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bioflavonóides, Ressonância Magnética Nuclear (RMN), metabolómica. 

resumo 
 
 

A capacidade dos macrófagos alterarem o seu fenótipo entre estados pro-

inflamatórios (tipo-M1) e anti-inflamatórios (tipo-M2), faz com que a sua 

modulação seja uma estratégia promissora para mitigar a inflamação 

excessiva e/ou crónica. Os bioflavonóides são compostos naturais com 

atividade anti-inflamatória bem documentada. No entanto, pouco se sabe 

acerca dos seus efeitos metabólicos em macrófagos humanos. Nesta tese, 

utilizou-se a metabolómica baseada em RMN para averiguar de que forma 

diferentes bioflavonóides (Quercetina, Naringenina e Naringina) modulam o 

metabolismo de macrófagos humanos, com vista a compreender melhor os 

seus mecanismos de ação. Macrófagos derivados de monócitos humanos 

THP-1 foram cultivados in vitro e tratados com cada flavonóide, tanto no estado 

não-polarizado (M0) como após uma pré-polarização com LPS/IFN-γ (M1). A 

estimulação com IL-4/IL-13 (M2) foi também empregue para comparação. As 

frações polares das células foram obtidas por extração com solventes 

orgânicos e subsequentemente analisadas por espetroscopia de RMN-1H. 

Perto de 50 metabolitos intracelulares foram identificados (endometaboloma), 

sendo que a análise dos meios de cultura (exometaboloma) foi útil para estudar 

padrões de consumo e excreção. O estudo dos perfis metabólicos através de 

análise multivariada e quantitativa revelou variações consistentes perante os 

diferentes estímulos fornecidos aos macrófagos. Os três flavonóides causaram 

diferentes alterações metabólicas, sendo que o maior impacto foi observado 

para a Quercetina e o menor para a Naringina. Os principais efeitos partilhados 

por todos os flavonóides, especialmente em macrófagos pré-polarizados para 

M1, incluíram diminuição do consumo de glucose e das reservas energéticas 

(ATP, UTP, fosfocreatina). Outros efeitos foram muito específicos dependendo 

do flavonóide, nomeadamente a modulação do ciclo TCA e do metabolismo de 

aminoácidos, a resposta anti-oxidante e variações em metabolitos associados 

às membranas. De forma geral, este estudo demonstrou que, apesar de 

apresentarem capacidade semelhante de atenuar a atividade pró-inflamatória 

de macrófagos, os três flavonóides afetaram o metabolismo celular de formas 

distintas. Em estudos futuros, será importante avaliar a expressão/atividade de 

enzimas metabólicas chave, de modo a incrementar o conhecimento atual 

sobre a modulação do metabolismo de macrófagos mediada por flavonóides. 

Este conhecimento deverá pois suportar o desenvolvimento de flavonóides 

como fármacos imunomodulatórios, especialmente direcionados para a 

atenuação e/ou resolução da inflamação, por exemplo, no contexto de doenças 

associadas a inflamação crónica ou da rejeição de biomateriais implantados. 
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abstract 
 
 

The ability of macrophages to change between pro-inflammatory (M1-like) and 

anti-inflammatory (M2-like) phenotypes makes their modulation an attractive 

therapeutic strategy to mitigate excessive and/or chronic inflammation. 

Bioflavonoids are natural compounds with well documented anti-inflammatory 

activity.  However, little is known about their molecular and metabolic effects on 

human macrophages. In this thesis, NMR metabolomics has been used to 

assess how different bioflavonoids (Quercetin, Naringenin and Naringin) 

modulate the metabolism of human macrophages, with a view to better 

understand their modes of action. In vitro-cultured macrophages differentiated 

from human THP-1 monocytes were treated with each flavonoid, both in the 

uncommitted state (M0) or after pre-polarization with LPS/IFN-γ (M1). 

Treatment with IL-4/IL-13 (M2) was also carried out for comparison. Cells were 

solvent-extracted to obtain the polar fractions and subsequently analysed by 1H 

NMR spectroscopy. Near 50 intracellular metabolites were detected 

(endometabolome), whereas analysis of cells-conditioned culture medium 

(exometabolome) was useful to assess consumption and excretion patterns. 

Multivariate analysis and discrete quantitative assessments of metabolic 

profiles revealed consistent variations upon macrophage exposure to the 

different stimuli. The three flavonoids produced pronounced metabolic 

alterations, with the strongest impact being observed for Quercetin and the 

mildest for Naringin. The main effects shared by all flavonoids, especially in M1 

pre-polarized macrophages, comprised downregulation of glucose uptake and 

decreased energetic pools (ATP, UTP, phosphocreatine). Other effects were 

highly flavonoid-specific, namely TCA cycle modulation and amino acid 

metabolism, antioxidant response and variations in membrane-related 

metabolites. Overall, this work has shown that, although sharing similar ability 

to attenuate pro-inflammatory activity of macrophages, the three flavonoids 

affect macrophage metabolism in distinct ways. Future studies should entail 

assessment of key metabolic enzymes to further advance current 

understanding on flavonoid-mediated modulation of macrophage metabolism. 

This knowledge is expected to support the development of flavonoids as 

immunomodulatory drugs, especially aimed at attenuating and/or resolving 

inflammation, for instance, in the context of chronic inflammatory diseases or 

the rejection of biomaterial implants. 



vii 
 

 

List of abbreviations and acronyms 

  

2-DG 2-Deoxyglucose 

AASS Aspartate-argininosuccinate shunt 

ACLY ATP-citrate lyase 

AICAR 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranose 

AKI Acute kidney injury 

AMP Adenosine monophosphate 

AMPK Adenosine monophosphate-activated protein kinase 

ASS Argininosuccinate synthase 

ATP Adenosine triphosphate 

BMDM Bone marrow-derived macrophages 

BPS Bisphenol S 

CAD Coronary artery disease 

CARKL Carbohydrate kinase-like protein 

CIC Citrate carrier 

CPT1A Carnitine palmitoyltransferase 1A 

DAMPs Danger-associated molecular patterns 

DCA Dichloroacetate 

DI Dimethyl itaconate 

DMM Dimethyl malonate 

DMSO Dimethyl Sulfoxide 

DON Deoxynivalenol  



viii 
 

 

ECAR Extracellular acidification rate 

ETC Electron transport chain 

ER Endoplasmic reticulum 

FAO Fatty acid oxidation 

FAS Fatty acid synthesis  

G3P Glycerol-3-phosphate 

G6P Glucose-6-phosphate 

G6PD Glucose-6-phosphate dehydrogenase 

GAPDH Glyceraldehyde-3-phosphate dehydrogenase 

GB Glabridin 

GM-CSF Granulocyte-macrophage colony-stimulating factor 

GSH Reduced glutathione 

HBP Hexosamine biosynthesis pathway 

HEL Helenalin 

HFO Heavy Fuel Oil 

HIF-1 Hypoxia inducible factor 1 

HK1 Hexokinase 1 

HLA-DR Human leukocyte antigen – antigen D related 

HMDB Human Metabolome Database 

IDH Isocitrate dehydrogenase 

IFN-β/ γ Interferon beta/gamma 

iNOS  Inducible nitric oxide synthase 

IRF-1/4 Interferon regulatory factor ¼ 

Irg1 Immunoresponsive gene 1 

http://www.jbc.org/content/early/2016/05/09/jbc.M115.685792


ix 
 

 

LPS Lipopolysaccharide 

M-CSF Macrophage colony-stimulating factor  

mTOR Mechanistic target for rapamycin 

MVA Multivariate Analysis 

NAD Nicotinamide adenine dinucleotide 

NADPH Nicotinamide adenine dinucleotide phosphate 

Nar Naringin 

NF-kB Nuclear factor kappa B 

Ngn Naringenin 

NLRP2 NLR family pyrin domain containing 2 

NO Nitric oxide 

NOX NADP oxidase 

OCR Oxygen consumption rate 

PAMPs Pathogen-associated molecular patterns 

PBMC  Peripheral blood mononuclear cells 

PCA Principal Component Analysis 

PDH Pyruvate dehydrogenase 

PDK1 Pyruvate dehydrogenase kinase 1 

PEP Phosphoenolpyruvate 

PFK Phosphofructokinase 

PFKFB2 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 

PG Prostaglandin 

PHD Prolyl hydroxylase 

PI3K Phosphatidylinositol 3-kinase 

https://en.wikipedia.org/wiki/Nicotinamide_adenine_dinucleotide
https://en.wikipedia.org/wiki/Nicotinamide_adenine_dinucleotide_phosphate
https://en.wikipedia.org/wiki/Nicotinamide_adenine_dinucleotide_phosphate


x 
 

 

PKM2 Pyruvate kinase M2 

PLS-DA Partial Least Squares - Discriminant Analysis 

PPP Pentose phosphate pathway 

Que Quercetin 

RNS Reactive nitrogen species 

ROS Reactive oxygen species 

RTC Reverse electron transport chain 

SDH Succinate dehydrogenase 

TAM Tumor associated macrophages 

TCA Tricarboxylic acid cycle 

TGF-β Transforming growth factor β 

TLR4 Toll like receptor 4 

TNF-α Tumor necrosis factor α 

USPIO Ultrasmall superparamagnetic Iron oxides  

VEGF Vascular endothelial growth factor 

VHL Von Hippel-Lindau factor 

 

 

 

 

 

 

 



xi 
 

 

Index 
 

Chapter 1. INTRODUCTION ..................................................................................... 1 

 Macrophage plasticity, polarization and metabolism ................................... 2 

 Canonical stimuli of macrophage polarization ........................................ 3 

 Phenotypic markers of macrophage polarization ................................... 6 

1.1.2.1. Cell surface markers ....................................................................... 7 

1.1.2.2. iNOS and Arginase-1 ...................................................................... 8 

1.1.2.3. Cytokines and chemokines ............................................................. 9 

 Metabolic features of differentially activated macrophages .................. 11 

1.1.3.1. Glycolysis and its regulation in polarized macrophages ................ 12 

1.1.3.2. PPP and oxidative/nitrosative stress in polarized macrophages .... 16 

1.1.3.3. TCA cycle in polarized macrophages ............................................ 17 

1.1.3.3.1. Succinate metabolism in M1 macrophages ............................. 19 

1.1.3.3.2. Citrate metabolism in M1 macrophages .................................... 21 

1.1.3.4. Fatty acid metabolism in activated macrophages .......................... 23 

 Immunomodulatory effects of bioflavonoids .............................................. 25 

1.2.1. Bioflavonoids ....................................................................................... 25 

1.2.2. Effects of bioflavonoids on macrophage polarization ........................... 27 

1.2.3. Effects of bioflavonoids on macrophage energy metabolism ............... 29 

 Metabolomics ........................................................................................... 31 

1.3.1. Metabolomics strategies and tools ....................................................... 31 

1.3.2. Metabolomic studies of macrophage polarization ................................ 32 

 Objectives ................................................................................................. 37 

Chapter 2. MATERIALS AND METHODS ............................................................... 39 

 Preparation of stock solutions ................................................................... 40 

 Cell culture maintenance .......................................................................... 40 

file:///E:/Dissertação%20LM_final.docx%23_Toc533777037
file:///E:/Dissertação%20LM_final.docx%23_Toc533777061


xii 
 

 

 Cell viability assay .................................................................................... 41 

 Immunofluorescence staining of M1 and M2 macrophages ...................... 42 

 Cytokine quantification assay (LEGENDplex™ array) ............................... 43 

2.5.1. Reagent preparation ............................................................................ 43 

2.5.2. Assay procedure ................................................................................. 43 

 NMR metabolomics assays ...................................................................... 45 

2.6.1. THP-1 differentiation into macrophages............................................... 45 

2.6.2. Incubation of M0 and M1 macrophages with bioflavonoids .................. 45 

2.6.3. Sample collection and preparation ....................................................... 46 

2.6.3.1. Cell culture supernatants .............................................................. 46 

2.6.3.2. Cell extracts .................................................................................. 46 

 1H-NMR Spectroscopy .............................................................................. 48 

 Multivariate analysis of spectral data ........................................................ 48 

 Spectral integration and univariate analysis .............................................. 49 

2.10. Statistical analysis ...................................................................................... 49 

Chapter 3. RESULTS AND DISCUSSION .............................................................. 51 

 Macrophage responses to canonical M1 and M2 stimuli ........................... 52 

3.1.1. Phenotypic characterization of M1 and M2 macrophages .................... 52 

3.1.2. Metabolic effects of canonical M1 and M2 stimuli ................................ 54 

 Macrophage responses to bioflavonoids ................................................... 62 

3.2.1. Flavonoid effects on cell viability.......................................................... 62 

3.2.2. Phenotypic characterization of flavonoid-treated macrophages ........... 63 

3.2.3. Metabolic effects of Quercetin on M0 and M1 macrophages ............... 65 

3.2.4. Metabolic effects of Naringenin on M0 and M1 macrophages .............. 70 

3.2.5. Metabolic effects of Naringin on M0 and M1 macrophages.................. 75 

3.3. Integration and discussion of macrophage metabolic changes ..................... 79 

3.3.1. Effects on glucose uptake and glycolysis ............................................... 79 

file:///E:/Dissertação%20LM_final.docx%23_Toc533777080


xiii 
 

 

3.3.2. Effects on the TCA cycle ........................................................................ 83 

3.3.3. Effects on amino acid metabolism .......................................................... 85 

3.3.4. Effects on glutathione metabolism.......................................................... 89 

3.3.5. Other metabolic effects .......................................................................... 92 

Chapter 4. CONCLUSIONS AND FUTURE PERSPECTIVES ................................ 93 

REFERENCES ....................................................................................................... 99 

SUPPLEMENTARY INFORMATION .................................................................... 129 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

file:///E:/Dissertação%20LM_final.docx%23_Toc533777098
file:///E:/Dissertação%20LM_final.docx%23_Toc533777099
file:///E:/Dissertação%20LM_final.docx%23_Toc533777100


xiv 
 

 

 

Figures list 

Figure 1: Differential Macrophage polarization into different phenotypes upon exposure to 

various stimuli……………………………………………………………………….……...………...4 

Figure 2: Schematic representation of metabolic differences between M1 and M2 

macrophages………………………………………………………………………………………...11 

Figure 3: Schematic representation of the altered TCA cycle in M1 macrophages.………… 18 

Figure 4: A – Schematic representation and numbering system of a generic flavonoid 

structure; B – Schematic representation and numbering system of the flavonol Quercetin.....26 

Figure 5: A – Schematic representation and numbering system of flavanone aglycone 

Naringenin; B – Schematic representation and numbering system of the Naringenin 7-O-

glycoside, Naringin…………….………………………………………………………………...….27 

Figure 6: Schematic representation of resazurin………………………………………………..41 

Figure 7: Schematic representation of the experimental protocol used to obtain the aqueous, 

lipophilic and cell media samples of the THP-1 cells in each condition………………..…….…47 

Figure 8: Fluorescence microscopy images of differentially activated 

macrophages…..…………………………………………………………………………………….52 

Figure 9: Concentrations of cytokines measured in the medium supernatants of polarized 

macrophages and their respective controls….................................…………………………...53  

Figure 10: 500 MHz 1H-NMR spectra of polar extracts from a) M0, b) M1 and c) M2 

macrophages………………………………………………………………………………………...55 

Figure 11: Expansions of a) 1H-1H TOCSY and b) J-resolved spectra of a polar extract from 

M0 macrophages……………………………………………………………………………………56 

Figure 12: Multivariate analysis of 1H-NMR spectra from polar extracts of a) M0 and M1 

macrophages, b) M0 and M2 macrophages: PCA and PLS-DA scores scatter plots (left and 

center, respectively) and LV1 loadings w (right), colored according to variable importance to 

projection (VIP)………………………………………………………………………………………57 

Figure 13: Heatmap of the main metabolite variations in the polar extracts of M1 and M2 

macrophages. The color scale represents percentage of variation relative to respective 

controls………..……………………………………………………………………………………...58 

Figure 14: Variations in consumption (positive bars) and excretion (negative bars) of several 

metabolites in the cell culture supernatant of THP-1 derived macrophages polarized to M1 and 

M2 phenotypes………………..…………………………………..…….......................................60 

Figure 15: Cell viability of THP-1 derived macrophages exposed for 24h to the three 

flavonoids tested…………………………………….………………………………….………......62 

 



xv 
 

 

Figure 16: Concentration of pro- and anti-inflammatory cytokines in the medium supernatant 

of M0 macrophages and pre-polarized M1 macrophages upon 24h exposure to each 

flavonoid……………………………………………………………... ……………………………...64 

Figure 17: Multivariate analysis of 1H-NMR spectra from the polar extracts of THP-1 derived 

macrophages comparing unstimulated M0 macrophages (grey) and Quercetin-treated 

macrophages (green) , incubated for 24h………………………….……………………………..65 

Figure 18: Heatmap of the main metabolite variations in the polar extracts of THP-1 derived 

macrophages upon treatment with Quercetin……………..……………………………………..67 

Figure 19: Variations in consumption (negative bars) and excretion (positive bars) of several 

metabolites in the cell culture supernatant of THP-1 derived macrophages incubated with 60 

μM of Quercetin……….………………………………….…………….…………………..……….69 

Figure 20: Multivariate analysis of 1H-NMR spectra from the polar extracts of THP-1 derived 

macrophages comparing unstimulated M0 macrophages (grey) and Naringenin-treated 

macrophages (blue), incubated for 24h………………………………….…………………….….70 

Figure 21: Heatmap of the main metabolite variations in the polar extracts of THP-1 derived 

macrophages upon treatment with Naringenin………….……………………..………...…..…..72 

Figure 22: Variations in consumption (negative bars) and excretion (positive bars) of several 

metabolites in the cell culture supernatant of THP-1 derived macrophages incubated with 100 

µM of Naringenin ………………………………………………………..………………………….74 

Figure 23: Multivariate analysis of 1H-NMR spectra from the polar extracts of THP-1 derived 

macrophages comparing unstimulated M0 macrophages (grey) and naringin-treated 

macrophages (pink), incubated for 24h…….…………………….……………………………….75 

Figure 24: Heatmap of the main metabolite variations in the polar extracts of THP-1 derived 

macrophages upon treatment with Naringin…….…….…………………………...…………..…77 

Figure 25: Variations in consumption (negative bars) and excretion (positive bars) of several 

metabolites in the cell culture supernatant of THP-1 derived macrophages incubated with 200 

µM of Naringin…...…………………………………….………………………...………..…………78 

Figure 26: Extracellular (a-c) and intracellular (d) variations of glucose levels in macrophages 

incubated under different conditions, relative to respective controls…………….…..…………81 

Figure 27: Extracellular (a-c) and intracellular (d) variations of lactate levels in macrophages 

incubated under different conditions, relative to respective controls …..…………….………..82 

Figure 28: Intracellular variations of metabolites related to the TCA cycle in macrophages 

incubated under different conditions, relative to respective controls.: a) itaconate; b) succinate 

and c) citrate…………....…..….….….………………………………………………….………….84 

Figure 29: Variations in extracellular glutamine (a-c), intracellular glutamine (d), and 

intracellular glutamate (e) in macrophages incubated under different conditions, relative to 

respective controls ……..…………………………………………………………………………...86 

Figure 30: Intracellular variations of some amino acids in macrophages incubated under 

different conditions, relative to respective controls..………………….….….….….….……...….88 



xvi 
 

 

Figure 31: Intracellular variations of GSH and GSSG in macrophages incubated under 

different conditions, relative to respective controls…..…………………………………….…….90 

Figure 32: Schematic diagram of main metabolic effects in THP-1 derived macrophages 

incubated under different conditions……..…….….…………………...................................….91 

Figure 33: Heatmap of the main metabolite variations in the polar extracts of pre-polarized 

M1 macrophages upon a 24h treatment with the three flavonoids………..……………………95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xvii 
 

 

Tables list 

 

Table 1: Cell surface markers, cytokines and chemokines typically expressed in M1 

and M2 macrophages ….………………………………………………...………………….7 

Table 2: Metabolomic studies of macrophage metabolism in response to different 

stimuli………………….……………….……………….……………….……………….………....35 

 

 

 

Supplementary Information 

 

Figure S1: Multivariate analysis of 1H-NMR spectra from the polar extracts of THP-1 derived 

macrophages comparing M0 macrophages (grey) and Quercetin-treated macrophages 

(green)………………………………………………………………………………………………130 

 

Figure S2: : Multivariate analysis of 1H-NMR spectra from the polar extracts of THP-1 derived 

macrophages comparing M0 macrophages (grey) and Naringenin-treated macrophages 

(blue)..………………………………………………………………………………………………131 

 

Figure S3: : Multivariate analysis of 1H-NMR spectra from the polar extracts of THP-1 derived 

macrophages comparing M0 macrophages (grey) and Naringin-treated macrophages 

(pink)...………………………………………………………………………………………………132 

 

 

Table S1: Assignment of resonances in the 1H-NMR profile of polar extracts from THP-1 

derived macrophages…………………………………………..…………………………………133



1 
 

 

 

 

 

 

CHAPTER 1 

 

 

  

Chapter 1. INTRODUCTION 
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1. Introduction 

 Macrophage plasticity, polarization and metabolism 

Macrophages are specialized white blood cells with high phagocytic activity, 

which are a part of the mononuclear phagocytic system (MPS).1,2 The MPS 

consists of cells from hematopoietic origin, including tissue resident macrophages 

and circulating monocytes, which are essential for the innate immune response.2 

Most tissue resident macrophages are established during embryogenesis and 

maintained by in situ proliferation, and are present at most tissues throughout the 

body, where they can exert specific functions.3 In the context of inflammation, 

macrophages can also differentiate from circulating monocytes that are recruited 

to the inflamed site.3,4 

The main functions exerted by macrophages include maintaining tissue 

homeostasis, immune surveillance, including defence against pathogens, and 

orchestration of inflammation.2,5 In order to maintain tissue homeostasis, 

macrophages clear considerable amounts of erythrocytes in the blood every day, 

allowing for iron and haemoglobin recycling5, while also ensuring that apoptotic 

cells and cellular debris originated from tissue damage or remodelling are cleared 

from the tissue.6,7 Macrophages are also associated with pathogen detection and 

clearance through phagocytosis, proving to be an effective host defence 

mechanism for the host against harmful organisms like bacteria, fungi or viruses.8 

Indeed, tissue resident macrophages are among the first responders to tissue injury 

or an infectious pathogen. They recognize molecular patterns like PAMPs 

(pathogen-associated molecular patterns) and DAMPs (danger-associated 

molecular patterns), followed by secretion of chemical signals, like cytokines and 

chemokines, that can modulate other immune cells and contribute to the 

inflammatory response.9,10 This process is highly regulated and involves 

communication between different leukocytes.2 Tissue resident macrophages can 

also stimulate the influx of inflammatory leukocytes into the affected tissue, where 

circulating monocytes and neutrophils are the first cells to arrive.4 After infiltrating 

the tissue, monocytes differentiate into mature macrophages which contribute to 

the development and resolution of inflammation, pathogen clearance and restoring 
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of tissue homeostasis.4 Moreover, these macrophages are capable of interacting 

and modulating the activity of other immune cells, such as T lymphocytes.2 One of 

the mechanisms through which these white blood cells interact involves 

macrophages presenting the antigens associated with the phagocytized pathogen, 

which leads to the activation of effector T lymphocytes, bridging the innate and 

adaptive immune response.2 

 

 Canonical stimuli of macrophage polarization 

To perform such a wide variety of functions, macrophages adopt various 

polarization (or activation) states.11 Indeed, macrophages have the ability to sense 

molecular mediators and danger signals in their local microenvironment9, resulting 

in the expression of different phenotypes that consequently play different roles in 

the immune response, specifically regarding inflammation.12 In early stages of 

inflammation, macrophages display a more pro-inflammatory phenotype, being 

generally designated as M1 macrophages (classically activated).13 With time, 

macrophages tend to shift their functional phenotype towards a more anti-

inflammatory state known as M2 (alternatively activated),which help to resolve 

inflammation and regenerate the tissue.13 The M2 phenotype can be further divided 

into four subtypes (M2a, M2b, M2c and M2d), which can be obtained through 

different polarization stimuli and differ in their cytokine expression profiles (figure 

1).14 It is, however, important to mention that categorizing macrophages strictly as 

M1 or M2 is an oversimplified notion, as these phenotypes are two opposite 

extremes in a wide range of functional states.15  
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Figure 1: Differential macrophage polarization into different phenotypes upon exposure to 

various stimuli. Classical activation (M1) induced by LPS and IFN-γ (red). Alternative 

activation (blue) induced by different stimuli according to M2 subtype: M2a - IL-4 and IL-

13; M2b – Immune Complex (IC), LPS and IL-1β; M2c - IL-10; M2d – IL-6 and adenosine. 

Adapted from14,16,17. 

 

The polarization shift towards the M1 phenotype can be triggered by molecular 

patterns present in external pathogens, such as bacterial cell wall 

lipopolysaccharides (LPS) and peptidoglycans, or endogenous secretion of 

cytokines like IFN-γ by T-cells.17 LPS signal transduction is strongly associated with 

toll like receptors (TLR’s) present in macrophage membranes, with TLR4 having a 

fundamental role in its regulation.18,19 A study using mouse macrophages (RAW 

264.7 cells) showed that manipulation of either the tridimensional structure or 

expression levels of TLR4 in these cells caused significant alterations on their 

response to LPS stimulation.19 Regarding IFN-γ stimulation, it has been 

demonstrated that IFN regulatory factor (IRF1) and IFN-β play an essential part in 

the signaling pathway, with M1 markers being decreased after knockdown of IRF1 

and IFN-β in human monocyte derived macrophages (U937 monocytes).20 
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Throughout the years, several studies have been conducted to assess which 

stimuli are most effective to selectively activate macrophages in vitro into the M1 

phenotype.12,21–25 One of the most commonly used stimuli for in vitro M1 

polarization is based on the combination of LPS and IFN-γ,20 which is the stimulus 

chosen in this present work as the canonical M1 macrophage polarization. 

M2 macrophages present an additional challenge regarding stimulation and 

phenotypic characterization, given the four different subsets identified.  Briefly, the 

M2a phenotype is achieved through IL-4 and IL-13 stimulation, the M2b by immune 

complexes, TLR and IL-1R agonists, the M2c with IL-10 stimulation, and M2d 

through IL-6 and adenosines.14,16 Displaying different cytokine expression profiles, 

these subsets can have different contributions in the context of inflammation or 

tissue regeneration.14 An example of this is M2b being functionally anti-

inflammatory but retaining high levels of pro-inflammatory cytokines like IL-12, and 

M2c being the biggest contributor for IL-10 production amongst the subtypes.26 In 

this context, a study by Tang and colleagues showed that in mice with acute lung 

injury (ALI), M2c macrophages were more effective at reducing fibrosis in the lung 

when compared to M2a macrophages.26 More detailed information can be found in 

recent reviews, highlighting the differences between these subsets.14,16,17  

In vitro studies often use a combination of IL-4 and IL-13 to polarize 

macrophages towards the prototypical M2 phenotype12,17,21, this stimuli having 

been chosen for M2 polarization in the present work. Interleukins IL-4 and IL-13 

are mainly released by T-helper type 2 cells after antigen recognition, although 

many other immune cells have the ability to secrete these cytokines after specific 

stimulation.27 IL-4 binds strongly with IL-4Rα in the macrophage membrane, which 

triggers a series of signaling pathways that ultimately leads to the phenotypical 

alterations seen in M2 macrophages.28 Sharing around 25% homology with IL-4, 

IL-13 can also exert similar biochemical effects, specifically regarding the 

inflammatory and immune responses.29 

Highlighting the importance of these interleukins, a study using mice with acute 

kidney injury (AKI) showed that deletion of IL-4/IL-13 or inhibition of downstream 

components in the signaling cascade caused delayed recovery from injury and had 
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a significant increase in M1 macrophage markers with a decrease in M2 markers.30 

This corroborates the role of alternatively activated macrophages in tissue repair 

and strongly indicates that IL-4 and IL-13 are essential for driving the polarization 

towards the M2 phenotype (specifically, M2a).30 

Overall, dysregulation of this process of differential activation in macrophages 

can lead to chronic inflammation, where the affected tissue can suffer persistent 

damage and/or contribute to disease progression.31–35 This is now recognized to 

underlie a number of diseases, including cancer,31 coronary artery disease35 and 

some auto-immune diseases like rheumatoid arthritis32 and multiple sclerosis33, 

while also displaying other negative health impacts, such as the rejection of 

implanted biomaterials.34,36 Hence, multiple efforts have been conducted to further 

understand the mechanisms underlying macrophage polarization and to develop 

strategies to modulate this process.13 

 

 Phenotypic markers of macrophage polarization 

The distinction between M1 and M2 polarized macrophages can be assessed 

by the different expression of several biological molecules, including membrane 

surface receptors, cytokines and intracellular enzymes, such as iNOS or arginase-

1 (Table 1).37 By identifying/quantifying some of these molecules and associating 

them to one phenotype or the other, polarization markers may be established. It 

should be underlined, however, that such markers are dependent on the cells’ 

origin, varying significantly between murine and human macrophages.12
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Table 1: Common polarization biomarkers (mouse and human), cytokines and 

chemokines expressed in M1 and M2 macrophages. Adapted from12,16,21,38. 

a Murine only 

 

 

1.1.2.1. Cell surface markers 

One of the most commonly used methods to characterize macrophage in vitro 

polarization is based on the analysis of expressed cell surface antigens through 

flow cytometry analysis.39 Using human macrophages derived from peripheral 

blood mononuclear cells (PBMC), Tarique and colleagues showed that 

macrophages could be separated into different populations, according to cell 

surface receptors expression.12 An increased expression of CD80 (a T-lymphocyte 

activation antigen) and CD64 (high affinity Fcγ receptor I) was strongly associated 

with human macrophage stimulation in culture with a combination of LPS and IFN-

γ.12 This increase in the CD80+CD64+ population highlighted these two surface 

receptors as good markers for identification of classical activation of 

macrophages.12 On the other hand, the expression of CD11b (ITGAM – Integrin 

Alpha M) and CD209 (DC-SIGN - Dendritic Cell-Specific Intercellular adhesion 

molecule-3-Grabbing Non-integrin) was significantly higher in macrophages 

stimulated with IL-4 and IL-13 when compared to uncommitted macrophages or 

macrophages stimulated with LPS and IFN-γ, therefore being associated with M2 

macrophages.12 

 
Cell surface markers 

Enzymes/ 
Proteins 

Cytokines Chemokines Refs 

M1 
CD64    CD68     CD80    CD86 

TLR2    TLR4     IL-1R    HLA-DR 
iNOS a 

IL-6      IL-8 

IL-12    IL-23 

TNF-α  IL-1β 

CCL2   CCL3 

CCL4   CCL5 

CCL8   CCL9 

CCL10  

CCL11 

[12] 
[16] 
[21] 
[38] 

M2 
CD36     CD163     CD206   

CD209   CD200R   IL-1R II 

Arg-1 a 
 Ym 1/2 a     

Fizz1a 

IL-10 

IL-1Rα 

TGF-β 

CCL17 

CCL22 

CCL24 

[12] 
[16] 
[21] 
[38] 
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 In another study with macrophages differentiated from THP-1 cells (human 

monocytic cell line derived from an acute monocytic leukemia patient) the M1 

phenotype was associated with CD80 and the receptor HLA-DR (Human leukocyte 

antigen – antigen D related), whereas M2 macrophages were characterized by 

increased expression of CD206 (mannose receptor) and CD163 (a hemoglobin 

scavenger receptor).21 The heterogeneity seen in surface markers used for 

macrophage phenotypic differentiation throughout literature studies can be 

associated with a lack of consensus regarding some of the methodological steps, 

such as the type, concentration or duration of the polarization stimuli used, cell 

type, culture media, etc. Additionally, even though murine macrophages are better 

characterized thus far when compared to humans, as mentioned before, 

extrapolation between polarization surface markers in murine and human 

macrophages may not be possible.12 

 

1.1.2.2. iNOS and Arginase-1 

The enzymes iNOS and arginase-1 are involved in arginine metabolism and 

can also be used as polarization markers due to their differential expression in 

activated macrophages and strong contribution to functional phenotype 

differences.40 iNOS (inducible nitric oxide synthase) is an enzyme associated with 

nitric oxide (NO) production.41 An increase in NO production caused by a higher 

iNOS expression is commonly seen in murine M1 macrophages, being associated 

with anti-microbial effects.9 There is however, a lack of consensus regarding 

whether or not human macrophages display this increase in iNOS expression after 

M1 stimulation, suggesting that iNOS is a good marker for murine models, but not 

necessarily for human macrophages.21,42 

 A similar situation occurs with arginase-1 expression, as there are 

uncertainties regarding its use as a polarization marker for alternatively activated 

(M2) human macrophages.43,44 Indeed, while some studies reported that arginase-

1 is not increased in human M2 macrophages44–46, others have shown that 

arginase-1 expression can be used as a polarization marker due to its differential 

increase in M2 macrophages when compared to M1 macrophages.47–49 This 
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discrepancy over the expression of both iNOS and arginase-1 in activated human 

macrophages has been reviewed before, where some research papers from both 

sides of the argument have been mentioned, stating that the opposing results may 

be due to several methodological disparities between studies and macrophage 

models, further contributing to the idea that standardization could be beneficial for 

overall progress in studying macrophages in the context of inflammation.42,43 

 

1.1.2.3. Cytokines and chemokines 

One of the most important phenotypic differences between M1 and M2 

macrophages and its variants, is the production and excretion of cytokines to the 

extracellular medium at the inflammation or implantation site.50 Several pro-

inflammatory cytokines are released by activated M1 macrophages, including 

various interleukins, like IL-1β, IL-6, IL-8, IL-12; tumor necrosis factors, such as 

TNF-α, and growth factors like VEGF.10 A study by Schutte and colleagues using 

THP-1 derived macrophages showed that after stimulation with LPS, macrophages 

showed a general increase in pro-inflammatory cytokines and also an increase in 

anti-wound healing cytokines, including several of those mentioned before, being 

therefore consistent with an M1 phenotype.51  

In M2 macrophage subtypes, most pro-inflammatory cytokine levels are 

decreased and anti-inflammatory cytokines like IL-1052 and TGF-β are released,53 

with the exception of M2b, which retains a high expression of pro-inflammatory 

cytokines,14 as mentioned earlier. A study conducted by Song and colleagues using 

macrophages differentiated from human PBMCs showed that after in vitro 

stimulation with IL-4, more collagen was produced by cultured fibroblasts in 

response to the increase in TGF- β secreted by macrophages.53 This mechanism 

is involved in tissue repair, which is associated with M2 macrophage subtypes.53 

IL-10 is a potent anti-inflammatory cytokine, responsible for maintaining/restoring 

homeostasis by preventing an over prolonged and consequently detrimental 

inflammatory response.13,54,55  It has been shown that impaired expression of IL-10 

can lead to more effective pathogen clearance, but it can also imply an imbalance 

in inflammation homeostasis, leading to persistent inflammation. Indeed, it is widely 
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recognized that both TGF-β and IL-10 are essential modulators of the inflammatory 

response, being involved in the resolution of inflammation and tissue repair.51,52 

Chemokines are small cytokines that also play an essential role in inflammation 

by mediating macrophage chemotaxis, stimulating immune cell migration and 

targeting inflamed tissue.56 This migration towards chemotactic agents is different 

in M1 and M2 macrophages, consequently contributing to further phenotypic 

differences between the two phenotypes.56 A study by Vogel and colleagues using 

human macrophages derived from PBMCs showed that in comparison to M1, IL-4 

stimulated M2 macrophages migrate faster and to longer distances when attracted 

by several chemokines like CCL5 and CXCL12.57 Some reviews have listed several 

differences regarding macrophages direct chemokine secretion, indicating higher 

levels of pro-inflammatory chemokines in M1 macrophages, including CCL5, 

CXCL9 and CXCL10, amongst several others.14,58 Regarding M2 macrophages, it 

has been shown that stimulation with IL-4 can up-regulate chemokines (e.g., 

CCL17, CCL22 and CCL24), which recruit immune cells involved in tissue repair 

and inflammation resolution, therefore contributing to the anti-inflammatory effect 

reported for alternatively activated macrophages.14,57,59  
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 Metabolic features of differentially activated macrophages 

It has recently come to light that macrophages at different polarization states 

require distinct metabolic programs to express their functional phenotypes and 

perform their effector functions.60–64 Activation-dependent alterations have been 

reported in several metabolic pathways, including glycolysis,65 amino acid 

metabolism (with arginine playing an essential role),66 OXPHOS and TCA cycle,67 

PPP68 and lipid metabolic pathways, including fatty acid oxidation (FAO) and fatty 

acid synthesis (FA synthesis).69 

A summarized representation of metabolism regulation in differentially activated 

macrophages is shown in Figure 2. Overall, M1 macrophages are characterized by 

increased glycolysis and pentose phosphate pathway (PPP), with a truncated TCA 

cycle and impaired OXPHOS, while M2 macrophages have been shown to display 

a normal TCA cycle and OXPHOS.62  Lipid metabolism has also been found to play 

an important role in macrophage differential activation, although some conflicting 

data exists regarding the relative importance of FA synthesis and oxidation in each 

phenotype.60–63,70,71 

Figure 2: Schematic representation of metabolic differences between M1 and M2 

macrophages. Glycolysis is increased in both phenotypes, albeit with more prevalence in 

M1, with several glycolytic enzymes and intermediates contributing to the pro-inflammatory 

phenotype. Unlike M1, which heavily rely on aerobic glycolysis, M2 macrophages display 

a normal OXPHOS and use FAO as a supplementary source of energy. PPP is 

unaltered/suppressed in M2 due to increased CARKL expression. Adapted from61,62. 
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1.1.3.1. Glycolysis and its regulation in polarized macrophages  

Glycolysis is the metabolic pathway through which glucose is transformed into 

pyruvate, with the concomitant production of NADH and ATP.63,72 Pyruvate can 

then be oxidized into acetyl-coA and enter the TCA cycle, or it can be converted 

into lactate, especially if oxygen supply is low.60 In addition to a small energetic 

yield (2 ATP molecules per each glucose molecule), glycolysis provides cells with 

several intermediate metabolites that can be used for various biosynthetic 

processes,72 including the biosynthesis of amino acid,73 lipids74 and nucleotides.75 

Similarly to tumor cells, pro-inflammatory macrophages heavily rely on 

glycolysis for energy generation, instead of OXPHOS, even when physiological 

amounts of oxygen are available.62 Considering the normoxic environment, this 

process is known as aerobic glycolysis, being commonly referred to as the Warburg 

effect.76,77 Moreover, M1 macrophages show impaired mitochondrial respiration, 

further indicating how important glycolysis is in this context.62,78  

A study by Gleeson and colleagues using human monocyte-derived 

macrophages showed that after stimulation with Mycobacterium tuberculosis, a 

significant increase in lactate was detected, reflecting an increase in glycolytic 

activity.76 Additionally, a study by Venter and colleagues using a murine 

macrophage cell line (RAW 264.7) determined that glycolysis was indispensable 

for LPS-induced macrophages’ phagocytic activity. Indeed, macrophage migration 

and phagocytosis were clearly impaired in the presence of 2-deoxyglucose (2-DG), 

a known glycolytic inhibitor.79 On the other hand, inhibiting OXPHOS with 

oligomycin, produced much less relevant alterations, which is consistent with 

glycolysis being the major source of energy in M1 macrophages.79 Both studies 

showed that pro-inflammatory stimuli (M. tuberculosis in the first study and LPS in 

the second), drive an alteration in glucose metabolism, specifically favoring 

glycolysis instead of mitochondrial respiration, even in the presence of normal 

levels of oxygen.76,79  

The role of glycolysis in M2 macrophage subtypes has been less extensively 

investigated compared to M1 macrophages. Still, some studies have reported an 

increased glycolytic rate in IL-4 or M-CSF induced macrophages, suggesting it to 
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be relevant to the functional phenotype expressed.80–82 However, M2 macrophages 

were not seen to display an impairment in OXPHOS (unlike M1) and the increase 

in glycolytic rate wasn’t as pronounced.62,83 A study conducted by Zhao and 

colleagues used murine bone marrow-derived macrophages (BMDM) polarized 

into M2 macrophages with IL-4.80 After stimulation, macrophages showed an 

increased expression in the glucose transporter GLUT-1 (consequently with a 

higher glucose uptake) and also increased levels of glycolytic enzymes.80 To further 

establish the role of glycolysis in the functional phenotype, they used 2-DG to inhibit 

glycolysis, which caused decreased expression of several murine M2 markers, 

including arginase-1, thus indicating that glycolysis is necessary for M2 phenotype 

establishment.80 Increased glycolytic rate has also been reported in human 

macrophages derived from PBMCs which were differentiated and polarized 

towards an anti-inflammatory (M2) phenotype by using M-CSF in vitro. In that 

study, inhibition of glycolysis led to impaired secretion of various cytokines, with 

macrophages not displaying their usual cytokine production patterns.82 By later 

exposing the already polarized M2 macrophages to LPS, they showed that there 

was an increase in pro-inflammatory cytokines, like IL-6.82 This was coupled with 

an additional increase in glycolysis, indicating that in response to a pathogenic 

stimuli (in this case LPS), M2 macrophages can display a slightly more pro-

inflammatory behavior, hence showing some phenotypic plasticity according to the 

microenvironment.82 Altogether, existing studies indicate that glycolysis plays a 

major role in the regulation of both M1 and M2 macrophages, with a greater impact 

on M1 macrophages due to the concomitant impairment in OXPHOS (not seen in 

M2 macrophages). 

Several enzymes from the glycolytic metabolic pathway have been implicated 

in the pro-inflammatory phenotype displayed by M1 macrophages, including 

hexokinase 1 (HK1), enolase, pyruvate kinase M2 (PKM2), amongst others.62 Both 

hexokinase 1 (HK1) and pyruvate kinase M2 (PKM2) are associated with the 

activation of the NLRP3 inflammasome, which is a multi-protein complex mainly 

responsible for the activation of inflammatory caspases and maturation of IL-1β, a 

pro-inflammatory cytokine.84–87 In murine BMDM cells, PKM2 inhibition with 

Shikonin resulted in a significant suppression of the NLRP3 inflammasome and 
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decreased secretion of IL-1β, hindering the inflammatory state.86 Additionally, a 

study by Palsson and colleagues using murine BMDM cells showed that PKM2 

could stabilize HIF-1 (hypoxia inducible factor 1), which is a known positive 

regulator for IL-1β.87 A third role for PKM2 in this context is its ability to 

phosphorylate and consequently activate STAT3, which in turn can boost the 

production of pro-inflammatory cytokines IL-6 and IL-1β.88 Enolase has also been 

implicated in an increased inflammatory state, specifically regarding synovial 

inflammation in rheumatoid arthritis, with pro-inflammatory cytokines TNF-α and IL-

1α/β levels being particularly affected.89 In a study using THP-1 cells, the enzyme 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) has been proposed as an 

important mediator between glycolysis and inflammation, since GAPDH can 

interact with TNF-α mRNA, suppressing TNF-α levels post-transcriptionally.90 

However, when GAPDH is engaged in the glycolytic pathway, its availability for 

TNF-α mRNA suppression is lower, which results in higher levels of TNF-α, 

therefore contributing to a more pro-inflammatory state.91 

In terms of regulatory mechanisms, some signaling pathways have been 

referred to be involved in glycolysis upregulation during macrophage activation. In 

human monocytic cells, specifically THP-1 (cell line) and PBMC (isolated from 

blood from healthy volunteers), it has been shown that LPS can induce 

phosphorylation (activation) of the Ser and Thr kinase (AKT) through the 

phosphatidylinositol 3-kinase (PI3K)-AKT signaling pathway, triggered by TLR-4 

receptor stimulation.91 One of the ways through which AKT (or protein kinase B- 

PKB) regulates glucose metabolism is by promoting the translocation of glucose 

transporters to the surface membrane, increasing glucose cell uptake, thus feeding 

more substrate to the glycolytic pathway.92 In regard to macrophage stimulation 

with IL-4 (to induce M2-like phenotype), PI3K-AKT has also been found activated, 

impacting on glucose metabolism.93 A study by Covarrubias and colleagues using 

BMDM cells showed that AKT inhibition resulted in a diminished increase in 

glucose uptake by IL-4 stimulated macrophages when compared to macrophages 

without AKT inhibition.94 Additionally, by inhibiting glycolysis with 2-DG, they 

showed a reduced expression of M2 associated genes, which means that AKT is 

not only contributing to increased glucose uptake and metabolism, but also to the 
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enhanced expression of M2 associated genes.94 Another major role of AKT 

signaling regards its interaction with mTOR (mechanistic target for rapamycin), 

which is key to the regulation of macrophage polarization.93 After activation, AKT 

can phosphorylate the TSC (tuberous sclerosis complex), inactivating it. 

Considering how this complex is responsible for negatively regulating mTORC1 

(complex 1), AKT leads to mTORC1 activation, which is responsible for increased 

gene expression linked to the promotion of cell growth and metabolism, regulating 

various metabolic processes, including glycolysis.94,95 Further establishing the role 

of mTOR in glycolytic metabolism regulation, a specific mTOR signaling pathway 

involving mTORC2 (complex 2) has been implicated in regulating IRF-4 (interferon 

regulatory factor 4), which is a transcriptional factor responsible for the expression 

of several genes, including those encoding glycolytic enzymes.95  A study by Huang 

and colleagues using IL-4 polarized BMDM cells showed that M2 macrophages 

with an IRF-4 deficiency displayed an impaired glycolytic rate, subsequent to a 

significantly decreased expression in glycolytic enzymes.95  

It may therefore be concluded that glycolysis plays an important role in 

macrophage activation, both in M1 and M2 phenotypes (albeit with differences 

regarding its predominance as the cells’ main energy provider), and that AKT is a 

major regulator of glucose metabolism in activated macrophages.94 Notably, 

enhanced glycolysis cannot be considered a mere consequence of macrophage 

activation, but rather as an essential regulating process that is necessary for 

optimal expression of several genes that contribute to the phenotypical expression 

in activated macrophages. 
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1.1.3.2. PPP and oxidative/nitrosative stress in polarized macrophages  

The PPP is a metabolic pathway that works in parallel with glycolysis, 

contributing to the maintenance of the cellular redox balance through NADPH 

production, and to the promotion of cell proliferation and growth through nucleotide 

biosynthesis.75 An increase in this metabolic route has been associated with M1 

macrophages, but not with M2 subtypes, indicating its role in macrophage pro-

inflammatory activity.68 

One of the major links between PPP and the inflammatory response is through 

the production of reactive oxygen species (ROS) and reactive nitrogen species 

(RNS), associated with oxidative and nitrosative stress promotion, respectively.96 

Reactive species such as nitric oxide (NO) and hydrogen peroxide (H2O2) possess 

anti-microbial effects,97 thereby aiding macrophage mediated pathogen 

clearance.97 In M1 macrophages, it has been shown that increased NADPH 

production through the PPP is responsible for increased production of ROS and 

stimulation of gene expression, including enzymes like iNOS and NADP oxidase 

(NOX), therefore contributing for NO production and enhancing the anti-microbial 

response.96 Indeed, LPS stimulation of RAW 264.7 murine macrophages with 

G6PD repression (Glucose-6-phosphate dehydrogenase - the first enzyme of PPP) 

caused a significant decrease in pro-inflammatory cytokines and in the levels of 

both ROS and RNS, hindering the macrophages’ pro-inflammatory activity.96 On 

the other hand, NADPH is also involved in the formation of glutathione (GSH), a 

tripeptide with strong antioxidant effect by scavenging ROS and therefore lowering 

the cellular oxidative stress, possibly working as a countermeasure to prevent the 

inflammatory response from being overly dominant or prolonged.68,96  

The enzyme carbohydrate kinase-like protein (CARKL), a sedoheptulose 

kinase responsible for converting sedoheptulose into sedoheptulose-7-phosphate 

(S7P), has been identified as a key control point which limits the flux through the 

PPP.68 A decrease in CARKL expression was observed both in vitro and in vivo in 

human and murine LPS-stimulated macrophages.68 In M1 polarized RAW 264.7 

macrophages, decreased CARKL expression was correlated to enhanced M1 

activation, specifically regarding GSH and NADH production.68 In contrast, IL-4 



17 
 

 

stimulated macrophages (M2) showed an upregulation in CARKL, and no 

stimulation of the PPP pathway.68 

Despite the PPP not being upregulated in IL-4 stimulated macrophages (M2), 

it has been shown that ROS are still necessary for M2 polarization.96,98 Blocking 

ROS production in BMDM cells with BHA (butylated hydroxyanisol) resulted in a 

decreased expression of several M2 polarization markers after stimulation with M-

CSF, indicating that ROS unavailability can actually hamper monocyte 

differentiation to macrophages, specifically regarding M2 macrophages.98 

Interestingly though, ROS inhibition showed no significant impairment in monocyte 

differentiation and polarization towards M1 macrophages (in this case, BMDM cells 

with GM-CSF).98 

 

1.1.3.3. TCA cycle in polarized macrophages 

One of the major metabolic differences between differentially activated 

macrophages regards mitochondrial OXPHOS regulation.99 While M1 

macrophages present an impairment in OXPHOS, M2 macrophages use it as their 

main source of ATP, supplying the cell with the necessary energy for carrying out 

various biological functions.99 In M1 macrophages, OXPHOS impairment is 

associated with tricarboxylic acid (TCA) cycle dysfunction, as shown in Figure 

3.100,101 A first breaking point has been found in the conversion step of isocitrate to 

α-ketoglutarate, catalyzed by the enzyme isocitrate dehydrogenase (IDH), whereas 

a second break involves the conversion of succinate to fumarate by succinate 

dehydrogenase (SDH).102 These breaks will consequently result in the 

accumulation of upstream metabolites, namely citrate and isocitrate (resulting from 

the first break), together with succinate (second break), which are essential for M1 

phenotype establishment.102 
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Figure 3: Schematic representation of the altered TCA cycle in M1 macrophages. The first 

breakpoint in IDH is responsible for citrate, isocitrate and aconitate accumulation. The latter 

can be further converted to itaconate, which is then involved in the competitive inhibition 

of SDH and has anti-microbial effects. Succinate accumulation can stabilize HIF-1 and 

subsequently increase IL-1β levels. The metabolites downstream of the breaks are 

replenished through anaplerotic pathways, like glutaminolysis or the aspartate-

argininosuccinate shunt (AASS). Adapted from61. 
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1.1.3.3.1. Succinate metabolism in M1 macrophages 

Succinate has been shown to importantly account for the pro-inflammatory 

phenotype of classically activated (M1) macrophages.99 In particular, succinate-

mediated changes include regulating mechanisms involving transcriptional factors 

like HIF-1, mitochondrial ROS production, and alterations in amino acid 

metabolism, specifically regarding glutamine and arginine.99 Succinate 

accumulation in the mitochondria of activated inflammatory macrophages is linked 

with the activation of the transcriptional factor HIF-1 (hypoxia inducible factor), 

independent of oxygen availability.99 HIF-1 is composed of two subunits (α and β), 

whereby the α subunit binds to molecular oxygen and the β subunit interacts with 

DNA sequences, activating gene transcription involved in several cellular 

processes like cell proliferation, inflammation and metabolism.103 It has been 

shown that SDH inhibition and subsequent succinate accumulation results in 

inhibition of prolyl hydroxylases (PHD), which are responsible for preventing HIF-1 

stabilization.104 When PHD are active and oxygen is available at physiological 

levels, HIF-1 is hydroxylated, allowing the association of the VHL (von hippel-

lindau) factor, which serves as a signal for proteasomal degradation through the 

ubiquitin-proteasome complex.105 Besides succinate, other TCA cycle 

intermediates like fumarate seem to be involved in HIF-1 stabilization through PHD 

inhibition.106 HIF-1 has been associated with several roles in the immune response, 

including regulating inflammatory cytokine expression, NO synthesis, 

prostaglandins, amongst others.107 An example of cytokine regulation regards IL-

1β production in M1 macrophages (BMDM stimulated with LPS), as it has been 

found that IL-1β levels were significantly decreased in cells where the HIF-1 

pathway was somehow disrupted.99 Contrarily, macrophages with high succinate 

levels (and, hence, HIF-1 stabilization) displayed a notorious increase in IL-1β 

production, contributing to the pro-inflammatory phenotype.99 Out of many proteins 

that are differently expressed due to HIF-1 transcriptional regulation, PDK1 

(pyruvate dehydrogenase kinase 1) plays a particularly essential role in metabolism 

by inhibiting the enzymatic complex PDH (pyruvate dehydrogenase).108 This 

ensures that pyruvate will not be converted into acetyl-CoA, preventing it from 

entering the mitochondria and feeding the oxidative pathway, therefore favoring the 
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fermentative pathway (conversion into lactate).108 A study by Tan and colleagues 

using BMDM cells showed that PDK1 knockdown led to a decrease in aerobic 

glycolysis in M1 macrophages, reducing several aspects of its pro-inflammatory 

phenotype.65 In M2 macrophages, PDK1 knockdown led to an enhanced 

macrophage activation towards a more anti-inflammatory state.65 

Another major role for succinate in M1 macrophages is associated with its 

interference with the electron transport chain (ETC) in the mitochondria, 

contributing to increased levels of ROS production.101 Indeed, increased succinate 

mitochondrial levels can lead to excessive reduction in ETC complex II (succinate 

dehydrogenase),109 as seen in LPS stimulated macrophages100 and macrophages 

subjected to bacterial infections in general.110 Excessive reduction results in the 

induction of a reversed electron flow in the ETC (RTC), sending electrons towards 

complex I, which results in the increased production of superoxide anion,109 a 

reactive oxygen species, therefore contributing to the oxidative burst and 

subsequent anti-microbial effect in M1 macrophages.100,110 It has been shown in 

BMDM cells that inhibition of the reverse electron flow with Metformin or inhibition 

of complex I with Rotenone caused a decrease in both pro-IL-1β and ROS 

production in LPS stimulated macrophages, hindering the pro-inflammatory 

response in classically activated macrophages.111 This indicates that the reversed 

electron flow in the ETC caused by the increased succinate levels contributes to 

the inflammatory response not only by increasing ROS production in the complex 

I, but also through increased expression of pro-inflammatory cytokines like IL-1β.111  

Finally, TCA cycle impairment at SDH has implications in amino acid 

metabolism, namely via increased glutaminolysis and activation of the aspartate-

argininosuccinate shunt (AASS), as both are used as anaplerotic processes to 

keep the cycle running.102,112,113 The AASS in particular is considered to be an 

essential part of macrophage inflammatory response, as arginine and/or citrulline 

can fuel NO production via iNOS.102,114 On the other hand, in M2 macrophages, 

arginine is converted into ornithine and urea via arginase-1 (urea cycle), decreasing 

arginine’s availability for NO production via iNOS.115 Additionally, glutamine can 

also be a nitrogen supplier for the hexosamine biosynthesis pathway (HBP), which 

is a minor branch from the glycolytic pathway, producing UDP-Glc-NAc.102 A study 
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by Jha and colleagues showed that glutamine depletion or inhibition of N-

glycosylation in murine BMDMs is associated with decreased expression of M2 

phenotypic markers, indicating that glutamine catabolism is essential for M2 

polarization.102  

In spite of the well-established pro-inflammatory role of succinate, recent work 

has shown that SDH-mediated succinate oxidation is actually necessary for a pro-

inflammatory phenotype.100 By using dimethyl malonate (DMM), a competitive 

inhibitor for SDH, it was demonstrated that IL-1β mRNA and HIF-1 expression were 

lowered, while IL-10 was increased, reflecting a more anti-inflammatory 

phenotype.100 Hence, it is possible that SDH is not a real breakpoint in the TCA 

cycle of M1 macrophages as initially thought, and that succinate processing (and 

the efficiency of SDH oxidation) rather than succinate accumulation in itself, are 

important for the activation of macrophages in response to inflammatory stimuli.116 

 

1.1.3.3.2. Citrate metabolism in M1 macrophages 

Citrate can contribute to a pro-inflammatory state in macrophages due to its 

role as precursor of different mediators that are required for the inflammatory 

response, including prostaglandins (PG’s), NO and ROS.117 PG production 

depends on FA synthesis, where citrate may be used as substrate.117 When citrate 

is located in the cytosol, it can be converted into acetyl-CoA and oxaloacetate, 

triggered by the cytosolic enzyme ATP-citrate lyase (ACLY).118,119 Acetyl-CoA is 

then used for fatty acid biosynthesis, providing the cell with PG precursors like 

arachidonic acid.117 A study by Infantino and colleagues using macrophages 

derived from human histiocytoma mononuclear cells (U937 cell line) showed 

increased expression in ACLY after activation with different combinations of pro-

inflammatory stimuli.119 This was associated with the signaling pathway involving 

TLR-4 stimulation by LPS and subsequent NF-kB activation, causing alterations in 

the transcription of several genes, including the genes coding for the enzyme 

ACLY.119 Considering that M1 polarization causes citrate accumulation in the 

mitochondrial matrix, and that ACLY is active in the cytosol, citrate first needs to be 
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transported from the mitochondria to the cytosol.117 This transportation is mediated 

by mitochondrial CIC (citrate carrier), which has been found to be upregulated in 

LPS-stimulated U937 macrophages.117 The other product obtained from citrate by 

ACLY is oxaloacetate, which is converted to malate and then to pyruvate via malic 

enzyme, resulting in the production of NADPH, another potential contributor to the 

inflammatory response due to increased production of NO and ROS, as already 

described.117,119 

Another metabolic route in which citrate can engage is the synthesis of itaconic 

acid (or itaconate), involving the mitochondrial enzyme cis-aconitic acid 

decarboxylase, encoded by the immune-responsive gene 1 (Irg1).120 Igr1 is one 

the most highly expressed genes in mammalian macrophages during inflammation, 

so it is not surprising that it plays an essential part in M1 metabolic processes.116 

The Irg1-coded enzyme catalyzes the conversion of cis-aconitate, an intermediate 

of the TCA cycle, into itaconate.121 This metabolite has been associated with some 

anti-microbial functions, including the inhibition of the bacterial enzyme isocitrate 

lyase, which is important for the glyoxylate shunt in both bacteria and fungi.63,116  

Recently, itaconate has also been postulated to modulate macrophage 

inflammatory response by controlling succinate levels and TCA cycle 

remodeling.116,122 In particular, in RAW 264.7 macrophages, itaconate was shown 

to act as an endogenous inhibitor of SDH, causing succinate accumulation.122 In 

another study, addition of exogenous itaconate to BMDM macrophages was shown 

to decrease their pro-inflammatory profile, as assessed by the downregulation of 

an array of pro-inflammatory transcripts.116 Altogether, the available data highlights 

a major regulatory role for itaconate regarding succinate levels, mitochondrial 

respiration and cytokine production in inflammatory macrophages. Additionally, a 

recent study by Mills and colleagues showed that the activation of transcription 

factor Nrf2 is required for its anti-inflammatory effects, where itaconate is 

associated with the alkylation of cysteine residues in proteins, which enable Nrf2 

to increase the expression of anti-inflammatory and anti-oxidant genes.123 

Administration of itaconate and a cell-permeable itaconate derivative (4-octyl 

itaconate) to LPS-stimulated human and murine macrophages (PBMC and BMDM, 

respectively), resulted in a decrease in Il1b mRNA and pro-IL-1β and HIF-1 protein 



23 
 

 

levels, indicating a potential anti-inflammatory effect caused by this derivative.123 

This anti-inflammatory potential was also observed in vivo, where 4-octyl itaconate 

prolonged survival and decreased TNF-α and IL-1β levels in an LPS model of 

sepsis.123   

The main idea to be summarized here is that TCA cycle rewiring is essential 

for defining differential macrophage phenotypes and effector functions. This 

rewiring sets a major role for several TCA cycle metabolites, with particular 

relevance given to citrate, itaconate, succinate and fumarate, which are essential 

as signaling molecules and immunomodulators. Taking in consideration that M2 

macrophages do not display this complex TCA cycle rewiring, these metabolic 

differences may be interpreted as hallmarks for macrophage classical activation. 

 

1.1.3.4. Fatty acid metabolism in activated macrophages 

Several review articles mention fatty acid oxidation (FAO) and FA synthesis as 

metabolic regulators in activated macrophages, indicating that lipid metabolism has 

an intricate and multifaceted role on these cells.60–63,70  Increased FAO is commonly 

described as an important feature of M2 macrophages,61,62 to sustain their 

energetic needs and anti-inflammatory activity.70 However, the dependence of M2 

macrophages on FAO has been challenged by some studies.71,124 A study 

conducted by Namgaladze and colleagues showed that while FAO was deemed 

necessary for IL-4 mediated M2 phenotype establishment in murine macrophages, 

it was dispensable in human macrophages (differentiated from monocytes isolated 

from buffy coats).71 By inhibiting carnitine palmitoyltransferase 1A (CPT1A - one of 

the enzymes involved in FAO that oxidizes palmitate), they showed that despite 

FAO not being active in the cell, there was no suppression in M2 macrophage 

phenotype expression, which implies that lipid metabolism and its regulation can 

have considerable differences between species.71 Fatty acid metabolism has also 

been implicated in the pro-inflammatory response of M1 macrophages, being linked 

with increased secretion of pro-inflammatory cytokines (like IL-1β and IL-18) 

through activation of the NLRP3 inflammasome.62,125 A study by Moon and 

colleagues using murine BMDMs and human PBMCs showed that by inhibiting 
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CPT1A, a decrease in IL-1β and IL-18 was observed, associated with NLRP3 

inflammasome suppression.125 The mechanism involved in NLRP3 activation is 

related to mitochondrial ROS production, where palmitate oxidation by CPT1A fuels 

mitochondrial respiration.125 Additionally, fatty acid synthase (FAS), an essential 

enzyme associated with lipogenesis, has also been implicated in this signaling 

pathway, where its inhibition resulted in NLRP3 suppression in vivo and in a 

consequential decrease in IL-1β and IL-18.126 

In line with these findings, the possibility of targeting macrophage metabolism 

to modulate macrophage activation and functions emerges as a promising novel 

strategy that may provide therapeutic benefit in the context of exacerbated 

inflammation-related disorders and other conditions where persistent inflammation 

is found.36,127 
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 Immunomodulatory effects of bioflavonoids  

The search for naturally occurring compounds that display potential therapeutic 

benefit has harnessed growing interest in various fields of research, including 

immunology, as many existing immunoregulatory drugs are commonly associated 

with potentially serious side effects due to their high toxicity.128 

One group of natural compounds that has shown great potential in terms of 

immunomodulatory effects are bioflavonoids.129–131 In this thesis, the cellular 

responses of human macrophages to three naturally occurring flavonoids was 

investigated, namely Quercetin, Naringenin and Naringin. Previous knowledge on 

their effects towards macrophage activation and metabolism is summarized below.  

 

1.2.1. Bioflavonoids 

Bioflavonoids are naturally occurring polyphenolic secondary metabolites that 

are commonly found in plants.130,132 These compounds have been the focus of 

many studies with the intent of establishing their various biological and 

pharmacological activities, including anti-inflammatory, anti-cancer, antioxidant, 

anti-microbial, anti-diabetic, anti-ulcer and anti-stress activities.129–134 

Flavonoids basic structure consists of three carbon rings (C6-C3-C6), more 

specifically, a benzene ring (A) and a phenyl ring (B), connected by a 3-carbon ring 

(C) (Figure 4).132 The majority of flavonoids found in nature are in their glycosylated 

form, with a sugar moiety linked to the flavonoid aglycone, while also commonly 

featuring methylated groups, contributing to the immense diversity seen in existing 

flavonoids.134 These compounds can be further divided into sub-categories 

according to the C ring carbon to which the B ring is linked, and regarding the 

degree of saturation and/or oxidation of the C ring.135 When the B ring is linked to 

carbon 3 of the C ring, the compound is classified as an isoflavone and when the 

link is to the carbon 4, a neoflavonoid.135 Regarding linkage to position 2, several 

other subcategories exist depending on the C ring structure.135 These include, for 

example, favonols, flavanones, flavones, chalcones and flavanols.132,135 
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Quercetin, one of the compounds assessed in this study, is an example of a 

flavonol, meaning that in addition to a ketone group in the C ring, it also possesses 

a hydroxyl group at position 3.135 This specific flavonol additionally displays 

hydroxyl groups positioned at carbons 3, 5, 7, 3’ and 4’ (Figure 4), and is very 

common in various fruits and vegetables.135,136 Other examples of common 

flavonols found in nature include Kaempferol and Myricetin, which all display a wide 

array of diverse biological effects, that can be explored as potential therapeutic 

strategies in various health conditions.137–139 

 

 

 

 

 

 

Figure 4: A – Schematic representation and numbering system of a generic flavonoid 

structure, with the B ring linked to the C ring in the position 2; B – Schematic representation 

and numbering system of the flavonol Quercetin. Adapted from132,135.  

 

 

 Other compounds selected for this study include the flavanone Naringenin 

and its O-glycosylated form, Naringin, which contains two rhamnose molecules 

linked to the aglycone at the carbon 7 of the A ring (figure 5).140 Structurally, 

flavanones have a distinct complete saturation of the C ring but are otherwise 

similar to flavones.135 Other common flavanones with potential health benefits 

includes Hesperetin and its glycosylated form, Hesperidin. These compounds are 

very common in citrus fruits and are known for their properties regarding free-

radical scavenging, anti-inflammatory effects and cholesterol lowering effects.135,141  
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Figure 5: A – Schematic representation and numbering system of flavanone aglycone 

Naringenin; B – Schematic representation and numbering system of the Naringenin 7-O-

glycoside, Naringin. Adapted from135,140 

 

 

1.2.2. Effects of bioflavonoids on macrophage polarization  

As mentioned earlier, one of the biological effects commonly described for 

flavonoids is immunomodulation, with particular interest in their anti-inflammatory 

potential.142 The assessment of the modulation of M1/M2 polarization by these 

compounds is therefore a promising strategy to evaluate the therapeutic potential 

of bioflavonoids.143 This modulation can be observed through different cellular 

alterations, including changes in signaling pathways, cytokine profile, gene 

expression and metabolism.142 

One of the most common changes seen in inflammatory macrophages upon 

treatment with flavonoids is the reduction of key pro-inflammatory cytokines, 

indicating a certain level of suppression of the pro-inflammatory 

phenotype.131,144,145 A study by Lee and colleagues showed that pre-treatment with 

Quercetin or Galangin of LPS-stimulated RAW 264.7 macrophages, led to a 

decrease in both IL-6 and NO levels, which are frequently associated with a pro-

inflammatory phenotype and considered M1 polarization markers in some 

macrophage cell lines (e.g. RAW 246.7).9,10,145 This indicates that pre-treatment 

with these flavonoids slightly hampers macrophage polarization towards the M1 

phenotype, therefore displaying some anti-inflammatory activity.145 NO 

suppression by Quercetin was also described in several other studies, both in vitro 
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and in vivo.146–150 A study by Qureshi and colleagues showed that peritoneal 

macrophages stimulated with LPS had significantly lower levels of NO when mice 

were fed Quercetin and δ-tocotrienol before isolation, which further establishes the 

potential anti-inflammatory effects of Quercetin.147 Additionally, a study by Raso 

and colleagues showed that among several flavonoids tested, Apigenin and 

Quercetin showed the most potent inhibitory effects on NO production.149 

Another common M1 marker that seems to be susceptible to alterations in 

response to treatment with certain flavonoids is TNF-α. A study by Manjeet and 

colleagues showed that both NO and TNF-α levels were decreased in LPS-

stimulated murine macrophages when co-cultured with Quercetin.150 Additionally, 

Zhang and colleagues showed that treating LPS-stimulated human THP-1 and 

murine J774 macrophages with the flavone Apigenin led to a decrease not only in 

TNF-α levels, but also in the pro-inflammatory interleukins IL-6 and IL-1β.151 

Naringin has also been shown to be effective at decreasing several pro-

inflammatory markers in LPS-stimulated macrophages. A study by Liu and 

colleagues showed a decrease in IL-8, MCP-1 and MIP-1α in RAW 264.7 murine 

macrophages pre-treated with Naringin, possibly by blocking the NF-kB signaling 

pathway.152 Others have also shown a decrease in TNF-α and decreased sepsis-

induced death in mice after treatment with Naringin, which clearly demonstrates its 

protective effects against inflammatory disorders.153 

The anti-inflammatory effects of flavonoids can also be seen in several disease 

models that are coupled with dysregulation of the inflammatory process, with 

beneficial effects on wound healing, tissue regeneration and reducing fibrosis in 

the affected tissues.143,154,155 Naringenin has been shown to reduce the severity of 

skin inflammation in mice with skin dermatitis, with several M1 markers being 

suppressed and an increase in IL-10, an M2 marker, being found in macrophages 

present in skin sections.155 A study using mice with induced liver damage showed 

that orally administrated Quercetin was not only able to reduce inflammation, but 

also the extent of necrotic tissue.154 This was accompanied by a marked decrease 

in several pro-inflammatory cytokines associated with macrophages present in the 

fibrotic tissue of the liver.154 In a mouse model of kidney injury, Quercetin also 

showed protective action, reducing both inflammation and fibrosis, while 
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suppressing M1 polarization, thus protecting renal function.143 Interestingly, in both 

liver and kidney damage models in vivo models, and in in vitro assays, Quercetin 

promoted a decrease in M2 macrophage populations.143,154 

 

1.2.3. Effects of bioflavonoids on macrophage energy metabolism 

Considering how different metabolic programs are involved in the 

establishment of the functional phenotypes of activated macrophages, targeting 

specific metabolic processes or signaling pathways involved in upstream regulatory 

mechanisms has been recognized as an interesting approach to modulate 

macrophage polarization.156 Given the effects reported for several bioflavonoids on 

macrophage immunomodulation, and the key role of metabolism in macrophage 

polarization, investigating how flavonoids affect macrophage metabolism may shed 

light on their mechanisms of action and open new prospects regarding their 

therapeutic potential. 

Most studies reported so far have focused on the modulation of signaling 

pathways that play an important role in metabolism regulation.157–159 One of the 

signaling pathways that is frequently reported to be modulated by bioflavonoids is 

the adenosine monophosphate-activated protein kinase (AMPK) signaling 

pathway.157,159–161 AMPK is a major regulator of glucose and lipid metabolism, 

acting as an energetic sensor that triggers the upregulation of energy-restoring 

catabolic pathways like FAO and OXPHOS, while downregulating glycolysis and 

switching off energy-consuming biosynthetic processes.162,163 Several studies 

support an anti-inflammatory role for AMPK activation, which may be achieved by 

a variety of small-molecule compounds.159–162 A study by Zhou and colleagues 

showed that administrating Eupatilin, a natural flavone, led to a decrease in several 

pro-inflammatory markers in THP-M human macrophages, partly via the activation 

of AMPK signaling pathway.160 Additionally, a study by Dong and colleagues 

showed that Quercetin inhibited the polarization of BMDM macrophages by 

activation of AMPK.159 This was confirmed by using an AMPK inhibitor, Compound 

C, which showed that one of the mechanisms through which Quercetin could 

abrogate the inflammatory response caused by LPS stimulation was indeed 
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through AMPK activation.159 Another flavonoid that has been reported to activate 

AMPK is Naringenin,157,160 both in murine RAW 264.7 macrophages161 and human 

THP-1 macrophages,157 contributing to the regulation of inflammation.157,161 

Regulation of glucose metabolism has also been associated with other signaling 

pathways, such as the phosphoinositide 3-kinase (PI3K) pathway164 and Mitogen-

Activated Protein Kinase (MAPK) pathway.165 Considering how these pathways 

have been shown to promote glycolysis,165,166 and are associated with LPS 

stimulation,91,166 their inhibition could potentially be a therapeutic strategy in 

regulating inflammation.62 A study by Si and colleagues showed that Quercetin was 

able to reduce levels of several pro-inflammatory markers, such as NO, IL6, IL-1β 

and TNF-α, in LPS-stimulated murine RAW 264.7 macrophages, coupled with a 

significant decrease in phosphorylation of MAPK signaling proteins.167 This 

indicates that Quercetin has a suppressing effect on the MAPK signaling pathway, 

which could contribute to the attenuation of the inflammatory phenotype in LPS-

induced macrophages.167 Another study by Endale and colleagues also showed 

this suppressing effect of Quercetin on the MAPK signaling pathway, which 

resulted in decreased levels of downstream pro-inflammatory mediators in LPS-

stimulated murine RAW264.7 macrophages.158 In this study, pre-treatment with 

Quercetin also suppressed the increase in PI3K and Akt that are commonly 

associated with LPS stimulation,91 corroborating the potential of Quercetin to 

attenuate macrophage inflammatory response.158  

Despite the suggested links between flavonoids anti-inflammatory action and 

their effects on cellular metabolism, little is known on the specific metabolites and 

metabolic pathways that are modulated upon flavonoid treatment. In this thesis, 

metabolomics was used as an advanced tool to further investigate this scientific 

question. 
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 Metabolomics  

1.3.1. Metabolomics strategies and tools 

The comprehensive profiling of the inventory of small molecules (< 1 kDa) acting 

as substrates, intermediates or products of enzymatic reactions in mammalian 

cells, through metabolomics, has become an extensively applied methodology to 

seek for a better understanding of cell metabolism and function.168 Metabolomic 

studies typically encompass identification and quantification of metabolites within 

tissues, biofluids or cells, and assessment of their variations in relation to a specific 

pathophysiological condition or external stimulus.169,170 Unlike other conventional 

biochemical methods, which focus on a specific, pre-determined set of metabolites, 

metabolomics provides a broader, non-selective view of metabolic changes, 

potentially revealing unexpected effects and allowing for mechanistic hypothesis to 

be generated.171,172 

The two analytical methods most commonly used in metabolomics are Nuclear 

Magnetic Resonance (NMR) spectroscopy and Mass Spectrometry (MS).171 In the 

present work, 1H-NMR was the profiling technique employed. In spite of its low 

sensitivity, which remains one of its biggest downsides, NMR does show important 

advantages, such as the possibility of acquiring data without requiring extensive 

sample treatment, the ability to identify metabolites of different chemical families in 

complex mixtures, high reproducibility and its non-destructive character.173 

Moreover, as the area of a signal is proportional to the number of protons giving 

rise to that signal, 1H-NMR is inherently quantitative, enabling a straightforward 

assessment of quantitative variations in selected metabolites.171,174,175 

1H-NMR spectra of biological samples are usually complex, containing a very 

high number of signals which can be attributed to specific metabolites based on 

their chemical shifts (in ppm) and multiplicity, by comparing the information derived 

from 1D and 2D spectra with that available in spectral databases.171,175  

To deal with such complexity and enable the multiparametric comparison of 

sample groups (e.g. control vs. treated) multivariate analysis (MVA) is commonly 

employed. This type of analysis considers the vast group of variables of each 

spectrum, allowing the user to assess the differences/similarities between spectra 
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of several samples.171 The two most common MVA methods used in metabolomics 

are: (i) principal component analysis (PCA) and (ii) partial least squares 

discriminant analysis (PLS-DA). The first is a non-supervised method, which offers 

a general idea of separation patterns arising from the various sources of variability 

within the dataset, without any input regarding sample classes. The latter 

maximizes the separation between sample classes, allowing the variables 

(metabolites) responsible for class discrimination to be highlighted.171,176 

 

1.3.2. Metabolomic studies of macrophage polarization  

 The metabolome of macrophages has been investigated in several previous 

studies, comprising the search for metabolic alterations upon different stimuli and 

in different macrophage cell lines (Table 2).75,168,177–187 Some studies have 

addressed the characterization of metabolic alterations associated with canonical 

M1 macrophage polarization, using LPS alone or in co-incubation with IFN-

γ.75,168,177  In line with molecular studies, the main changes detected reflected 

glycolysis upregulation and TCA cycle disruption.75,168,177  Others have investigated  

how macrophage metabolism and polarization were affected by direct exposure to 

pathogenic microorganisms (bacteria, parasites or viruses).178–181 For instance, 

exposure of THP-1 macrophages to Mycobacterium tuberculosis was associated 

with changes in several biosynthetic pathways, including GSH, carbohydrate and 

lipid synthesis, while showing also decreased levels of amino acids and 

monoacylglycerols.178,179 In another study, exposure of murine BMDMs to a 

parasite  (Leishmania major) was found to cause increases in lactate and several 

amino acids, which was putatively explained by the upregulation of glycolysis, 

consistent with a pro-inflammatory stimuli.180 Additionally, U1 macrophages 

chronically infected with HIV-1 virus showed changes in PPP metabolites and a 

reduced ability to generate NADPH, which could indicate a compromised capacity 

to generate de novo nucleotides and fatty acids.181  

The metabolomic response of macrophages to pollutants and nanoparticles 

has also been addressed in a few studies.184–186  Sapcariu and colleagues showed 

that exposing RAW 264.7 macrophages to HFO (heavy fuel oil) resulted in a shift 
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towards a more pro-inflammatory phenotype, with metabolic hallmarks like 

succinate and itaconate being elevated.184 Similarly, a study conducted by Zhao 

and colleagues showed that the emerging pollutant bisphenol S (BPS) also had a 

pro-inflammatory polarizing effect in J774A.1 macrophages, with particular 

emphasis given to an increased glycolytic rate and GSH biosynthesis.185 The 

effects of ultrasmall superparamagnetic iron oxide particles (USPIO), were 

assessed on LPS-induced M1 macrophages and comprised increases in succinate, 

pyruvate and lactate, consistent with increased glycolysis and aggravation of the 

pro-inflammatory phenotype.186 

Regarding macrophage exposure to natural compounds, metabolomics 

studies have investigated the effects of Deoxynivalenol (DON), Helenalin (HEL), β-

glucan and Glabridin (GB).182,183,187,188 Incubation of ANA-1 murine macrophages 

with DON resulted in changes in several metabolic pathways, specifically regarding 

glucose and amino acid metabolism.182 These changes included decreased levels 

of lactate and pyruvate, possibly indicating the downregulation of glycolysis.182 

Another study using THP-1 and PBMCs stimulated with HEL showed an increase 

in lactate production, accompanied by changes in several glycolytic and TCA cycle 

enzymes, together with an increase in ROS.183 Additionally, a study by Liu and 

colleagues showed that a yeast-derived β-glucan could convert anti-inflammatory 

tumor associated macrophages (TAM) into a more pro-inflammatory phenotype, 

displaying immunosuppressive and anti-tumoral effects.187 The metabolic changes 

accompanying this shift comprised of an upregulation of glycolysis, with increased 

levels of lactate, which would be consistent with a more pro-inflammatory 

phenotype. Other changes included increases in glutamine uptake and in GSH 

biosynthesis. As for the study involving the isoflavane Glabridin, it was shown that, 

in murine RAW264.7 macrophages, this flavonoid could revert some of the effects 

caused by LPS stimulation, particularly regarding pyruvate, alanine, aspartate and 

glutamate metabolism, as well as phenylalanine, tyrosine and tryptophan 

biosynthesis.188 
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The studies mentioned above illustrate the potential of metabolomics to 

characterize the changes in macrophage metabolism induced by various stimuli. 

However, to the best of our knowledge, comprehensive profiling of metabolic 

responses of human macrophages to bioflavonoids has not been reported before. 

In this thesis, NMR metabolomics is employed for the first time to assess 

macrophage metabolic reprogramming upon exposure to Quercetin, Naringin and 

Naringenin, three abundant bioflavonoids with well documented anti-inflammatory 

activity. This research is expected to advance current understanding of 

bioflavonoids mode of action, potentially supporting their future development as 

immunomodulatory drugs.  
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Table 2: Metabolomic studies of macrophage metabolism in response to different stimuli. 

 

 

Cells Stimuli 
Profiling 

technique 
Main findings References 

Canonical M1 polarization 

RAW 264.7 LPS CE/TOF-MS ↑TCA cycle intermediates 

↑Lactate 
[168] 

RAW 264.7 LPS GC-MS 
↑Itaconate 

↑Succinate 

↑Lactate 

[177] 

 

THP-1 

 

LPS+IFN-γ CE/TOF-MS 
↑Glycolytic metabolites 

↑PPP metabolites 

↓TCA cycle metabolites 

[75] 

Infectious microorganisms 

THP-1 
Mycobacterium 

tuberculosis 
GC/TOF-MS 

↓GSH anabolic 

metabolism 

↑Carbohydrate 

biosynthesis 

↓Lipid biosynthesis 

[178] 

THP-1 
Mycobacterium 

tuberculosis 
MS ↑Monoacyl glycerols 

↓Amino acids 
[179] 

 

BMDM 

 

Leishmania 

major 
NMR 

↑Lactate 

↑Amino acids 

↑Choline and derivatives 

[180] 

U1 HIV-1 LC-MS 
↑Pyruvate 

↑CTP and UTP 

↓6-P-gluconate 

[181] 
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Table 2 (continuation): Metabolomic studies of macrophage metabolism in response to 

different stimuli. 

 

Cells Stimuli 
Profiling 

technique 
Main findings References 

Pollutants 

RAW 

264.7 

Heavy Fuel Oil  

(HFO) 
GC/FTICR-MS 

↑Lactate 

↑Succinate 

↑Itaconate  

[184] 

J774A.1 Bisphenol S (BPS) LC-MS 
↑Glycolysis 

↑GSH biosynthesis 
[185] 

Nanoparticles 

RAW 

264.7 

Ultrasmall 

superparamagnetic 

Iron Oxides 

(USPIO) 

NMR 

↑Succinate 

↑Citrate 

↑Lactate 

↑Pyruvate 

[186] 

Natural compounds 

ANA-1 
Deoxynivalenol 

(DON) 
GC/TOF-MS 

↓Lactate  

↓Pyruvate 

↑Glycerol 

↑Linoleic acid methyl 

ester 

[182] 

THP-1 

PBMC 

Helenalin 

(HEL) 

2D gel 

electrophoresis 

TOF-MS 

NMR 

↓Serine 

↑Lactate 

↑ROS 

[183] 

BMDM 

TAM 
β-glucan GC-MS 

↑Glutamine uptake 

↑Glycolysis 

↑Lactate 

↑GSH biosynthesis 

[187] 

RAW 

264.7 

Glabridin 

(GB) 
GC-MS 

↓Pyruvate 

↓Aspartate 

↓Tyrosine 

↑Lactate 

↑Tryptophan 

[188] 
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 Objectives 

The main goal of this thesis is to assess how different bioflavonoids 

(Quercetin, Naringin and Naringenin) modulate the metabolism of human 

macrophages, with a view to better understand their mode of action, specifically 

regarding macrophage-mediated anti-inflammatory activity.  

Specific aims are: 

- To characterize the metabolome of THP-1-derived macrophages in uncommitted 

(M0), pro-inflammatory (M1) and anti-inflammatory (M2) activation states. 

- To assess the metabolic changes induced by Quercetin, Naringin and Naringenin 

and their dependence on: i) treatment time, ii) phenotype of treated macrophages 

(M0 vs. M1).  

- To propose hypotheses on metabolic pathways affected by flavonoid treatments 

and their role in the cells inflammatory state. 

- To advance current understanding of the metabolism-mediated 

immunomodulatory activity of bioflavonoids on human macrophages, envisaging 

their future application in the context of anti-inflammatory therapies. 
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2. Materials and Methods 

 Preparation of stock solutions 

All flavonoid stock solutions were prepared with 99.5% DMSO at a 

concentration of 80 mM. The flavonoids used were Quercetin (Alfa Aesar), 

Naringenin (Sigma Aldrich) and Naringin (Sigma Aldrich). These solutions were 

protected from light and kept at -20ºC for a maximum of two weeks. A stock solution 

of phorbol 12-myristate 13-acetate (PMA, Sigma Aldrich) was also prepared in 

99.5% of DMSO at a concentration of 100 µg/mL and protected from light at -20ºC. 

Considering the known cytotoxicity of DMSO to cells, all subsequent dilutions used 

in the various assays were prepared to have a maximum DMSO concentration of 

0.5% (v/v). Additionally, cellular viability assays showed that a DMSO concentration 

of 0.6% (v/v) did not significantly decrease cellular viability in this cell line. 

Powdered LPS (Sigma Aldrich) was dissolved in Gibco® Water for Injection 

(WFI) at a concentration of 1 mg/mL. Solutions of IFN-γ (BioLegend), IL-4 

(BioLegend) and IL-13 (BioLegend) were kept in the original formulation at a 

concentration of 0.1 mg/mL for IFN-γ and 0.2 mg/mL for IL-4 and IL-13. These 

solutions were also kept at -20ºC. Subsequent dilutions were prepared either with 

the appropriate cell culture media or with sterile PBS.  

 

 Cell culture maintenance 

Human monocytic THP-1 cells were obtained from the American Type Culture 

Collection (ATCC) and were cultured in suspension at 37ºC and a 5% CO2 

atmosphere, in RPMI 1640 (Roswell Park Memorial Institute Medium, Gibco) 

culture medium supplemented with 2.5 g/L of sodium bicarbonate (Sigma Aldrich) 

and containing 10% of heat inactivated FBS (fetal bovine serum) and 1 % of an 

antibiotic solution (penicillin and streptomycin). 

The cells were maintained in suspension in 100 mm non-adherent petri-

dishes. When cells reached a high confluency (about 80%), the cell culture media 

containing the cells was split into two new petri-dishes, to which fresh culture media 

was added. All experiments were performed with cells from passages 10 to 17. 
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 Cell viability assay 

The toxicity of the three flavonoids (Quercetin, Naringin and Naringenin) 

towards THP-1 derived macrophages was measured using an Alamar Blue® 

reduction assay. The active compound is resazurin (IUPAC name: 7-hydroxy-10-

oxidophenoxazin-10-ium-3-one), which is water-soluble, cell-permeable and non-

toxic to cells, thus being suitable for testing cell viability. In the presence of healthy 

cells, resazurin (a non-fluorescent blue die) works as an electron acceptor in the 

electron transport chain, where it is reduced to resorufin, which is highly fluorescent 

and pink-colored (Figure 6). The percentage of viable, metabolically active cells 

can then be estimated by measuring the emitted fluorescence.189 

To perform this assay, THP-1 monocytes were seeded in 96-well plates with 

5 x 104 cells per well in 200 µL of appropriate culture medium and differentiated 

into macrophages with 50 ng/mL PMA for 24h. Afterwards, cell media was removed 

and replaced with new media containing different concentrations of the test 

compounds (20, 40, 60, 80, 100, 150 and 200 µM). After different incubation times 

(6, 24 and 48h), cell media was removed again, and cells were incubated with 110 

µL of a 10% Alamar Blue® solution in cell media for approximately 24h. A 

microplate reader Sinergy HTX was then used to measure fluorescence (λEx = 

540nm; λEm = 600nm). 

 

 

 

 

Figure 6: Schematic representation of the reduction of resazurin, the active compound in 

an Alamar Blue® reduction assay, to resorufin, a highly fluorescent pink compound, in the 

presence of a highly reductive cellular environment. Adapted from190. 
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 Immunofluorescence staining of M1 and M2 macrophages 

THP-1 monocytes were seeded in IBIDI adherent plates at a density of 3×105 

cells/mL and differentiated with 50 ng/mL of PMA for 24h, followed by 24h with 

fresh media. Macrophages were then stimulated with 100 ng/mL of LPS + 20 ng/mL 

of IFN-γ for 24h or with 20 ng/mL of IL-4 + 20 ng/mL of IL-13 for 48h, to obtain M1 

and M2 polarized macrophages, respectively. 

After the appropriate incubation time, the cells were fixated with 4% formalin 

and washed with cold PBS (pH 7.4). Subsequently, 70 µL/well of  BSA were added 

to the cells for 30 min. BSA worked as a blocking agent to prevent non-specific 

binding of antigens and antibodies. After this step, cells were washed three times 

with PBS and then incubated for 1h with the appropriate antibodies. For assessing 

M1 markers, cells were incubated with 50 µL/well of mouse anti-human CD80 

(clone 2D10, conjugated with Alexa Fluor® 488) and mouse anti-human CD64 

(clone 10.1, conjugated with PE). M2 markers were assessed by incubating cells 

with 50 µL/well of mouse anti-human CD36 (clone 5-771, conjugated with PE) and 

mouse anti-human CD209 (clone 9E9A8, conjugated with FITC).  

The next step involved washing the cells three times with PBS (pH=7.4), 

followed by incubation with DAPI (4′,6-diamidino-2-phenylindole) for 15 min, at 

room temperature (RT), which is a blue-fluorescent die that stains  cells nuclei. The 

cells were then washed five times with PBS at RT and stored at 4ºC until 

visualization in 150 µL of PBS. When the cells were ready for visualization, the PBS 

was removed and replaced by mounting medium (DAKOTM), after which the cells 

could be observed in a fluorescence microscope (ZEISS AxioImager M2, equipped 

with a 10x/0.25 objective – Carl Zeiss, Germany). 
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 Cytokine quantification assay (LEGENDplex™ array) 

The production of several pro-inflammatory and anti-inflammatory cytokines 

was measured in the supernatants of THP-1 derived macrophages by a bead-

based multiplex assay LEGENDplex™ (BioLegend). The multiplex assay used was 

the Human M1/M2 Macrophage Panel (10-plex) with V-bottom Plate and allowed 

the quantification of 10 cytokines, including IL-12p70, TNF-α, IL-6, IL-10, IL-1β, 

TARC, IL-1RA, IL-12p40, IL-23 and IP-10. 

 

2.5.1. Reagent preparation  

Each vial of individual analyte beads was sonicated for 1 min and vortexed 

for 30 seconds. Then, aliquots of the 10 vials were mixed at equal volumes and the 

resulting mixture diluted 13 times with Assay Buffer (provided by the supplier). 

To prepare the standards, the lyophilized cytokine Standard Cocktail 

(provided by the supplier) was reconstituted in 250 µL of Assay Buffer, allowed to 

equilibrate at RT and transferred to a labeled polypropylene centrifuge tube. From 

this standard, serial dilutions (1:4) were performed to obtain different standard 

concentrations in the calibration curve. 

 

2.5.2. Assay procedure 

In each well of a 96-well V-bottom plate, 25 µL of Assay Buffer were mixed 

with 25 µL of standard or 25 µL of sample (cell culture medium supernatants). Then, 

25 µL of the beads mixture was added to each well, giving a total volume of 75 µL 

per well. The plate was subsequently covered with a plate sealer and aluminum foil 

to protect it from light exposure, and placed in a plate shaker at 750 rpm for 2h at 

RT. Next, the plate was centrifuged at 250g for 5 min, after which the supernatants 

were carefully discarded using a multi-channel pipette. After removing the 

supernatant, each well was washed with 200 µL of Wash Buffer (provided by the 

supplier). This was followed by a second centrifugation, after which the supernatant 

was again discarded.  
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The next step involved incubating each well with 25 µL of Detection 

Antibodies for 1h, having the plate covered with a plate sealer and aluminum foil, 

while shaking at 800 rpm at RT. After 1h, without washing the plate, 25 µL of 

streptavidin-phycoerythrin (SA-PE) was added to each well. The plate was again 

sealed, covered with aluminum foil, and placed in the plate shaker for another 30 

min, at RT. Afterwards, the plate was centrifuged in the same conditions as 

mentioned earlier, and the supernatant removed. This was followed by washing 

each well with 200 µL of Wash Buffer and a final centrifugation step. After removing 

the supernatant, 150 µL of Wash Buffer was added to each well and the beads 

were resuspended by pipetting.  

The samples were then analyzed in a flow cytometer (BD Accuri™ C6 plus 

(BD Biosciences), configured to acquire 4000 events in the region of interest (ROI) 

corresponding to the different beads and corresponding analytes. Data was gated 

and treated in LegendPlex software. 
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 NMR metabolomics assays 

2.6.1. THP-1 differentiation into macrophages 

The cell culture media containing the cells was transferred to 15 mL Falcon 

tubes and centrifuged at 300 xg for 5 min. The supernatant was then discarded and 

the pellet resuspended in 1 mL of fresh cell culture medium. The number of cells 

was counted using a Neubauer chamber, after adding 5 µL of the cell suspension 

to 45 µL of fresh medium and 50 µL of a trypan blue solution.  

 THP-1 monocytes were then seeded in adherent petri-dishes (10 cm 

diameter) at a density of 10×106 cells/mL and differentiated into macrophages 

through a 24-hour incubation with 50 ng/mL of phorbol 12-myristate 13-acetate 

(PMA). The cell media was then discarded and cells incubated with fresh media for 

another 24h, after which the monocytes were considered to have fully differentiated 

into adherent M0 macrophages. 

Macrophage M1 and M2 polarization was performed based on information 

found in literature,12,21 via a 24-hour incubation with 100 ng/mL of LPS and 20 

ng/mL of IFN-γ, and a 48-hour incubation with 20 ng/mL of IL-4 and 20 ng/mL of 

IL-13, respectively. 

 

2.6.2. Incubation of M0 and M1 macrophages with bioflavonoids 

 Uncommitted THP-1 derived macrophages (M0) were incubated with each of 

the three flavonoids for 6, 24 and 48h, at the highest non-toxic concentration found 

for each compound: Quercetin 60 µM, Naringenin 100 µM and Naringin 200 µM. 

These concentrations were determined through an Alamar Blue® cell viability 

assay, as described in section 2.3. Untreated M0 macrophages incubated for the 

same time periods were used as controls.  

 To evaluate the effects of these compounds on pro-inflammatory M1 

macrophages, the same concentrations were used to treat M1 macrophages. After 

a 24h incubation with 100 ng/mL LPS and 20 ng/mL IFN-γ, the medium was 

replaced by fresh medium containing each of the three flavonoids and cells 

incubated for additional 24h. M1-polarized macrophages cultured in fresh medium 

for 24h were used as controls. 
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2.6.3. Sample collection and preparation 

2.6.3.1. Cell culture supernatants 

Medium aliquots were collected from each petri-dish (including medium without 

cells incubated under the same conditions) and centrifuged at 1000 xg for 10 min. 

The supernatants were then collected and stored at -80ºC. To remove interfering 

proteins, thawed supernatants were then subjected to a protein-precipitation 

protocol described by Kostidis and colleagues.191 Briefly, 600 µL of cold methanol 

100% (v/v) at -80ºC were added to 300 µL of supernatant (1:3 proportion). The 

aliquots were then kept at -20ºC for 30 min, after which they were centrifuged at 

13000 x g for 20 min. The supernatant was then transferred to another vial, vacuum 

dried (SpeedVac, Eppendorf) and stored at -80ºC until NMR acquisition. 

At the time of analysis, the dried samples were resuspended in 600 µL of 

deuterated phosphate buffer (PBS 100 mM, pH 7) containing 0.1 mM 3-

(trimethylsilyl) propanoic acid (TSP-d4), and 550 µL of each sample were then 

transferred to 5 mm NMR tubes. 

 

2.6.3.2. Cell extracts 

To collect cell samples, the remaining medium was discarded from each dish 

and the cells washed 4 times with 10 mL of cold PBS. The intracellular metabolites 

were then extracted using a biphasic extraction protocol with 

methanol:chloroform:water (1:1:0.7). After adding1 mL of cold methanol (80% v/v) 

to quench metabolic activity of the cells, cells were scraped off the dish, transferred 

to a glass vial with 150 mg of glass beads (to aid in cell disruption) and vortexed 

for 2 min. Next, 400 µL of cold chloroform (-20ºC) was added to the tube and 

vortexed (2 min), followed by addition of 400 µL of chloroform and 360 µL cold milli-

Q water. The samples were vortexed, allowed to rest on ice for 20 min and 

centrifuged at 3000 xg for 10 min. The lower organic phase was transferred to an 

amber glass vial and the remaining sample subjected to another chloroform 

addition (400 µL) and centrifugation. The resulting organic phase was then added 

to the previous amber vial, while the top aqueous phase was transferred to a 
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microcentrifuge tube. Finally, the polar extracts were vacuum dried, and lipophilic 

extracts were dried under a nitrogen flow, after which they were stored at -80ºC.   

At the time of NMR analysis, the dried samples of the polar phases were 

resuspended in 600 µL of deuterated phosphate buffer (PBS 100 mM, pH 7) 

containing 0.1 mM TSP-d4, and 550 µL of each sample were then transferred to 5 

mm NMR tubes. The lipophilic phases were used in another Masters work 

addressing the lipidomic study of macrophages. 

A summarized schematic representation of the experimental protocol used in 

the section 2.6 can be found in Figure 7.  

 

Figure 7: Schematic representation of the experimental protocol used to obtain the 

aqueous, lipophilic and cell media samples of the THP-1 derived macrophages in each 

condition, as described in section 2.6. 
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 1H-NMR Spectroscopy 

All samples were analyzed in a Bruker Avance III HD 500 NMR spectrometer 

(University of Aveiro, PT National NMR Network) operating at 500.13 MHz for 1H 

observation, at 298 K. Standard 1D 1H spectra with water presaturation (pulse 

program ‘noesypr1d’, Bruker library) were recorded with 32k points, 7002.801 Hz 

spectral width, a 2 s relaxation delay and 512/2048 scans (for media/ polar extracts, 

respectively). Two-dimensional NMR spectra were also recorded for selected 

samples to aid metabolite identification, namely 1H-1H TOCSY, J-resolved and 1H-

13C HSQC spectra. Metabolite assignment was based on matching 1D and 2D 

spectral information to reference spectra available in Chenomx, BBIOREFCODE-

2–0–0 (Bruker Biospin, Rheinstetten, Germany) and HMDB.192,193 

Spectral processing was carried out using TopSpin 4.0.3 (Bruker Biospin, 

Rheinstetten, Germany). Each FID was multiplied by a cosine function (with an ssb 

value of 2), zero filled to 64k data points and Fourier-transformed. The resulting 

spectra were then manually phased, baseline corrected and calibrated to the TSP 

(δ 0 ppm) or the glucose (δ 5.235 ppm) signals, in media or polar extracts spectra, 

respectively. 

 

 Multivariate analysis of spectral data 

After processing, the spectra were visualized and prepared for multivariate 

analysis in Amix-Viewer 3.9.15 (Bruker Biospin, Rheinstetten, Germany). Each 

spectrum was normalized by its total area, excluding the water-suppression region 

and some contaminant signals, such as chloroform, ethanol and methanol. The 

normalized data were then organized into matrices (‘bucket tables’), containing the 

information on the signals intensity (variables) at each chemical shift  in the different 

spectra (observations).  

Data matrices were uploaded into SIMCA-P 11.5 (Umetrics, Umeå, Sweden), 

where PCA (Principal Component Analysis) and PLS-DA (Partial Least Squares- 

Discriminant Analysis) were applied. After testing different scaling types, unit-

variance scaling (UV), in which each column (containing the intensities at a 
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particular chemical shift) is divided by its respective standard deviation, was 

chosen. This procedure gives equal variance to all variables, allowing for variations 

in less abundant metabolites to have the same weight in multivariate models as 

more intense signals. The results were then visualized through factorial coordinates 

(‘scores’) and factorial contributions (‘loadings’) colored according to variable 

importance to projection (VIP). For PLS-DA models, Q2 and R2 values, respectively 

reflecting predictive capability and explained variance, obtained from sevenfold 

internal cross validation, were used to assess the robustness of class 

discrimination. 

 

 Spectral integration and univariate analysis 

Spectral integration of selected signals was carried out in Amix-Viewer 3.9.15 

(Bruker Biospin, Rheinstetten, Germany), to provide a quantitative measurement 

of metabolic variations. Signals representative of each metabolite that were found 

to be relatively free of overlap were integrated and normalized by the total spectral 

area. For each metabolite, the percentage of variation in treated samples was 

calculated relative to respective controls, along with the effect size (ES)194 and the 

statistical significance (p-value, as determined by the t-student test). The variations 

with medium-large magnitude (|ES|>0.5) were expressed in heatmaps colored as 

a function of % of variation, using the R-statistical software 

 

2.10. Statistical analysis 

The statistical analysis of both the metabolomics results and for the cytokine 

measurement of polarized M1 and M2 macrophages, were made via a t-student 

test, in which an approximation to normality was assumed, due to the small number 

of replicates. 

The statistical significance of the results for cytokine quantification in 

flavonoid treated macrophages and for the cell viability assay were assessed 

through a one-way ANOVA, with a Sidak multiple comparisons test.  
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3. Results and Discussion 

 Macrophage responses to canonical M1 and M2 stimuli 

3.1.1. Phenotypic characterization of M1 and M2 macrophages 

 Validation of M1 and M2 polarization states, induced, respectively, by a 24h-

incubation with LPS/IFN-γ and a 48h-incubation with IL-4/IL-13, was carried out 

through assessment of cell surface markers and cytokine expression. Based on 

existing literature,12,16,21 cell surface markers CD80 and CD64 were selected to 

assess M1 polarization, whereas CD36 and CD209 were used to evaluate M2 

polarization. Figure 8 shows the fluorescence microscopy images obtained for 

macrophages stimulated with M1 and M2 canonical stimuli. 

 

 

Figure 8: Fluorescence microscopy images of: a) LPS/IFN-γ–stimulated macrophages 

stained with CD64 (orange) - (CD80 no signal); b)IL4/IL-13-stimulated macrophages 

stained with CD209 (green) and CD36 (orange). Cell nuclei stained with DAPI (blue). 

 

Macrophages stimulated with IL-4 and IL-13 for 48h were positive for both 

CD36 and CD209, confirming that the conditions employed appeared to be 

adequate for obtaining M2 macrophages. Macrophages stimulated with LPS and 

IFN-γ for 24h were positive for CD64, but not for CD80. To further characterize 

macrophage phenotype, cytokine expression was assessed after stimulation, using 

flow cytometry with a multiplex assay specific for macrophages. The concentrations 

of the 10 cytokines measured (TNF-α, IL-1β, CXCL10, IL-23, IL-12p40, IL-12p-70, 

a) b) 
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IL-6, IL-10, CCL17 and IL-1RA) in each condition (uncommitted, LPS/IFN-γ and 

IL4/IL13-stimulated) are shown in Figure 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Concentrations of cytokines measured in the medium supernatants of polarized 

macrophages and their respective controls (n=3): a) M0 and M1 macrophages (24h) and 

b) M0 and M2 macrophages (48h).*p-value < 0.05; **p-value < 0.01. 

 

These results clearly show distinct cytokine profiles for differentially 

stimulated macrophages. The main variations in cell culture supernatants of 

LPS/IFN-γ-stimulated macrophages included increased levels of TNF-α, IL-1β, 

CXCL10, IL-12p40 and IL-6. These can all be considered pro-inflammatory 
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cytokines,10 although IL-6 has also been associated with alternative activation of 

macrophages, displaying a complex role in inflammation.195 Here, IL-6 increased 

markedly in M1 macrophages, whereas no significant variation was found in M2 

macrophages.  

In IL-4/IL-13-stimulated macrophages, the most evident variation included a 

significant increase in CCL17 levels, an anti-inflammatory chemokine commonly 

described as a biomarker of M2 polarization.16 Additionally, despite not being 

statistically significant, there appeared to be a tendency for an increase in IL-1RA, 

an IL-1 receptor agonist, which is also an established M2 polarization biomarker.16 

Other effects caused by M2 polarization included increased levels of IL-1β and of 

TNF-α, albeit to a much lesser extent when compared to M1 macrophages.  

Based on these results, and for the sake of simplicity, macrophages 

stimulated with LPS/IFN-γ (24h) or with IL-4/IL-13 (48h) will be designated 

hereafter as M1 and M2 macrophages, respectively. Unstimulated macrophages 

are referred to as M0 macrophages. 

 

3.1.2. Metabolic effects of canonical M1 and M2 stimuli 

The metabolic profile of macrophages was assessed by 1H-NMR 

spectroscopy. Figure 10 shows the 1H-NMR spectra of macrophage polar extracts 

obtained under different conditions (M0, M1, M2). Based on the analysis of 2D 

spectra recorded for selected samples (Figure 11) and matching to spectral 

databases, 46 metabolites were identified (Table S1 in Supplementary 

Information). These include several amino acids, organic acids, choline 

compounds, sugars, nucleotides, among others. Most of these metabolites were 

present in all sample groups, although differing in quantitative levels. An exception 

was found for itaconate, which was only present at detectable levels in M1 

macrophages, but not in M0 nor M2. 
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Figure 10: 500 MHz 1H-NMR spectra of polar extracts from a) M0, b) M1 and c) M2 

macrophages, with some metabolites assigned. 

a) 

b) 

c) 

ppm 

ppm 

ppm 
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Figure 11: Expansions of a) 1H-1H TOCSY and b) J-resolved spectra of a polar extract 

from M0 macrophages. Signals are numbered in accordance to table S1 (Supplementary 

Information). 
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To assess the metabolic changes induced in M1 and M2 macrophages relative 

to uncommitted M0 macrophages, their metabolic profiles were compared using 

multivariate analysis. The PCA scores scatter plots (Figure 12, left) showed a 

reasonable separation between either M1 or M2 macrophages and their respective 

controls. Such discrimination was confirmed by PLS-DA (Figure 12, middle), where 

high Q2 values were obtained.  

 

Figure 12: Multivariate analysis of 1H-NMR spectra from polar extracts of a) M0 and M1 

macrophages, b) M0 and M2 macrophages: PCA and PLS-DA scores scatter plots (left 

and center, respectively) and LV1 loadings w (right), colored according to variable 

importance to projection (VIP). 

 

By inspecting the PLS-DA loadings (Figure 12, right), it is possible to get an 

immediate picture of the main metabolic effects induced by canonical stimulation 

of THP-1 derived macrophages. As in both PLS-DA scores plot M1 and M2 

samples were grouped in the negative side of the LV1 axis, negative loadings 

correspond to metabolites increased in stimulated macrophages, whereas positive 

loadings correspond to metabolites elevated in controls. Then, based on spectral 
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integration, the magnitude and statistical significance in individual metabolite 

alterations highlighted in the PLS-DA loadings were further analyzed in more detail. 

These results are expressed in a heatmap (Figure 13) color-coded according to the 

percentage of variation of each metabolite in M1 and M2 macrophages relatively 

to their respective controls. Only variations with a medium-large magnitude 

(|ES|>0.5 according to Berben et al.194) were considered.  

 

Figure 13: Heatmap of the main metabolite variations in the polar extracts of M1 and M2 

macrophages. The color scale represents percentage of variation relative to respective 

controls (n=6). *p-value < 0.05; **p-value < 0.01.  
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The metabolites showing the most prominent (>20%) increases in M1 

macrophages were itaconate, succinate, citraconate, phosphoethanolamine, 

choline, glycerophosphocholine (GPC), ADP and lactate. Glycine and alanine were 

also increased in M1 macrophages (<20%). On the other hand, these 

macrophages showed decreased levels of several other metabolites, including 

marked decreases in NAD+, ATP, UTP, methylguanidine and isoleucine, and 

milder decreases in leucine, valine, myo-inositol, taurine, glutamine, GSH, citrate, 

N-acetyl aspartate, GSSG and phosphocholine (PC). 

In addition, M2 macrophage polarization was accompanied by a prominent 

increase in N-acetyl aspartate, lactate and myo-inositol, with UTP also showing a 

smaller increase. Moreover, glucose, taurine, succinate, GSSG, creatine and 

several amino acids (e.g. glutamine, glycine, alanine, asparagine) were decreased. 

Therefore, these results confirm that, as expected, M1 and M2 macrophages 

clearly differ in their intracellular metabolic composition.60,62,63 

Analysis of the cell culture medium provided complementary information on 

cells metabolic activity, allowing for a better interpretation of the variations 

observed in polar extracts. By comparing the metabolite composition of cell-

conditioned medium with that of acellular culture medium (incubated under the 

same conditions), the metabolites consumed and excreted by macrophages could 

be easily assessed. 
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Figure 14: Variations in consumption (negative bars) and excretion (positive bars) of 

several metabolites in the cell culture supernatant of THP-1 derived macrophages 

incubated with: a) LPS+IFN-γ for 24h (M1 polarization) and b) IL-4+IL-13 for 48h (M2 

polarization) when compared to acellular media (n=6). In both graphs, the red/purple  bars 

represent the polarized macrophages and the grey bars correspond to uncommitted 

macrophages at the respective incubation times. *p-value < 0.05; **p-value < 0.01. 
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As shown in Figure 14, the main substrates consumed by cells (negative 

percentual variation) were glucose, glutamine, pyroglutamate, phosphocholine, 

fructose, valine, leucine, isoleucine and glycine, whereas the metabolites with a 

positive percentage of variation, like alanine, 2-oxoisocaproate, 2-oxoisoleucine, 

glutamate, formate and lactate, were excreted into the extracellular medium.  

The graphs in Figure 14 also show the impact of M1 and M2 polarization on 

metabolite consumption/excretion patterns. Compared to M0 macrophages, M1 

macrophages showed: i) significantly increased consumption of glucose, ii) non-

significant trends for increased consumption of glutamine, branched chain amino 

acids and fructose, iii) significantly decreased excretion of formate, iv) non-

significant decrease in lactate excretion. 

On the other hand, relatively to their respective controls, M2 macrophages 

showed: i) non-significant trends for increased consumption of glucose, ii) 

significantly increased consumption of glutamine ang glycine, iii) significant 

increase in the excretion of asparagine, glutamate, formate and lactate, iv) non-

significant trends for increased excretion of 2-oxoisoleucine. 
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 Macrophage responses to bioflavonoids 

3.2.1. Flavonoid effects on cell viability 

To assess the effects of each bioflavonoid on cell viability and select 

appropriate concentrations for subsequent metabolomics experiments, THP-1 

derived macrophages were exposed for 24h to Quercetin, Naringenin and Naringin 

at concentrations ranging from 20 to 200 µM. The results of the Alamar Blue® 

reduction assay are shown in Figure 15. 

 

Figure 15: Cell viability of THP-1 derived macrophages exposed for 24h to: a) Quercetin; 

b) Naringenin; c) Naringin, at concentrations ranging from 20 μM to 200 μM, as assessed 

by the Alamar Blue® reduction assay. Statistical significance assessed in each 

concentration of the compound against the control (grey bar) via an ANOVA, with Sidak 

multiple comparisons test (n=5). *p-value < 0.05; **p-value < 0.01. 

 

 

Naringin was the flavonoid that showed the least cytotoxic effects, as cell 

viability/metabolic activity was above that of the control even at the highest 

concentration tested (200 μM). This effect could be in line with findings that 

Naringin is capable of stimulating cell proliferation and differentiation of bone 

marrow stromal cells (BMSCs), possibly also applying to macrophages.196 

Naringenin lowered cell viability at concentrations ≥150 µM. This is consistent with 

data obtained in a study by Saenz and colleagues, where the chosen concentration 

of Naringenin was 100 µM, which did not show any decrease in cell viability in THP-

1 derived macrophages.157 Finally, Quercetin lowered cell viability at 

concentrations ≥80 µM. Therefore, for each flavonoid, a non-cytotoxic 

concentration was chosen for subsequent experiments: i) 60 μM of Quercetin; ii) 

100 μM of Naringenin; iii) 200 μM of Naringin.  
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3.2.2. Phenotypic characterization of flavonoid-treated macrophages 

Out of the ten cytokines measured in cell culture medium using a multiplex 

assay, only six showed changes in concentration upon flavonoid treatment. These 

were TNF-α, IL-1β, CXCL10, IL-6, CCL17 and IL-1RA (Figure 16). Although most 

differences between sample groups did not reach statistical significance, likely due 

to a small number of replicates (n=3) and large standard deviation values, there 

were some clear variation trends. The pro-inflammatory cytokine TNF-α decreased 

for all tested flavonoids, with Naringenin having the most marked effects in M0 

macrophages. The levels of IL-1β were also affected, showing a decrease in the 

supernatants of treated pre-polarized M1 macrophages, with all three flavonoids 

having similar impact. In M0 macrophages, however, Quercetin treatment 

appeared to cause an increase in IL-1β, while no effects were caused by 

Naringenin or Naringin. The chemokine CXCL10, known as a pro-inflammatory 

mediator,14,58 was also decreased in both Quercetin and Naringenin-treated M0 

macrophages, while Naringin did not produce any noticeable effects. In pre-

polarized M1 macrophages, the levels of CXCL10 were very high in comparison to 

M0 macrophages and did not seem to be particularly affected by flavonoid 

treatment. Flavonoid treatment was also associated with a decrease in IL-6, in 

almost all conditions, albeit to a much lesser extent in M0 macrophages, especially 

in the case of Naringin treatment. This IL-6 lowering effect has been described for 

some flavonoids (including Quercetin and Naringenin), tested in LPS-stimulated 

RAW 264.7 macrophages, indicating an attenuated inflammatory response.197 

Regarding the anti-inflammatory chemokine CCL17, no changes were 

observed in flavonoid-treated M0 macrophages (the concentration was too low to 

be detected). In the case of pre-polarized M1 macrophages, CCL17 showed 

different variations depending on the flavonoid used. Quercetin and Naringin 

caused a decrease in CCL17 levels, whereas Naringenin led to an increase in this 

anti-inflammatory chemokine. Similarly, IL-1RA levels were also slightly increased 

in Naringenin-treated M0 macrophages, but decreased with Quercetin and Naringin 

treatment in both M0 and M1-like macrophages. 
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Figure 16: Concentration of pro- and anti-inflammatory cytokines in the medium 

supernatant of M0 macrophages and pre-polarized M1 macrophages upon 24h exposure 

to each flavonoid: a) TNF-α, b) IL-1β, c) CXCL10, d) IL-6, e) CCL17 and f) IL-1RA. 

Statistical significance was assessed using a one-way ANOVA, with a Sidak multiple 

comparisons test (n=3). *p-value < 0.5. 
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The results described above indicate that: i) all flavonoids tested induced 

decreased production of pro-inflammatory cytokines, corroborating their substantial 

reported activity in attenuating inflammation, ii) Naringenin could additionally act by 

increasing the expression of anti-inflammatory cytokines (as shown here for 

CCL17). 

 

3.2.3. Metabolic effects of Quercetin on M0 and M1 macrophages 

 The effects of Quercetin on the intracellular metabolome of THP-1 derived 

macrophages were assessed through 1H-NMR analysis of cell polar extracts, 

followed by multivariate analysis and spectral integration. The PCA and PLS-DA 

results obtained for the comparison between untreated M0 macrophages and 24h 

Quercetin-treated M0 macrophages are shown in Figure 17. The two sample 

groups were clearly separated in the scores plots, with a very high Q2 value 

(reflecting model robustness) being obtained for the PLS-DA model. Also, PLS-DA 

LV1 loadings (Figure 17, right) showed intense coloring of many variables, 

indicating the marked impact of Quercetin on macrophages metabolic profile. 

Positive loadings correspond to metabolites increased in samples grouping in 

positive LV1, i.e. the controls (e.g. lactate, GSH), whereas negative loadings arise 

from metabolites increased in samples with negative LV1 scores, i.e. Quercetin-

treated macrophages (e.g. glucose, citrate). Equally good MVA discriminations 

were also obtained for 6 and 48h treatments (Figure S1, Supplementary 

Information). 

Figure 17: Multivariate analysis of 1H-NMR spectra from the polar extracts of THP-1 

derived macrophages comparing unstimulated M0 macrophages (grey) and Quercetin-

treated macrophages (green) , incubated for 24h. PCA and PLS-DA scores scatter plots 

(left and center, respectively) and LV1 loadings w (right), colored according to variable 

importance to projection (VIP). 
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 In order to analyze in more detail the metabolic changes induced by 

Quercetin, spectral signals representing individual metabolites were integrated and 

the percentage of variation in each treatment group calculated relative to respective 

controls. The results obtained for Quercetin treatment of M0 macrophages during 

6, 24 and 48h are summarized in the heatmap shown in Figure 18. Additionally, 

Quercetin effects on pre-polarized M1 macrophages (incubated with LPS + IFN-γ 

for 24h and then stimulated with Quercetin for another 24h, after removing the 

medium containing the pro-inflammatory stimuli) is also shown in the heatmap. 

Overall, a 24h incubation with Quercetin appeared to have a more pronounced 

effect on the metabolic profile of THP-1 derived macrophages, and the effects seen 

in pre-polarized macrophages were, to some extent, similar to those observed in 

Quercetin-treated uncommitted macrophages. 

 Regarding the effects of Quercetin on M0 macrophages, most changes were 

common to all time points, albeit in different extents. In particular, the metabolites 

found to be consistently increased in treated macrophages were glucose, citrate, 

GSSG, methylguanidine, taurine, choline compounds and phosphoethanolamine, 

whereas lactate, succinate, several amino acids, phosphocreatine and GSH were 

decreased. Several of these changes were especially prominent in the 24h 

treatment. On the other hand, some variations were clearly time-dependent, 

namely those in aspartate (increased in macrophages treated for 6/24h, but 

decreased at 48h), ATP, UTP, valine, myo-inositol and formate.  

When macrophages were polarized to a pro-inflammatory (M1) state before 

Quercetin treatment, there were also a significant number of changes in the 

intracellular metabolome (Figure 18, column on the far right). Many of these 

changes were common to those produced by Quercetin in M0 macrophages, 

including the increases in citrate, (glycero)phosphocholine and 

phosphoethanolamine, together with decreases in lactate, succinate, amino acids 

and phosphocreatine. On the other hand, unlike Quercetin-treated M0 

macrophages, M1 macrophages showed no alteration in glucose, aspartate or 

GSSG intracellular levels upon Quercetin treatment. Additionally, an increase in 

itaconate (accompanied by a decrease in its predecessor citraconate) was 

detected in M1 Quercetin-treated macrophages. The results also indicate that the 
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variations in antioxidant metabolites and choline were opposite to those obtained 

for M0 treated macrophages. 

 

Figure 18: Heatmap of the main metabolite variations in the polar extracts of THP-1 

derived macrophages upon treatment with Quercetin (60 µM): M0 macrophages incubated 

with the flavonoid for 6, 24 or 48h; M1 pre-polarized macrophages incubated with the 

flavonoid for 24h. The color scale represents percentage of variation relative to respective 

controls (n=6). *p-value < 0.05; **p-value < 0.01. 
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The variations in cell culture medium composition (exometabolome) in 

response to Quercetin treatment of both uncommitted and pre-polarized M1 

macrophages are summarized in Figure 19. Overall, a higher number of significant 

changes were detected in 48h culture media samples. When exposed to Quercetin, 

uncommitted macrophages were found to excrete less lactate and formate 

ubiquitously in all incubation times, although reaching statistical significance only 

at 24 and 48h (Figures 19b and 19c, respectively). This effect was not present in 

Quercetin-treated M1 macrophages (Figure 19d), which actually showed a slight 

tendency of increased excretion of lactate. Similarly, glutamate excretion was 

decreased in Quercetin treated M0 macrophages, while pre-polarized 

macrophages showed increased excretion of glutamate upon incubation with 

Quercetin. Other differences in excreted metabolites include the reduced or ceased 

excretion of 2-oxoisoleucine in all groups, except for the 6h treated M0 

macrophages (Figure 19a), and the increased excretion of valine in the 24h 

Quercetin-treated groups (both M0 and M1). 

Interestingly, glucose consumption was affected in all conditions except in 

the cells treated for 6h, showing a tendency to decrease in 24h treated 

macrophages, a statistically significant decrease at 48h and a complete arrest of 

glucose consumption in pre-polarized M1 macrophages. A decrease in glutamine 

consumption could also be found in 48h treated macrophages and in pre-polarized 

macrophages. On the other hand, isoleucine was being less consumed in both 24h 

and 48h treated cells, whereas pre-polarized macrophages stopped consuming 

isoleucine and started excreting it to the extracellular media. Several other 

metabolites were found to be less consumed or not consumed at all, specifically in 

the 48h Quercetin treated macrophages, (e.g. glycine, leucine, valine, fructose, 

pyroglutamate, phosphocholine).  

 

 

 



69 
 

 

 

Figure 19: Variations in consumption (negative bars) and excretion (positive bars) of 

several metabolites in the cell culture supernatant of THP-1 derived macrophages 

incubated with 60 μM of Quercetin: a), b), c) M0 macrophages incubated with Quercetin 

for 6, 24 and 48h, respectively; d) Pre-polarized M1 macrophages incubated with Quercetin 

for 24h. Each Quercetin incubation (green bars) was compared to its respective control 

(grey bars). Statistical significance of variation was assessed via a t-student test (n=6): *p-

value < 0.05; **p-value < 0.01. 
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3.2.4. Metabolic effects of Naringenin on M0 and M1 macrophages 

 

The metabolic effects of Naringenin treatment in THP-1 derived 

macrophages were assessed using the same strategy as that described for 

Quercetin. 

Figure 20 shows the multivariate analysis performed on the 1H-NMR spectra 

of polar extracts collected for 24h Naringenin-treated M0 macrophages and their 

respective controls (results for other time points shown in Figure S2, 

Supplementary Information). The separation between the control group and the 

Naringenin-treated group is visible in both PCA and PLS-DA scores scatter plots 

(Figure 20, left and middle). PLS-DA LV1 loadings (Figure 20, right) immediately 

revealed the most marked effects induced by Naringenin (e.g. increases in lactate 

and some amino acids, together with decreases in GSH and 

glycerophosphocholine). 

 

Figure 20: Multivariate analysis of 1H-NMR spectra from the polar extracts of THP-1 

derived macrophages comparing unstimulated M0 macrophages (grey) and Naringenin-

treated macrophages (blue), incubated for 24h. PCA and PLS-DA scores scatter plots (left 

and center, respectively) and LV1 loadings w (right), colored according to variable 

importance to projection (VIP). 
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The quantitative analysis of individual metabolite variations in M0 

macrophages treated with Naringenin for different time periods, as well as in 24h 

Naringenin-treated pre-polarized M1 macrophages is summarized in the heatmap 

shown in Figure 21. Several metabolic effects of Naringenin in M0 macrophages 

appeared to be time-dependent, generally intensifying with treatment duration. For 

instance, gradual increases were found in the intracellular levels of glucose, lactate, 

N-acetylaspartate, some amino acids and (phospho)choline. Additionally, 

succinate was increased only in 48h Naringenin-treated macrophages (relative to 

respective controls). On the other hand, Naringenin treatment caused decreases 

in the intracellular levels of citrate, asparagine, aspartate, glycerophosphocholine 

and myo-inositol. Moreover, a few metabolites even showed opposite variations 

depending on the incubation period with Naringenin. This was the case of GSH, 

which increased in 6h treated cells (where the oxidized form GSSG was 

decreased), but then decreased for 24 and 48h. Also, ATP levels were increased 

in both 6 and 48h but decreased in 24h treated M0 macrophages. 

Interestingly, the metabolic signature of Naringenin in pre-polarized 

macrophages (Figure 21, column on the far right) showed several differences 

compared to the effects produced in M0 macrophages. In particular, opposite 

variations were found for glucose, lactate, succinate, (phospho)creatine, choline, 

asparagine and glutamine. Still, some Naringenin effects appeared to be 

independent of macrophage initial polarization state, namely the decreases in 

citrate, glycerophosphocholine and formate, together with the increases in NAD+ 

and glutamate. 
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Figure 21: Heatmap of the main metabolite variations in the polar extracts of THP-1 

derived macrophages upon treatment with Naringenin (100 µM): M0 macrophages 

incubated with the flavonoid for 6, 24 or 48h; M1 pre-polarized macrophages incubated 

with the flavonoid for 24h. The color scale represents percentage of variation relative to 

respective controls (n=6). *p-value < 0.05; **p-value < 0.01. 
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The variations in cell culture medium composition in response to Naringenin 

treatment of both uncommitted and pre-polarized M1 macrophages can be 

consulted in Figure 22. Similarly to the endometabolome, the differences induced 

by Naringenin in the exometabolome of M0 macrophages intensified over exposure 

time. Compared to untreated control macrophages, 48h Naringenin-treated 

macrophages consumed less phosphocholine, pyroglutamate and glutamine, while 

showing a non-significant trend to consume more glucose and/or fructose. Also, 

treated cells excrete less formate and glutamate, together with more alanine. 

Interestingly, the variations in cells nutrients consumption and metabolites 

excretion patterns upon Naringenin treatment were exacerbated when 

macrophages were pre-polarized to a pro-inflammatory M1 state (Figure 22d). 

Compared to respective controls (24h in fresh medium after LPS/IFN-γ stimulation), 

Naringenin-treated M1 macrophages displayed increased consumption of fructose, 

myo-inositol and some amino acids, accompanied by reduced use of glutamine and 

glucose. Notably, while M0 macrophages showed a trend for consuming more 

glucose in the presence of Naringenin, M1 macrophages arrested glucose 

consumption upon Naringenin treatment. Regarding the excretion pattern, 

Naringenin-treated M1 macrophages excreted more lactate and formate, but lower 

amounts of alanine and metabolites resulting from branched chain amino acids 

catabolism (2-oxoisoleucine and 2-oxoisocaproate). 
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Figure 22: Variations in consumption (negative bars) and excretion (positive bars) of 

several metabolites in the cell culture supernatant of THP-1 derived macrophages 

incubated with 100 µM of Naringenin: a), b), c) M0 macrophages incubated with Naringenin 

for 6, 24 and 48h, respectively; d) Pre-polarized M1 macrophages incubated with 

Naringenin for 24h. Each Naringenin incubation (blue bars) was compared to its respective 

control (grey bars). Statistical significance of variation was assessed via a t-student test 

(n=6): *p-value < 0.05; **p-value < 0.01 
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3.2.5. Metabolic effects of Naringin on M0 and M1 macrophages 

 

 Among the three flavonoids tested, Naringin was found to have the lowest 

impact on the endometabolome of THP-1 derived macrophages, despite the higher 

concentration used (200 µM). This can be clearly seen in Figure 23 showing the 

multivariate comparison of control and 24h Naringin-treated M0 macrophages. The 

two groups were not separated in the PCA scores scatter plot, and PLS-DA model 

robustness, as assessed by the Q2 value (0.582), was relatively lower. Also, few 

variables showed high VIP (importance to the projection), as demonstrated by the 

less intense colouring of LV1 loadings. Similar MVA results were obtained for 6 and 

48h exposures (Figure S3, Supplementary Information). Still, the spectra were 

integrated and the variations with larger magnitude (|ES| > 0.5) were represented 

in the heatmap shown in Figure 24. 

 

Figure 23: Multivariate analysis of 1H-NMR spectra from the polar extracts of THP-1 

derived macrophages comparing unstimulated M0 macrophages (grey) and Naringin-

treated macrophages (pink), incubated for 24h. PCA and PLS-DA scores scatter plots (left 

and center, respectively) and LV1 loadings w (right), colored according to variable 

importance to projection (VIP). 
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In agreement with the MVA results, the number of metabolites varying 

consistently with Naringin treatment was smaller when compared to the other 

bioflavonoids. Also, the magnitude of most variations  was relatively lower and 

differed according to the incubation time. In general, the longer the exposure of M0 

macrophages to Naringin, the more noticeable its effects were. 

Focusing on the changes detected at 24h of treatment, Naringin caused mild 

increases in NAD+, N-acetylaspartate, valine, ADP, creatine, GSSG, taurine and 

(phospho)choline, while decreasing the levels of aspartate, ATP and UTP, GSH, 

methylguanidine and glycerophosphocholine. Interestingly, some of these changes 

were also seen upon Naringin treatment of pre-polarized M1 macrophages (e.g. 

variations in creatine, GSH/GSSG and taurine), while others were absent or in the 

opposite direction. For example, glucose decreased in Naringin-treated M1 

macrophages, contrarily to the variation induced in M0 macrophages (at 6 and 48h 

incubations). Also, lactate and phosphocreatine, which did not vary in treated M0 

macrophages, decreased in M1 treated macrophage. 

 At the extracellular level, the changes induced by Naringin are summarized 

in Figure 25. Most significant changes were found when Naringin was given to pre-

polarized M1 macrophages (Figure 25d), comprising: decreased consumption of 

glucose (also seen in 48h Naringin-treated M0 macrophages), as well as glutamine 

and other amino acids; increased consumption of fructose; increased excretion of 

myo-inositol and ceased excretion of alanine, 2-oxoisocaproate and 2-

oxoisoleucine. 
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Figure 24: Heatmap of the main metabolite variations in the polar extracts of THP-1 

derived macrophages upon treatment with Naringin (200 µM): M0 macrophages incubated 

with the flavonoid for 6, 24 or 48h; M1 pre-polarized macrophages incubated with the 

flavonoid for 24h. The color scale represents percentage of variation relative to respective 

controls (n=6). *p-value < 0.05; **p-value < 0.01. 
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Figure 25: Variations in consumption (negative bars) and excretion (positive bars) of 

several metabolites in the cell culture supernatant of THP-1 derived macrophages 

incubated with 200 µM of Naringin: a), b), c) M0 macrophages incubated with Naringin for 

6, 24 and 48h, respectively; d) Pre-polarized M1 macrophages incubated with Naringin for 

24h. Each Naringin incubation (pink bars) was compared to its respective control (grey 

bars). Statistical significance of variation was assessed via a t-student test (n=6): *p-value 

< 0.05; **p-value < 0.01  
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3.3. Integration and discussion of macrophage metabolic changes 

The 1H-NMR metabolomics approach employed in this thesis enabled the 

detection of multiple changes in the metabolic profile of human THP-1-derived 

macrophages in response to different stimuli, including treatment with three 

bioflavonoids (Quercetin, Naringenin and Naringin). This section is now aimed at 

comparing and discussing those variations in the context of some major metabolic 

pathways operating in cells. 

3.3.1. Effects on glucose uptake and glycolysis 

The impact of the different treatments on cells glycolytic activity can be 

inferred from changes in glucose and lactate levels (Figures 26 and 27, 

respectively). Glucose consumption increased in both M1 and M2 macrophages, 

with M2 additionally showing decreased intracellular glucose levels (Figure 26d). 

Moreover, compared to their respective controls, M1 and M2 macrophages 

displayed considerably higher levels of intracellular lactate (Figure 27d), and in the 

case of M2, increased lactate excretion (Figure 27a). These results are consistent 

with the high glucose uptake and glycolytic activity reported for activated 

macrophages.60–63 Interestingly, though, we found no evidence of glycolytic 

upregulation being more extensive in M1 than in M2 macrophages.  

Quercetin treatment lowered glucose consumption in M0 macrophages but 

was accompanied by a marked increase in intracellular glucose levels (Figures 26b 

and 26d). Moreover, Quercetin-treated M0 macrophages displayed reduced 

extracellular and intracellular levels of lactate (Figures 27b and 27d). These 

alterations suggest that: i) glucose was less taken up by treated cells, ii) its 

glycolytic conversion into lactate was downregulated, leading to intracellular 

glucose accumulation. In the case of Quercetin-treated M1 macrophages, glucose 

uptake was completely inhibited (Figure 26c), which is possibly related to slightly 

decreased intracellular lactate levels (Figure 27d). Overall, these results are in line 

with the inhibitory effects of Quercetin towards the glucose transporter GLUT1, 

reported for different tumor cells.198 
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The effects of Naringenin on glucose uptake and metabolism greatly 

depended on the initial polarization state of macrophages (M0 or M1). Naringenin-

treated M0 macrophages showed a trend for increased glucose consumption and 

intracellular glucose levels (Figures 26b and 26d), together with increased 

extracellular and intracellular lactate levels (Figures 27b and 27d). This suggests 

upregulated glucose uptake and subsequent glycolytic conversion into lactate. On 

the other hand, when Naringenin was given to pre-polarized M1 macrophages, the 

main effect appeared to be inhibition of glucose uptake (accompanied by 

decreased intracellular glucose and lactate levels). Similarly, Naringin also 

decreases glucose uptake, especially in pre-polarized M1 macrophages (Figure 

26c), where decreased intracellular glucose and lactate were also visible (Figures 

26d and 27d). 
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Figure 26: Extracellular (a-c) and intracellular (d) variations of glucose levels in 

macrophages incubated under different conditions, relative to respective controls (n=6). 

*p-value < 0.05; **p-value < 0.01. 

 

 

 

 

%
 V

a
r
ia

ti
o

n
 (

v
s

. 
c

o
n

tr
o

l 
c

e
ll

s
)

M
1
 2

4
h

M
2
 4

8
h

M
0
+
Q

u
e
 2

4
h

M
1
 +

 Q
u

e
 2

4
h

M
0
+
N

g
n

 2
4
h

M
1
 +

 N
g

n
 2

4
h

M
0
+
N

a
r  

2
4
h

M
1
 +

 N
a
r  

2
4
h

-1 0 0

-5 0

0

5 0

1 0 0

1 5 0

2 0 0

*

*

* *

G lu c o s e  -  in tra c e llu la r

a) b) c) 

%
 V

a
r
ia

ti
o

n

(v
s

. 
a

c
e

ll
u

la
r
 m

e
d

iu
m

)

M
0
 2

4
h

M
0
+
Q

u
e
 2

4
h

M
0
+
N

g
n

 2
4
h

M
0
+
N

a
r  

2
4
h

-6 0

-4 0

-2 0

0

%
 V

a
r
ia

ti
o

n

(v
s

. 
a

c
e

ll
u

la
r
 m

e
d

iu
m

)

M
1
 +

 m
e
d

 2
4
h

M
1
 +

 Q
u

e
 2

4
h

M
1
 +

 N
g

n
 2

4
h

M
1
 +

 N
a
r  

2
4
h

-6 0

-4 0

-2 0

0

*

*

*

%
 V

a
r
ia

ti
o

n

(v
s

. 
a

c
e

ll
u

la
r
 m

e
d

iu
m

)

M
0
 2

4
h

M
1
 2

4
h

M
0
 4

8
h

M
2
 4

8
h

-6 0

-4 0

-2 0

0

*

d) 

Glucose - extracellular 



82 
 

 

Figure 27: Extracellular (a-c) and intracellular (d) variations of lactate levels in 

macrophages incubated under different conditions, relative to respective controls (n=6). 

*p-value < 0.05; **p-value < 0.01. 
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3.3.2. Effects on the TCA cycle 

One of the metabolic effects most commonly reported for different 

macrophage cells lines when subjected to a pro-inflammatory stimulus consists of 

increased levels of itaconate and succinate, which have been associated with a 

truncated TCA cycle.62 Such increases were indeed verified in the present study 

upon stimulation of THP-1 derived macrophages with LPS/IFN-γ (Figure 28). Other 

TCA cycle intermediates that varied in M1 macrophages were citraconate, which is 

a structural isomer of itaconate,199 and citrate (decreased in M1 vs. M0 

macrophages). In M2 macrophages, neither itaconate nor citraconate levels were 

altered, but there was a decrease in both citrate and succinate. This is consistent 

with a functional TCA cycle, corroborating existing evidence that M2 macrophages 

rely not only on glycolysis, but also on the TCA cycle and oxidative phosphorylation  

for energy production,60,62 delineating one of the differences between the metabolic 

profiles of M1 and M2 macrophages. 

Quercetin treatment of M0 macrophages resulted in decreased levels of 

succinate, which is a TCA cycle intermediate with an established pro-inflammatory 

role.97 Hence, attenuation of succinate by Quercetin in both M0 and M1 

macrophages could be a good indicator of Quercetin’s ability to attenuate 

macrophage-mediated inflammation. Additionally, Quercetin-treated M0 

macrophages showed a huge increase of intracellular citrate, which was not 

channeled into itaconate production as reported for M1 macrophages.122,177 

Instead, citrate accumulation could possibly reflect its impaired use in fatty acid 

synthesis,117 an hypothesis that requires proper testing  in the future. In Quercetin-

treated M1 macrophages, citrate increased to a lesser extent and itaconate levels 

were higher compared to M1 control cells (incubated for 24h in fresh medium after 

LPS/IFN-γ stimulation). Given that itaconate is currently recognized as an anti-

inflammatory metabolite,116,122 this variation corroborates the role of Quercetin in 

reducing inflammation via metabolic reprogramming. 

In Naringenin-treated macrophages, succinate only decreased after M1 pre-

polarization (no change in 24h treated M0 macrophages). Moreover, the variations 

in citrate, citraconate and itaconate were opposite to those observed for Quercetin, 
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suggesting different modulation of the TCA cycle by those flavonoids. Assessment 

of TCA cycle enzymes expression by using molecular biology tools would be useful 

to further understand this difference. 

Finally, no significant variations were found for Naringin-treated 

macrophages regarding TCA cycle metabolites. 

 

Figure 28: Intracellular variations of metabolites related to the TCA cycle in macrophages 

incubated under different conditions, relative to respective controls.: a) itaconate; b) 

succinate and c) citrate (n=6). *p-value < 0.05; **p-value < 0.01. 
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3.3.3. Effects on amino acid metabolism 

Glutamine is another major fuel for macrophages, having been implied in 

macrophages phagocytic capacity,200 as well as in M2-polarization.102 Here, 

significant changes were observed on intracellular and extracellular levels of 

glutamine and glutamate, as shown in Figure 29. 

Regarding macrophage activation with canonical M1 and M2 stimuli, M2 

macrophages displayed considerably higher glutamine consumption and 

intracellular use (Figure 29 a,d). Glutamate was also decreased intracellularly in 

M2 macrophages. This could indicate that M2 macrophages took up more 

glutamine to fuel the TCA cycle through glutaminolysis, where glutamine is 

converted to glutamate and then to α-ketoglutarate, which has indeed been 

reported to be an important contributing factor to the alternative activation of 

macrophages.62,112 

Quercetin treatment of either M0 or pre-polarized M1 macrophages caused 

decreased intracellular levels of both glutamine and glutamate (Figure 29 d,e). 

Although in this case glutamine uptake from the cell culture medium was not 

increased, these changes could indicate intensification of glutaminolysis, as a 

means to fuel the TCA cycle.62 Indeed, this is consistent with the anaplerotic 

maintenance of this cycle, to cope with reduced glucose uptake and glycolytic 

conversion found for Quercetin treatment. 

Interestingly, contrarily to Quercetin, Naringenin treatment induced higher 

intracellular levels of glutamate in both M0 and M1 macrophages and of glutamine 

in treated pre-polarized M1 macrophages (Figure 29 d,e). This suggests that 

glutaminolysis was not upregulated in Naringenin-treated macrophages. This 

difference adds up to the distinct TCA cycle modulation found for the two 

flavonoids. 

As for Naringin, it did not cause any significant changes in glutamine 

metabolism. 
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Figure 29: Variations in extracellular glutamine (a-c), intracellular glutamine (d), and 

intracellular glutamate (e) in macrophages incubated under different conditions, relative to 

respective controls (n=6). *p-value < 0.05; **p-value < 0.01. 
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The changes in intracellular levels of other amino acids, found to vary 

significantly with at least one of the stimuli tested, are shown in Figure 30. Again, 

M1 and M2 macrophages were found to respond differently in what concerns amino 

acids composition. In particular, compared to unstimulated macrophages, M1 cells 

showed decreased levels of branched chain amino acids (which did not vary in M2 

macrophages) and of N-acetylaspartate (which significantly increased upon M2 

activation). On the other hand, glycine and alanine were higher in M1 macrophages 

and decreased in M2 cells.  

With Quercetin treatment, the levels of most amino acids assessed 

decreased in both M0 and pre-polarized M1 macrophages. Such variation is 

consistent with the anaplerotic fueling of the TCA cycle.102,201 For example, alanine 

and glycine can be converted into pyruvate, isoleucine into succinyl-CoA or acetyl-

CoA, proline into glutamate and then α-ketoglutarate, asparagine and aspartate to 

oxaloacetate. Interestingly, the variation in aspartate upon Quercetin treatment was 

dependent on macrophage initial activation, increasing in Quercetin-treated M0 

macrophages. This could be associated with the conversion of glutamate and 

oxaloacetate into α-ketoglutarate to fuel the TCA cycle, with aspartate being the 

other product in this metabolic reaction.202 This is consistent with increased 

glutaminolysis caused by Quercetin treatment, as suggested earlier. 

Again, the effects of Naringenin on most amino acids were different to those 

of Quercetin. Moreover, several variations were dependent on macrophage 

activation state. For instance, asparagine decreased in Naringenin-treated M0 

macrophages but increased in pre-polarized M1 macrophages, whereas an 

opposite variation was found for glycine and valine.  

As for Naringin, it only caused mild variations in a few amino acids (Figure 

27). 
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Figure 30: Intracellular variations of some amino acids in macrophages incubated under 

different conditions, relative to respective controls (n=6). *p-value < 0.05; **p-value < 0.01. 
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3.3.4. Effects on glutathione metabolism 

The reduced form of the tripeptide glutathione (GSH, Glu-Cys-Gly) is an 

important scavenger of ROS and its ratio to the oxidized form (GSSG) is regarded 

as a marker of oxidative stress.203 Figure 31 compiles the variations in GSH and 

GSSG found in this work. In M1 and M2 cells, GSH and GSSG levels did not vary 

significantly, and their ratio remained unaltered.  Quercetin treatment, however, 

significantly affected glutathione levels. Compared to respective controls, 

Quercetin-treated M0 macrophages showed lower GSH and higher GSSG (i.e. 

decreased GSH:GSSG ratio), which suggests induction of ROS. Indeed, in 

agreement with inhibited glycolysis and an active TCA cycle, it is possible that 

Quercetin intensified mitochondrial oxidative metabolism and, consequently, ROS 

generation. In this scenario, GSH would be extensively converted to GSSG in order 

to neutralize ROS, an hypothesis which requires further confirmation, e.g. through 

measurement of oxygen consumption and intracellular ROS.  

Interestingly, these changes in Quercetin-treated M0 macrophages were 

also accompanied by a significant increase in methylguanidine (Figure 21), which 

is a product of protein catabolism found to inhibit iNOS and hence the production 

of the pro-inflammatory mediator NO, as well as TNF-α.204 Therefore, this variation 

could represent a countermeasure to cope with reactive species and reflect the 

anti-inflammatory action of Quercetin.  

On the other hand, pre-polarized M1 macrophages showed a different 

response, whereby GSH increased upon Quercetin treatment. Two hypotheses can 

be drawn. One is that after an expected increase in ROS caused by LPS/IFN,205 

Quercetin could be able to decrease ROS levels, as reported in other studies.206,207 

This would imply a lesser use of GSH, thus explaining its increase compared to 

control M1 macrophages. The other possibility is that cells increased de novo GSH 

synthesis, which is consistent with decreased levels of two precursor amino acids 

(glycine and glutamate).203 Again, further assays are required to verify these 

hypotheses.  

Naringenin treatment also induced a decrease in GSH in M0 macrophages, 

which could either mean ROS neutralization (as suggested for Quercetin), or 
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inhibited synthesis, agreeing with the accumulation of precursor amino acids 

glycine and glutamate. 

Regarding the effects of Naringin on glutathione metabolism, the results 

point to GSH conversion to GSSG, probably to neutralize ROS, as suggested for 

the other flavonoids.  

 

Figure 31: Intracellular variations of GSH and GSSG in macrophages incubated under 

different conditions, relative to respective controls (n=6). *p-value < 0.05; **p-value < 0.01. 

 

Figure 32 shows an integrated view of the metabolic changes described 

above. 
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Figure 32: Schematic diagram of main metabolic effects in THP-1 derived macrophages 

incubated under different conditions: LPS+IFN-γ (red arrows), IL-4+IL-13 (purple arrows),  

Quercetin (light green arrows), Quercetin on pre-polarized macrophages (dark green 

arrows), Naringenin (light blue arrows), Naringenin on pre-polarized macrophages (dark 

blue arrows). Naringin effects not included due to their low magnitude/significance. Thick 

arrows indicate  |% variation| > 300%. 
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3.3.5. Other metabolic effects 

 

Interestingly, the three flavonoids tested also affected cells energy reserves. 

In most conditions, ATP decreased and ADP increased, possibly reflecting ATP 

hydrolysis and the release of free energy to perform cellular work. Exceptions 

regarded increases in ATP seen in M0 macrophages treated with Quercetin for 6h 

or with Naringenin for 6/48h. Interestingly, the levels of creatine and 

phosphocreatine also showed large variations. While phosphocreatine is 

recognised as an important energy transducer in muscle, heart and brain 

tissues,208,209 its role on macrophages is less well established. Still, early works 

found that monocyte to macrophage differentiation was accompanied by the 

development of a phosphocreatine pool and that macrophages expressed creatine 

kinase, the enzyme responsible for the interconversion of these metabolites to 

replenish ATP in situations of high metabolic demand.210 In the present study, 

phosphocreatine decreased upon treatment of pre-polarized M1 macrophages with 

each flavonoid. Therefore, it would be interesting to assess if the expression and/or 

activity of creatine kinase are modulated by these compounds.  

Finally, there were also noticeable effects on choline-containing compounds, 

which are associated with the structural components of membranes, namely 

phosphatidylcholines. Choline and phosphocholine increased in all M0 flavonoid-

treated macrophages, while glycerophosphocholine increased in the presence of 

Quercetin but decrease for the other two flavonoids. In pre-polarized M1 

macrophages, the effects on these compounds were more variable.  
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CHAPTER 4 

  

Chapter 4. CONCLUSIONS AND FUTURE PERSPECTIVES 



94 
 

 

In this thesis, 1H-NMR based metabolomics proved to be a very useful tool for 

characterizing the metabolic profiles of human THP-1 derived macrophages. Near 

50 intracellular metabolites were detected in the cells polar extracts 

(endometabolome), whereas analysis of cells-conditioned culture medium 

(exometabolome) was useful to assess the consumption/excretion of several 

substrates/products. Multivariate analysis and discrete quantitative assessments of 

metabolic profiles revealed consistent variations upon exposure of macrophages 

to different stimuli, namely LPS/IFN-γ (M1 polarization), IL-4/IL-13 (M2 polarization) 

and three flavonoids (Quercetin, Naringenin and Naringin).  

As expected, M1 and M2 polarization states were associated with considerably 

different metabolic profiles. Some of the main differences included changes in TCA 

cycle intermediates. In particular, M1 macrophages showed marked increases in 

succinate, citraconate and itaconate, in agreement with the well documented 

remodeling of this pathway in pro-inflammatory macrophages. On the other hand, 

M2 macrophages appeared to display increased glutaminolysis and showed 

decreased levels of succinate, a metabolite currently viewed as an important pro-

inflammatory mediator. Also, while M2 macrophages showed unaltered 

intracellular ATP and increased UTP levels, ATP/UTP energy reserves decreased 

significantly in M1 macrophages, possibly in association with the predominance of 

oxidative pathways in M2 cells when compared with M1 macrophages. 

Furthermore, other less known differences between M1 and M2 cells were 

revealed, particularly in amino acids (alanine, glycine, N-acetylaspartate) and 

membrane-related metabolites (choline compounds and myo-inositol). Finally, it 

should be noted that M1 and M2 macrophages also shared some common 

features, namely concerning upregulated glucose uptake and glycolysis, and 

variations in antioxidant metabolites.  

The effects of Quercetin, Naringenin and Naringin on macrophage metabolome 

were, to our knowledge, newly reported in this thesis. These compounds have well 

known anti-inflammatory activity, as corroborated by our results on cytokine 

production. Indeed, they attenuated the levels of several pro-inflammatory 

cytokines in the medium supernatants of treated macrophages. Additionally, 

Naringenin treatment caused an increase in the anti-inflammatory cytokine CCL17, 
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suggesting potential pro-resolving activity. At the metabolic level, the three 

flavonoids produced multiple effects, with the strongest impact being observed for 

Quercetin and the mildest for Naringin (Figure 33).  

 

Figure 33: Heatmap of the main metabolite variations in the polar extracts of pre-polarized 

M1 macrophages upon a 24h treatment with: i) Quercetin (60 µM), ii) Naringenin (100 µM) 

and ii) Naringin (200 µM). The color scale represents percentage of variation relative to 

respective controls (M1 + medium) (n=6). *p-value < 0.05; **p-value < 0.01 

 

Quercetin-induced metabolic variations suggested the following main effects: i) 

downregulation of glucose uptake (and possibly glycolysis); ii) downregulation of 

the pro-inflammatory TCA cycle metabolite succinate, accompanied, in flavonoid-

treated M1 pre-polarized macrophages, by increased production of the anti-

inflammatory metabolite itaconate; iii) intensification of anaplerotic reactions 

(including glutaminolysis) to fuel the TCA cycle; iv) accumulation of citrate, possibly 
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due to impairment of fatty acid synthesis; v) alteration of cells redox state, found to 

be highly dependent on macrophage initial polarization state; vi) alteration of 

energy reserves and involvement of the phosphocreatine - creatine kinase system; 

vii) membrane modification. Most of these effects were common to all incubation 

times tested in M0 macrophages (6, 24 and 48h). Still, oscillation in the magnitude 

of changes, together with a few time-dependent alterations (e.g. seen for aspartate, 

a vital amino acid in TCA cycle replenishment, and for the energetic molecules ATP 

and UTP), underscored the dynamic nature of metabolic adaptations.  

In the case of Naringenin, metabolic changes appeared to be greatly dependent 

on both the incubation time and initial macrophage polarization state. Focusing on 

the 24h incubations, the main Naringenin effects were suggested to be: i) 

upregulated/downregulated glucose uptake in Naringenin-treated M0/M1 

macrophages, respectively; ii) TCA cycle modulation involving decreased citrate 

levels (contrarily to Quercetin) and, in M1 macrophages, decreased succinate and 

itaconate levels; iii) very low impact on amino acids in M0 macrophages, and 

changes in M1 macrophages mostly contrary to those found for Quercetin; iv) 

antioxidant response; v) alteration in ATP, UTP and phosphocreatine pools, 

dependent on macrophage initial polarization; vi) membrane modification.  

The impact of Naringin on the cells metabolome was much lower than that 

observed for the other flavonoids. The main effects were suggested to include: i) 

impaired glucose uptake in Naringin-treated M1 pre-polarized macrophages; ii) 

antioxidant response (mainly GSH to GSSG conversion); iii) altered pool of energy-

related metabolites; iv) membrane modification. TCA cycle and amino acids 

metabolism appeared to remain practically unaltered. Given the high hydrophilicity 

of Naringin, it is expectable that this flavonoid is less cell-permeable than the other 

compounds tested. Indeed, in colorectal adenocarcinoma Caco-2 cells, Naringin 

showed much lower permeability than Naringenin, and so did other flavonoid 

glycosides.211 This lower internalization could justify the less pronounced effects 

on the intracellular metabolome. Further studies are warranted to evaluate 

flavonoids uptake.  
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Overall, this work has shown that, although sharing similar ability to attenuate 

anti-inflammatory activity of macrophages, the three flavonoids modulate 

macrophage metabolism in distinct ways, underlying the need for an in depth study 

of their modes of action. This is especially interesting considering that both 

Naringenin and Quercetin have been reported to influence some signaling 

pathways in a similar manner (e.g. activation of AMPK, inhibition of MAPK, 

inhibition of NF-kB).161,212 In the future, it would be important to assess the 

expression and/or activity of key enzymes involved in glycolysis, TCA cycle, 

glutaminolysis and FA synthesis, to verify the hypotheses generated based on the 

metabolomics results. Moreover, measurements of oxygen consumption rate, 

mitochondrial membrane potential and production of reactive oxygen species 

would nicely complement this work and help to further advance current 

understanding on flavonoid-mediated modulation of macrophage metabolism. This 

knowledge is expected to support the development of flavonoids as 

immunomodulatory drugs, especially aimed at attenuating and/or resolving 

inflammation, for instance, in the context of chronic inflammatory diseases or the 

rejection of implantable biomaterials. 
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Figure S1: Multivariate analysis of 1H-NMR spectra from the polar extracts of THP-1 

derived macrophages comparing M0 macrophages (grey) and Quercetin-treated 

macrophages (green) , incubated for: a) 6h, b) 24h and c) 48h. M1 macrophages treated 

with Quercetin for 24h (d). PCA and PLS-DA scores scatter plots (left and center, 

respectively) and LV1 loadings w (right), colored according to variable importance to 

projection (VIP). 
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Figure S2: Multivariate analysis of 1H-NMR spectra from the polar extracts of THP-1 

derived macrophages comparing M0 macrophages (grey) and Naringenin-treated 

macrophages (blue) , incubated for: a) 6h, b) 24h and c) 48h. M1 macrophages treated 

with Naringenin for 24h (d). PCA and PLS-DA scores scatter plots (left and center, 

respectively) and LV1 loadings w (right), colored according to variable importance to 

projection (VIP). 
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Figure S3: Multivariate analysis of 1H-NMR spectra from the polar extracts of THP-1 

derived macrophages comparing M0 macrophages (grey) and Naringin-treated 

macrophages (pink) , incubated for: a) 6h, b) 24h and c) 48h. M1 macrophages treated 

with Naringin for 24h (d). PCA and PLS-DA scores scatter plots (left and center, 

respectively) and LV1 loadings w (right), colored according to variable importance to 

projection (VIP). 
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Table S1: Assignment of resonances in the 1H-NMR profile of polar extracts from THP-
1 derived macrophages. Multiplicity: s, singlet; d, doublet; t, triplet; q, quartet; m, 

multiplet; dd, doublet of doublets; dt, doublet of triplets; td, triplet of doublets. 
 

No. Compound δ 1H in ppm (multiplicity, assignment) 

1 Acetate 1.926 (s, β-CH3) 

2 Acetone 2.236 (s, CH3) 

3 ADP 
4.235 (m, C5’H, ribose); 4.40 (m, C4’H, ribose);  
4.60 (m, C2’H, ribose); 6.155 (d, C1’H, ribose);  
8.285 (s, C8H, ring); 8.53 (s, C2H, ring) 

4 Alanine 1.487 (d, β-CH2); 3.781 (q, α-CH) 

5 Arginine 
1.659 (m, γ-CH2); 1.92 (m, β-CH2); 
3.254 (t, δ-CH2); 3.784 (t, α-CH) 

6 Asparagine 
2.881 (m, β-CH); 2.931 (m, β’-CH);  

4.012 (dd, α-CH) 

7 Aspartate 
2.672 (dd, β-CH); 2.802 (dd, β’-CH);  
3.903 (dd, α-CH) 

8 ATP 

4.222 (m, C5’H, ribose); 4.296 (m. C5’’H, ribose); 

4.41 (m, C4’H, ribose); 4.61 (m, C2’H, ribose); 
6.155 (d, C1’H, ribose); 8.825 (s, C8H, ring); 
8.534 (s, C2H, ring) 

9 Choline 
3.214 (s, N(CH3)3); 3.523 (m, CH2 (NH)); 
4.067 (m, CH2(OH)) 

10 Citraconate 1.938 (d, C7H); 5.513 (d, C2H) 

11 Citrate 2.536 (d, α-CH2 / β-CH2); 2.662 (d, α’-CH2 / β’-CH2) 

12 Creatine 3.039 (s, CH3); 3.939 (s, N-CH3) 

13 Formate 8.465 (s, CH) 

14 Fumarate 6.526 (s, CH) 

15 Glucose 

3.239 (dd, C3H); 3.405 (m, C5H); 3.464 (m, C6H); 

3.535 (dd, C3H); 3.72 (m, C4H, C11H);  
3.827 (m, C6H, C11H); 3.895 (dd, C11H); 
4.658 (d, C2H); 5.235 (d, C2H) 

16 Glutamate 
2.044 (m, β-CH); 2.12 (β’-CH); 
2.333 (m, γ-CH2); 3.77 (dd, α-CH) 
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Table S1 (cont.): Assignment of resonances in the 1H-NMR profile of polar extracts from 
THP-1 derived macrophages. Multiplicity: s, singlet; d, doublet; t, triplet; q, quartet; m, 
multiplet; dd, doublet of doublets; dt, doublet of triplets; td, triplet of doublets. 
 

No. Compound δ 1H in ppm (multiplicity, assignment) 

17 Glutamine 2.142 (m, β-CH2); 2.454 (m, γ-CH2); 3.78 (t, α-CH) 

18 Glycine 3.575 (s, α-CH2) 

19 
Glutathione, oxidized 
(GSSG) 

2.17 (m, β-CH2, Glu); 2.535 (m, γ-CH2, Glu);  
2.988 (m, β-CH2, Cys); 3.314 (m, β-CH2, Cys’); 
3.783 (m, α-CH2, Gly); 3.783 (m, α-CH, Glu) 

20 
Glutathione, reduced  
(GSH) 

2.175 (m, β-CH2, Glu); 2.564 (m, γ-CH2, Glu); 
2.96 (m, β-CH2, Cys); 3.783 (m, α-CH, Gly); 
4.603 (q, α-CH, Cys) 

21 Glycerophosphocholine 
3.24 (s, N(CH3)3); 3.675 (m, β’-CH2(N) / γ-CH2(OH)); 
3.917 (s, α-CH2 / β-CH2); 4.326 (m, α’-CH2(P)) 

22 Histidine 
3.232 (m, β-CH2); 4.00 (m, α-CH2);  

7.165 (s, C4H, ring); 8.072 (s, C2H, ring) 

23 Isoleucine 
0.944 (t, δ-CH3); 1.013 (d, β-CH3);  
1.258 (m, γ-CH2); 1.470 (m, γ’-CH2); 
1.984 (m, β-CH); 3.673 (d, α-CH) 

24 Itaconate 3.158 (m, α-CH2), 5.382 (m, CH2); 5.860 (m, CH2’) 

25 Lactate 1.329 (d, β-CH3); 4.125 (q, α-CH) 

26 Leucine 
0.963 (t, δ-CH3); 1.699 (m, γ-CH / β-CH2); 
3.736 (m, α-CH) 

27 Lysine 

1.439 (m, γ-CH2); 1.725 (m, δ-CH2);  

1.904 (m, β-CH2); 3.001 (t, ε-CH2); 
3.765 (t, α-CH) 

28 Methylguanidine 2.845 (s, CH3(N)) 

29 myo-Inositol 
3.286 (t, C5H); 3.544 (dd, C1’H / C3H); 

3.632 (t, C4H / C6H); 4.072 (t, C2H) 

30 NAD+ 

4.230 (m, A5’H); 4.357 (m, A4’H);  
4.383 (m, A4’H / N5’H); 4.411 (dd, N3’H); 
4.469 (m, A3’H); 4.513 (m, N2’H); 6.031 (d, N1’H); 
6.104 (d, A1’H); 8.172 (s, A2H / N5H); 
8.827 (d, N4H); 9.122 (d, N6H); 9.339 (s, N2H)  

31 N-Acetylaspartate 

2.030 (s, CH3); 2.507 (dd, β-CH2);  
2.69 (dd, β’-CH2); 4.398 (dd, α-CH) 
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Table S1 (cont.): Assignment of resonances in the 1H-NMR profile of polar extracts from 
THP-1 derived macrophages. Multiplicity: s, singlet; d, doublet; t, triplet; q, quartet; m, 
multiplet; dd, doublet of doublets; dt, doublet of triplets; td, triplet of doublets. 

No. Compound δ 1H in ppm (multiplicity, assignment) 

32 Pantothenate 

0.905 (s, CH3); 0.925 (s,CH3); 2.435 (t, α-CH2); 

3.416 (d, CH2); 3.438 (q, β-CH2); 3.510 (d, CH2); 
3.99 (s, CH) 

33 Phenylalanine 
3.146 (m, β-CH); 3.280 (dd, β’-CH); 4.00 (m, α-CH); 

7.384 (d, C2H / C6H, ring); 7.39 (d, C4H, ring); 
7.43 (t, C3H / C5H, ring) 

34 Phosphocholine 
3.23 (s, N(CH3)3); 3.62 (m, N-CH2); 

4.172 (m, PO3-CH2) 

35 Phosphocreatine 3.04 (s, CH3); 3.955 (s, CH2) 

36 Phosphoethanolamine 3.232 (t, CH2(O)); 4.005 (td, N-CH2) 

37 Proline 
2.014 (m, γ-CH2); 2.08 (m, β-CH); 2.35 (m, β’-CH); 
3.35 (dt, δ-CH); 3.418 (dt-δ’-CH); 4.137 (dd, α-CH) 

38 Pyroglutamate 
2.05 (m, β-CH2); 2.40 (m, γ-CH2); 2.495 (m, β’-CH2); 

4.17 (dd, α-CH) 

39 Serine 3.852 (dd, α-CH); 3.99 (m, β-CH2) 

40 Succinate 2.41 (s, CH2) 

41 Taurine 3.27 (t, S-CH2); 3.43 (t, N-CH2) 

42 Threonine 1.341 (d, γ-CH3); 3.950 (d, α-CH); 4.269 (m, β-CH) 

43 Tyrosine 
3.07 (m, β’-CH); 3.21 (m, β-CH);  
3.95 (m, α-CH); 6.91 (d, C3H / C5H, ring); 
7.21 (d, C2H / C6H, ring) 

44 UDP 

4.231 (m, C5’H, ribose); 4.280 (m, C4’H, ribose); 
4.398 (t, C2’H, ribose); 4.44 (t, C3’H, ribose); 
5.97 (s, C1’H, ribose); 5.98 (d, C6H, ring); 
7.995 (d, C5H, ring)  

45 UTP 

4.26 (m, C5’H, ribose); 4.295 (m, C4’H, ribose); 

4.416 (t, C2’H, ribose); 4.45 (t, C3’H, ribose); 
5.98 (s, C1’H, ribose); 5.995 (d, C6H, ring); 
7.982 (d, C5H, ring)  

46 Valine 1.027 (d, γ-CH2); 2.265 (m, β-CH); 3.625 (d, α-CH) 

 


