanocrystalline nature of powders with the narrow size distribution of crystallites is observed for all 310 

the obtained LDH samples. 311 

The luminescence properties are expected to depend on the closest coordination of Ce in the 312 

layer and hardly on the interlayer distance. The main difference between the LDHs prepared using 313 

either co-precipitation method or sol-gel-method is in size and regularity of the crystallites. It is 314 

known that the LDH crystallites obtained as a result of (re)hydration of the calcined powders are 315 

more irregular than those obtained by co-precipitation. Therefore we consider that the observed 316 

differences in the luminescence properties are caused by differences in morphology of the LDHs.  317 

 318 

4. Conclusions 319 

The Mg/Al layered double hydroxides (LDHs) were successfully synthesized by co-precipitation 320 

method and using sol-gel preparation technique. To the best our knowledge the latter was 321 

successfully applied for production of LDHs for the first time. In this novel aqueous sol-gel 322 

processing route, the LDHs were obtained as a result of decomposition (calcination) of the 323 

precursor gels at 650oC followed by rehydration of the intermediate crystalline MMO powders in 324 

water. The same synthesis methods were successfully applied for production of cerium-substituted 325 

LDHs (Mg/Al/Ce) with the substitution rate from 0.05 to 10 mol%. It was found that in case of the 326 

Mg/Al/Ce LDHs prepared by co-precipitation followed by calcination, the regeneration rate 327 

c) 
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decreases with increase of cerium content, while the conversion of the rehydrated sol-gel derived 328 

MMO into LDH does not depend on the concentration of cerium and is close to 100%. The 329 

proposed sol-gel synthesis route for LDHs has some benefits over conventional method such as 330 

simplicity, high homogeneity of the end products, effectiveness, suitability to study substitution 331 

effects for different multinary metal systems and cost efficiency.  332 

The luminescent properties of the obtained LDHs were also investigated. The major emission 333 

lines attributed to the [Xe]5d1-[Xe]5f1 transition of Ce3+ ions were peaked at ~370-390 nm and 390-334 

430 nm for the Mg/Al/Ce samples fabricated by co-precipitation and by sol-gel methods, 335 

respectively. The emission bands were broader, more intensive and red-shifted in the case of the 336 

sol-gel derived LDHs.  337 

The typical LDH microstructure was observed in all the obtained samples. The surfaces of the 338 

LDHs prepared by co-precipitation were composed of agglomerated small plate-like particles of 50-339 

100 nm in diameter. After calcination followed by reconstruction (rehydration), the particle size of 340 

obtained LDH was observed to increase to 100-150 nm. Even larger particles formed in case of the 341 

LDHs prepared by hydration from the sol-gel derived MMO powders.  342 

Luminescence properties of cerium doped LDHs were found to depend on the morphology of the 343 

host lattice. The observed compositional behaviours of lattice parameters and the luminescence 344 

characteristics indicate the successful isomorphic incorporation of Ce3+ into the brucite-like layers 345 

of the Mg3Al1-xCex LDHs at least when x≤0.01. 346 

 347 

Acknowledgements 348 

The work has been done in frame of the project TUMOCS. This project has received funding from 349 

the European Union’s Horizon 2020 research and innovation programme under the Marie 350 

Skłodowska-Curie grant agreement No 645660. The financial support of P2020 COMPETE and 351 

FCT-Portugal through project POCI-01-0145-FEDER-016686 - PTDC/CTM-NAN/2418/2014 352 

(NANOCONCOR) is also acknowledged. 353 

 354 

 355 

References  356 

Alvarez, M.G., Chimentao, R.J., Barrabes, N., Fottinger, K., Gispert-Guirado, F., Kleymenov, E., 357 

Tichit, D., Medina, F., 2013. Structure evolution of layered double hydroxides activated by 358 

induced reconstruction. Appl. Clay. Sci. 83-84, 1-11. 359 



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

12 

 

Bi, X., Zhang, H., Dou, L., 2014. Layered Double Hydroxide-based nanocarriers for drug delivery. 360 

Pharmaceutics. 6, 298-332. 361 

Binnemans, K., 2009. Lanthanide-Based Luminescent Hybrid Materials. Chem. Rev.109, 4283-362 

4374. 363 

Brindley, G.W., Kao, C.C., 1984. Structural and IR relations among brucite-like divalent metal hy-364 

droxides. Phys. Chem. Minerals 10, 187-191.  365 

Carneiro, J., Caetano, A.F., Kuznetsova, A., Maia, F., Salak, A.N., Tedim, J., Scharnagl, N., 366 

Zheludkevich, M.L., Ferreira, M.G.S., 2015. Polyelectrolyte-modified Layered double 367 

hydroxide nanocontainers as vehicles for combined inhibitors. RSC Advances 5, 39916-39929. 368 

Cosano, D., Esquinas, C., Jimenez-Sanchidrian, C., Ruiz, J.R., 2016, Use of Raman spectroscopy to 369 

assess the efficiency of MgAl mixed oxides in removing cyanide from aqueous solutions. Appl. 370 

Surf. Sci. 364, 428-433.  371 

Costa, F., Leuteritz, A., Wagenknecht, U., Jehnichen, D., Häußler, L., Heinrich, G., 2008. 372 

Intercalation of Mg–Al layered double hydroxide by anionic surfactants: preparation and 373 

characterization. Appl. Clay. Sci. 38, 153-164. 374 

Devaraju, M.K., Yin, S., Sato, T., 2009. Tm3+ doped Y2O3 Nanocrystals: Rapid Hydrothermal 375 

Synthesis and Luminescence. Eur. J. Inorg. Chem. 29-30, 4441-4445.  376 

Domínguez, M., Pérez-Bernal, M.E., Ruano-Casero, R.J., Barriga, C., Rives, V., Ferreira, R.A.S., 377 

Carlos, L.D., Rocha, J., 2011. Multiwavelength luminescence in lanthanide-doped 378 

hydrocalumite and mayenite. Chem. Mater 23, 1993-2004. 379 

Gao, X.R., Lei, L.X., Kang, L.W., Wang, Y.Q., Lian, Y.W., Jiang, K.L., 2014. Synthesis, 380 

characterization and optical properties of a red organic-inorganic phosphor based on 381 

terephthalate intercalated Zn/Al/Eu layered double hydroxide. J. All. Compd. 585, 703-707. 382 

Gunawan, P., Xu, R., 2009. Lanthanide-doped Layered Double Hydroxides intercalated with 383 

sensitizing anions: efficient energy transfer between host and guest layers. J. Phys. Chem. C. 384 

113, 17206-17214. 385 

Hu Z.; Chen G, 2014. Novel nanocomposite hydrogels consisting of layered double hydroxide with 386 

ultrahigh tensibility and hierarchical porous structure at low inorganic content. Adv. Mater. 26, 387 

5950-5956. 388 

Jaubertie, C., Holgado, M.J., San Román, M.S., Rives, V., 2006. Molecular dynamics simulation of 389 

the energetics and structure of Layered Double Hydroxides intercalated with carboxylic acids. 390 

Chem. Mater. 18, 3114-3121. 391 



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

13 

 

Jayaraj, M.K., Vallabhan, 1991. CPG AC Thin film electroluminescent devices with rare earth 392 

doped ZnS. Electrochem. Soc. 138, 512-515. 393 

Katelnikovas, A., Sakirzanovas, S., Dutczak, D., Plewa, J., Enseling, D, Winkler, H., Kareiva, A., 394 

Jüstel, T., 2013. Synthesis and optical properties of yellow emitting garnet phosphors for 395 

pcLEDs. J. Lumin. 136, 17-25. 396 

Katelnikovas, A., Plewa, J., Sakirzanovas, S., Dutczak, D., Enseling, D., Baur, F., Winkler, H., Ka-397 

reiva, A., Jüstel, T., 2012. Synthesis and optical properties of green emitting garnet phosphors 398 

for phosphor-converted light emitting diode. J. Mater. Chem. 22, 22126-22134.  399 

Katelnikovas, A., Plewa, J., Dutczak, D., Möller S, Enseling, D., Winkler, H., Kareiva, A., Jüstel, 400 

T., 2012. Synthesis and optical properties of green emitting garnet phosphors for phosphor-401 

converted light emitting diodes. Opt. Mater. 34, 1195-1201. 402 

Katelnikovas, A., Jurkevicius, J., Kazlauskas, K., Vitta, P., Jüstel, T., Kareiva, A., Zukauskas, A., 403 

Tamulaitis, G., 2011. Efficient Cerium-Based Sol-Gel Derived Phosphors in Different Garnet 404 

Matrices for Light-Emitting Diodes. J. All. Compd. 509, 6247-6251. 405 

Katelnikovas, A., Bareika, T., Vitta, P., Justel, T., Winkler, H., Kareiva, A., Zukauskas, A., 406 

Tamulaitis, G., 2010. Warm-White Light Emitting Diodes. Opt. Mater. 32, 1261-1265. 407 

Katelnikovas, A., Justel, T., Uhlich, D., Jorgensen, J.E., Sakirzanovas, S., Kareiva, A., 2008. 408 

Caracterization of cerium-doped ytrium aluminium garnet nanopowders synthesised via sol-gel 409 

process. Chem. Eng. Comm. 195, 758-769. 410 

Katelnikovas, A., Vitta, P., Pobedinskas, P., Tamulaitis, G., Zukauskas, A., Jørgensen, J.E., Ka-411 

reiva, A., 2007. Photoluminescence in sol–gel-derived YAG: Ce phosphors. J. Cryst. Growth. 412 

304, 361-368.  413 

Klemkaite-Ramanauske, K., Zilinskas, A., Taraskevicius, R., Khinsky, A., Kareiva, A., 2014. 414 

Preparation of Mg/Al layered double hydroxide (LDH) with structurally embedded molybdate 415 

ions and application as a catalyst for the synthesis of 2-adamantylidene(phenyl)amine schiff 416 

Base. Polyhedron. 68, 340-345.  417 

Klemkaite, K., Prosycevas, I., Taraskevicius, R., Khinsky, A., Kareiva, A., 2011. Synthesis and 418 

characterization of layered double hydroxides with different cations (Mg, Co, Ni, Al), decom-419 

position and reformation of mixed metal oxides to layered structures. Centr. Eur. J. Chem. 9, 420 

275-282.  421 

Klemkaite, K., Khinsky, A., Kareiva, A., 2011. Reconstitution effect of Mg/Ni/Al Layered Double 422 

Hydroxide. Mater. Lett. 65, 388-391. 423 



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

14 

 

Kömpe, K., Borchert, H., Storz, J., Lobo, A., Adam, S., Möller, T., Haase, M., 2003. Nanoparticles 424 

with 70 % Photoluminescence Quantum Yield. Angew. Chem. Int. Ed. 42, 5513-5516. 425 

Kuwahara, Y., Tamagawa, S., Fujitani, T., Yamashita, H., 2016. Removal of phosphate from 426 

aqueous solution using Layered Double Hydroxide prepared from waste iron-making slag. 427 

Bull. Chem. Soc. Jpn. 89, 472-480.  428 

Lu, P., Liang, S., Qiu, L., Gao, Y.S., Wang, Q., 2016. Layered double hydroxide/graphene oxide 429 

hybrid incorporated polysulfone substrate for thin‒film nanocomposite forward osmosis 430 

membranes. J. Membr. Sci. 504, 196-205. 431 

Li, H.J., Su, X.Y., Bai. C.H., Xu, Y.Q., Pei, Z.C., Sun, S.G., 2016. Graphene based sensor for 432 

environmental monitoring of NO2. Sensors. Actuat B-Chemical. 225, 109-114. 433 

Liu, L.L., Xia, D., Liu, W.S., Tang, Y., 2013. Initial theoretical evaluation of pore structure for 434 

metal-organic frameworks. Chin. J. Inorg. Chem. 29, 1663-1667. 435 

Li, F.Y., Xia, Z.Q., Yang, S.P., Gao, S.Y., 2004. Synthesis of single-phase nanocrystalline garnet 436 

phosphor derived from gel-network-coprecipitation. J. Mater. Sci. 39, 4711-4713. 437 

Liu J.; Chen G.; Yang J., 2008. Preparation and characterization of poly (vinyl chloride)/layered 438 

double hydroxide nanocomposites with enhanced thermal stability. Polymer. 49, 3923-3927. 439 

Mascolo, G., Mascolo, M.C., 2015. On the synthesis of layered double hydroxides (LDH) by 440 

reconstruction, method based on the “memory effect”. Microporous and Mesoporous Materials. 441 

214, 246-248. 442 

Maqbool, M., Ahmad, I., Richardson, H.H., Kordesch, M.E., 2007. Direct ultraviolet excitation of 443 

an amorphous AlN: praseodymium phosphor by codoped Gd3+cathodoluminescence. Appl. 444 

Phys. Lett. 91, 193511(1-3). 445 

Maqbool, M., 2006. Luminescence from thulium and samarium doped amorphous AlN thin films 446 

deposited by RF magnetron sputtering and the effect of thermal activation on luminescence. 447 

Eur. Phys. J. Appl. Phys. 34, 31-34. 448 

Misevicius. M., Scit, O., Grigoraviciute-Puroniene, I., Degutis, G., Bogdanoviciene, I., Kareiva, A., 449 

2012. Synthesis, hydration and thermal stability of hydrates in strontium-aluminate cement. 450 

Ceram. Int. 38, 5915-5924. 451 

Miyata, S., 1983. Anion-exchange properties of hydrotalcite-like compounds. Clays. Clay. Min. 31, 452 

305-314. 453 

Newman, S.P., Jones, W., 1998. Synthesis, characterization and applications of layered double 454 

hydroxides containing organic guests. New. J. Chem. 22, 105-115.  455 



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

15 

 

Newman, S.P., Jones, W., 2001. Layered double hydroxides as templates for the formation of 456 

supramolecular structures. Supramolecular Organization and Materials Design, ed. W. Jones 457 

and C. N. R. Rao, Editors, 295-331, Cambridge University Press, Cambridge. 458 

Okamoto, K., Yoshimi, T., Miura, S., 1988. TbOF complex centers in ZnS thin-film 459 

electroluminescent devices. Appl. Phys. Lett. 53, 678-680. 460 

Posati, T., Costantino, F., Latterini, L., Nocchetti, M., Paolantoni, M., Tarpani, L., 2012. 461 

Hydrotalcite-like materials as precursors of catalysts to produce hydrogen from methanol. 462 

Inorg. Chem. 51, 13229-13236. 463 

Richardson, I.G., 2012. The importance of proper crystal-chemical and geometrical reasoning dem-464 

onstrated using layered single and double hydroxides. Acta Cryst. Sect. B 69, 150-162.  465 

Rives, V., 2001. Layered Double Hydroxides: Present and Future: book. Nova. Science. Publishers., 466 

New York. 467 

Salak A.N., Tedim J., Kuznetsova A.I., Ribeiro J.L., Vieira L.G., Zheludkevich M.L., Ferreira 468 

M.G.S., 2012. Comparative x-ray diffraction and infrared spectroscopy study of Zn-Al 469 

layered double hydroxides: vanadate vs nitrate, Chem. Phys. 397, 102-108. 470 

Salak, A.N., Tedim, J., Kuznetsova, A.I., Vieira, L.G., Ribeiro, J.L., Zheludkevich, M.L., Ferreira, 471 

M.G.S., 2013. Thermal behavior of layered double hydroxide Zn-Al-pyrovanadate: 472 

composition, structure transformations, recovering ability. J. Phys. Chem. C 117, 4152-473 

4157.  474 

Salak, A.N., Lisenkov, A.D., Zheludkevich, M.L., Ferreira, M.G.S., 2014. Carbonate-free Zn-Al 475 

(1:1) layered double hydroxide film directly grown on zinc-aluminum alloy coating. ECS 476 

Electrochem. Lett. 3, C9-C11. 477 

Serdechnova, M., Salak, A.N., Barbosa, F.S., Vieira, D.E.L., Tedim, J., Zheludkevich, M.L., 478 

Ferreira, M.G.S., 2016. Interlayer intercalation and arrangement of 2-479 

mercaptobenzothiazolate and 1,2,3-benzotriazolate anions in layered double hydroxides: in 480 

situ x-ray diffraction study. J. Solid State Chem. 233, 158-165. 481 

Shannon, R.D., 1976. Revised effective ionic radii and systematic studies of interatomic distances 482 

in halides and chalcogenides. Acta. Crystallogr. Sec. A 32, 751-767. 483 

Skaudzius, R., Juestel, T., Kareiva, A., 2016. Study of Eu3+ and Tm3+ substitution effects in sol–gel 484 

fabricated calcium hydroxyapatite. Mater. Chem. Phys. 170, 229-238. 485 

Stanulis, A., Katelnikovas, A., Enseling, D., Dutczak, D., Sakirzanovas, S., Van Bael, M., Hardy, 486 

A., Kareiva, A., Jüstel, T., 2014. Luminescence properties of Sm3+-doped alkaline earth ortho-487 

stannates. Opt. Mater. 36, 1146-1152. 488 



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

16 

 

Tamboli, A.H., Jadhav, AR., Chung, W.J., Kim, H., 2015. Catalyst for hydrogen production from 489 

sodium borohydride hydrolysis. Energy 93, 955-962. 490 

Vargas, D.R.M., Oviedo, M.J., Lisboa, F.D., Wypych, F., Hirata, G.A., 2013. Phosphor dyspro-491 

sium-doped Layered Double Hydroxides exchanged with different organic functional groups. 492 

J. Nanomater. Art. ID 730153, 1-8. 493 

Vicente, P., Pérez-Bernal, M.E., Ruano-Casero, R.J., Ananias, D., Almeida Paz, F.A., Rocha, J., 494 

Rives, V., 2016. Luminescence properties of lanthanide-containing layered double hydrox-495 

ides. Microporous and Mesoporous Materials 226, 209-220.  496 

William, M. Y., Shionoya, S., Yamamoto, H., 2006. Fundamentals of Phosphors. CRC. Press. Inc, 497 

Ltd. Boca Raton. FL, 335.  498 

Wu, J., Ren, Z.Y., Du, S.C., Kong, L.J., Liu, B.W., Xi, W., Zhu, J.Q., Fu, H.G., 2016. Dehydrated 499 

layered double hydroxides: Alcohothermal synthesis and oxygen evolution activity. Nano 500 

Res. 9, 713-725.  501 

Xu, Z.P., Braterman, P.S., 2010. Synthesis, structure and morphology of organic layered double 502 

hydroxide (LDH) hybrids: Comparison between aliphatic anions and their oxygenated 503 

analogist. Appl. Clay. Sci. 48, 235-242. 504 

Yang, W., Kim, Y., Liu, P., Sahimi, M., Tsotsis, T., 2002. A study by in situ technique of the 505 

thermal evolution of the structure of a Mg-Al-CO3 layered double hydroxide. Chem. Eng. Sci. 506 

57, 2945-2953. 507 

Zabiliute, A., Butkute, S., Zukauskas, A., Vitta P., Kareiva, A., 2014. Sol-gel synthesized far-red 508 

chromium-doped garnet phosphors for phosphor-conversion light-emitting diodes that meet the 509 

photomorphogenetic needs of plants. Appl. Optics. 53, 907-914. 510 

Zhang, W.J., Li, Y.L., Fan, H.X., 2016. Lanthanide luminescence for biomedical analyses and im-511 

aging. Opt. Mater. 51, 78-83. 512 

Zhang, Z., Chen, G.M., Liu, J.G., 2014. Tuneable photoluminescence of europium-doped layered 513 

double hydroxides intercalated by coumarin-3-carboxylate. RSC Adv. 4, 7991-7997. 514 

Zhao, Y., Li, F., Zhang, R., Evans, D.G., Duan, X., 2002. Preparation of layered double-hydroxide 515 

nanomaterials with a uniform crystallite size using a new method involving separate nucleation 516 

and aging steps. Chem. Mater. 14, 4286-4291. 517 



Highlights 

· The Mg/Al/Ce layered double hydroxides (LDHs) synthesised using co-precipitation 

and sol-gel preparation technique. 

· The rehydration of sol-gel derived LDH does not depend on the concentration of 

cerium used in the samples as was the case in the co-precipitation approach. 

· The emission bands more intensive and red-shifted for the sol-gel derived specimens. 

· The Mg/Al/Ce solids are homogeneous having small particle size distribution. 
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Table 1. The basal spacings (d) and lattice parameters (a, c) of Mg/Al LDH and Mg/Al/Ce LDHs 

synthesised by co-precipitation and sol-gel methods. 

 

The cation 
composition 

d(003) (Å) d(006) (Å) d(110) (Å) a (Å) c (Å) 

Co-precipitation method 

Mg/Al 7.9627 3.9482 1.5344 3.067 23.878 

Mg/Al/Ce 5 mol% 7.9463 3.9479 1.5347 3.068 23.828 

Mg/Al/Ce 7.5 mol% 7.9541 3.9510 1.5356 3.070 23.852 

Mg/Al/Ce 10 mol% 7.9634 3.9609 1.5376 3.074 23.880 

Sol-gel method 

Mg/Al 7.9181 3.9300 1.5346 3.068 23.744 

Mg/Al/Ce 5 mol% 7.9476 3.9483 1.5351 3.069 23.832 

Mg/Al/Ce 7.5 mol% 7.9683 3.9499 1.5376 3.074 23.894 

Mg/Al/Ce 10 mol% 8.1418 3.9897 1.5411 3.081 24.415 
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Fig. 1. XRD patterns of the Mg/Al/Ce LDHs synthesized by co-precipitation method: (a) cerium-
free, (b) 5 mol% of Ce, (c) 7.5 mol% of Ce, (d) 10 mol% of Ce. The basal reflection is indicated. 
Inset: the XRD patterns in the range of (110) and (113) diffraction reflections. The crystalline phase 
is marked: · - CeO2 
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Fig. 2. XRD patterns of Mg/Al LDH calcined at 650 °C: (a) commercial Pural MG63HT, (b) 
synthesized by co-precipitation and (c) sol-gel methods. The MgO phase is marked as ♦ 
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Fig. 3. XRD patterns of Mg/Al/Ce LDHs synthesised by co-precipitation method and calcined at 
650°C: (a) 1 mol% of Ce, (b) 5 mol% of Ce, (c) 7.5 mol% of Ce, (d) 10 mol% of Ce. Calcined at 

1000°C: (e) cerium-free; (f) 7.5 mol% of Ce. The crystalline phases are marked: ♦ - MgO; · - CeO2; 
♣ MgAl2O4 
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Fig. 4. XRD patterns of gels Mg/Al/Ce LDHs calcined at 650: (a) 1 mol% of Ce, (b) 5 mol% of Ce, 
(c) 7.5 mol% of Ce, (d) 10 mol% of Ce. Calcined at 1000°C: (e) cerium-free, (f) 7.5 mol% of Ce. 
The crystalline phases are marked: ♦ - MgO; · - CeO2; ♣ MgAl2O4 
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Fig. 5. XRD patterns of Mg/Al/Ce LDHs synthesized by co-precipitation method and reconstructed: 

(a) 1 mol% of Ce, (b) 5 mol% of Ce, (c) 7.5 mol% of Ce, (d) 10 mol% of Ce; •CeO2 
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Fig. 6. XRD patterns of the Mg/Al/Ce LDHs synthesized by sol-gel method using reconstruction 
approach: (a) cerium-free, (b) 5 mol% of Ce, (c) 7.5 mol% of Ce, (d) 10 mol% of Ce. The basal 
reflection is indicated. Inset: the XRD patterns in the range of (110) and (113) diffraction 
reflections. The crystalline phase is marked: • - CeO2 
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Fig. 7. TG-DTG curves recorded for the Mg/Al/Ce 10 mol% LDH sample 
 synthesized by co-precipitation method 
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Fig. 8. TG-DTG curves recorded for the Mg/Al/Ce 10 mol% LDH sample 
 synthesized by sol-gel method 
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Fig. 9. Emission spectra of Mg/Al/Ce LDHs synthesized by co-precipitation  
method and reduced view of reconstruction. 
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Fig. 10. Emission spectra of Mg/Al/Ce LDH synthesized by sol-gel method 
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Fig. 11. SEM micrographs of a) Mg/Al LDH synthesized by co-precipitation method, b) Mg/Al 
LDH calcined at 650 °C and c) reconstructed Mg/Al LDH 
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Fig. 12. SEM micrographs of a) Mg/Al/Ce 1 mol% LDH synthesized by co-precipitation method 
and b) reconstructed Mg/Al/Ce 1 mol% LDH c) Mg/Al/Ce 1 mol% LDH and d) Mg/Al/Ce 10 

mol% LDH synthesized by sol-gel method 
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