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resumo Sistemas de frustração celular são modelos de interação de agentes que
demonstram uma dinâmica complexa que pode ser utilizada para aplicações
de deteção de anomalias. Na sua versão mais simples, estes modelos são
compostos por dois tipos de agentes, designados de apresentadores e dete-
tores. Os apresentadores exibem a informação das amostras. Os detetores
leem essa informação e percecionam-na em sinais binários, dependendo da
frequência com que são apresentados. O tipo de sinal percecionado terá
impacto na dinâmica de decisões dos agentes. Em particular, a presença de
anomalias produz uma dinâmica menos frustrada, i.e., mais estável.

Nesta tese é questionado se este mapeamento em sinais binários não poderá
bene�ciar do conhecimento da existência de grupos (clusters) nas amostras.
Com esta �nalidade, foi desenvolvida uma técnica de clustering, que dá
particular atenção ao facto que os sistemas de frustração celular detetam
as amostras dependendo do número de características que exibem valores
extremos. Os clusters obtidos com esta técnica também são comparados
com aqueles obtidos com técnicas conhecidas, como o k-means ou o clus-

tering hierárquico aglomerativo. Nesta tese demonstra-se que a utilização
de uma técnica de clustering antes da aplicação do sistema de frustração
celular pode melhorar as taxas de deteção de anomalias. Contudo, também
é demonstrado que dependendo do tipo de anomalias, esta alteração pode
não ser bené�ca, podendo ser mais vantajoso utilizar a técnica de frustração
celular original, uma vez que é mais simples. Acredita-se que este estudo
propõe direções claras sobre como se poderá vir a melhorar a técnica da
frustração celular num contexto mais geral.





key-words data mining, anomaly detection, cellular frustration.

abstract Cellular frustrated systems are models of interacting agents displaying com-
plex dynamics which can be used for anomaly detection applications. In their
simplest versions, these models consist of two agent types, called presenters
and detectors. Presenters display information from data samples. Detectors
read this information and perceive it in a binary signal, depending on its
frequency of appearance. The type of signal perceived will have an impact
on the agents' decision dynamics. In particular, the presence of anomalies
leads to less frustrated dynamics, i.e., more stable.

In this thesis it is questioned if the mapping in binary signals could not
bene�t from the knowledge of the existence of clusters in the data set. To
this end, a clustering technique was developed that gives particular attention
to the fact that cellular frustrated systems discriminate samples depending
on the number of features displaying rare values. The clusters obtained
with this technique are also compared with those obtained using k-means
or hierarchical agglomerative clustering. It is shown that using a cluster-
ing technique prior to application of cellular frustration system can improve
anomaly detection rates. However, it is also shown that depending on the
type of anomalies, this may not be generally the case, and therefore simpler
cellular frustration algorithms may have the advantage of being simpler. It
is believed that this study proposes new directions on how to improve the
cellular frustration technique in a broader context.
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Chapter 1

Introduction

Cellular frustrated systems are anomaly detection algorithms and originally were inspired
by a model that proposes to describe how men and women choose their partners [1]. The most
interesting new idea was however that men and women would frustrate each others pairing
preferences instead of looking for a stable con�guration. Frustration turns out to be important
because it produces an ampli�cation mechanism to build speci�c long lived interactions [2, 3].

The main goal of this thesis is to improve the anomaly detection rates of the cellular
frustration system proposed in [4]. This will be achieved by adding a pre-processing stage
with clustering algorithms to help agents process the information presented by each sample in
a certain data set. Three di�erent clustering techniques will be tested and compared: the k-
means, the hierarchical agglomerative clustering and the extremes clustering technique. Being
the latter, a technique created speci�cally for the needs of the cellular frustration system.

Anomaly detection algorithms solve the problem of �nding patterns in data that do not
adjust to the expected behaviour of normal data. These nonconforming patterns are called
anomalies or outliers [5].

Anomalies in data are signi�cant, and sometimes critical, information in a broad variety
of applications. For example, anomalies in credit card transactions could indicate that the
credit card was stolen [6], an anomalous pattern in a computer network could mean that
the computer is hacked and sending out sensitive data to an unauthorised destination [7], an
anomalous MRI image may indicate the presence of malicious tumours [8], or even anomalous
readings from a space craft sensor could indicate a fault in some component [9].

The thesis is organised as follows. In Chapter 2, an introduction to data mining is made, as
well as the description of relevant algorithms for this work. In Chapter 3, cellular frustration
systems will be introduced and described. In Chapter 4, �rst, the extremes clustering technique
will be described, and secondly, it is shown how clustering techniques can be integrated in
the cellular frustration system. In Chapter 5, a practical application of the algorithm is going
to be made with synthetic data and later with a real wine data set. The thesis ends with a
conclusion and a discussion of how these results open new research directions.
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Chapter 2

Data mining

In a modern society, computer systems are accumulating enormous amounts of data every
second, starting from bank cash withdrawals or credit card transactions, to stock exchanges
and satellites' Earth observation. Today the internet makes gigantic volumes of information
available, making the world data rich but comparatively knowledge poor [10]. Indeed, the
challenge is not anymore to gather data, but to gain knowledge from the available data,
which still hide patterns that could be useful to achieve discoveries in science, to predict the
weather and natural disasters [11], to �nd cures for illnesses or help physicians identify e�ective
treatments and best practices [12] and also in customer relationship management [13].

Data mining is the process of discovering patterns in data sets involving methods of ma-
chine learning, arti�cial intelligence, pattern recognition, statistics and database systems. It
was originally proposed to solve perceptual tasks like optical character recognition, face recog-
nition and voice recognition. These are tasks that humans can perform many times easily but
there is no mathematical model to describe them [14].

There can be two di�erent goals to data mining: description or prediction of data. De-
scription is �nding human interpretable patterns that describe the data. Prediction is using
the available data to predict values in future cases.

Usually, data sets are composed of several samples, each of which comprises the values of a
number of variables, commonly called features. Samples can be labelled or not. If samples are
labelled, the data mining used is referred as supervised learning where the goal is to predict
the labels of new samples. If they are not labelled, it is referred as unsupervised learning and
usually, the aim is to create groups of similar samples, i.e., clusters [10].

In supervised learning the algorithm uses a set of training samples to learn a function that
maps feature values to labels. Depending on the type of label, categorical or numerical, the
data mining tasks can be classi�cation or regression [15]. Classi�cation is one of the most
common data mining tasks. Examples of well known classi�cation algorithms are Arti�cial
Neural Networks [16], Decision Trees [17], Naive Bayes [18] and Support Vector Machines [19].

In unsupervised learning the algorithm learns a function that describes the data, even
though no explicit feedback is given [15]. The most common unsupervised algorithms are
clustering techniques [20].

This chapter is organised as follows. In the next section I will explain one of the most
powerful techniques in data mining: Support Vector Machines (SVMs). SVMs for anomaly
detection are an extension of the original algorithm, derived for classi�cation tasks. For this
reason the next section discusses both techniques. Afterwards well known clustering techniques

3



Figure 2.1: Linear separable data set where samples from two classes are represented in two
colours, pink and blue. The solid line represents the hyperplane separating the two classes;
dashed lines represent the maximum separating margins. The points that lie on the these
margins are circled and are called the support vectors. The distance between the separating
margins is called the gap, D.

- k-means and the hierarchical agglomerative clustering - are also introduced. They will be
used to understand how they can improve anomaly detection rates of the cellular frustration
algorithm and to compare with the new clustering technique developed here. To illustrate
these techniques at play, we will use synthetic data sets with samples with only two features,
generated using two Gaussian number generators, one for each feature.

2.1 Support Vector Machines

Support Vector Machines (SVMs) are one of the best known models used for classi�cation
and regression. SVMs are algorithms that proceed in two stages: training and testing. Training
is used to �nd the model parameters that later, in the testing stage, will be used to classify a
new sample.

Even though we are interested in anomaly detection algorithms, we are going to start
o� this discussion with SVMs that perform binary classi�cation. In a latter sub-section, an
extension of the SVMs will be described that has applications in anomaly detection.

2.1.1 Linear separable case

Consider the example in Fig. 2.1, where the classes are represented by colours. The main
goal of the SVMs is to �nd a linear decision surface that can separate the two classes and has
the maximum distance from the closest points of each class. The decision surface is called
a hyperplane, represented by the solid line in Fig. 2.1. The samples that lie on the de�ned
maximum separating margin, represented with circled points in Fig. 2.1, are called support
vectors, thus the name of this algorithm, support vector machines. The hyperplane is a linear
decision surface that splits the space into two parts. If the data set is 2-dimensional, the
hyperplane is a line, if the data set is 3-dimensional, the hyperplane is a plane and so on.

4



In a data set with N samples, each sample is represented by a set of features ~xi, with
i = 1, 2, ..., n and has an assigned class yi = ±1. The hyperplane is de�ned as a set of points
that uphold the following equation

~w~x+ b = 0. (2.1)

The parameters that need to be found in order to the de�ne the decision surface are ~w and
b. This is an optimisation problem that can be solved e�ciently with Quadratic Programming.
Quadratic Programming is a kind of optimisation method that optimises an objective function
with subject to linear constraints. The only requirement for it to work is that the objective
function has to be convex, i.e., have only one global minimum.

The goal is to maximise the gap, D, delimited in Fig. 2.1 by the dashed lines. The dashed
lines are parallel hyperplanes and can be de�ned as

~w~x+ b = −1 and ~w~x+ b = +1 (2.2)

so the gap is D = 2
||~w|| . In order to maximise D, ||~w|| has to be minimised. Thus, our objective

function is 1
2 ||~w||2. The linear constraints need to make sure that all the samples are correctly

classi�ed. The subspace where a sample has yi = −1 is delimited by ~w~xi + b ≤ −1 and the
subspace where a sample has yi = +1 is delimited by ~w~xi + b ≥ +1. Both of these subspaces,
as well their dependency on the class, can be de�ned as

yi
(
~w~xi + b

)
≥ 1 (2.3)

Hence, to �nd the hyperplane, 1
2 ||~w||2 needs to be minimised subject to yi

(
~w~xi + b

)
≥ 1,

for i = 1, 2, ..., n.

This is the primal formulation of the linear SVMs where the optimisation problem has n
variables, being n the number of features.

The same problem can be formulated in a dual form where instead of having n variables
there will be as many variables as training samples, N . This is done by solving for the
Lagrangian dual, in which the optimal solution is found by maximising

N∑
i

αi −
1

2

N∑
i,j

αiαjyiyj(~xi
T · ~xj) (2.4)

being α the Lagrangian multipliers and they are only non-zero for the support vectors (points
that are closer to the hyperplane). Eq. 2.4 is the objective function and it needs to be solved
subject to the constraints αi ≥ 0, and

∑N
i αiyi = 0. Once αi are found, ~w can be computed

as

~w =

Ns∑
i

αi ~xi (2.5)

where Ns is the total number of support vectors. Since that for any support vector ~xs the
solution of ys(~w ~xs + b) is 1, the parameter b can be computed as

b =
1

ys
− ~w ~xs =

1

ys
−

Ns∑
i

αi ~xi ~xs (2.6)
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After the training stage, where the optimal α and b values are stored, a new sample ~z can
be tested as

h(~z) = sign
( Ns∑

i

αiyi(~xi
T · ~z)− b

)
(2.7)

If the sign of h(~z) is positive, the sample z is going to be labelled as one of the classes, if it is
negative, the sample is classi�ed as a member of the other class.

The dual form is better because only the dot products between samples is needed, not the
original data set. Also, the number of free parameters αi is upper bounded by the number
of samples and not features, this is particularly good in high-dimensional data sets. The
complexity of the testing phase is only going to depend on the number of support vectors.

Nonetheless, sometimes the data set has noise or outliers so that �nding the linear decision
surface may not be an easy task. To work around problems like these, a new variable, ξ ≥ 0
called a slack variable is going to be introduced. If a sample is misclassi�ed, ξi can be thought
of the distance from the separating hyperplane. If it is correctly classi�ed, ξi = 0. By doing
this, we are allowing the SVMs to consider that some training samples might be of the other
class. This is called the Soft-Margin SVMs where, in the primal formulation the objective
function,

1

2
||~w||2 + C

n∑
i

ξi, (2.8)

needs to be minimised subject to the constraints yi
(
~w~xi + b

)
≥ 1, for i = 1, 2, ..., n. And in

the dual form,

N∑
i

αi −
1

2

N∑
i,j

αiαjyiyj(~xi
T · ~xj), (2.9)

needs to be maximised subject to the constraints 0 ≤ αi ≤ C, and
∑N

i αiyi = 0. C is a
user de�ned parameter that penalises errors and controls the width of the gap. If C is very
large, the soft-margin SVMs are equivalent to the previous approach where no errors in the
training stage are allowed. If C is small, some misclassi�cations in the training data set are
allowed since the gap is wide. C needs to be selected depending on the data set that is being
used because di�erent C will lead to di�erent decision surfaces.

2.1.2 Non-linear separable case

The former SVMs approach works well for linearly separable cases, however the previous
optimisation problem will �nd no feasible solutions for non-linearly separable data set. In
order to solve problems like these, one must perform the kernel trick. The kernel trick maps
the data set into a higher dimensional space where it is more likely for the data set to be
linearly separable. Take the example in Fig. 2.2(a), in 2D the data set can not be separated
by a hyperplane. Nevertheless, if the data set is mapped into a higher space, F (~x), with these
particular transformations

f1 = x21 f2 = x22 f3 =
√
2x1x2, (2.10)

the data set is now linearly separable in 3D, as seen in Fig. 2.2(b). In the SVMs algorithm,
this is achieved by replacing the dot product ~xi · ~xj by F (~xi) · F ( ~xj). However, this can be
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Figure 2.2: Non-linearly separable data set in 2D (a) and in 3D (b) after applying the trans-
formations, F (~x), to the 2D case. In (a) it is clear that the data set can not be separated with
a linear hyperplane. In order to overcome this problem, the data set can be mapped into a
higher dimensional space, for example 3D, with the transformations described in Eq. 2.10. In
3D the data set is now linearly separable.

achieved in another way. There is no need to compute F for every point before making the dot
product F (~xi) · F ( ~xj). This can be achieved with a Kernel function K(~xi, ~xj). This function
computes the dot product and maps the data set into a higher dimension all at once. In this
example, the kernel function is a polynomial function of second degree, K(~xi, ~xj) = (xi · xj)2.
So, rewriting Eq. 2.9 with the kernel trick, we need to maximise

N∑
i

αi −
1

2

N∑
i,j

αiαjyiyjK(~xi, ~xj) (2.11)

subject to same linear constraints as before and the decision function for a new sample ~z is

h(~z) = sign
( Ns∑

i

αiyiK(~xi, ~z)− b
)
. (2.12)

After applying the non-linear SVM, one can plot the supporting hyperplane in the original
feature space (2D), as seen in Fig. 2.3.

In this example a fairly simple polynomial kernel function was used. Still, there are a lot of
kernel functions that can be used, such as the linear kernel, the sigmoid kernel, the radial basis
function (RBF) kernel, etc. Choosing the right kernel function for the data set constitutes the
biggest di�culty on applying the SVMs algorithm.

2.1.3 One-class Support Vector Machines

As seen in the previous sub-sections, support vector machines work with the underlying
assumption of the existence of, at least, two di�erent classes. Nevertheless, the SVMs for-
malisation was extended to learn a descriptive model of a data set with only one class. In
one-class problems, only normal samples are presented during training of the algorithm. In
the testing stage, if a new sample is too di�erent from the model created during training, the

7



Feature 1

F
ea

tu
re

2

Figure 2.3: Final result in the original 2D space of the labelling of samples in two groups.
The two classes are represented by di�erent colours (blue and pink dat points). The support
vectors are circled and the supporting hyperplane is represented by the solid line.

sample is labelled as an anomalous sample. An example of a one class problem is depicted
in Fig. 2.4(a) where the blue points are the normal samples while the pink samples are the
anomalous samples. In problems like these, only the normal samples are known, the anomalies
can be anywhere in the feature space. Thus, the goal of a One-class SVMs is to de�ne the
normal space as better as possible, so most of the anomalies will be detected. This algorithm
is unsupervised, since there are no labels in the data set and after the training stage the
algorithm does not know how the other class (anomalous samples) looks likes. In the testing
stage it classi�es the new samples as similar or di�erent to the training samples.

In the one-class SVM, the hyperplane separates the training examples with maximum
margin from the origin of the feature space [21]. It can be obtained, again, by maximising

1

2

N∑
i,j

αiαjK(~xi, ~xj) (2.13)

subject to the constraints 0 ≤ αi ≤ 1
νn , where αi and αj are the Lagrange multipliers,K(~xi, ~xj)

is the kernel function , n is the number of training examples and ν sets an upper bound on
the allowed number of training examples that are considered as outliers.

Solving Eq. 2.13, results in a binary function that returns +1 in a small region of the
feature space where the training samples are located and −1 elsewhere. So, for a new sample
~z, the function looks like

h(~z) = sign
( Ns∑

i

αiK(~xi, ~z)− b
)

(2.14)

where, similarly to before, b =
∑Ns

i αiK(~xi, ~xs).

In this extension of the SVM, the kernel trick is needed not to linearly separate one class
from the other (since there are no classes) but to separate the normal samples from the origin
as seen in Fig. 2.4(b).
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Figure 2.4: Example of an anomaly detection problem. In (a), the original data is displayed
where blue samples are normal samples and pink are (possible) anomalous samples. In (b),
the One-Class SVMs were applied and with the kernel trick the data set is now mapped into
a higher dimensional feature space where it is possible to de�ne a hyperplane (solid line)
that separates the training samples from the origin. The support vectors are encircled with a
dashed line. Hopefully, the anomalous samples will be located on the other side of the decision
boundary.



The main di�culty when using SVMs is choosing the kernel function and several user-
de�ned parameters like ν. When it is used to perform classi�cation, the choice can be made
by trying di�erent kernel functions and parameters. This could be tiresome but usually works,
since all classes are previously de�ned. With the One-Class SVMs this is tougher because we
only know how the normal class looks like and the anomalies could be everywhere. This
constitutes a problem that will be explored in Chapter 5.

2.2 Clustering Techniques

Clustering is an unsupervised algorithm that aggregates samples into groups (called clus-
ters). Clustering algorithms have been implemented in several contexts and by researchers in
many disciplines [22]. The goal is to de�ne clusters where the samples withing a cluster are
similar and samples from di�erent clusters are di�erent.

There are several clustering techniques, with di�erent inclusion principles, that for the same
data set, produce di�erent outcomes. An important question is to know which technique is
more suitable for each data type or purpose [23].

There are several types of clustering techniques such as partitional and hierarchical. A
partitional clustering technique is when the data set is divided into non-overlapping clusters.
In hierarchical clustering the clusters are organised as a tree. The root of the tree is a cluster
with all the samples while the clusters on each node are the union of its children. Note that a
hierarchical clustering can be viewed as a sequence of partitional clustering and a partitional
clustering can be obtained by cutting the hierarchical tree at a certain level.

2.2.1 k-means

k-means is the best known and simplest partitional clustering technique. The user needs to
choose the number of desired clusters k. Every cluster is de�ned by a centroid, which usually
is the mean value of the samples belonging to the respective cluster [24]. In the basic k-means
algorithm, the initial k centroids are chosen randomly from the samples. Then, every sample
is assigned to the closest centroid. With the initial clusters de�ned, the centroids are updated
to the mean value of the samples belonging to that cluster. Then the process repeats itself:
the samples are assigned to the centroids and then they are updated. This continues until the
centroids remain the same. This algorithm is described in Pseudo-code 1 and pictured in Fig.
2.5.

In order to assign the points to the clusters, there is the need to de�ne a proximity measure.
For real or integer data sets usually the Euclidean distance is used, however one can also use
the Manhattan or the Minkowski distance [25].

The goal of the k-means it is usually de�ned by an objective function that depends on the
distance between the points and centroids. If the Euclidean distance is chosen as a proximity
measure the objective function is the sum of the squared error (SSE).

SSE =
k∑
i=1

∑
x∈Ci

dist(ci, x)
2 (2.15)

where Ci are the clusters, ci the centroids of each cluster and dist() is the Euclidean
distance between two objects. This means that the goal is to minimise the squared distance
of each point to the centroid.
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Figure 2.5: Application of the k-means clustering algorithm to �nd the two clusters in a toy
model. The centroids of each cluster are represented by an orange star. In (a), the centroids are
choosen randomly from the samples. In (b), the samples are assigned to the closest centroid.
Samples in pink belong to one cluster and the ones in blue belong to the other. In (c), the
centroids are updated to the mean value of the samples that belong to its respective cluster.
In (d), the samples belonging to each cluster are updated regarding the new centroids. This
process repeats itself until the centroids remain the same.



Since the k-means always converge to a solution, not necessarily an optimal one, for two
runs of the algorithm on the same data set, we would prefer the one with the lowest SSE.

Algorithm 1 k-means algorithm

1: Select k initial centroids
2: while the centroids change do
3: Assign every sample to a centroid
4: Recompute the new k centroids

2.2.2 Hierarchical Agglomerative

Hierarchical algorithms are also very well known and there are two approaches to it:
agglomerative and divisive [26]. With the agglomerative approach, the clusters are built by
starting with every sample as an individual cluster and then merging the most similar clusters
into bigger ones. The divisive approach works the other way around. It starts with a big
all inclusive cluster and then starts to split them up. We are going to use and explain the
agglomerative approach.

In this algorithm, described in Pseudo-code 2, there is the need to de�ne the proximity
between clusters so we can merge the similar ones. This de�nition can vary depending on
the data set or on the type of clusters that are intended. There is the single link proximity
measure, where the distance between the two closest points of di�erent clusters is used. The
complete link approach uses the distance between the two farthest points of di�erent clusters.

An alternative technique is the Ward's method, where the clusters are represented by
centroids and the proximity between two clusters is measured in terms of increase in the SSE
that results from merging the two clusters.

Algorithm 2 Agglomerative Hierarchical clustering algorithm

1: Compute the proximity matrix between all clusters
2: while there are more than one cluster do
3: Merge the closest two clusters
4: Recompute the proximity matrix

Since hierarchical algorithms can be seen as a tree, a common visual representation of it
is a dendrogram. Using the same toy model as before, the dendrogram is displayed in Fig.
2.6. In the dendrogram, the two closest samples are merged successively until there is only
one cluster. One can see that the if the tree is cut above all the blue and pink nodes, we will
get the similar clusters as in the k-means algorithm.
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Figure 2.6: Dendrogram of the toy model with 40 samples. The samples are represented in
the x axis. In the y axis, a measure of closeness of either individual data points or clusters is
represented. In the bottom of the graph, each sample represents its own unique cluster, these
are called the leaf nodes. Samples that are close to each other are merged in pairs forming a
new cluster and a node in the graph. The lower the position of the node in the y axis, the
closer together are the two samples or clusters that are being merged.
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Chapter 3

Cellular Frustrated Systems

The Cellular Frustrated System (CFS) was inspired from a well-known problem in com-
putational mathematics, the stable marriage problem (SMP). This problem was proposed by
Gale and Shapley in 1962 and its aim is to e�ciently match men and women in stable pairs
[1]. Stable pairs are formed when both elements prefer their current partners relatively to any
other individual. In this problem, men and women are the two types of interacting agents.
Both, men and women, have di�erent and complex preferences regarding agents of the oppo-
site sex. Solving the SMP can be computationally hard in several variants of the problem [27]
and therefore natural systems that could be modelled with this type of models, may not ever
reach a �nal stable con�guration with all agents matched. For this reason, it was also studied
whether this type of models could be used to explore the dynamical properties of systems that
attempt to reach the stable solution but never get there. It was found that these ideas could
be applied in evolution to explain the emergence of new species [28] and immunology. As the
immune system protects the host from invaders, an immune inspired computational system
would be able to detect undesirable behaviours or, in the context of data mining, anomalies
in data sets [29].

3.1 Motivation

The Cellular Frustration Framework (CFF) uses the ideas taken from the stable marriage
problem to propose how protection systems or methods to detect anomalies should be built [4].
Contrary to the SMP, the CFF explores the complex dynamics emerging from the existence
of potentially con�icting preferences among agents. It was noticed that they could change
considerably the stability of pairings. If the stability of pairings could have a crucial impact
on the system, for instance, to trigger a reaction, then it becomes clear that the analysis of
the complex dynamics could have a strong impact in the system's response.

In the stable marriage problem, men and women have a list of preferences and interact
with each other regarding their preferences lists. In Fig. 3.1, a population of men and women,
as well as their preferences, are depicted. In this example, men's preferences depend only on
women's hair colour and blond (brunet) men will prefer to be married with blond (brunette)
women. On the other hand, women have more complex preferences list because they are
interested in a combination of di�erent features (hair colour, type of hair, if the man wears
glasses or not, clothes, etc.). People will interact in marriages and if they both prioritise this
interaction rather than all others, the marriage will last a long time. If not, the interaction
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Figure 3.1: Example of a population with four men and women. In the top row are represented
all men and women that could appear in the population. Below are represented their preference
lists. There are two types of agents, men (squares) and women (circles) and two sub-types,
blond and brunet. According to preference lists, men chose according to women hair colour.
This de�nes two (sub-)types of men, those preferring blondes (blonde men) or those preferring
brunettes (brunet men). Women's preferences are more complex since they take into account
not only the hair colour but also whether the men wear glasses or not. A person will prefer
to interact with another person that is on top of their preference list

terminates and new marriages are created.

Inside the population de�ned in Fig. 3.1 there are several possible combinations of men
and women that will lead to di�erent dynamics. In Fig. 3.2(a) the preferences of men 2 and
4 and women 2 and 3 are illustrated. If these people now interact, they will form two long
lasting marriages, as seen in Fig. 3.2(b). Both men and both women prefer to be paired with
their current partner rather than the others (within this choice of population).

If another sub-set of men and women is chosen, the result may be di�erent. In Fig. 3.3(a),
the men 1 and 3 and the womae 1 and 4 were selected and their preferences shown. In Fig.
3.3(b), their interactions are depicted and in this case the dynamics of their interactions is
di�erent than the one in Fig. 3.2(b). Starting with marriage 1, the blond man prefers the
blond woman but she does not prefer him, so when the brunet man appears, she terminates
her previous marriage and gets married with the brunet man, marriage 2. Now, the brunet
man is the one that is not happy and he prefers the brunette woman, so he terminates his
marriage and begins a new one with the brunette woman. This dynamics continues to happen
inde�nitely because at least one of the person interacting is going to prefer some other person
instead of its current partner. In this case, all the marriages will be short lived and the
dynamics is frustrated. However, if now a new man appears, one that none of the women have
seen before, their preference towards him can be any. They may prefer to partnered with him
rather than the other men or they may not. If they do prefer to form a marriage with this
new man, the dynamics is disrupted and there will be a long lasting marriage. It can be easily
seen, that a frustrated dynamics can be created by choosing carefully the population or by
changing the women's preferences list.

A frustrated dynamics is exactly what we look for in cellular frustration systems. A
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Figure 3.2: Particular instance of the population with only some of the elements that can
exist in the population. According to the preference lists, stable marriages appear involving
blond and brunet men and women. This is an example of a population that reaches a stable
matching. In (a) their preferences list are displayed and in (b) their interactions. The blond
man prefers to be married with the blond woman and the blond man is on top of her preferences
list, so they form a long lasting marriage. The same is true for the brunet couple. With this
choice of men and women, the solution is stable.

dynamics that is able to have short lived pairings but also long lived pairings depending on
the agents that are presented. This is particularly useful in anomaly detection. Instead of using
men and women as agents, we use presenters and detectors. Presenters display information
from a sample in a data set, and detectors read this information and take pairing decisions
accordingly. In a data set with normal and anomalous samples, the normal samples will have
short lived interactions while the anomalous samples will have long lived interactions.

3.2 Cellular Frustration Algorithm for anomaly detection

In a data set with normal and anomalous samples, one sample is presented at a time to
the system, each presenter displaying a feature value. For a data set with M samples and N
features xi, i = 0, ..., N , there will be N presenters Pi and N detectors Di. If the number
of features is too small to create the necessary dynamics, the number of presenters can be
increased and di�erent presenters would display same feature values. Also, if the number of
features is too large, then a pre-processing can be applied for dimensionality reduction.

All the presenters will interact with all the detectors in pairs. When two agents, Pi and Dj ,
interact, they both make a decision: should they form a new pair -in which case they would
terminate former pairings, if they existed- or should they stay in their current pairing. Each
agent takes these decisions using an interaction lists (ILists) the equivalent to the preference
lists in the SMP - where the signals delivered by agents of the opposite type are ranked in
descending order of priority. All agents will continuously attempt to be paired with agents of
the opposite type that deliver signals that are ranked in higher positions in their ILists.

The CFF divides presenters and detectors in two sub-types, I and II, with N
2 agents each.

Going back to the SMP example, the sub-types were whether a person was blond or brunet.
It is assumed that detectors only display a single signal: their sub-type. This establishes that
there are only two types of detectors. Presenters of sub-type I (II) rank in the top position the
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Figure 3.3: Particular instance of the population for which no stable matching can be achieved.
In (a) their preferences list are displayed and in (b) the possible marriages within this pop-
ulation are represented. The pairing dynamics shows that for all couples there will always
be an agent that can destabilise (frustrate) formed marriages. In marriage 1, the blond man
prefers to interact with the blond woman, but the blond woman does not. When a brunet
man appears, she is going to prefer to terminate her previous marriage and start a new one
with the brunet man. However, now in marriage 2, the brunet man is the one that prefers
to be with the brunette woman rather than the blond woman. So he is going to terminate
the interaction with the blond woman and start a new one with the brunette woman. And so
on, one of the agents in the interaction will prefer to interact with some other agent from the
population instead of their current partner. This creates a frustrated dynamics where all the
interactions are shortly lived.

signal delivered by sub-type I (II) detectors. By contrast, since the information displayed by
presenters is larger, the way each detector prioritises its pairings is more complex, requiring
a list with many positions to rank the di�erent perceived signals. In Figs. 3.4 and 3.5 the
agents are depicted, where the presenters are represented by squares and the detectors by
circles. The agents of sub-type I are white and of sub-type II are grey.

Here we follow [29] and assume that each detector can only perceive a binary signal - ri
or fi - from the information displayed by presenter i. However, before turning the signal into
ri or fi, there is the need to guarantee that di�erent presenters display distinct information.
The information xi is turned into a signal si:

si = i+
xi −min(xi)

max(xi)−min(xi) + ε
(3.1)

where max(xi) and min(xi) represent the maximum and minimum value of feature i in the
entire data set, and ε is a small number to ensure that di�erent presenters display disjoint
information.

This simpli�es ILists and their ordering. Still, the length of the detectors ILists will be
2N , since each presenter can have two di�erent signals. The mapping from the si signal to the
fi or ri signal perceived by a detector is made so that signals fi and ri are perceived frequently
and rarely, respectively. Hence, during training the signals perceived by detectors are mostly
f signals.
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Figure 3.4: There are two sub-types of presenter agents. Presenters are represented by squares
and agents of sub-type I are white and of sub-type II are grey. Sub-type I presenters prioritise
interactions with detectors of the �rst sub-type. The opposite happens with presenters of the
other sub-type. Each presenter displays a signal si. Each of these signals will be perceived by
each detector as a binary signal, f or r, depending on how frequent they are displayed.

Figure 3.5: Detectors are represented by circles and agents of sub-type I are white and of
sub-type II are grey. There can be many di�erent kinds of detector's ILists. In this �gure only
two kinds are represented, one for each type. In these cases, the ILists already went through
the training process and the IList from detectors of sub-type I will have on top the signals
from presenters of sub-type II and the ILists from detectors of sub-type II will have on top
the signals from presenters of sub-type I. Each detector displays as signal that depends only
on their sub-type (I or II).



(a)

(b)

Figure 3.6: Mapping established by each detector between the signal displayed by each pre-
senter and the signal perceived (f or r, for frequent or rare). The cumulative distribution
F (si) is computed for each feature with all the training samples. Then, the de�nition of a
rare signal can be made either on the left side of the distribution (a), or on the right side (b).
Each detector chooses randomly for each feature. The value of the threshold probability ti is
also random between a certain interval, usually 0 < ti < 0.2.

The discussion on how to create the f and r signals is the main subject of this thesis. It
is proposed the usage of a clustering algorithm to do this mapping in order to improve the
anomaly detection rates. However, for now, the original mapping will be presented [29]. The
discussion on how to use clustering techniques and why is it relevant, will be done in next
chapters.

Each detector �rst computes the cumulative distribution for each feature i, Fi(s), with
all the samples available for training. Then, a threshold probability is de�ned, ti, where
0 < ti < tmax and, usually, tmax = 0.2. The rare signals could be located on the left, Fig.
3.6(a), or right side, Fig. 3.6(b), of the distribution for which Fi(s) < ti or Fi(s) < 1 − ti
respectively.

Note that, how the detectors map the samples' information into rare or frequent signals
has an impact in the anomaly detection rate.

With all these de�nitions set, the frustrated dynamics can be easily understood. Presenters
and detectors will interact with one another in pairs. When they interact, they need to make
a decision, whether to create a new paring, and terminate an previous one, or to stay with
their current pair. This decision is made with the aid of the ILists. Presenters will always
prefer to interact with detectors of same sub-typeas themselves, while detectors will have more
complex ILists. For example, presenter Pi and detector Dj are in a pair. When a presenter
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Pk appears, such that its signal sk is ranked higher in the Dj IList than the signal si, the
detector Dj will terminate its current pairing and start a new pair with presenter Pk. The
Pseudo-code for the decision function is shown in Pseudo-code 3.

Algorithm 3 Function that determines pairing decisions when presenter Pi and detector Dj

interact. Both agents take a decision based on each agents' IList. The position of the signal
si in agent j is denoted by rankj(si). Note that an agent prefers to interact with agents
displaying signals that are higher on its IList and that a higher position means a lower rank
number.

1: function Decision(i,j,{Pn},{Dn},{si})
2: if Pi and Dj are alone then
3: Pair Pi and Dj

4: else if Pi is paired with Dj then

5: if Pk is alone and rankj(sk) < rankj(si) then
6: Unpair Pi and Dj

7: Pair Pk and Dj

8: Set τi and τj to 0
9: else if Dl is alone and ranki(sl) < ranki(sj) then

10: Unpair Pi and Dj

11: Pair Pi and Dl

12: Set τi and τj to 0

13: else if Pi is paired with Dj and Pk is paired with Dl then

14: if ranki(sl) < ranki(sj) and rankl(si) < rankl(sk) then
15: Unpair Pi and Dj

16: Unpair Pk and Dl

17: Pair Pi and Dl

18: Set τi, τj , τk and τl to 0
19: else if rankj(sk) < rankj(si) and rankk(sj) < rankk(sl) then
20: Unpair Pi and Dj

21: Unpair Pk and Dl

22: Pair Pk and Dj

23: Set τi, τj , τk and τl to 0

3.2.1 Training

To obtain a system capable of performing accurate anomaly detection, the cellular frus-
trated system must go through a training stage that is composed by an education and a
calibration stage. During training, only normal (non anomalous) samples are presented and
detectors are changed to increasingly frustrate the system. The important quantity to measure,
which is characteristic of the system's dynamics, is the agents' pairing lifetime. Nevertheless,
measuring directly pairings lifetimes can be di�cult, so the CFF proposes measuring instead
the fraction of pairs that last longer than a certain time. In this stage, ILists are changed
when a detector is paired for a time longer than an established threshold τn.
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Figure 3.7: Representation of the corrections introduced in a detector's IList. A presenter and
a detector of the same sub-type (in this case, sub-type I) create a pair that lasts longer than
τn because they both prioritise this pairing. A modi�cation in the IList should be introduced
to avoid producing these long lived interactions, by swapping the signal that led to this stable
pairing, represented by a red box, with a random signal ranked in any position below.

Education

Initially, frequent and rare signals from all presenters are randomly ranked in detectors
ILists. Then, the iterative frustrated dynamics begins. Agents interact randomly with agents
of the opposite type and a pair is formed if the two agents involved prioritise the interaction
relatively to their current matches, as described in Pseudo-code 3. This process repeats itself
until all agents are given a chance to choose an agent of the opposite type to interact with.
Education (correction of a detector IList) takes place when a pairing lasts longer than τn.
Then the signal from the detector's IList that led to this long pairing time is exchanged with
a randomly drawn signal from a lower position in its IList, as represented in Fig. 3.7. This
approach pushes signals from presenters of the same sub-type to lower positions on detectors
ILists, since they are the ones that create the longest pairing durations.

Pseudo-code 4 describes how to educate ILists. Education stops when τn reaches a pre-
de�ned minimum value, τmin. The decision dynamics described in Pseudo-code 3 is run for
every presenter and detector. When all agents have interacted with all agents of the opposite
type, the duration of these interactions τi will be evaluated. If τi ≥ τn then the signal of the
IList of detector i that led to the longer pairing will be swapped with a random signal that has
a lower position in the IList. If after a certain number of iterations, We, none of the pairings
exceed τn, thus Nsubs = 0, then τn is updated to the largest pairing duration (line 22). Every
Ts iterations, the sample displayed by presenters is also changed.

In this work, the same values for the user-de�ned parameters were used for all the cellular
frustration systems. In the last iteration of the education stage, the minimum value for the
largest paring time after education, τmin is equal to 100 iterations. Ts should have a small
enough value to guarantee that during education the agents see many samples. This way, they
have to integrate the information of many samples at the same time. Ts was taken as 100
iterations. We should be su�ciently large to be immune to statistical �uctuations and has the
value of 10000 iterations.

When the system is properly educated, on the top of the detectors ILists there will be
mostly signals displayed by presenters of the opposite sub-type. Fig. 3.8 illustrates the
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Algorithm 4 Education of detectors' ILists.

1: Initialise Di with a random IList with f and r signals
2: Initialise {τi} = 0
3: Initialise τn =We

4: while τn > τmin do
5: Initialise Nsubs = 0
6: Initialise τWn = 0
7: for tw in 1 to We do

8: if tw modTs = 0 then
9: Display signals from anothe sample {si}

10: for all Pi and Dj do

11: Pk : randomly selected presenter
12: Decision(k,j,{Pn},{Dn},{si})
13: Dl : randomly selected detector
14: Decision(i,l,{Pn},{Dn},{si})

15: for all Di do

16: if τi ≥ τn then
17: Pk : agent paired with Di

18: r = random integer larger than ranki(sk)
19: In Di IList swap the sinals with ranki(sk) and ranki(sr)
20: Unpair Di

21: Set τi to 0
22: Nsubs = Nsubs + 1

23: τWn = max(τi, τ
W
n )

24: if Nsubs = 0 then
25: τn = τWn

Figure 3.8: Detectors ILists after education, with N = 4. Detectors of sub-type I (D1 and D2

will have on top of their ILists frequent signals displayed by presenters of sub-type II (grey
background). The detectors of the other sub-type (D3 andD4) will have on top frequent signals
from presenters of sub-type I. Only the top tanked positions tend to be educated, i.e.,avoid
having on top positions signals displayed by presenters of the same sub-type. However, there
can be small mistakes, here represented by signal f2 in D1 IList or signal r3 in D4 IList.
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Figure 3.9: Representation of the ordered vector, c0i,j(τact), of the number of pairs that last
longer than τact for the same Pi and all the samples, for a typical cellular frustration system.
In the �gure, two ordered vectors are presented: one for the calibration samples (blue line)
and the other for the detection anomalous samples (red line). In this example, the detection
samples are mostly composed of anomalous samples. In the calibration stage the ordered
vectors are calculated for each detector and the activation threshold is de�ned, de�ned by the
dashed grey horizontal line. In a latter stage, the detection stage, all the samples that have
an activation higher than the threshold (light grey area) will contribute for the �nal response
of the system.

impact of training in ILists for a data set with only 4 features (N = 4).

Calibration

After education, there is a calibration stage. The decision dynamics is run as described
in Pseudo-code 5. Pairings that last longer than a certain amount of time τA are terminated.
The decision dynamics is run for W iterations for each sample. Afterwards, the number of
pairs, c0i,s(τact), that last longer than an activation lifetime τact, involving the presenter Pi
when sample s is displayed, is registered. Here τact is chosen to be equal to the largest pairing
time in the calibration, so τact = τA.

An ordered vector, c0i,j(τact), of the number of pairs that last longer than τact for the same

Pi and all the samples can be de�ned as c0i,j(τact) ≥ c0i,(j+1)(τact),∀j. With this ordered vector,

an activation threshold can be established as n0i (τact) = c0i,x(τact) where x = Ns × ν with Ns

being the number of samples used during training and ν a real number between 0 and 1. The
ordered vector c0i,j(τact) is represented in Fig. 3.9 by the blue line and the activation threshold

n0i (τact) by the dashed grey line.

W needs to be large such that it has robust statistics. In this work it has a value of W =
10000 iterations. τA needs to be su�ciently large to guarantee that a long lived interaction
took place. Still, τA = 5 is enough, because during 5 iterations, on average, each agents
has 10 encounters and a decision has to be taken to terminate or not its current pairing.
The probability that a pairing lasts 5 iterations is already small and therefore the number
of pairings that last this long can be considered as long lived [2]. Usually ν = 0.1, thus the

24



Algorithm 5 Calibration and detection stage. The same algorithm is run for both stages
with few modi�cations. For the detection stage the ordered vector of the number of pairings
that last longer than τact is ci,s(τact) and not c0i,s(τact) as in the calibration stage. In the
calibration stage only the training samples are presented. In the detection stage both normal
and anomalous samples from the testing set are presented. Normal samples will lead to low
pairing times while anomalous samples will lead to high paring times.

1: Initialise {τi} = 0
2: Initialise ci,s = 0
3: for tw in 1 to W do

4: for all Pi and Dj do

5: Pk : randomly selected presenter
6: Decision(k,j,{Pn},{Dn},{si})
7: Dl : randomly selected detector
8: Decision(i,l,{Pn},{Dn},{si})

9: for all Di do

10: if τi ≥ τact then
11: Pk : agent paired with Di

12: Unpair Di

13: Set τi and τk to 0
14: c0i,s(τact) = c0i,s(τact) + 1

15: c0k,s(τact) = c0k,s(τact) + 1

calibration threshold is the 10% largest number of pairings that last a time longer than τact.

3.2.2 Detection

In the detection stage, both normal and anomalous samples are presented and the decision
dynamics is the same as the one used in the calibration stage, that is described in Pseudo-
code 5. The only di�erence is that in the detection stage the ordered vector of the number
of pairings that last longer than τact is ci,s(τact) and not c0i,s(τact) as in the calibration stage.
The total response to the information displayed by a sample s from the system is computed

using the normalised number of pairings c̃i,s(τact) =
ci,s(τact)
ci,s(0)

and the normalised activation

threshold ñi(τact) =
n0
i (τact)
ni(0)

. The response of the cellular frustration system is given by the
sum of the deviations to the typical responses estimated in the calibration stage, being given
by:

Rs =

N∑
i

(
c̃i,s(τact)− ñi(τact)

)
× θ
(
c̃i,s(τact)− ñi(τact)

)
(3.2)

where θ is the Heaviside function. The region where the Heaviside function is non-zero is
shown in Fig. 3.9 by the light grey area above the activation threshold. All samples that have
an activation lower than the threshold will not contribute to the global response. Thus, the
CFS response sums the increments on the number of long pairings relatively to the calibration
stage.

The goal of a good anomaly detection system is to produce extremely di�erent responses
depending on whether samples are normal (similar to those used for training; these samples
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Figure 3.10: An example on how to create a ROC curve from the total response of a cellular
frustration system. In (a), the total responses for the testing set are represented by a blue
line for normal samples and a pink line for anomalous samples. In the x axis of this plot
is the percentage of samples. By choosing the total response of the system for the normal
samples at a certain percentage, one can �nd the percentage of how many anomalous samples
would be rightly classi�ed as anomalous. This is the methodology used to create a ROC curve.
The green (purple) lines represent this method for 5% (10%) of false positive rate and the
corresponding true positive rate. In (b), the corresponding ROC curve is pictured. The green
and purple stars represent the true positive rate at 5% and 10% respectively.

should be tolerated, i.e., not trigger any e�ect) or anomalous (very di�erent from any sample
seen during training; these samples should be pointed by the detection system). In CFSs,
normal samples should frustrate considerably the dynamics, and therefore the total response
of the system should be weak, compared to the response produced when anomalous samples
are presented. Fig. 3.10(a) shows and example where this discrimination is clear. In the x
axis is the number of samples in percentage. Notice that the anomalous samples (pink line)
have higher total responses than the normal samples (blue line). In the same �gure, 3.10(a),
it is illustrated how to create a ROC (Receiver Operating Characteristic) curve. A ROC curve
is a plot that illustrates the anomaly detection rate of an algorithm as a threshold is varied.
In the x axis has the false positive rate and in the y axis the true positive rate. In our case,
for 5% of false positive, i.e.,for 5% of the normal samples being classi�ed as an anomalous
sample, there is 75% of true positive rate. In our data set, for 5% of misclassi�cations of the
normal samples there are 75% of rightly classi�ed anomalous samples. This is represented in
Fig. 3.10(a) by the green lines. The same is demonstrated for a 10% of false positive rate.
In this case, there is a 85% true positive rate and it is depicted in the �gure by the purple
lines. In Fig. 3.10(b), the whole ROC curve is depicted. This curve was created by varying
the percentage of the false positive rate and �nding the correspondent true positive rate.
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Mechanisms of detection

CFSs detect 3 types of anomalous patterns when an anomalous sample is displayed to the
cellular frustration system. The appearance of rare signals that were not seen during training,
the absence of frequently displayed signals during training and the absence of combinations
of frequently displayed signals during training.

In Fig. 3.11, the three mechanisms of detection are displayed. In Fig. 3.11(a), the ILists
from detectors D1, D2 and DN

2
are presented. These ILists already went through the training

stage. In Fig. 3.11(b), the anomalous sample in question, has a rare signal that was never
seen during training, s3. The detectors do not know in which position they should rank this
signal, so they rank it randomly. It could happen that it will be on top of their IList, D1

and DN
2
, or not, D2. If is in high positions, this signal will lead to longer pairings, will �ag

this sample as anomalous [2, 29]. In Fig. 3.11(c), this anomalous sample, does not have a
frequent signal that was seen by the detectors during training, fN

2
+16. Since this signal is

not present, all the other signals that have a lower position will go up a position [29]. This
upward shift may cause signals from the opposite sub-type to be in higher positions, leading to
larger pairing times [29]. In Fig. 3.11(d), two frequent signals that appeared during training
are both missing, fN

2
+3 and fN

2
+6. This may happen because of strong correlations between

features in the data set. Since the two signals are missing, the other signals will, again, be
pushed upwards in the detectors ILists [29]. Signals from the opposite sub-type will now be
on higher positions, which will lead to longer pairings.
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Figure 3.11: Representation of the ordering of detector's interaction lists when anomalies are
presented. In Fig. (a), the already trained ILists for detectors 1, 2 and N

2 are presented.
Notice that these detectors are of sub-type one, so on the top of their ILists are mostly signals
from sub-type II (grey). In (b), (c) and (d) the 3 mechanisms of detection are presented. In
(b), a rare signal, r3, that was not present during training is ranked by detectors in random
positions. These random signals are represented by the dashed red boxes. Detectors D1 and
DN

2
will be able to establish long lived interactions, detecting this way the anomaly. In (c),

the presented anomalous sample displays fewer frequent signals than the ones seen during
training. Because of this absent signal, fN

2
+16, the detectors ILists can have on top positions

less signals from presenters of the opposite sub-type, leading to longer interactions. The absent
signal is represented by a dashed red line. Note that the signals that are bellow the missing
one shift upwards. This is a mild e�ect but it happens on several detectors at a time. In (d)
the detection is triggered if the frequent signals that are absent were never absent together
during training, fN

2
+3 and fN

2
+6. The shifts towards are stronger in this case, even though

it a�ects a smaller number of detectors. Again, the absent signals are represented by dashed
red lines.



Chapter 4

Clustering techniques and the Cellular

Frustration system

In the previous chapter the mapping from the values displayed by presenters, to the binary
(frequent or rare) signals perceived by detectors was de�ned. This mapping used distributions
of the whole data set. In this chapter a new mapping will be presented using clustering
techniques. The premise is that even inside the set of normal samples there could be patterns
(or clusters). The application of a clustering technique to map feature values into rare and
frequent signals could help the cellular frustration algorithm achieve better anomaly detection
rates because the space where anomalous samples could lay would be enlarged.

In the 2D example of Fig. 4.1, the normal samples are the blue data points and the
anomalous, the red points. If the CFS without clustering is applied, the mapping using tails
with 5% of the samples (ti = 0.05) is pictured in solid black lines and it contains most of the
anomalous samples. Within this kind of mapping, usually, there are big regions without any
normal samples and where anomalies could arise.

If a clustering technique is performed prior to the CFS, the clusters will be de�ned and
then, the mapping of signals into rare or frequent signals will be performed twice, once for
each cluster, obtaining the dashed black lines in Fig. 4.1. Notice that now all the anomalous
samples are outside the de�ned normal space (composed by the two sub-spaces).

With this in mind, a new clustering technique was created to suit the needs of the CFS.
In this chapter, the extremes clustering technique will be explained as well how to integrate
the clustering with the cellular frustration algorithm.

4.1 Extremes Clustering Technique

In this thesis, a new clustering technique is discussed, denominated by extremes clustering
technique (ECT). This technique was created with the underlying assumption that it should
improve an algorithm that discriminates samples that have more extreme feature values com-
paring to samples considered normal.

Very often di�erent features exhibit correlations characteristic of the di�erent states or
con�gurations of a system. These correlations should be particularly noticeable when features
take extreme values. The idea of the ECT is to use these extreme values to obtain information
about how di�erent samples should be grouped in clusters.

The ECT starts by using the marginal cumulative distribution function F (xi) on feature
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Figure 4.1: A 2D example where implementing a clustering technique prior to the CFS would
be bene�cial. The normal samples (blue points) distinctly have two clusters, so mapping
the space with accumulative distributions of the whole normal sample space would create a
mapping that most of the anomalous samples (red points) belong to (solid black lines). Using
a clustering technique �rst, the space can be divided into two sub-spaces (dashed black lines)
and the anomalous samples are on the outside of it.

i, for the samples displayed during training and �nds which samples are in a right or left tail
with a pre-de�ned probability, p, typically from 0% to 10% (see the vertical black lines in Fig.
4.2(a)). With these samples, two disjoint sets, one for each cluster, S1,i and S2,i, are created
in feature i. Samples belonging to each set will, typically, have values in ranges not shared by
another features. All the samples that are inside the range de�ned by the previous samples
in other feature will be added to the corresponding set, S1,ij or S2,ij (blue and pink samples
in Fig. 4.2(a)). If the two sets overlap, S1,ij ∩ S2,ij 6= ∅, only the unique part of each set will
be considered. When more features exist, this procedure is repeated for all pairs of features
producing potentially 2(N(N − 1)) sets of samples. To properly relate the several sets, each
time a couple of new sets is found, they are labelled with the appropriate set number using
the information from a correlation matrix of the features. Afterwards, a score is associated to
each sample for each set, c1,s and c2,s, as follows:

cn,s =
∑
i

∑
j

#{s ∧ Sn,ij} n = 1, 2 (4.1)

For a sample s, this score represents how many times it has been associated to each cluster.
Depending on the samples score, the two clusters are de�ned. If a sample as null score,
the algorithm can not assign it to any of the clusters (green samples in Fig. 4.2(b)). The
Pseudo-code of this clustering algorithm is in 6 and the �nal result is depicted in Fig. 4.2(b).

4.2 Integrating responses from two CFSs

With the clustering technique described in the previous section, samples were divided in
two di�erent sub-sets (clusters). A CFS was associated to each sub-set, and frequent and rare
signals were de�ned for all detectors and each system separately using only samples from its
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Figure 4.2: Extremes clustering technique with the toy model. In (a), the procedure of the
clustering technique is presented. The black lines represent the limits of left and right tail of
the cumulative distribution function in feature 1. Then in each tail, the sample with minimum
and maximum value in the second feature will impose the limits of the set. In this �gure they
are represented by the blue and pink horizontal lines. All the samples that are within these
limits and belong to only one interval will be added to the corresponding set. In (b), the �nal
cluster are displayed with di�erent colours, blue and pink. The samples that the algorithm
was not able to assign to a cluster are depicted in green. This is a fairly simple example with
two features, so only four sets were created. In a data set with more features the extremes
clustering algorithm would be able to detect more correlations between features and produce
better clusters.
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Algorithm 6 Extremes clustering algorithm

1: Compute the correlation matrix between all features corr(xi, xj)
2: Identify the feature X with stronger correlations
3: for i in N do

4: Compute F (xi,s) with all the training samples
5: for s in training samples do
6: if corr(X,xi) > 0 then
7: if 0 < F (xi,s) < p then
8: Add s to S1,i
9: else if 1− p < F (xi,s) < 1 then

10: Add s to S2,i

11: else if corr(X,xi) < 0 then
12: if 0 < F (xi,s) < p then
13: Add s to S2,i
14: else if 1− p < F (xi,s) < 1 then
15: Add s to S1,i

16: for j in N do

17: for s in training samples do
18: if min(xj,S1,i) < xj,s < max(xj,S1,i) and

(
xj,s < min(xj,S2,i) or xj,s >

max(xj,S2,i)
)
then

19: Add s to S1,ij
20: else if min(xj,S2,i) < xj,s < max(xj,S2,i) and

(
xj,s < min(xj,S1,i) or xj,s >

max(xj,S1,i)
)
then

21: Add s to S2,ij

22: for s in training samples do
23: for k1 in S1,ij do
24: if s in k1 then
25: c1,s = c1,s + 1

26: for k2 in S2,ij do
27: if s in k2 then
28: c2,s = c2,s + 1

29: for s in training samples do
30: if c1,s − c2,s > 0 then
31: Add s to Cluster 1
32: else if c2,s − c1,s > 0 then
33: Add s to Cluster 2



cluster. Likewise, each CFS was educated using samples from its sub-set. Both CFSs were run
until τn reached the same value. Accordingly, samples from cluster 2 will be seen by system
1 as anomalous and vice-versa.

The goal is that the global system - formed by the two CFSs - should produce a weak
response, whenever any of the two CFSs produces a weak response (it would mean that the
sample is seen as belonging to the normal sub-set of samples from that CFS). If none of the two
CFSs produces a weak response then this would imply that the sample is seen as anomalous
by both CFSs and therefore should produce a strong response of the global system.

However, since both CFSs were educated separately, their dynamics can be considerably
di�erent. Consequently, it is expectable that their responses can be di�erent in magnitude
and variability. In order to make the two responses comparable we introduced a normalisation
of both responses as given by:

R̃s,i =
Rs,i − µi

σi
i =, 1, 2 (4.2)

where µi is the mean and σi the standard deviation of the responses obtained by evaluating
the samples of the other cluster rather than the cluster that the system was trained with.

In order to de�ne a global response with the properties de�ned above, we established that
the global response, Rgs , of the system is given by the minimum of the responses from each
CFS:

Rgs = min(R̃s,1, R̃s,2) (4.3)

In this way, whenever normal samples are presented, one of the two systems produces a
small response due to the frustrated dynamics, as required. In principle, anomalous samples
will not frustrate the dynamics of any system and therefore producing strong response results.

The whole procedure is summarised in Pseudo-code 7.

Algorithm 7 Entire procedure

1: Use a clustering technique to compute the two clusters
2: Create two separate systems
3: for each system do

4: Map the space with accumulative distributions and de�ne frequente and rare signals
5: Run the cellular frustration algorithm

6: Normalise the response of both systems and for each sample chose the smallest one
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Chapter 5

Results

In this chapter the cellular frustrated algorithms will be tested using two types of data sets.
Initially we will consider synthetic data sets: data sets generated with known distributions.
Synthetic data sets have several virtues. First, they can be manipulated and therefore, the
anomaly detection performance of the algorithm can be tested in very di�erent scenarios. This
is particularly relevant when algorithms have an intrusion detection application in mind. In
this case, any vulnerability could be explored by the intruder, and hence it becomes crucial
to gain knowledge of how the detection system behaves in every speci�c context. A second
set of tests will use a real data set. In the studies included here, the chosen data set is
related to quality wine evaluations, and it was chosen for two main reasons: the signi�cant
number of samples (≈5000) and its practical (and meaningful) relevance. This data set is
also interesting because anomalies can be de�ned in di�erent ways. For instance, one can be
interested in detecting excellent wines or, on the contrary, below quality wines.

In all cases, the anomaly detection performance is going to be evaluated with ROC (Re-
ceiver Operating Characteristic) curves. In order to evaluate whether the changes in the
algorithm improve previous results, the ROC curve for a CFS operating without using any
clustering technique is also presented. To further compare the CFS results with other anomaly
detection techniques, the ROC curve for a One-Class SVMs is also presented.

5.1 Synthetic data sets

The goal of this section is to demonstrate that the extremes clustering technique improves
anomaly detection rates in cellular frustrated systems. The data sets used in this section were
generated using combinations of multi-varied Gaussian functions:

f(xi|µ, σ2) =
1√
2πσ2

e−
(xi−µ)

2

2σ2 (5.1)

where µ represents the mean and σ the standard deviation.

Five di�erent sets of samples were generated. All the sets have 11 features. In each feature,
three Gaussian functions were used: two for the clusters in the normal samples and one for
the anomalous samples. In di�erent features, the parameters for the Gaussian functions were
always the same, creating a direct correlation between features. The parameters used for each
Gaussian function can be seen in Table 5.1. Each set of samples has 1000 normal samples
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Table 5.1: Values of µ and σ used for each Gaussian function and each case.

Case

Samples
Normal

(Nn = 1000)
Anomalous
(Na = 500)

Cluster 1
(N1 = 500)

Cluster 2
(N2 = 500)

µ σ µ σ µ σ

1 0.3 0.1 0.4 0.1 0.7 0.1

2 0.48 0.06 0.54 0.06 0.51 0.12

3 0.25 0.06 0.5 0.06 0.75 0.06

4 0.38 0.06 0.64 0.06 0.51 0.12

5 0.25 0.06 0.75 0.06 0.5 0.06

and 500 anomalous samples. Inside the normal samples, there are two clusters, each with 500
samples.

The training set is composed of 500 randomly drawn samples from the normal set while
the testing set has the remaining 500 normal samples and the 500 anomalous samples. The
�ve sets of samples are depicted in Fig. 5.1. The normal samples are the coloured data points,
pink and blue, where di�erent colours represent di�erent clusters.

Two clusters are found by using the extremes clustering technique. Two separate systems
are de�ned and the de�nition of rare and frequent signal is made for each detector by using the
feature values that lie on the tails of the distributions. For each system, the CFS is run. The
responses of each CFS are normalised and the minimum response for each sample is chosen.
The procedure used is the one described in Pseudo-code 7. In order to have a comparison, a
simple CFS without clustering will also be run for each set of data.

In Fig. 5.1, the mappings for a CFS without clustering (solid black lines) and for a CFS
with clustering (dashed black lines) are represented. Both of these mappings have have tails
of the same size, i.e., containing the same fraction of the samples available for education. To
ease the reading, from now on the mapping made with all the normal samples is going to be
called normal mapping and the mapping established with the clusters is going to be called
clusters mapping.

To have a comparison with other anomaly detection algorithms, the results for the One-
Class Support Vector Machines are also presented. The One-Class SVMs was implemented
using the Scikit Learn library [30]. As it was seen in Chapter 2, choosing the kernel function
can be tricky. Several kernel functions and parameters were tested. The kernel function that
produces better results, in all the synthetic models, is the RBF kernel, which is de�ned with
a Gaussian distribution

K(~xi, ~xj) = eγ||xi−xj ||
2
. (5.2)

The parameter γ de�nes the width of the Gaussian. Increasing γ, in these toy models, pro-
duces better results. However, higher values of γ produce poorly robust results that highly
depend on the number of training samples. In order to avoid problems like these, the value of
γ = 1/Nf , where Nf is the number of features, was used. The parameter ν that sets an upper
bound on the allowed number of training examples that are considered as outliers, was taken
as ν = 0.05. The presented One-Class SVMs ROC curves in this section were all achieved
with this kernel function and these parameters.
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The �rst synthetic data set has the two clusters close together while the anomalous and
normal samples are disjoint, Fig. 5.1(a). As expected, the mapping with all the normal
samples and the mapping with the clusters are similar. Since the anomalous samples are
distinct from the normal ones, the anomaly detection rate is very good in both CFSs (with
and without clustering). In Fig. 5.2(a), the ROC curves for the CFS with clustering (solid
line), CFS without clustering (dashed line) and the One-Class SVMs (dash-dotted line) are
presented. In this case, both the cellular frustrated algorithms and the One-Class SVMs
perform perfectly and can detect all the anomalous samples.

In the second data set, Fig. 5.1(b), the clusters are identical to the ones from the previous
case. The anomalous samples have similar values to the normal samples but with a bigger
variance. At �rst glance, both mappings may seem similar. However, there are some regions,
represented in red areas in Fig.5.3, where the anomalous samples are, that will lie outside of
the clusters mapping and inside of the normal mapping. Consequently, the true positive rate
will be slightly higher in the case of the CFS with clustering.

The resulting ROC curves, Fig. 5.2(b), are in agreement with this hypothesis. The curve
for the CFS with clustering is slightly better than the one without. At the same time, the
One-Class SVMs anomaly detection rate is identical to the detection rate of the CFS with
clustering.

With respect to the third data set, Fig. 5.1(c), the normal samples are composed of two
disjoint clusters and the anomalous samples are also segregated from the normal ones. This
is a trivial example where all the algorithms should perform excellently. As it was mentioned
before, the aim of this section is not only to show in what cases the CFS bene�ts from having
clusters but also that it does not produce worse results than the CFS without clustering.
Observing Fig. 5.2(c), it can be veri�ed that both the CFSs and the One-Class SVMs have a
perfect detection rate.

In the fourth data set, Fig. 5.1(d), the normal samples have also two disjoint clusters while
the anomalous samples have similar feature values as the normal samples but with a bigger
variance. It is clear, that the normal mapping contains a bigger number of anomalous samples
than the clusters mapping. The consequences of these mappings can be seen in the ROC
curves presented in Fig. 5.2(d). The CFS without clustering can barely detect any sample
correctly while the CFS with clustering has a higher detection rate. This is a case where
the clustering is critical to obtain good anomaly detection rates. The One-Class SVMs has a
better performance than the CFS without clustering but still not as good as the performance
from the CFS with clustering.

The �fth and last data set, Fig. 5.1(e), is the most drastic one. The normal samples have
also two disjoint clusters but now the anomalous samples have feature values between the
two clusters. Since the normal mapping contains all the anomalous samples, the anomalous
samples will lead to a frustrated dynamics and the CFS without clustering will not be able
to detect anything at all. Looking at Fig. 5.2(e) this can be veri�ed. The ROC curve for the
CFS without clustering shows that the algorithm can not only not detect anything but it also
classi�es wrongly normal samples as anomalous. On the contrary, the CFS with clustering
has a perfect detection rate as well as the One-Class SVM. This is due to the fact that both
of the algorithms take advantage of the existence of clusters and that the normal samples are
disjoint with the anomalous samples.
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Figure 5.1: Representation of samples from the �ve sets of synthetic data sets used in this
section. In red and blue are represented the sample values for two features from normal
samples. Black points show 500 samples values for anomalous samples. Also shown are the
tail borders using the original CFS approach (solid black lines) and the CFS with ECT (dashed
lines). In this case, tails contain 5% of samples.
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Figure 5.2: Resulting ROC curves for the cases displayed in Fig. 5.1. The solid line represents
the ROC curve obtained with the CFS with clustering, the dashed line with the CFS without
clustering and the dash-dotted line with the One-Class SVMs.



Figure 5.3: Representation of case 2, Fig. 5.1(b), closer and with ti = 0.1. The red highlighted
regions show how the clusters mapping can have slightly better anomaly detection rates. The
anomalous samples that are inside these regions will not be detected with the normal mapping.

Table 5.2: Number of samples from each training and testing set and from each group.

Number of samples in the set

Group
Training Testing
Normal Normal Anomalous

3,4,5 500 1140 3258

4,5,6 500 3318 1080

5,6,7 500 4035 363

6,7,8 500 2753 1645

7,8,9 500 560 3838

5.2 Results obtained with a real data set

Our method was applied to a data set with 4898 samples related to the evaluation of wine
quality [31]. This data set has 11 features: �xed acidity, volatile acidity, citric acid, residual
sugar, chlorides, free sulfur dioxide, total sulfur dioxide, density, pH, sulphates and alcohol.
It also has a classi�cation from 3 to 9, assigned to each wine quality assessment (3 for very
bad; 9 for excellent). It is important to notice that each class does not have the same number
of samples each. Wines evaluated with scores 3 and 9 are only a few: 20 and 5 respectively.
Wines with a score of 4 and 8 represent a small portion of the whole data set (≈ 3% each).
Wines evaluated with the scores 5, 6 and 7 are the majority, appearing, respectively, 30%,
45% and 18% of the times in the data set.

To evaluate the anomaly detection algorithm it is necessary to establish which sub-set of
wines characterises the normal class. To avoid having normal classes with too few samples,
groups were de�ned with wines scoring 3, 4 and 5, or 4, 5 and 6, or 5, 6 and 7, etc, de�ning
in this way 5 di�erent groups, see Table 5.2. In each group, only 500 of normal samples were
used in training and the remaining, along with the anomalous samples, for testing.
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Figure 5.4: Histograms for (a) bad wines and (b) good wines for 3 features with re-scaled
values between 0 and 1.

5.2.1 Comparison of clustering techniques

In this section, since the data is not synthetic anymore and the clusters are not obvious, the
three clustering techniques presented throughout this thesis, k-means, hierarchical agglomera-
tive (HA) clustering and the extremes clustering technique, are going to be compared. First, a
graphic comparison of the clusters produced by each technique is going to be made for the two
groups of normal samples that are most di�erent from each other. Then, the performances of
the CFS with the 3 clustering techniques, for all the 5 groups, are going to be compared.

The graphic comparison is going to be shown only for two groups. In one case, the normal
wines are made of wines classi�ed with 3, 4, and 5 (bad wines) while in the other group, the
normal wines are those classi�ed with 7, 8 and 9. In Fig. 5.4 histograms for some features in
the data set are shown, with re-scaled values between 0 and 1.

The three di�erent clustering techniques were applied to both groups of normal wines.
The contributions to each histogram can be appreciated in Fig. 5.5. The k-means and the
hierarchical agglomerative clustering were implemented using the Scikit Learn library [30]. The
k-means was used with k = 2 and with an Euclidean distance. The hierarchical agglomerative
clustering was used with a Ward linkage, that minimises the variance of the clusters being
merged, and with an Euclidean distance as well. By observing Fig. 5.5 one can notice that the
clusters produced by the extremes clustering technique and by the k-means are very similar.
Clusters produced by the hierarchical agglomerative are slightly di�erent from the previous
two. In any case, results clearly show that meaningful clusters are produced, involving many
features, because, for instance, low alcohol wines tend to be clustered together with wines
with high sulfur dioxide.
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It is also interesting to remark that our technique produces clusters with some similarity to
those obtained with the k-means algorithm. However, some di�erence exists (see Fig. 5.5) as
cluster edges are much sharper in k-means clusters. This is understandable since the k-means
algorithm uses a metric that translates directly on the histograms axis directions, whereas our
technique looks at the number features with rare values.

By creating clusters in the data set we expect to better divide the normal sample space
and in this way to increase the anomaly detection performance of CFSs. This can be specially
done in the case where anomalous samples would not share the same correlations as those
present in the training data set. As an example, it can be seen in Fig. 5.5(b) that samples
with high Alcohol content have low Sulfur Dioxide content. So a sample with high Alcohol and
high Sulfur Dioxide has a high probability of being anomalous. However, not every violation of
correlations will necessarily be present, because they also need to be physically or chemically
possible.

After realising that the samples that compose the 5 di�erent normal groups have indeed
meaningful clusters, the entire cellular frustration algorithm was run 3 times, once with the
results of each clustering technique to map the wine features onto f and r signals perceived
by the detectors. For each group and each clustering technique, the algorithm was run 5 times
with di�erent random initial 500 normal samples and for each group of 500 normal samples it
was run 3 times.

The �nal results of each group are shown in Fig. 5.6. In order to evaluate whether the
changes in the algorithm improve previous results, the ROC curve for a CFS operating without
using the clustering technique is also presented.

In Fig. 5.6(a), the results when the normal samples are samples belonging to the classes
3, 4 and 5 are shown. In this case, one can see that when the false positive rate has low values
(0 − 0.1) the CFS with the extremes clustering technique performs slightly better than the
CFS without clustering. However, for larger values of false positive rate, the CFS without
clustering performs better. Both CFS with k-means and hierarchical agglomerative perform
worse than the CFS with ECT. For the case depicted in Fig. 5.6(b), where the normal samples
belong to the classes 4, 5 and 6, none of the CFS with clustering can surpass the results of
the CFS without clustering. However, in Fig. 5.6(c), where the normal samples belong to 5,
6 and 7, the results for the CFS without clustering and the one for the CFS with the ECT
are similar until a false positive rate of 0.25. The CFS with k-means and HA have worse
anomaly detection rates than the CFS with ECT. In Fig. 5.6(d), where the normal samples
are the samples belonging to the classes 6, 7 and 8, both the CFS with the ECT and the
k-means perform better than the CFS without clustering. While CFS with the hierarchical
agglomerative clustering has an equivalent performance of CFS without clustering. In Fig.
5.6(e), where the normal samples belong to the classes of 7, 8 and 9, all the three CFS with
clustering out perform the CFS without clustering, being the HA the best one. Overall, the
best clustering technique for the CFS is the extremes clustering technique.

In the case where the normal samples belong to the classes 5, 6 and 7, i.e., average wines,
we can see how the algorithm detects really bad (3 and 4) wines and really good (8 and 9)
wines. In Fig. 5.7, the ROC curve for the CFS with the ECT is shown with all the anomalous
samples (solid line), with only samples belonging to the classes 3 and 4 (dashed line) and with
only samples belonging to the classes 8 and 9 (dash-dotted line). The anomaly detection rate
when the anomalous samples are bad wines is better than when the anomalous samples are
good wines. This result shows that the correlations between average wines and bad wines are
more di�erent than the correlations between average and good wines.
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Figure 5.5: Histograms obtained after applying three clustering algorithms on 3 features of
(a) bad wines and (b) good wines. First row, our algorithm; second row, k-means; third
row, hierarchical agglomerative clustering. In these plots, histograms for 500 randomly drawn
anomalous samples (not bad wines in (a). and not good wines in (b)) are also presented in
grey.
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Figure 5.6: ROC curves for wine data set. The solid line represents the ROC curve obtained
with the CFS without clustering, the dashed line with the CFS with the Extremes Clustering
Technique (ECT), the dash-dotted line with the CFS with the k-means and the dotted line
with the CFS with the hierarchical agglomerative clustering (HA). The normal samples in (a)
are the samples belonging to the classi�cation 3,4 and 5; in (b) belonging to 4,5 and 6; in (c)
to 5,6 and 7; in (d) to 6,7 and 8 and in (e) to 7,8 and 9.
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Figure 5.7: ROC curves for the CFS with ECT when the normal samples belong to classes
5,6 and 7. The solid line shows the ROC curve with all the anomalous samples; the dashed
line with only samples from the classes 3 and 4; and the dash-dotted line with samples from
classes 8 and 9.

In summary, when bad wines are used in training (3, 4 and 5; 4, 5 and 6), ROC curves
do not show an improvement when clustering is used. However, improvements can be noted
when good wines are used for training (6, 7 and 8; 7, 8 and 9). Therefore, this result con�rms
that it is possible to improve the anomaly detection rate of the cellular frustration algorithm
by better delimiting the sample space with clusters. However, results with the bad wines show
that, in order to be used in general, our technique still requires future re�nements so that even
when the anomaly detection rate does not improve with clustering it will not worsen it either.

5.2.2 Comparison with the One-Class SVMs

In order to validate our results, a comparison with a One-Class SVMs is going to be made.
However, as it was previously noted, the SVMs have several parameters that can be tuned.
The variability of the SVMs when the parameters are varied will be shown next.

In Table 5.3, the true positive rate for a false positive rate of 10% is shown for each group
of normal samples and for di�erent anomaly detection methods. The One-Class SVMs were
tested for two distinct kernels: the Radial Basis Function (RBF) and the polynomial kernel.
For the RBF, the parameter that was tuned was the γ and for the polynomial kernel it was
its degree. To compare, the true positive rate for 10% of false positive rate for the CFS with
the ECT is also shown.

When normal samples belong to classes 3, 4 and 5, and to classes 5, 6 and 7 the RBF
kernel performs better than the polynomial kernel and the results are similar with the di�erent
γ. The CFS with ECT achieves a similar result for normal samples of classes 3, 4 and 5 and
better results for normal samples of classes 5, 6 and 7. For normal samples belonging to
classes 4, 5 and 6, the RBF kernel is also better than the polynomial, however, with di�erent
γ, di�erent results are achieved. The best result is for a γ = 1/Nf , which is the default value
of the library. In this case, the CFS results are worse than the One-Class SVMs with a RBF.
On the contrary, with samples belonging to classes 6, 7, the best result with the SVMs is
achieved with a RBF kernel but with γ = 10 and the result with the CFS is better than
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Table 5.3: Values of True Positive Rate for 10% of False Positive Rate for each group of normal
samples and di�erent anomaly detection techniques. The results for the One-Class SVMs were
achieved with a ν = 0.1. Two kernels were tested: the RBF and the polynomial. For the RBF
kernel, the user-de�ned parameter γ was tested with di�erent values, from the default value
1/Nf up to 10. For the polynomial kernel, the results shown were obtained for a degree of 2
and 3.

Normal samples
One-Class SVMs

CFSRBF Polynomial
γ = 1/Nf γ = 1 γ = 10 degree= 2 degree= 3

3,4,5 16.2 16.2 16.1 7.9 8.0 16.2

4,5,6 19.5 18.8 14.2 5.5 5.2 14.1

5,6,7 23.8 23.7 24.8 12.2 12.3 26.7

6,7,8 15.2 16.1 19.1 15.5 15.4 22.3

7,8,9 12.2 14.5 32.3 23.9 24.1 23.1

Table 5.4: Values of True Positive rate for 10% of False Positive rate for normal samples
belonging to classes 7, 8 and 9 and for One-Class SVMs with a RBF kernel with γ = 10 and
a polynomial kernel of degree 3.

Number of
training samples

RBF
γ = 10

Polynomial
degree=3

10 20.6 25.1

20 21.4 24.5

50 21.2 24.5

100 21.2 24.6

200 28.0 23.7

300 29.8 24.5

400 30.8 24.4

500 32.3 24.1

any of the tested One-Class SVMs. When normal samples belong to classes 7, 8 and 9, the
best performance of the One-Class SVMs is with a RBF kernel and γ = 10. However, as
it was previously stated, a high value of γ produces unstable results that highly depend on
the number of training samples. In Table 5.4, the performances of a One-Class SVMs with a
RBF kernel with γ = 10 and with a polynomial kernel of degree 3 are evaluated for di�erent
numbers of training samples. The results for the RBF kernel depend extremely on the number
of samples, varying from a value of 20.6% to 32.3%, while the results with the polynomial
kernel are more stable and independent of the number of samples, varying from 23.7% to
25.1%. In this case, when samples belong to classes 7, 8 and 9, even though the RBF kernel
with γ = 10 produces better results for 500 samples, the polynomial kernel of degree 3 is the
most trustworthy result. With this in mind, the results for CFS with ECT, in this case, are
slightly worse than the results of the One-Class SVMs with a polynomial kernel of degree 3.

Choosing the most appropriate parameters or even the right kernel function to use in
an One-Class SVMs imposes a major di�culty. On the other hand, results of the cellular
frustration algorithm tend to be consistent overall.
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Chapter 6

Conclusions

In this thesis it was shown that algorithms of agents engaging in a frustrated dynamics
(cellular frustration models) can be used to perform the complex computation task of detecting
anomalies in data sets.

The main goal of this thesis was to show that anomaly detection rates could be improved
if cellular frustration models used a clustering technique to de�ne how the di�erent agents
processed the information presented in each sample. Some synthetic data set were presented
where the application of a clustering technique prior to the cellular frustration system was
bene�cial and anomaly detection rates were better than without clustering. It was also shown,
with synthetic data sets, that the application of the clustering technique did not worsen results.

Three di�erent clustering techniques were presented and compared: the k−means, the
hierarchical agglomerative clustering and the extremes clustering technique. The latter is a
technique devised in this thesis that is the most suited to CFSs. This clustering technique
assumed that samples with opposite extreme values on a feature should belong to di�erent
clusters provided other features had values in non-overlapping intervals. We showed that in
a real data set (on wine quality) all the clustering techniques produced well de�ned clusters
which, in some cases, helped improving the anomaly detection rate of cellular frustrated
algorithms. In most cases that were studied, the anomaly detection rates of the CFS with each
clustering technique were similar. However, the extremes clustering technique was, overall,
the best clustering technique. It also has an advantage over the other techniques. When there
are no meaningful clusters in the data set, the extremes clustering technique will not produce
any clusters (the sets will be empty), while the k-means and the hierarchical agglomerative
clustering will always produce any number of clusters.

The results of the cellular frustration system with the extremes clustering technique were
compared with the One-Class support vector machines. In this, it was shown how much the
results of the One-Class SVMs vary with the change of the user de�ned parameters.

These results are signi�cant because they show directions on how cellular frustrated algo-
rithms could be improved. However, more extensive studies using other data sets should be
conducted to appreciate the extension of the improvements.
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