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Abstract

In this work we obtain the first and second fundamental solutions of the multidimensional time-fractional

equation of order 2α, α ∈]0, 1], where the two time-fractional derivatives are in the Caputo sense. We obtain

representations of the fundamental solutions in terms of Hankel transform, double Mellin-Barnes integral,

and H-functions of two variables. As an application, the fundamental solutions are used to solve a Cauchy

problem, and to study telegraph process with Brownian time.
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1 Introduction

The telegraph equation is used as an alternative to the diffusion equation, since it has the potential to describe

both diffusive and wave-like phenomena, due to the simultaneous presence of first and second order time

derivatives. For example, in the case of the transport of energetic charged particle in turbulent magnetic

fields such as low-energy cosmic rays in the solar wind, the diffusion equation can not be used to describe the

transport for early times because it leads to a non-zero probability density everywhere, which would correspond

to an infinite propagation speed. Using the telegraph equation in this case we get a more realistic model for

the early phase transport because it combines diffusion with a finite propagation speed (see [18]). Telegraph

equations have also an extraordinary importance in electrodynamics (the scalar Maxwell equations are of this

type), in the theory of damped vibrations, and in probability because they are connected with finite velocity

random motions (see [12,16]).

One of the first works studying the time-fractional telegraph equation is the paper of Cascaval et al. (see [4]).

Here, the authors discussed some properties of the time-fractional telegraph equation in R × R+ such as the

well-posedness and the asymptotic behavior of the solutions, by using the Riemann-Liouville approach. In [15],

Orsingher and Beghin obtained the fundamental solution of the time-fractional telegraph equation of order 2α

in R×R+ and gave a representation of their inverses in terms of stable densities. For the special case α = 1
2 , the

authors showed that the fundamental solution is the probability density of a telegraph process with Brownian
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time. In [3] it was discussed the solution of a general space-time fractional telegraph equation by means of the

Laplace and Fourier transforms in the variables x ∈ R and t ∈ R+, respectively. In [19] it was obtained the

solutions of the space-time fractional telegraph equation in R×R+ in terms of Mittag-Leffler functions, using an

operational approach. In [14], Mamchuev considered the inhomogeneous time-fractional telegraph equation with

Caputo derivatives, and obtained a general representation of regular solution in rectangular domain in terms of

fundamental solution and appropriate Green functions. Regarding the multidimensional case, in [5] the authors

discussed and derived the solution of the time-fractional telegraph equation in Rn × R+ with three kinds of

nonhomogeneous boundary conditions, by the method of separation of variables. Very recently, in [9, 10] the

authors found several representations of the fundamental solution of the time-fractional telegraph and telegraph

Dirac equations in Rn × R+, in terms of integrals, special functions, and series.

The aim of this paper is to representations for the first and second fundamental solutions of the time-

fractional telegraph equation of order 2α in terms of Hankel transforms, double Mellin-Barnes integral and

H-functions of two variables. Moreover, the first fundamental solution is used in the law of telegraph process

with Brownian time. This connection is motivated by the fact that the iterated Brownian motion and telegraph

process with Brownian time are governed by time-fractional telegraph equations (see [15]).

The structure of the paper reads as follows: in the Preliminaries section we recall some basic facts about

some special functions and fractional calculus, which are necessary for the development of the work. In the

following section we obtain the first and second fundamental solutions of the time-fractional telegraph equation(
C∂2αt + aC∂αt − c2 ∆x

)
u(x, t) = 0

where x ∈ Rn, t > 0, 0 < α ≤ 1, a ≥ 0, c > 0, ∆x is the Laplace operator in space, and the two time-fractional

derivatives of orders α and 2α are in the Caputo sense, with α ∈]0, 1]. This section ends with an application to

the resolution of a Cauchy problem. In the last section we present an application of our results to the law of a

telegraph process with Brownian time.

2 Preliminaries

Here we recall the main tools concerning fractional derivatives and special functions that will be used in our

work. We start by recalling the definition of the multivariate Mittag-Leffler function (see [13]).

Definition 2.1The multivariate Mittag-Leffler function E(a1,...,an),b(z1, . . . , zn) of n complex variables z1, . . . , zn ∈
C with complex parameters a1, . . . , an, b ∈ C (with positive real parts) is defined by

E(a1,...,an),b(z1, . . . , zn) =

+∞∑
k=0

∑
l1 + . . .+ ln = k

l1, . . . , ln ≥ 0

(
k

l1, . . . , ln

) ∏n
i=1 z

li
i

Γ (b+
∑n
i=1 aili)

, (1)

where the multinomial coefficients are given by(
k

l1, . . . , ln

)
:=

k!

l1!× . . .× ln!
.

When n = 2 we obtain the bivariate Mittag-Leffler function, which can be written as

E(a1,a2),b(z1, z2) =

+∞∑
l1=0

+∞∑
l2=0

(l1 + l2)!

l1! l2!

zl11 zl22
Γ (b+ a1l1 + a2l2)

. (2)

From (2) we can deduce, after straightforward calculations, an addition formula for the bivariate Mittag-Leffler

function.

Lemma 2.2Let z1, z2 ∈ C, and a1, a2, b ∈ C (with positive real parts). Then it holds

E(a1,a2),b(z1, z2) =
1

Γ(b)
+ z1E(a1,a2),b+a1(z1, z2) + z2E(a1,a2),b+a2(z1, z2). (3)
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For general properties of the Mittag-Leffler function see [11,13]. Now we recall the definition of the H-function

of two complex variables.

Definition 2.3(see [1]) The H-function of two complex variables is defined via a double Mellin-Barnes integral

of the form

H0,n1;m2,n2;m3,n3
p1,q1; p2,q2; p3,q3


x

y

∣∣∣∣∣ (aj ;αj , Aj)1,p1 ; (cj , γj)1,p2 ; (ej , Ej)1,p3

(bj ;βj , Bj)1,q1 ; (dj , δj)1,q2 ; (fj , Fj)1,q3

 =
1

(2πi)2

∫
L2

∫
L1

φ(s, w)φ1(s)φ2(w)xs yw ds dw,

where

φ(s, w) =

∏n1

i=1 Γ (1− ai + αis+Aiw)∏p1
i=n1+1 Γ (ai − αis−Aiw)

∏q1
j=1 Γ (1− bj + βjs+Bjw)

,

φ1(s) =

∏m2

j=1 Γ (dj − δjs)
∏n2

i=1 Γ (1− ci + γis)∏q2
j=m2+1 Γ (1− dj + δjs)

∏p2
i=n2+1 Γ (ci − γis)

,

φ2(w) =

∏m3

j=1 Γ (fj − Fjw)
∏n3

i=1 Γ (1− ei + Eiw)∏q3
j=m3+1 Γ (1− fj + Fjw)

∏p3
i=n3+1 Γ (ei − Eiw)

,

and where an empty product is interpreted as 1, x, y ∈ C, mi, ni, pi, qi ∈ Z such that 0 ≤ mi ≤ qi, 0 ≤ ni ≤ pi
(i = 1, 2, 3); ai, bj , ci, dj , ei, fj ∈ C, αi, Ai, βj , Bj , γi, δj , Ei, Fj ∈ R+ and the sequence of parameters (aj), (bj),

(cj), (dj), (ej) and (fj) are restricted that none of the poles of the integrand coincide. The contour L1 in the

complex s-plane, and the contour L2 in the complex w-plane, are of Mellin-Barnes type with indentations, if

necessary, to ensure that they separate one set of poles from the other.

In [1] the author proved that if

Ω1 =

n1∑
i=1

αi −
p1∑

i=n1+1

αi −
q1∑
i=1

βi +

m2∑
i=1

δi −
q2∑

j=m2+1

δi +

n2∑
i=1

γi −
p2∑

i=n2+1

γi ≥ 0,

Ω2 =

n1∑
i=1

Ai −
p1∑

i=n1+1

Ai −
q1∑
i=1

Bi +

m3∑
i=1

Fi −
q3∑

j=m3+1

Fi +

n3∑
i=1

Ei −
p3∑

i=n3+1

Ei ≥ 0, (4)

and with the points x = 0 and y = 0 being tacitly excluded, the double Mellin-Barnes integral converges

absolutely inside the sector given by

|arg(x)| < π

2
Ω1, |arg(y)| < π

2
Ω2.

For E(a1,a2),b we have the following two results (see [9]).

Lemma 2.4The bivariate Mittag-Leffler function E(a1,a2),b has the following representation in the form of double

Mellin-Barnes integral

E(a1,a2),b (z1, z2) =
1

(2πi)2

∫
L1

∫
L2

Γ(1 + s+ w) Γ(−s) Γ(−w)

Γ(b+ a1w + a2s)
zs2 z

w
1 dw ds.

Corollary 2.5The bivariate Mittag-Leffler function E(a1,a2),b has the following representation in the form of

H-function of two variables

E(a1,a2),b (z1, z2) = H0,1; 1,0; 1,0
1,1; 0,1; 0,1


z2

z1

∣∣∣∣∣ (0; 1, 1); ;

(1− b; a2, a1) ; (0, 1) ; (0, 1)

 . (5)

In (5) and throughout the paper a horizontal line in the H-function means the absence of parameters. Now we

recall the definition of the spaces Cα, α ∈ R, and Cmα ,m ∈ N, given in [13].
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Definition 2.6(see [13]) A real or complex-valued function f(t), t > 0, is said to be in the space Cα, α ∈ R, if

there exists a real number p > α such that f(t) = tpf1(t) for some function f1 ∈ C[0,∞).

It is easy to see that Cα is a vector space and the set of spaces Cα is ordered by inclusion according to

Cα ⊆ Cβ ⇔ α ≥ β.

Definition 2.7(see [13]) A function f(t), t > 0, is said to be in the space Cmα ,m ∈ N, if and only if f (m) ∈ Cα.

Let Dγ
t denotes the Caputo fractional derivative of order γ > 0 defined by:

Dγ
t u(t) =


1

Γ(m− γ)

∫ t

0

(t− s)−γ+m−1 u(m)(s) ds, m− 1 < γ < m

u(m)(t), γ = m

(6)

where u(m) := dmu
dtm , m ∈ N (see [2]). The next theorem will be used in our analysis and allow us to solve general

linear fractional differential equations with constant coefficients and Caputo derivatives.

Theorem 2.8(see [13, Thm 4.1]) Let µ > µ1 > . . . > µn ≥ 0, mi − 1 < µi ≤ mi,mi ∈ N, λi ∈ R, i = 1, . . . , n.

Consider the initial value problem
Dµ
t y(t)−

n∑
i=1

λiD
µi
t y(t) = g(t)

y(k)(0) = ck ∈ R, k = 0, . . . ,m− 1, m− 1 < µ ≤ m,

(7)

where g is assumed to lie in C−1 if µ ∈ N0 or in C1
−1 if µ /∈ N0. Then (7) has a unique solution in the space

Cm−1 of the form

y(t) =

∫ t

0

sµ−1E(µ−µ1,...,µ−µn),µ(λ1s
µ−µ1 , . . . , λ1s

µ−µn) g(t− s) ds+

m−1∑
k=0

ckuk(t), t ≥ 0,

with, k = 0, . . . ,m− 1

uk(t) =
tk

k!
+

n∑
i=lk+1

λi t
k+µ−µiE(µ−µ1,...,µ−µn),k+1+µ−µi(λ1t

µ−µ1 , . . . , λnt
µ−µn).

The natural numbers lk, k = 0, . . . ,m − 1 are determined from the conditions mlk ≥ k + 1 and mlk+1 ≤ k. In

the case mi ≤ k, i = 0, . . . ,m− 1, we set lk := 0, and of mi ≥ k + 1, i = 0, . . . ,m− 1, then lk := n.

3 First and second fundamental solution of the time-fractional tele-

graph equation of order 2α

In this section we obtain the first and second fundamental solution of a particular case of the previous equation,

where β = 2α and 0 < α ≤ 1, i.e., we look for a function Gα(x, t) that satisfies the following Cauchy problem

(
C∂2αt + aC∂αt − c2 ∆x

)
Gα(x, t) = 0

Gα(x, 0) = C0 δ(x)

∂Gα

∂t
(x, 0) = C1 δ(x)

, (8)

where x ∈ Rn, t > 0, a ≥ 0, c > 0, C0, C1 ∈ R, δ(x) =
∏n
j=1 δ(xj) is the distributional Dirac delta function in

Rn. Applying the Fourier transform in Rn to the Cauchy problem we get the following initial-value problem

(
C∂2αt + aC∂αt + c2 |κ|2

)
Ĝα(κ, t) = 0

Ĝα(κ, 0) = C0

∂Ĝα

∂t
(κ, 0) = C1

. (9)
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To solve the problem (9), we apply Theorem 2.8 with λ1 = −a, λ2 = −c2 |κ|2, µ = 2α, µ1 = α, µ2 = 0, n = 2,

m = 2, g(t) = 0, and k = 1, obtaining the following solution

Ĝα(κ, t) = C0 û0(κ, t) + C1û1(κ, t), (10)

where

û0(κ, t) = 1− c2|κ|2 t2αE(α,2α),1+2α

(
−a tα,−c2|κ|2t2α

)
,

û1(κ, t) = t− a t1+αE(α,2α),2+α

(
−a tα,−c2|κ|2t2α

)
− c2|κ|2t1+2αE(α,2α),2+2α

(
−a tα,−c2|κ|2t2α

)
.

Taking into account Lemma 2.2 we have the following alternative representation of û0 and û1

û0(κ, t) = E(α,2α),1

(
−a tα,−c2|κ|2t2α

)
+ a tαE(α,2α),1+α

(
−a tα,−c2|κ|2t2α

)
, (11)

û1(κ, t) = t E(α,2α),2

(
−a tα,−c2|κ|2t2α

)
. (12)

From (2), we have the following representation of û0 and û1 in the form of a double series

û0(κ, t) =

+∞∑
p=0

+∞∑
q=0

Γ(1 + p+ q)

Γ(1 + αp+ 2αq) p! q!
(−a tα)

p (−c2|κ|2t2α)q
+ a tα

+∞∑
p=0

+∞∑
q=0

Γ(1 + p+ q)

Γ(1 + α+ αp+ 2αq) p! q!
(−a tα)

p (−c2|κ|2t2α)q , (13)

û1(κ, t) = t

+∞∑
p=0

+∞∑
q=0

Γ(1 + p+ q)

Γ(2 + αp+ 2αq) p! q!
(−a tα)

p (−c2|κ|2t2α)q . (14)

From Lemma 2.4 we have the following representations of û0 and û1 in the form of a double Mellin-Barnes

integral

û0(κ, t) =
1

(2πi)2

∫
L1

∫
L2

Γ (1 + s+ w) Γ(−s) Γ(−w)

Γ (1 + αw + 2αs)
(a tα)

w (
c2 |κ|2 t2α

)s
dw ds

+
a tα

(2πi)2

∫
L1

∫
L2

Γ (1 + s+ w) Γ(−s) Γ(−w)

Γ (1 + α+ αw + 2αs)
(a tα)

w (
c2 |κ|2 t2α

)s
dw ds, (15)

û1(κ, t) =
t

(2πi)2

∫
L1

∫
L2

Γ (1 + s+ w) Γ(−s) Γ(−w)

Γ (2 + αw + 2αs)
(a tα)

w (
c2 |κ|2 t2α

)s
dw ds. (16)

From Corollary 2.5 we can write û0 and û1 in the form of H-functions of two variables

û0(κ, t) = H0,1; 1,0; 1,0
1,1; 0,1; 0,1


c2 |κ|2 t2α

a tα

∣∣∣∣∣ (0; 1, 1); ;

(0; 2α, α) ; (0, 1) ; (0, 1)



+ a tαH0,1; 1,0; 1,0
1,1; 0,1; 0,1


c2 |κ|2 t2α

a tα

∣∣∣∣∣ (0; 1, 1); ;

(−α; 2α, α) ; (0, 1) ; (0, 1)

 , (17)

û1(κ, t) = tH0,1; 1,0; 1,0
1,1; 0,1; 0,1


c2 |κ|2 t2α

a tα

∣∣∣∣∣ (0; 1, 1); ;

(−1; 2α, α) ; (0, 1) ; (0, 1)

 . (18)
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Inverting the Fourier transform in (10) we get

Gα(x, t) = C0 u0(x, t) + C1 u1(x, t). (19)

We will denote by Gα1 (x, t) = u0(x, t) the first fundamental solution of the first equation of (8) that satisfies

the initial conditions Gα1 (x, 0) = δ(x) and
∂Gα1
∂t

(x, 0) = 0. Additionally, we denote by Gα2 (x, t) = u1(x, t) the

second fundamental solution of the first equation of (8) that satisfies the initial conditions Gα2 (x, 0) = 0 and
∂Gα2
∂t

(x, 0) = δ(x). For obtaining the explicit expressions for Gα1 and Gα2 we recall the following formula (see [17])

1

(2π)n

∫
Rn
e−iκ·x φ(|κ|) dκ =

|x|1−n2
(2π)

n
2

∫ +∞

0

φ(τ) τ
n
2 Jn

2−1(τ |x|) dτ, (20)

where Jν represents the Bessel function of first kind with index ν, and the right hand side can be seen as a

Hankel transform. We need also the following integral formula (see Formula (7) in [6, p. 22])∫ +∞

0

zµ Jν (zy)
1
2 dz =

2µ+
1
2

yµ+1

Γ
(
µ
2 + ν

2 + 3
4

)
Γ
(
ν
2 −

µ
2 + 1

4

) (21)

which is valid under the condition −Re(ν)− 3
2 < Re(µ) < − 1

2 . Since the expressions for Gα1 are longer then the

ones for Gα2 , we are going to present only the calculations for Gα2 . Applying the inverse Fourier transform to

(12) and using (20), we get

Gα2 (x, t) =
t |x|1−n2
(2π)

n
2

∫ +∞

0

τ
n
2 E(α,2α),2

(
−a tα,−c2τ2t2α

)
Jn

2−1(τ |x|) dτ. (22)

Making use of Lemma 2.4, and interchanging the integrals due to the convergence, we obtain

Gα2 (x, t) =
t |x|1−n2
(2π)

n
2

1

(2πi)2

∫
L1

∫
L2

Γ (1 + s+ w) Γ (−s) Γ (−w)

Γ (2 + αw + 2αs)
(a tα)w (c2 t2α)s

×
∫ +∞

0

τ
n
2 +2s Jn

2−1(τ |x|) dτ dw ds. (23)

Finally, using (21) and Corollary 2.5, we obtain, under the condition −n2 < <(s) < −n4 , the representation of

the second fundamental solution in terms of double Mellin-Barnes integral and H-function of two variables:

Gα2 (x, t) =
t

π
n
2 |x|n

1

(2πi)2

∫
L1

∫
L2

Γ (1 + s+ w) Γ
(
n
2 + s

)
Γ (−w)

Γ (2 + αw + 2αs)
(a tα)w

(
4c2 t2α

|x|2

)s
dw ds (24)

=
t

π
n
2 |x|n

H0,1; 0,1; 1,0
1,1; 1,0; 0,1


4c2 t2α |x|−2

a tα

∣∣∣∣∣ (0; 1, 1);
(
1− n

2 , 1
)

;

(−1; 2α, α) ; ; (0, 1)

 , (25)

where the double Mellin-Barnes integral is convergent because the conditions (4) are fulfilled. For Gα1 we obtain,

analogously, under the condition −n2 < <(s) < −n4 , the following representations:

Gα1 (x, t) =
|x|1−n2
(2π)

n
2

∫ +∞

0

τ
n
2 E(α,2α),1

(
−a tα,−c2τ2t2α

)
Jn

2−1(τ |x|) dτ

+
a tα |x|1−n2

(2π)
n
2

∫ +∞

0

τ
n
2 E(α,2α),1+α

(
−a tα,−c2τ2t2α

)
Jn

2−1(τ |x|) dτ (26)

=
1

π
n
2 |x|n

1

(2πi)2

∫
L1

∫
L2

Γ (1 + s+ w) Γ
(
n
2 + s

)
Γ (−w)

Γ (1 + αw + 2αs)
(a tα)w

(
4c2 t2α

|x|2

)s
dw ds

+
a tα

π
n
2 |x|n

1

(2πi)2

∫
L1

∫
L2

Γ (1 + s+ w) Γ
(
n
2 + s

)
Γ (−w)

Γ (1 + α+ αw + 2αs)
(a tα)w

(
4c2 t2α

|x|2

)s
dw ds (27)
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=
1

π
n
2 |x|n

H0,1; 0,1; 1,0
1,1; 1,0; 0,1


4c2 t2α |x|−2

a tα

∣∣∣∣∣ (0; 1, 1);
(
1− n

2 , 1
)

;

(0; 2α, α) ; ; (0, 1)



+
a tα

π
n
2 |x|n

H0,1; 0,1; 1,0
1,1; 1,0; 0,1


4c2 t2α |x|−2

a tα

∣∣∣∣∣ (0; 1, 1);
(
1− n

2 , 1
)

;

(−α; 2α, α) ; ; (0, 1)

 . (28)

We end this section solving a fractional Cauchy problem.

Theorem 3.1Let x ∈ Rn, t > 0, 0 < α ≤ 1, a ≥ 0, and c > 0, then the fractional Cauchy problem

(
C∂2αt + aC∂αt − c2∆x

)
h(x, t) = 0

h(x, 0) = f1(x)

∂h

∂t
(x, 0) = f2(x),

is solvable, and its solution has the form

h(x, t) =

∫
Rn
Gα1 (x− z, t) f1(z) dz +

∫
Rn
Gα2 (x− z, t) f2(z) dz, (29)

where Gα1 and Gα2 are the first and second fundamental solutions given by (28) and (25), respectively, and

provided that the integrals in the right-hand side of (29) are convergent.

Remark 3.2In Theorem 3.1, when a = 0 the solution (29) coincides with the one presented in [12, Cor.6.4] (with

β = 2α). Moreover, considering a = 0 the first fundamental solution Gα1 coincides with the expression presented

in [7] for the fundamental solution of the time-fractional diffusion-wave operator (with β = 2α).

4 Telegraph process with Brownian time

Now we consider in (8) n = 1, a = 2λ ≥ 0, C0 = 1 and C1 = 0, i.e., we consider the following time-fractional

telegraph equation of order 2α (
C∂2αt + 2λC∂αt − c2 ∂2xx

)
u(x, t) = 0, (30)

where x ∈ R, t > 0, c > 0, and subject to the initial condition u(x, 0) = δ(x) for 0 < α ≤ 1
2 , while, for 1

2 < α ≤ 1,

besides the previous condition, also ut(x, 0) = 0 is assumed. Equation (30) was already studied in [15], where

the authors presented only an integral representation for the Fourier transform of the fundamental solution.

Moreover, for α = 1
2 it was obtained an integral representation of the fundamental solution based on the Fourier

inversion transform (see Theorem 4.2 in [15]).

Physically, if we consider α = 1
2 in (30), we obtain a heat equation with damping term which depends on all

values of u in [0, t] and assigning an overwhelming weight to those close to t (see [15]). The damping effect of

the fractional derivative reverberates on the distribution u, where the solution of the heat equation (governing

term) is perturbed by the telegraph distribution (which represents the impact of the fractional derivative).

Moreover, since the fundamental solution u of (30) reduces, in this particular case, to G
1
2
1 (see (19)), it can be

understood as the distribution of a particle moving back and forth the real line with velocities ±c for a random

7



time interval. Making n = 1, a = 2λ and α = 1
2 in (26), (27) and (28) we get the following representations G

1
2
1 :

G
1
2
1 (x, t) =

1

π

∫ +∞

0

E( 1
2 ,1),1

(
−2λ

√
t,−c2τ2t

)
cos(τ |x|) dτ

+
2λ
√
t

π

∫ +∞

0

E( 1
2 ,1),

3
2

(
−2λ

√
t,−c2τ2t

)
cos(τ |x|) dτ

=
1√
π |x|

1

(2πi)2

∫
L1

∫
L2

Γ (1 + s+ w) Γ
(
1
2 + s

)
Γ (−w)

Γ
(
1 + w

2 + s
) (

2λ
√
t
)w (4c2 t

|x|2

)s
dw ds

+
2λ
√
t√

π |x|
1

(2πi)2

∫
L1

∫
L2

Γ (1 + s+ w) Γ
(
1
2 + s

)
Γ (−w)

Γ
(
3
2 + w

2 + s
) (

2λ
√
t
)w (4c2 t

|x|2

)s
dw ds

=
1√
π |x|

H0,1; 0,1; 1,0
1,1; 1,0; 0,1


4c2 t |x|−2

2λ
√
t

∣∣∣∣∣ (0; 1, 1);
(
1
2 , 1
)

;(
0; 1, 12

)
; ; (0, 1)



+
2λ
√
t√

π |x|
H0,1; 0,1; 1,0

1,1; 1,0; 0,1


4c2 t |x|−2

2λ
√
t

∣∣∣∣∣ (0; 1, 1);
(
1
2 , 1
)

;(
− 1

2 ; 1, 12
)

; ; (0, 1)

 .
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