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resumo 
 

 

Nesta dissertação é proposto um sensor biaxial em fibra ótica, baseado em 
redes de Bragg, para monitorização simultânea de pressões plantar e de 
cisalhamento. 
 
Este trabalho começa com a definição do problema: as consequências de 
patologias associadas ao pé diabético e distúrbios na sincronização dos 
membros inferiores. Foram analisados vários estudos publicados 
anteriormente sobre sensores de pressão plantar, as diversas metodologias 
e aplicações já existentes.  
Foi realizada uma pesquisa na área da biomecânica, com particular foco no 
padrão de marcha e na anatomia do pé humano, de forma a compreender 
as diferentes fases da marcha e os pontos de maior interesse para 
monitorização da pressão do pé. 
Assim, foi desenvolvido um estudo sobre a resposta de sensores baseados 
em redes de Bragg à pressão, em várias configurações de células 
sensoriais, culminando na integração desses sensores em palmilhas. Foram 
obtidas sensibilidades para pressão normal entre 0,56 e 2,16 pm/kPa e, para 
pressão de cisalhamento, entre 0,51 e 3,98 pm/kPa. 
Estas demonstram ser uma solução não invasiva, com potencial de ser 
incluída em sistemas e-Health, para monitorização da marcha em tempo 
real. Podem ser preparadas para uso médico diário, servindo como 
importantes ferramentas no auxílio para a prevenção e diagnóstico, em 
especial de doenças do pé. 
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abstract 

 
In this dissertation a biaxial optical fiber sensor, based on Bragg gratings, is 
proposed for simultaneous monitoring of plantar and shear pressures. 
 
This work begins with the definition of the problem: the consequences of 
pathologies associated with diabetic foot and lower limbs disorders. It was 
analysed several previously published studies on plantar pressure sensors, 
the several methodologies and applications that already exist. 
A biomechanical research was carried out, with particular focus on gait 
pattern and human foot anatomy, in order to understand the different gait 
phases and points of greatest interest for foot pressure monitoring. 
Thus, the response of sensors based on Bragg gratings was studied in 
several configurations of sensing cells, then integrated in insoles. The 
sensitivities obtained for normal pressure were between 0.56 and 
2.16 pm/kPa and, for shear pressure, between 0.51 and 3.98 pm/kPa. 
Those prove to be a non-invasive solution with potential to be included in 
e-health systems for real-time gait monitoring. They can be prepared for daily 
medical use, serving as important tools in aiding prevention and diagnosis, 
especially of foot diseases. 
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Chapter 1 

1. Introduction 

In this chapter, it is described the state of art in gait analysis and foot pressure monitoring. 

First, the basic concepts about the foot anatomy and human gait dynamics are introduced. 

It is known that irregular foot pressure and abnormal gait patterns are related to lower 

limbs pathologies, spine disorders and other skeletal muscle diseases. Also, diabetes mellitus 

and the consequent development of foot neuropathy are critically associated with abnormal 

foot’s shear and plantar pressures [1–3]. For this reason, foot pressure monitoring is a topic 

of growing interest in the scientific community. Several authors have dedicated their efforts 

to the study of gait pattern, as well as to the design of devices to monitor movement, 

coordination, and forces involved in the walking process.  

In this chapter are analyzed several devices for plantar pressure and shear measuring, 

previously reported, since the first electronic prototypes to the new configurations. 

1.1. Foot anatomy and gait pattern 

The foot is a fundamental element of the human locomotion and a complex anatomic 

structure of multiples bones and muscles. Walking, a primary activity of the human being, 

involves a series of coordinated movements between the components of the foot, ankle, knee 

and hip, in an anatomically complex synergy. During the walk, in order to propel the body 

forward, the foot is subject to perpendicular and coplanar pressures, in relation to the 

walking plane. Plantar pressure is related to all the pressure induced by body weight 

(gravitational force) and the ground reaction forces. Coplanar pressure, named in this 

document as shear pressure, is associated with the horizontal forces between the foot and 

the ground, that pushes the human body into a certain direction. When anomalous, these 

pressures are directly linked to the foot’s tissues breakdown, often causing ulceration and 

other foot related lesions [2, 3].  
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The sole of the foot is divided into three main regions – hindfoot, midfoot and 

forefoot – which can be subdivided into more specific regions of interest, such metatarsal 

and toe (hallux) areas, Figure 1.1 (a). In order to simplify the functional vision of the 

human foot, several authors point to areas such as the heel, midfoot, first metatarsal and 

toe (hallux) as critical areas for monitoring plantar and shear pressure. The information 

obtained in these regions is crucial for the understanding of the structure and the motion 

procedures of the foot and, consequently, the entire body posture and gait pattern [4–7]. 

The gait cycle can be described in two phases: stance – when the foot is in contact with the 

floor – and swing, when there is no contact between the foot and the floor [8–10]. The gait 

cycle begins in stance phase, from the moment when the heel reaches the floor and lasts 

until when the toe ceases the contact with the ground, setting the beginning the swing 

phase. For the study here analyzed, only the stance phase is relevant, since it represents the 

period of the gait cycle where the pressures are active. In Figure 1.1 (b) are represented the 

different stages of the stance phase.  

 

In detail, the stance phase can be described by a succession of moments. The starting 

moment is characterized by the contact of the heel with the ground, the heel-strike. The 

second moment happens when the entire sole of the foot is in contact with the 

ground (foot flat). From this point, the body is pushed forward, as the hip surpasses the 

knee’s plane, beginning the heel off. The stance phase continues until the foot leaves the 

contact with the ground (toe off). 

In a normal subject, the stance phase can take up to 62% of the gait cycle time. Furthermore, 

in 12% of the gait time, the two feet are simultaneously in contact with the ground, in the 

double support period, which mirrors the level of synchronization between lower limbs and 

where the stance-swing phase transition is observed [2, 10, 11].  

 
 

(a) (b) 

Figure 1.1– (a) Foot sole anatomy. (b) Scheme of the normal gait stance phase. Adapted from 

Marasovic et al. 2009. 



3 

 

1.2. Problem statement 

Diabetes mellitus is a group of metabolic disorders, characterized by the common condition 

of developing hyperglycemia [12, 13]. Long-term complications of diabetes mellitus may 

involve several organs, developing arterial insufficiency of lower limbs, gangrene and loss of 

pain sensation, leading to ulceration and consequent partial or full amputation of lower limb 

extremities [1, 3, 14–18]. The lifetime risk of a diabetic person to develop chronical peripheral 

neuropathy is 30 to 50% and the risk of ulceration can reach 25% [19-22]. Steinberg et al. 

points the diabetic foot ulcers as a major clinical problem with healing rate of 

barely 33% [23]. The financial costs associated to its treatment are considerably high, and 

it is therefore necessary to introduce foot care educational programs, special footwear and 

gait daily monitoring programs for the at-risk patients [1, 14, 23, 24].  

Stroke survivors, obese and spine disorder patients, among others, may also experience 

several types of lower limb impairments, associated with muscle or neurological injuries. 

The recognition of anomalous plantar pressures – by specialized clinical analysis or 

integrated in a daily life wearables systems – may represent a serious advance in the alarm 

of cases of critical ulceration or even support physical therapy programs [2, 11, 25]. 

The demand of health monitoring systems in a world of fast technological and wireless 

communications development, allied to demographic shift, appoint e-Health systems as a 

feasible solution in this scenario. The market of non-invasive monitoring systems is growing 

significantly in response to the ageing and disability trend of the world population. These 

devices intend to reduce the number of lower limb-related pathologies, untreated due to lack 

of care and medical supervision, providing patients real-time control, while guaranteeing 

daily mobility [26–28]. 

 

1.3. State of art 

In the last decades, gait and posture sensors have emerged along with the technological 

evolution. These devices had a crucial role in the gait pattern understanding of the gait 

pattern, being actively decisive in the clinical investigation of lower limbs diseases. Also, 

sports performance and biometric identification arise as areas of potential interest of these 

technologies. In the market, it can be found many electronic appliances for gait 

analysis – such pressure distribution platforms, imaging technologies and wearable in-shoe 

systems – equipped with piezoelectric, piezoresistive and capacitive sensors, among other 

electronic transducers.  
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In recent years, optical fibers changed the paradigm of sensor applications, especially in 

biomedical field. The intrinsic advantages and versatility of optical fibers made this 

technology a feasible alternative to electronic systems. The high sensitivity, small size, 

electromagnetic interference immunity, high accuracy, small drift and electrical isolation in 

the measuring point boost the optical fiber sensors (OFS) race in the market, with an 

increase interest of research [10, 29–34].  

Studies carried out by Zhu and collaborators culminated in a foot sensor for measuring the 

pressure distribution while walking and shuffling. The system includes two insoles 

implemented with seven conductive polymer pressure sensors and respective electronic 

apparatus for an efficient data acquisition. The location of the pressure sensors was clinically 

certified by recording the walking pattern on a foot imprinter and then fixed in the heel, 

metatarsal and hallux areas. The pressure data was collected during trials of normal walking 

and shuffling, independently. Despite the interesting results presented, this system requires 

several electronic devices, such amplifiers, RAM’s, microprocessors and other interface 

circuits that increase the complexity and weight of the arrangement [35, 36]. 

Wertsch et al. projected an insole sensor with seven piezo resistive sensors to evaluate 

pressure-time data. This insole was later remodeled by Hausdorff et al., with the purpose of 

determining the temporal parameters of gait. Two force resistive sensors were placed under 

heel and toe to measure heel-strike and toe-off timing. Despite the goals achieved by the 

authors, there are some limitations in this system, related to the accuracy of discrimination 

of stance phase and correspondent portion of contact of heel and toe [37, 38]. 

A study by Kernozek et al. tested the feasibility of an in-shoe foot pressure system, based 

in an insole of capacitive sensors. In this study, the author determines the reliability 

coefficients of several parameters of plantar pressure, considering seven anatomical regions 

of greater interest, spread by heel, midfoot, metatarsal and toe [5].  

Lawrence and Schmidt projected a wireless in-shoe force system intended for patients with 

impaired gait. The system consists of a pair of insoles capable of measuring the force applied 

in six areas of major interest, among those already mentioned in the studies above [39]. 

Yang and colleagues suggested a set of sensors dedicated to plantar pressure and knee joint 

angular movement. In detail, the plantar pressure sensors were designed with a base layer, 

coupled with a dome shape of styrene butadiene rubber, where two electrically conductive 

fibers were embedded. Four sensors were set in heel, middle lateral, metatarsal and toe 

areas. When pressed, the conductive fibers connect, turning into an “on” status. The sensors 

were tested in different walking routines and the information processed by a Bluetooth 

connected device, showing the path of the center of pressure (COP), in the insole [40].  
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De Rossi et al. produced an in-shoe device for pressure measurement, based in an array of 

sixty-four mechano-optoelectronic transducers, supported by on-board electronics to process 

the signal conditioning and wireless transmission. The transducer has a 12x12 mm base 

layer, where a LED and a photodiode are settled. Covering these optical components, there 

is an opaque silicone shell, which deforms when pressed, obstructing the free path of light, 

inducing a reduction in the photodiode input. The calibration of these sensors relates to the 

force applied by the output voltage of the photodiode, which can be analyzed by a computer 

or smartphone. Despite the vast number of sensors, the base electronics takes places in the 

own insole, preventing the measurement of pressure in the midfoot area [41-44].  

Bamberg et al. presented a shoe-integrated wireless sensor system to determine the 

parameters that characterize gait pattern, using electronic devices as accelerometers, 

gyroscopes, polyvinylidene fluoride strips (PVDF), force sensitive resistors (FSR), bend and 

electric field sensors. These electronic sensors can display the orientation, velocity, force 

distribution, plantar and dorsi-flexion and heel-strike and toe-off timings. The FSRs were 

placed on four of the foot sole key points. The other sensors were placed along the 

longitudinal spindle of the insole. All the data collected by the insole sensors is transmitted 

by an antenna, integrated in the shoe [45].  

Sazonov and collaborators conceptualized a wearable shoe-based device for rehabilitation of 

patients who experienced stroke scenarios, since in most cases, asynchronicity is reported. 

Similar to the Bamberg’s system, mentioned above, it consisted of a pair of shoes with five 

pressure sensors incorporated in each insole, arranged in heel, metatarsal bones and toe. 

In addition, an accelerometer sensor was placed in the heel area, to add orientation and 

motion trajectory data. Like the abovementioned systems, each shoe is equipped with a 

microcontroller and a Bluetooth connection hardware, which transmits the collected 

information to posteriorly be displayed by a smartphone software [25, 46].  

Another insole system using accelerometers, gyroscopes and force sensing resistors was 

tested by Querido et al. to ascertain the spatial-temporal gait parameters [47]. 

These parameters allied to the plantar pressure magnitude can be related with individual 

features of humans and can be perceived as a fingerprint, in personal identification. Feng 

and Yamakawa and their collaborators, developed two distinct systems of biometric 

identification, based in plantar pressure-time distribution, with a recognition rate of 

approximately 90% [33, 48, 49].  
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Anatomically, the walking routine is a complex process. As we know, the interaction 

between the skeletal structure and muscles with the floor involve not only the gravitational 

force induced by body weight on the sole of the feet, but also other-directional forces, such 

as shear stresses. The contribution of those forces is fundamental in normal gait, but it is 

also known that irregular magnitudes or repetitive stress can lead to irreversible foot 

pathologies. Therefore, clinical monitoring of plantar and shear pressure is fundamental to 

prevent ulceration of diabetic foot neuropathies [1, 2, 15, 50]. 

Marasović et al. studied the ground reaction forces in the gait pattern and evidenced the 

distinction between center of pressure and center of gravity. In his paper published in 2009, 

it is detailed the complete gait pattern in terms of vertical ground force and shear loads. 

The experiment was preformed using a force plate, equipped with conventional electronic 

transducers. It is shown the distinct stages of gait, as well as the direction of the forces, for 

a better understanding of the foot behavior while walking [10].  

Years earlier, Tappin (1980) and Lord (1992) presented a method for shear stress 

measurement, with focus on the medical studies about diabetic plantar ulceration. The data 

acquired by the bi-directional shear transducers implemented under the five metatarsal 

bones’ head – known to be the area of maximum load – demonstrated the several segments 

of shear stress and underlined its variation magnitude with the sensor location 

under foot [50, 51]. Also, for clinical shear stress measurement, Akhalaghi and Pepper 

introduced a bi-directional shear measurement system, developed at the University of Kent, 

England. Each insole, equipped with four biaxial transducers, is able to measure the 

longitudinal and transversal shear stress of heel, first and fifth metatarsals 

and toe (hallux) [52]. 

 

There are plenty other electronic sensing systems that are not contemplate in this chapter. 

Regardless of the fundamental contribution of these studies, there are inescapable 

disadvantages in the usage of electronic devices in everyday routine. A few studies intend 

to introduce the optical fibers in the biomechanics scope. The advantages of optical fibers 

may fill the gaps in the usage of electronic systems, such the dependency on electrical supply 

at the sensor point. The weightlessness, electromagnetic immunity and biocompatibility of 

optical fibers are suggestive features in human interacting sensors. Some contributions to 

the OFS applications in gait analysis are described below, featuring some of the devices 

previously reported.  

Wang et al. formulated a sensing cell based in a macrobend sensor. An array of optical 

fibers composed by two layers of parallel fibers, perpendicularly between layers, operating 
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by power loss technique can measure pressure and shear stress. The design of the sensors is 

presented in the Figure 1.2. 

 
 

(a) (b) 

Figure 1.2 – (a) Schematic representation of the operating light loss principle. (b) Shear sensor 

design. Adapted from Wang 2005. 

 

Based in this solution, topographic force maps can be generated by output intensity data, 

to evaluate the spatial prolongation of the pressure and shear stress applied. Despite of the 

results, this prototype exhibits several drawbacks when integrated in a wearable sensor 

system. The size and number of optical fibers required in each cell are some of its 

limitations [15]. 

Also, the fiber Bragg gratings’ working principle has been extensively studied in the recent 

years. As we know, its response to strain and temperature is largely appreciated in the 

optical sensors field. Based in this principle, Kanellos et al. designed a two-dimensional 

pressure sensor using one optical fiber with multiple FBGs embedded in a polymeric sheet, 

with 2.5 mm of thickness. In this experiment, 4 FBGs were used in a sensing pad (2 per 2). 

The wavelength shift and reflected optical power losses were monitored when a force was 

applied, resulting in a subsequent FBG elongation. This system revealed a sensitivity 

of 10% optical power loss per 10 kPa of pressure and a spatial resolution of 1 cm2. The 

multiplexing ability and reduced thickness of the sensor enables its implantation in diverse 

environments, suited for several biomedical applications [53].  

Koulaxouzidis et al. developed a pressure and shear stress sensor, using three FBGs 

embedded in an elastomer cube, placed in different directions. Using a similar configuration, 

Zhang and his collaborators developed, in 2013, a pressure and shear stress sensor, based in 

two FBGs, embedded in a polydimethyl-siloxane matrix. One FBG is placed horizontally, 

to measure the vertical force, while the other FBG is placed in the elastomer matrix in a 

quasi-diagonal orientation, as show in the Figure 1.3. 
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Figure 1.3 – Schematic representation of the sensing cell. 
 

The authors also conducted a simulation by the finite elements method to evaluate the 

strain along the fiber with and without gaskets and its interaction in the fiber-matrix 

bounding. The performance test was made using four gaskets, revealing a pressure sensitivity 

of 0.8 pm/Pa and shear stress sensitivity of 1.3 pm/Pa [54, 55].  

 

1.4. Goal and motivation 

Despite the wide stock of electronic plantar pressure sensors, they still present several 

limitations in their working process and implementation procedure, requiring electrical 

supply in the sensing point and heavy shielding of the electronic components. The size and 

weight are aspects that compromise the versatility and adaptability of these electronic 

systems. However, the scientific evolution – of optical fibers, in particular – suggest that 

better sensing configurations can be conceived and implemented in systems to enhance the 

life’s quality of world citizens [56].  

Optical fibers are seen as a reliable replacement of the conventional sensing technology and 

their development have been widely enlarged in the last decades. The reduced size, humidity 

resistance and ability to operate at long distance from the power source, appoint optical 

fibers as a huge competitor to mature technologies. Also, the biocompatibility, multiplexing 

ability and flexibility to attach to complex geometry make optical fibers especially suited 

for health monitoring sensing [32, 56–59] 

Based in the abovementioned features and considering the scientific progress already made 

in the health monitoring – in particular, in gait analysis – and the gaps this technology still 

has, it is proposed in this project, a biaxial optical fiber sensor, for simultaneous plantar 

and shear pressures measurement. Based in the strain dependence behavior of the FBGs, 

several sensor configurations were tested and upgraded, for plantar and shear pressures 

monitoring, culminating in the integration of those sensors in wearable insoles. The insoles 

prove to be a non-evasive solution for real-time gait monitoring to be used in e-Health 
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platforms, prepared for daily medical use, acting as an important tool to aid the prevention 

and diagnosis of foot related diseases. 

1.5. Synopsis 

This dissertation is divided into five chapters. This first chapter contains a brief introduction 

to foot anatomy, gait pattern dynamics and the common pathologies that can influence the 

normal gait. Also, it is presented the state of art regarding the scientific advances and the 

existing technology in the areas of gait analysis and plantar pressures sensors. The chapter 

ends with the presentation of the main objectives and the motivation for the development 

of this scientific work.  

The second chapter consists of a theoretical description of the optical fibers work principle 

and main features. Then, an introduction to fiber Bragg grating, its production and 

advantageous application as sensors are presented.  

The third chapter introduces the design and testing of different sensing cells configurations, 

for monitoring of plantar and shear pressures. In this study, it is evaluated the suitability 

of the materials used for future integration in a shoe insole. In that sense, the material’s 

physical properties were studied, as well as the overall operation mode of the sensing cell. 

In the fourth chapter it is presented the insoles design, comprising the integration of five 

sensing cells in key points of analysis. The results of the tests in laboratory environment are 

also presented in this chapter, as well as the possible e-Health architecture in which the 

developed insole can act as an enabler. 

The fifth, and last chapter, presents a conclusion on the work here developed and a 

perspective on future work.  
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Chapter 2 

2. Optical fiber sensors 
The invention of lasers in the 1960’s, provided optical fibers technology a remarkable 

evolution, sharping their usage for numerous purposes, from telecommunications to sensing 

applications [30, 56, 60]. The automation of processes in the modern industry and new 

technological trends like the Internet of Things (IoT) came to bring vital importance to 

sensor devices. The photosensitivity phenomenon demonstrated in the research conducted 

by Hill et al. (1978) and the possibility of writing Bragg gratings in a fiber core, unlocked 

the opportunity of using optical fibers as intrinsic sensing elements. In this chapter the 

standard optical fiber concept is  introduced and, in more detail, the fiber Bragg grating’s 

writing process and working principle as a sensing component is presented [60–64]. 

 

2.1. Working principle 

The optical fiber is an optical waveguide that consists of a dielectric structure, almost 

transparent to the operational wavelength. The cylindrical central layer – entitled as 

core – is surrounded by a concentric layer – the cladding – with a lower refractive index. 

The cladding role in the optical fiber is to ensure a uniform refractive index wrapping the 

optical fiber, so the light reflected in the bound core-cladding sustains its uniform 

propagation in the core of the fiber. However, any contamination of the cladding constitution 

may change the course of light in the fiber core. Also, most fibers, have a plastic coating for 

physical protection of the inner layers of the fiber [60, 65, 66].  

The optical signal inserted in the optical fiber is concentrated in the core and can be 

transmitted from hundreds of kilometers due to the total internal reflection, a phenomenon 

sustained by the difference between the refractive indexes of core and cladding. Figure 2.1 

presents a schematic representation of this transmission phenomenon. The difference of 



12 

 

refractive indexes can be abrupt – in step profile fibers – or gradual, called graded profile 

optical fibers. To ensure that light remains inside the core, the internal reflection must obey 

Snell's Law for incident angles lower than the critical angle 𝜙𝑐 [59, 65, 66].  

 
(a) (b) 

Figure 2.1 – (a) Multimode and (b) single-mode waveguides. 𝜙𝑐 = 𝑠𝑖𝑛−1(𝑛2

𝑛1
), where n1 and n2 

are the core and cladding refractive index, respectively.  
 

Nowadays, optical fibers are widely used in telecommunications – largely for long-distance 

communications. Optical fiber signal’s transmission depends on two basic 

parameters: the attenuation and the bandwidth. Also, absorption by the fiber material and 

scattering of the light beam out the core induces power loss of the light signal. Thus, 

attenuation is especially important because it defines the distance limit of transmission 

without the need for repeaters. Since their first development, continuous progress was made 

to reduce the power loss of the transmitted light, converging in a loss rate of 0.2 dB per 

kilometer, in the 1550 nm wavelength region. There are other low attenuation windows used 

in optical fiber communications, located in the range around 850 and 1300nm. The first one 

(850nm) present higher losses than the other two low attenuation windows, and so, it is 

suited for short-medium distance transmission [65–67].  

The light in the fiber, as an electromagnetic wave, can be propagated in a series of possible 

modes. In fact, this introduce a common problem in optical fibers communications, the 

intermodal dispersion, where the arriving time of the multiple modes is different. In order 

to minimize this effect, it is used single-mode fibers which have a very small core diameter 

in relation to multimode fibers (typically 5 𝜇𝑚 𝑡𝑜 10 𝜇𝑚, compared to multimode fibers 

that can reach core diameters of 200 𝜇𝑚) and operate with light wavelengths close to 

1500 nm. Mostly composed by silica, these single mode fibers are widely used, transmitting 

only a single guided mode, with a reduced modal dispersion [9, 60, 61, 65, 66]. 

2.2. Fiber Bragg gratings 

The optical fiber photosensitivity represents the amount of variation of the refractive index 

of the core, that can be changed by ultraviolet (UV) laser emission and is a key feature for 

the Bragg grating production. The discovery of this characteristic in the optical fibers is a 
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remarkable technological advance in the area of optical sensors, as well as a reasonable 

commercial alternative, mainly in the academic and experimental environment. 

Fiber Bragg gratings (FBGs) are periodic structures which can be photo-inscribed in the 

core of the optical fiber, along their longitudinal axis, by permanently changing its refractive 

index. There are several types of Bragg structures which are differentiated by the angle and 

spacing of the grating planes. The blazed Bragg grating, the chirped Bragg grating and the 

Bragg reflector are some examples, among other novel configurations constantly studied. 

The Bragg reflector is the most common structure holding the same spacing between the 

grating planes, perpendicular to the fiber axis (Figure 2.2) [58, 64, 68]. 

 
Figure 2.2 – Schematic representation of the phase-mask writing technique and FBG response 

signals. 
 

Beyond the multiple methods for grating writing, the phase-mask technique gets detailed in 

this chapter, for its efficiency and recurrent use in the experimental tasks of this work. 

This method requires a diffractive element – the phase-mask – which is a one-dimension 

surface-relief, transparent to UV light. The phase mask technique greatly reduces the 

complexity of the fabrication process of FBGs, being a feasible, stable and reproducible 

method for this type of gratings. When the phase mask is aligned with the fiber core and 

once the UV beam (244-248 nm) is launched, it creates an interference pattern, which 

modulates the refractive index of the optical fiber core [57, 64, 69, 70]. 

The Bragg grating condition implies the conservation of energy and momentum. Energy 

conservation is guaranteed when the frequency of incident and reflected radiation is the 

same. To assure the same for momentum, the wavevector of the diffracted radiation, 𝒌𝒇 , 

equals the wavevector of the incident wave, 𝒌𝒊, in addition to the grating wavevector, K (1). 

𝒌𝒊 + 𝑲 = 𝒌𝒇 . ( 1 ) 
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The magnitude of the grating wavevector is 2𝜋
Λ

. The incident and diffracted wavevector have 

the same magnitude, but opposite direction. Hence, equation (2) becomes 

2(
2𝜋𝑛𝑒𝑓𝑓

𝜆𝐵
) = 2𝜋

𝛬
 . ( 2 ) 

 

The center wavelength of the reflection band (Bragg wavelength, 𝜆𝐵) is related to the 

effective modal refractive index and the periodic refractive index modulation, as described 

in equation (3), and it is known as the first order Bragg condition 

𝜆𝐵 = 2𝑛𝑒𝑓𝑓𝛬 . ( 3 ) 

 

The reflectivity in the periodic perturbation of the refractive index, 𝛬, can be understood 

as Fresnel's reflection phenomenon, acting as a mirror for wavelengths that assures the 

Bragg condition. For a normal incidence, the reflection coefficient, 𝑅𝐹 , is given by  

𝑅𝐹 = (𝑛1−𝑛2

𝑛1+𝑛2
)

2
, ( 4 ) 

 

where 𝑛1 and 𝑛2 are two different refractive indexes of the surfaces involved in the 

reflection [71, 72]. Beside this dependency, the reflected signal of FBGs has a direct relation 

with strain and temperature. The sensitivity to such parameters is the major characteristic 

that allows optical fibers Bragg gratings to operate as intrinsic sensors. The change in the 

effective refractive index, as in the periodic spacing between the grating planes, induces a 

shift in the Bragg wavelength, described by equation (5) [31, 58, 64, 73–75]. 

𝛥𝜆𝐵 = 2 (𝛬
𝑑𝑛

𝑑𝑙
+ 𝑛

𝑑𝛬

𝑑𝑙
)𝛥𝑙 + 2(𝛬

𝑑𝑛

𝑑𝑇
+ 𝑛

𝑑𝛬

𝑑𝑇
)𝛥𝑇  ( 5 ) 

 

The increase of the fiber’s mechanical strain or temperature, in the FBG region, induces a 

positive shift in the Bragg wavelength. Since FBGs have residual hysteresis, the opposite 

behavior is also observed [15, 76]. Despite the high sensitivity of the FBGs, this binary 

dependence introduces several drawbacks in the sensors operation, when just one of the 

contributions is required for monitoring certain parameters. To discriminate the 

contributions of strain or temperature, some variations of the sensor scheme can be 

implemented, like strain-free FBGs as a reference for the device temperature. There are also 

other alternative demodulation techniques presented in the literature, such as first and 

second diffraction wavelength of Bragg gratings and superimposed FBGs to measure strain 

and temperature [8, 30].  
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Chapter 3 

3. Sensing cells 
As described in section 2.2., FGBs dependency on strain and temperature allows its 

application as sensors devices that operate in response to these physical parameters. 

Furthermore, when incorporated in certain configuration, FBG can also operate as sensors 

for other variables that directly depend of those above-mentioned parameters, like pressure, 

shear stress, acceleration and even chemical parameters [30, 77]. In this chapter, the design 

and implementation of a compact optical fiber sensor based on two multiplexed fiber Bragg 

gratings for the simultaneous measurement of plantar and shear pressures is described. 

 

3.1. Sensing cells design 

To manage the foot’s plantar and shear pressures analysis, the sensor’s development started 

by the design of four sensing cell configurations, able to be multiplexed and networked for 

future integration in a shoe insole. The configurations are described in the Table 1, named 

as A, B, C and D. All configurations comprise two multiplexed FBGs. Also, it was used the 

same materials in their fabrication, although with different layouts and configurations, 

taking advantage of their intrinsic characteristics under compression.  

The ideal sensing cell should be able to discriminate plantar and shear pressures in the same 

exact point. However, due to the limitations of the prototype it was adopted a two-FBGs 

solution (2 mm long), written apart with an approximate distance of 9 mm. The sensing 

cells were made on a 3D printed polymer base (polylactic acid – PLA), with two cavities 

spatially delimited. The FBGs, were then inserted in the cell, placing one FBG in each 

cavity. The cavities were completed/filled with different materials, namely cork and a 

thermo-setting epoxy resin (Liquid Lens Advanced, United Kingdom™). Those different 

materials, composing each cavity, induce different sensitivities in the FBGs, regarding their 
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response to plantar and shear pressures, which is a crucial factor for the following 

demodulation of the optical signal, described in the next section of this chapter. 

 

Table 1 – Four sensing cell configurations 

A 

  

B 

  

C 

  

D 

  

 

The red stripes over the fiber indicates the FBGs position. The optical fibers are not to scale. Black lines 

represent the glued edges. 
 

In configuration A, the cavity 1 is isolated by a square piece of granulate cork (9x9x3 mm) 

with a 2.5 mm radius hole in the center. This cavity was selected to have a stronger response 

to normal pressure measurement, since the cork provides mechanical isolation from lateral 

forces applied in the sensing cell, due to the almost zero Poisson coefficient [78]. 

The cavity 2, designed for an enhanced sensitivity to horizontal pressure measurement, is 

surrounded by polymer walls with 1.5 mm thick and 2.5 mm height, and slightly lower than 

cork wall. The optical fiber crosses both cavities, with each FBG adjusted in their center. 

The cavities are then filled with epoxy resin, to provide protection and ensure the necessary 

robustness to the sensing cell. The optical fiber is embedded in the resin inside the cavities, 

E1 
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without any other attachment point. The pressure applied to the epoxy resin in cavities 1 

and 2 is also transmitted to the FBG embedded therein [73].  

Configuration B has the same components as the version A, with only the switching of the 

cavities design. In this version, the cavity 1 preserves the polymer wall height and 

thickness and cavity 2 is isolated with a square piece of cork. Both cavities were filled with 

the same epoxy resin. The polymer walls are higher than the cavity 2 and between them, 

it was added another polymeric wall with 1 mm thickness to ensure a better structural 

stability to the sensing cell and to prevent the lateral deformation of the epoxy resin, when 

horizontal pressure is applied.  

The configuration C was built over the same polymeric base, but the piece of cork that 

isolates the cavity 1 does not contain the hole in the center. In this configuration, the optical 

fiber passes through the cork and remains completely isolated from the other components. 

The cavity 2 has the same size and materials as version A. 

The fourth configuration, named as D, was idealized after the first calibration tests of the 

three configurations described above, attempting to overcome the limitations verified (that 

will be explored in the following sections). Over the polymeric base already used in the other 

configurations and using the design of configuration C as the starting point, there were 

added two PLA walls in cavity 1, among which was placed a piece of cork (9x6x3 mm). 

Since no resin was applied to the piece of cork, the fiber was fixed with cyanoacrylate glue 

on the exposed face of the cork, that is also fixed in the edge E1 (Table 1). The cavity 2 is 

separated from cavity 1 by a 1 mm thick PLA wall, which was designed to have an enhanced 

response to plantar pressure.  

All sensing cells were then covered by a thin layer of epoxy resin 

(approximately 2 mm thick) to provide robustness to the overall cell and to protect the 

FBGs. The stiffness of the epoxy resin does not prevent the normal operation of the sensing 

cell, since its deformation propagates along the material, ultimately deforming the contained 

FBGs. 

 

3.2. Materials and pressure range 

To test the operability of the materials used in the production of the cells and to implement 

the respective computer simulations, tensile and repeatability tests were carried out on PLA 

polymer, epoxy resin and cork. For tensile testing, there were used three samples of each 

material (80x21 mm), with rectangular cross section and gauge length of 21 mm. For each 

material, three samples were tested, under the same conditions. The average results are 
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presented in the Figure 3.1. The tests were performed using a Shimadzu™ AGS-X tensile 

test machine. 

Based in Hooke’s law, the stress (𝜎) applied to a material can be related with the consequent 

strain (𝜀), under a proportional constant E, termed as Young’s Modulus. This relation is 

valid for materials that exhibit a linear elastic behavior, wherein Young’s modulus is defined 

as the slope of the linear portion of the stress-strain diagram [79, 80]. The Poisson’s ratio is 

calculated as the quotient of the variations of longitudinal length and width of the 

sample [79]. 

 

Figure 3.1 – Tensile tests average results for cork, PLA polymer and epoxy resin. 

 

As it can be seen, these materials reveal a non-linear elastic behavior (more evident in resin 

and cork stress-strain curves). In literature, there are two methods to measure the Young’s 

modulus, described as tangent and secant modulus. These two methods serve as 

approximations to the linear elastic behavior and the Young’s modulus is stated by the 

slope of the secant or tangent lines to stress-strain curves. In computer-aid analysis it is 

commonly used the tangent modulus approximation, adopted in this analysis [79, 80].  

Since the results obtained for the epoxy resin do not match the typical parameters for this 

material, they were discarded. The deviation of results is due to air bubbles that are trapped 

in the material, weakening those areas and promoting the premature break of the resin test 

pieces. Thus, Young's modulus values and Poisson's coefficient were adopted in the material 

library of an Ansys® 19 simulation software. 
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The results are presented in Table 2, with the correspondent Poisson’s ratio. 

Table 2 – Young’s Modulus determined by tangent modulus and Poisson’s ratio 

of the three materials (𝑟2: 0.9957 – 0.9995). 

Material Young’s Modulus (MPa) Poisson’s ratio 

PLA 3004.836 0.235 

Epoxy resin* 3780 0.35 

Cork 8.791 0.052 

*from Ansys 19 Materials’ library 

In the repeatability loading tests, the physical stability of the materials under repeated 

pressure loads was tested. The aim was to check the behavior of the different materials of 

the sensing cell, simulating the repeated use of the insoles. For that purpose, ten consecutive 

compression trials of 200±3 N (≈1,3072 MPa) were performed, over square samples 

(9x9x3 mm) of the same abovementioned materials (Figure 3.2). These tests were performed 

in a Shimadzu™ AGS-5KND tensile test machine. 

 

 
Figure 3.2 – (a) Scheme of the experimental setup. (b) Repeatability tests results. 

 

The cork samples revealed a trend of initial thickness reduction, when applied repeated 

loads of approximately 200±3 N (Figure 3.2 b). Although it is a natural material, in this 

case the cork used in the construction of the sensing cells came from composite cork sheets, 

formed by a granulate of this material. Under repeated compression, the granulate becomes 

more compact, reducing its initial thickness to decreasingly constant values, with an 

observed minimum of about 0.5 mm. However, in sensing cells A and B, this effect is not 

determinant to sensor’s operability, since the cork is embedded in epoxy resin, revealing a 

residual thickness reduction (0.17 mm after ten compression trials). PLA polymer and epoxy 

resin samples preserved their initial thickness during the trials, even at higher 

pressures (>500 N), which ensures good structural resistance to the insole. 
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Following up the loading tests, it was also carried out a compression limit test to understand 

the pressure’s threshold that can be applied to the sensing cell without breaking the FBGs 

embedded in it. A sensing cell (configuration A) was subjected to normal force, in increments 

of 20 N, up to the rupture of one of the fiber Bragg gratings of the cell, which happened for 

a load of 240 N. In Figure 3.3 is presented the resistance test of sensing cell A, showing the 

wavelength shift curve of FBGs 1 and 2 until the optical fiber rupture, between them. 

 
Figure 3.3 – Resistance test of sensing cell A. Dotted line indicates the force limit. 

 

Since the materials used in the other configurations is the same, it is expected that they 

would present similar behavior. Considering the sensor area (1.44 × 10−4 m2), the rupture 

limits obtained, imply a pressure limit of 1.67 MPa. Comparing the pressure limit of the 

optical fiber sensor with previously published works, it is verified that the pressure limit 

obtained is above the typical peak pressure values (PPP), obtained in trials while standing, 

and as presented in Figure 3.4.  

   

Cheung et al., 2005 [81] 

(PPP=0.17 MPa) 

Tao et al., 2009 [82] 

(PPP=0.15 MPa) 

Cheng et al., 2010 [83] 

(PPP=0.13 MPa) 

Figure 3.4 – Pressure maps presented in previous reports. 
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In addition, the peak plantar pressure and peak maximum shear stress (PMSS) 

values – while walking – are also presented in previous reports.  Table 3 summarizes some 

of plantar and shear pressure ranges, presented in previous studies, using different sensing 

technologies. 

Table 3 – Pressure range presented in previous studies 
 

Author Sensing site PPP (kPa) PMSS (kPa) 

Lebar et al. (1996) [84] 
1st and 5th metatarsals, 

hallux and posterior heel.  
5.4 – 43.5 6.7 – 51.4 

Lord and Hosein (2000) 

[85] 

1st to 4th metatarsals and 

heel 
187 – 273 (39.4 – 72.7) 

Hosein and Lord (2000) 

[86] 

1st to 4th metatarsals and 

heel 
152 – 228 31.0 – 86.5 

Perry et al. (2002) [87] Toe and metatarsals* 80 – 189 (18 – 33) 

Zou et al. (2006) [88] Forefoot and rearfoot 272 – 371 (66.6 – 78.7) 

Mueller et al. (2008) [89] Forefoot and rearfoot* 
325 – 739 

(387 - 988) 

70 – 170 

(93 – 230) 

Lott et al. (2008) [90] Forefoot 
328 

(414) 

70 

(90) 

*trials performed with barefoot 

() - refer to subjects with diabetes mellitus or other associated pathologies. 
 

The plantar and shear pressures’ values may differ due to different subject’s aspects, such 

as weight, age and pathologic history. Also, a variation can be attributed to sensor’s 

calibration, size, resolution or other intrinsic features [84, 91]. However, considering the 

order of magnitude of the results, the sensors cells’ design can be considered validated. After 

the materials characterization, the sensing cells were subjected to an individual calibration, 

detailed in the section 3.3. 

Also, hysteresis tests were performed on sensing cell A, using the same setup of the resistance 

test. The figure below shows the results of the wavelength shift under compression and 

decompression of both FBGs (loads up to 100 N). 
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Figure 3.5 – Resistance test of sensing cell A. Dotted line indicates the force limit. 

 

It is verified that each FBG follow a similar behavior in compression and decompression, 

proving that the hysteresis affecting the FBGs signal is residual. 

 

3.3. Calibration and Performance Testing 

Since the feedback of the FBGs is encoded in Bragg wavelength shift, Δ𝜆𝐵, the sensors 

require a normal pressure (𝑃𝑉 ) and horizontal pressure (𝑃𝑆) calibration, to discriminate the 

dependence of this parameter with strain variation, 𝛥𝜀 , in the FBG (6) 

Δ𝜆 = Κ𝜀Δ𝜀 , ( 6 ) 

 

where Κ𝜀 is the sensitivity to strain variation. For the plantar pressure and shear pressure 

calibration, it was determined the response of both FBGs to normal pressure and horizontal 

pressure, respectively. 

The sensing cells were tested and calibrated using a 3-axial electronic force sensor, composed 

by one biaxial (MBA40, Futek, Irvine, CA, USA) and one uniaxial (TPP-3/75, Transdutec, 

Barcelona, Spain) units (Figure 3.6). 
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Figure 3.6 – Scheme of the experimental setup for the calibration and testing of the sensing 

cell. 
 

Due to logistic procedures, the plantar pressure calibration of sensing cells B and C was 

performed using a Shimadzu™ tensile test machine (Figure 3.2 a). The reflected optical 

signal of the FBGs was acquired by an I-MON 512 USB (Ibsen, Farum, Denmark) 

interrogation system, with a resolution of 5 pm. 

Figure 3.7 (a) shows the typical response of the electronic force sensor and Figure 3.7 (b) 

shows the FBG sensing cells signal to the same applied normal force, with an evident 

increase of the force applied in the normal direction. The respective FBG response, is marked 

by an increase of the wavelength shift, due to the elongation of the optical fiber under 

normal pressure. 

  
(a) (b) 

Figure 3.7 – Data acquired by (a) the 3-axial electronic sensor and by (b) the optical fiber 

system, under normal force. 
 

The results presented in Figure 3.8 are related to horizontal force applied to the sensing 

cell, by sliding the metal piece placed between the sensing cell and the weight. 
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Figure 3.8 (a) shows the response of the electronic sensor while (b) corresponds to Bragg 

wavelength shifts registered for the sensing cell FBGs. It should be noted that the sliding of 

the metal piece was driven by cyclic movements of a translational stage, hence, the obtained 

results present such periodic oscillatory pattern. 

  
(a) (b) 

Figure 3.8 - Data acquired by (a) the 3-axial electronic sensor and by (b) the optical fiber 

system, under horizontal force. 
 

From this initial test, it became clear that both FBG sensors respond to the two forces 

applied: normal and shear force. Therefore, it is necessary to calibrate the sensing cell to 

normal and horizontal pressures, independently. The calibration of the FBGs is shown in 

next sections, with the wavelength shift as a function of pressure. 

3.3.1. Sensing cell A 

Sensing cell A calibration was performed in the 3-axial electronic sensor, according to the 

experimental set-up shown in Figure 3.6. The several levels of normal pressure were applied 

with the aid of a mass metal cylinder (≈ 3 Kg), with a diameter of 28 mm, adequate to 

cover the whole area of the sensing cell.  

For the horizontal pressure calibration, a metal slide was placed between the cylinder and 

the sensing cell to slide over the surface of the cell. Horizontal pressure’s calibration test 

was performed using the translation stage (Figure 3.6). The movement correspondent to a 

complete turn of the micrometric screw (≈ 360°), increases the horizontal pressure in the 

cell’s surface.  

The electronic and optical raw signals were smoothed by applying fast Fourier transform 

(FFT, 100 points) and Savitsky-Golay (100 points) filters, respectively. Also, force values 

were converted to pressure (in kPa), to standardize the unit system used in the comparison 

of the several theoretical and experimentally obtained data. Figure 3.9 represents the Bragg 
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wavelength shift as function of the normal (a) and horizontal (b) pressures applied, 

registered by FBG 1 and FBG 2.  

  

(a) (b) 

Figure 3.9 – Calibration data of FBG1 and FBG2, under (a) normal pressure and (b) 

horizontal pressure. (Sensing cell A). 
 

By linearization, the calibration constants, corresponding to the sensitivities of FBG 1 

and 2 as a function of normal (K1V (FBG 1), K2V (FBG 2)) and horizontal 

pressure (K1S (FBG 1), K2S (FBG 2)), are:  

Table 4 – Sensitivities of FBG 1 and 2, for sensing cell A. 

𝐊𝟏𝐕  

(× 10−3 nm/kPa) 

𝐊𝟏𝐒 

(× 10−3 nm/kPa) 

𝐊𝟐𝐕 

(× 10−3 nm/kPa) 

𝐊𝟐𝐒 

(× 10−3 nm/kPa) 

2.16 ± 0.02 −3.98 ± 0.01 1.12 ± 0.01 −3.72 ± 0.01 

 

3.3.2. Sensing cell B 

The sensing cell was fixed to the base of the electromechanical test machine and remained 

under constant compression of a 25.00 ± 0.01 mm steel cylinder. An increase of 10± 3 N 

load were applied per trial (≈ 65.4 kPa) up to approximately 650 kPa. The horizontal 

pressure calibration was performed using the 3-axial electronic sensor, with the same method 

abovementioned. The obtained results for both calibrations processes are represented 

in Figure 3.10. 
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(a) (b) 

Figure 3.10 – Calibration data of FBG1 and FBG2, under (a) normal pressure and (b) horizontal 

pressure. (Sensing cell B) 
 

As it can be seen, the sensitivity of the FBG 2, K2V, under normal pressure is relatively 

small when compared with the sensitivity of the FBG 1, K1V. A reasonable explanation is 

that the epoxy resin may had exceed the limits of the cavity, forming a higher gap between 

the cavities and therefore, leaving the FBG 2 less sensitive under normal pressure. Also, the 

polymer wall separating the cavities of the sensing cell may have influenced these results. 

In fact, the epoxy resin in cavity 1 is surrounded by walls of hard polymer, which when 

under compression, will induce the epoxy resin to expand through the hole where the optical 

fiber crosses the cavities, compressing the FBG 2. This effect may have the added influence 

of cancel out the FBG 2 deformation. From the results of the linear fitting, the sensitivities 

were determined as presented in the table below. 

Table 5 – Sensitivities of FBG 1 and 2, for sensing cell B. 

𝐊𝟏𝐕  

(× 10−4 nm/kPa) 

𝐊𝟏𝐒 

(× 10−4 nm/kPa) 

𝐊𝟐𝐕 

(× 10−4 nm/kPa) 

𝐊𝟐𝐒 

(× 10−4 nm/kPa) 

23.4 ± 0.1 12.50 ± 0.05 −0.47 ± 0.18 12.50 ± 0.05 

 

3.3.3. Sensing cell C 

After applying the same calibration methodology of sensing cell B, it was foreseen that this 

configuration does not meet the requirements for a quality plantar pressure measurement. 

Surely it is clear in the Figure 3.11 that this configuration does not show a prominent 

sensitivity to normal pressure, as the response of FBG 1 is considerably weaker than FBG 2, 

when under normal pressure. 
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Figure 3.11 – Calibration data of FBG1 and FBG2, under normal pressure. (Sensing cell C) 

 

The normal pressure sensitivities obtained for FBG 1 and FBG 2 are presented in Table 6. 

Table 6 – Sensitivities of FBG 1 and 2, for sensing cell C. 

𝐊𝟏𝐕  

(× 10−4 nm/kPa) 

𝐊𝟏𝐒 

 

𝐊𝟐𝐕 

(× 10−4 nm/kPa) 

𝐊𝟐𝐒 

 

1.44 ± 0.09 − − 6.0 ± 0.2 − − 

 

The sensitivity to normal pressure of both FBGs, indicates that this solution would not be 

ideal for the application in mind. Therefore, this solution was not further pursued, and 

horizontal pressure calibration was not made. However, by observing the results of this 

sensor cell, the initial idea was reformulated. Given the poor response of cork when a normal 

pressure is applied to its surface, the new design developed as already detailed in section 3.1, 

culminating in the configuration D. 

 

3.3.4. Sensing cell D 

In this configuration, the orientation of the sensor cells was switched, in relation to the other 

sensing cells. The working principle of this cell is based on the fact that the piece of cork 

(without resin) in cavity 1 should be more responsive to horizontal pressure than to normal 

pressure – due to the compression margin it still exhibits – allowing future demodulation of 

wavelength shifts into the respective pressures. Figure 3.12 shows the linear dependence of 

each FBG to normal and horizontal pressures. 
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(a) (b) 

Figure 3.12 – Wavelength shift of FBG 1 and 2, under (a) normal pressure and (b) horizontal 

pressure. 
 

The sensitivities obtained for FBG 1 and FBG 2 were as follows, in Table 7: 

Table 7 – Sensitivities of FBG 1 and 2, for sensing cell D. 

𝐊𝟏𝐕  

(× 10−4 nm/kPa) 

𝐊𝟏𝐒 

(× 10−4 nm/kPa) 

𝐊𝟐𝐕 

(× 10−4 nm/kPa) 

𝐊𝟐𝐒 

(× 10−4 nm/kPa) 

−3.3 ± 0.1 −5.09 ± 0.05 5.64 ± 0.10 −3.30 ± 0.02 

 

The calibration results of this sensing cell lead to some additional considerations. As can be 

seen in Figure 3.12, the FBG 1 has a dual behavior under normal pressure. The FBG 1 

compresses up to about 220 kPa, point after which the FBG reveals a constant behavior. 

One indicator to explain the relaxation of the FBG 1 is the distention of the piece of cork 

to higher pressures (> 220 kPa). For a better understanding of this behavior, it was used a 

computer simulation, where the stress map and behavior of the cell’s materials under normal 

pressure (500 kPa) can be observed.  

 

  
Figure 3.13 - Sensing cell’s stress (von Mises) simulation. Dotted line indicates the initial position 

of the cork piece. Red arrows (or dots) represent the pressure vectors. 
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Note that for simplification of the simulation, the optical fiber and the epoxy cover layer 

were ignored. Pressure was equally applied over the surfaces of epoxy and cork. 

In the calibration of sensing cell C, it was found poor response of the cork to normal pressure. 

Considering cell D, it seems that the FBG 1 signal is obtained not by compression of the 

cork, but by feedback of the pressure applied on the cavity 2 (epoxy resin), until a certain 

limit. The epoxy resin, when compressed, occupies the hole in the wall that bounds the 

two cavities. In fact, in Figure 3.13, it is possible to see a point of maximum tension at the 

center of the polymer wall. Since the optical fiber inside the cork is loose, fixed only in the 

front face, this behavior forces the FBG’s compression, up to a limit observed at 220 kPa. 

 

Despite the dependence of the FBG response on temperature, no thermal calibration was 

performed on the sensor cells. The reason for this decision is based on two assumptions: for 

fast-analyzes (<1 minute), the heat transfer between the human body and the sensor is not 

sufficient to distort the results of the pressure to which it is subject. On the other hand, in 

the case of prolonged use, it is assumed that sensors acquire the constant temperature of 

the human body. Once stabled, the temperature ceases to be a distorting factor of 

the FBG signal. 

 

3.4. Simultaneous PV and PS loadings 

After calibrations, the sensing cells were tested for simultaneous normal (𝑃𝑉 ) and 

horizontal (𝑃𝑆) pressures monitoring.  

The test was performed on the sensing cell, fixed to the 3-axial electronic sensor, under 

normal and horizontal pressure, simultaneously. There were performed trials of increasing 

normal pressure, complemented by the induction of horizontal (shear) pressure, using the 

micrometric screw. The responses of both FBGs to the two stimuli were recorded by the 

electronic sensor and interrogation system software. The data acquired by the two FBGs of 

each sensing cell can be related to the pressure applied through a two-equation 

system (7) [64, 92, 93] 

[
𝑃𝑉

𝑃𝑆

] =
1

𝑑
[

𝐾2𝑆 −𝐾1𝑆

−𝐾2𝑉 𝐾1𝑉

] [
𝛥𝜆𝐵1

𝛥𝜆𝐵2

] ,  ( 7 ) 

 

where 𝛥𝜆𝐵1 and 𝛥𝜆𝐵2 are the Bragg wavelength shift of FBGs 1 and 2, respectively, and 

d is the matrix determinant. This mathematical method was used in the test data of cells 

A and D, detailed in the following sections. 
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3.4.1. Sensing cell A performance test 

Following the procedure described above, it was simulated the pressure pattern during 

normal walking on the sensing cell A. Using the calibration constants determined in 

section 3.3.1, the system becomes 

[
𝑃𝑉

𝑃𝑆

] =
1

−3.58× 10−6
× [−3.72× 10−3 3.98× 10−3

−1.12× 10−3 2.16× 10−3
] [

𝛥𝜆𝐵1

𝛥𝜆𝐵2

] .  ( 8 ) 

 

Figure 3.14 shows the results of the performance test of sensing cell A. It is clear the 

horizontal pressure variations (red line), induced in the cell surface, under increasing normal 

pressure (blue line). The raw data of the optical sensors (a) was introduced in equation (8) 

to calculate the aftermath demodulated signal of FBG 1 and 2, presented in (b). The data 

acquired by the electronic 3 axial sensor (c) serve as reference, to verify the quality of the 

demodulated signals of the optical sensors. In fact, signal from plot (c) is quite similar to 

the electronic reference, being concordant with the expected result of this test. 

 
Figure 3.14 – Performance test of sensing cell A. 

 

In more detail, the curves of normal and horizontal pressure of the optical device are 

compared with the reference signal. Figure 3.15 shows normalized curves of both normal 

and shear pressures. 
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Figure 3.15 – Normalized curves for normal and horizontal pressures (sensing cell A). 

RMSEV=0.0535; RMSES=0.0487. 

The results of this sensor cell enable its introduction in shoe insoles for gait analysis, as a 

non-invasively solution, compatible with normal locomotion functions. Its test on an 

integrated multi-sensor system for foot pressure monitoring is detailed in the next chapter. 

 

3.4.2. Sensing cell D performance test 

The performance test was repeated for sensing cell D. For the results’ evaluation, only 

pressure values up to 220 kPa were considered in the operational test proceedings. In fact, 

by observation it was concluded that for values above this threshold, the FBG’s response 

ceases to be concordant with the reference values obtained by the electronic sensor. 

The results of the performance test are presented in Figure 3.16. 

 
Figure 3.16 – Performance test of sensing cell D. 
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Firstly, the optical device’s normal pressure values seem to agree with the normal pressure 

values measured by the electronic sensor. In detail, Figure 3.17 shows comparison between 

the values of both sensors and the normalized curves. 

  
(a) (b) 

Figure 3.17 – (a) Comparison of normal pressure curves, measured in both sensors and (b) the 

normalized curves for normal pressures. RMSEV=0.0625. 

 

However, the shear pressure values obtained in the optical sensor reveal very different 

magnitudes from those observed in the electronic sensor. In addition, the optical signal 

seems to follow a decreasing trend, probably influenced by the normal pressure component. 

In fact, as observed in the calibration, a possible dependence of the FBG 1 signal when 

compressing the FBG 2 is expected, so that is verified in the performance tests. 

To verify this dependence, we studied a window of values from where the cell is without 

influence of the normal pressure. The results are shown in Figure 3.18. 

 
Figure 3.18 - Performance test of sensing cell D, without normal pressure applied. 
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In fact, the descending trend is less evident now, which confirms the dependence of the 

signal of FBG 1 with the compression of FBG 2. However, the difference of magnitudes 

prevails, which possibly indicates a problem in the calibration. The fact that the cork used 

is a granular material, allowing some compression, may have incremented the effect just 

noticed. The cork, when compressed by normal pressure, becomes more compact around the 

fiber. Thus, the optical fiber that once had room to move inside the piece of cork, now finds 

more friction and, therefore, more feedback of the horizontal pressure applied in the cork. 

In conclusion, this reasoning concludes that this configuration is not adequate for monitoring 

shear pressure, since it does not contemplate the structural alterations of cork when under 

normal pressure. 
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Chapter 4 

4. Gait Analysis 
In this chapter is presented the insoles with the sensor cells implemented, as well as the 

results of simultaneous plantar and shear pressure monitoring. It is detailed the several 

components of the insoles, as well as their assembly process and testing. Finally, it follows 

the interpretation of the performance tests, with some comments about the obtained sensors 

signal quality. 

4.1. Insole design and testing 

Considering previously published studies and interpreting its results of the plantar pressure 

map, five sensing cells were manufactured in each insole, placed in points of greater interest 

to monitor. According to the reported maps of plantar pressure, the areas under greater 

pressure are the heel and the metatarsals’ heads (Figure 3.4). These are areas where shear 

pressure is equally prominent, with the addition of the hallux region.  

4.1.1. Epoxy insoles 

Figure 4.1 (a) is a schematic representation of the epoxy insoles – in this case with sensing 

cells A – where is presented the main direction of plantar and shear pressure vectors. Note 

that the shear pressure vector is bi-directional, since in a normal gait pattern, the anterior-

posterior force is observed in the beginning of the walking routine when heel strikes the 

floor, then starting the pushing movement, with the posterior-anterior force [10]. In the 

notation of Figure 4.1 (b), P-points are those associated with plantar pressure sensors and 

S-points are related to shear pressure measurements.  

The insole consists of a 1 mm thick PLA printed layer, which the sensors cells lie, aligned 

with heel, first and third metatarsals, midfoot and toe positions. Over the layer 1, it was 

placed a second layer of epoxy resin (3 mm), marked with the optical fiber guides (layer 2). 
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The optical fiber containing 10 multiplexed FBGs (with a length of 2 mm each) was 

positioned through the fiber guides, connecting all the sensing cells, so each cell houses 

two FBGs. Finally, the insole is covered with another layer of epoxy, with 2 mm thickness, 

to protect the sensors, ensure structural robustness, facilitate the cleaning and even soften 

the surface of contact with the human foot. 

  

(a) (b) 

Figure 4.1 - (a) Scheme of a sensing insole with cells A and (b) sensing cells position. 

 

The FBGs were written in a GF1 photosensitive optical fiber (Thorlabs®), by phase-mask 

technique, using a UV Bragg StarTM Industrial-LN pulsed KrF excimer laser, operating 

at 248 nm. The applied pulse energy has 5 mJ with a frequency of 500 Hz. 

The optical fiber is loose throughout the path within the fiber guide, being held only by the 

epoxy resin, in the sensing cells’ cavities. The developed system allows the simultaneous 

monitoring of plantar and shear pressures throughout the foots’ sole, with sensors responding 

to the plantar and shear pressures, and thus, to control the gait pattern of the patient. 

To complete the insole production process, all the sensing cells used in the insole were 

individually calibrated, since the sensitivity of the FBG's can change from cell to cell. The 

cell calibration process followed the same method described in section 3.3, to obtain the 

sensitivity of FBGs for normal pressure (K1V and K2V) and for shear 

pressure (K1S and K2S). Since all the FBGs were written in a single optical fiber – which 

passes through all the sensor cells – all the optical power peaks, corresponding to the 

reflected Bragg wavelengths, are observed on the same spectrum. Figure 4.2 shows the 

optical spectra, under normal loading on points P5/S5 of the insole, for four stages of 

loading. 
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Figure 4.2 – Optical spectra obtained under normal pressure. 

 

As predicted, sensor P5 has a prominent sensitivity to normal pressure in relation to S5, 

while all the other sensors remain unchanged. This isolation characteristic is a necessary 

condition for the proper operation of the sensing insole, so the pressure applied on a specific 

point does not affect the response of neighboring sensors of the insole. 

After the calibration procedure, the sensing insole was installed in a shoe for a dynamic 

monitoring testing. The test consisted in monitoring the normal walking of a healthy subject 

(female, 45 kgs, barefoot), by recording the Bragg wavelength shift values, ∆𝜆𝐵, of all FBGs, 

for a few steps, on a flat floor. Figure 4.3 presents the results of the five sensing cells, 

during a 3 seconds walk. The signal from P1 was ignored due to interrogation system’s 

malfunction, causing extensive gaps in the recorded values. 

 
Figure 4.3 – Wavelength shift, ∆𝝀𝑩, during stance and swing phase, registered for each FBG 

of the five sensing cells. 
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The results presented correspond to the FBGs optical signal directly observed in the 

interrogation system. Since the FBGs of each sensing cell respond to both pressure 

components (before demodulation), the start and end timings of each step of the gait are 

easily verifiable. Thus, after the first wavelength shift, the stance phase begins, which lasts 

until the stabilization of the Bragg wavelength shift around the initial value, marking the 

beginning the swing phase (Figure 4.3). 

With the sensitivities obtained in the calibration (present in Table 8), it was proceeded the 

demodulation of the wavelength shifts into plantar and shear pressure values. 

Table 8 – Insole’s sensing cells sensitivities. 

Sensing cell 𝐊𝟏𝐕  

(× 10−3 nm/kPa) 

𝐊𝟏𝐒 

(× 10−3 nm/kPa) 

𝐊𝟐𝐕 

(× 10−3 nm/kPa) 

𝐊𝟐𝐒 

(× 10−3 nm/kPa) 

2 3.9 ± 0.2 −1.1 ± 0.2 1.24 ± 0.08 −4.9 ± 0.5 

3 7.1 ± 0.2 −2.28 ± 0.03 2.29 ± 0.07 −1.77 ± 0.02 

4 2.2 ± 0.2 −35.15 ± 0.04 0.24 ± 0.04 −16.91 ± 0.07 

5 2.9 ± 0.3 −0.68 ± 0.07 0.82 ± 0.08 −1.29 ± 0.02 

 

The result of the demodulation of the plantar and shear pressures (using equation (8)) is 

shown in Figure 4.4. The shear pressure’s signal of the mid-foot (sensor cell 5) was ignored.  

 
Figure 4.4 – Normalized plantar and shear pressures during stance and swing phase. 

MTH=metatarsal. 
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Figure 4.5 is an expanded section of figure above, for the first metatarsal 

area (sensing cell 2), for the gait cycle 1. 

 
Figure 4.5 – Wavelength shift during stance and swing phase, for the first metatarsal. 

 

Once this sensing cell was placed underneath the first metatarsal region, the first peak of 

shear pressure is related to the beginning of the foot-flat moment. It is also evident an 

intense peak of shear pressure in the toe, first and third metatarsals, at the end of the 

stance phase (Figure 4.4). This characteristic is associated with the force applied in the 

movement of the body, at the moments of heel-off and toe-off.  

The metatarsal region is reported as the area with the highest magnitude of shear pressure. 

Figure 4.6 shows the shear pressure curves for the first and third metatarsals during a gait 

cycle.  

  
(a) (b) 

Figure 4.6 – (a) Shear pressure and (b) plantar pressure curves for first and third metatarsals 

(stance phase) 
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Again, a peak of shear is evident in both curves. The sensing cell 2 (first metatarsal) also 

records an intensity peaks at the beginning of the stance phase (already mentioned), which 

limit a lower pressure valley in between, possibly attenuated by the contribution of plantar 

pressure. In fact, although the successful demodulation of the two pressure components, the 

interference effects between FBGs signals are still not totally negligible. 

The plantar pressure curves show a pressure band, with a peak of maximum pressure at the 

different timings of the stance phase, which is consistent with other plantar pressure 

monitoring studies, using other methodologies [35, 45, 49]. 

Finally, at point 3 (toe), it is clear that the wavelength shift of FBG 2 exceeds the shift 

of FBG 1 (Figure 4.4). In fact, it induced a misrepresentation of plantar pressure values, 

leading to unrealistic contribution to shear pressures. From literature we know that shear 

pressure values are usually lower than plantar pressure (Table 3). Based on the insole 

design, it can be assumed that the results may have been influenced by the curvature made 

by the fiber around the sensing cell 3. 
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Chapter 5 

5. Conclusion and future work 
This work allowed to study pressure sensors based on FBGs and their application in a 

multiplexed system for monitoring simultaneous plantar and shear pressures. From all the 

idealized sensing cells - and within those that were tested - the satisfactory results of the 

sensing cells A are highlighted and its implementation in an insole was successful. The 

proposed cell architecture proved to be an efficient solution, making use of the intrinsic 

advantages of optical fibers, which make this type of device a feasible alternative to 

conventional technologies available in the market. 

However, some limitations still prevail in the designed optical sensor, which may motivate 

its optimization in the future. Thus, the difficulties observed in the manufacture of these 

sensors, as well as a description of their failures in the operation, are presented below. 

Materials 

The cork reveals a low Poisson’s ratio and its introduction in the sensor cells A was based 

on the removal of possible contributions of lateral forces exerted in the sensing cell, 

privileging the signal from the pressure applied in the epoxy resin. However, in cell D, the 

cork’s behavior when pressured limited its operation. In fact, the cork still exhibits a 

compression margin and, because it is a granulate material, behaves differently than the 

cork without pressure. One possible modification could be the substitution of this material 

for pure cork, or a thinner granulate, less compressible. 

Calibration 

The demodulation of plantar and shear pressures was achieved, with more evident results 

in sensing cell A. It was obtained sensitivities between 0.56 and 2.16 pm/kPa for normal 

pressure and between 0.51 and 3.98 pm/kPa, for horizontal pressure. Comparing these 
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values with those encountered in literature, it is confirmed that they are within the range 

of sensitivity previously reported in studies of Koulaxouzidis et al, who reached sensitivity 

values of 2.2  pm/kPa for normal pressure and 1.3 pm/kPa for shear/diagonal pressure [54]. 

However, some errors may have been introduced in the calibration and, as possible 

improvement, it is suggested performing future calibrations using machines of automated 

compression, with extended ranges, in order to guarantee a continuous compression (not 

stepwise, as used in this work), to ensure the maximum similarity of the calibration method 

between sensor cells and to reduce positioning errors. Also, bidirectional shear calibration 

may be useful to check if the response of the sensing cells to both directions of the shear 

pressure is the same, in the anterior-posterior axis. 

Optical fibers 

The process of inscribing FBGs contributes to the inherent fragility of optical fibers. In fact, 

in the insole manufacturing process, the dimensions of the fiber guides and sensing cells, 

must be meticulously calculated, in order to perfectly match, causing the least strain on the 

fiber. Unwanted strain will induce noise in the signal acquired by the interrogation system 

and consequently, introduce errors in the analysis of foot pressures. The most critic paths 

are between consecutive sensing cells, where the fiber is fixed by the epoxy resin. In fact, 

some of the errors observed may have been introduced by the tension applied to the fiber 

when bending the insole during walking. 

New insole configurations may suggest an architecture with fiber guides with a specific 

design, so that the fiber is looser, preventing the stretch in the limits of plantar and 

dorsi-flexion movements. 

Cork insoles 

Although not presented in this work, sensing insoles with two optical fibers – for cells A, B, 

and C – were constructed to overcome the problem with the curvature of the fiber, after 

sensor cell 3. In these insoles, some signal disturbances were observed from the bending of 

the insole, without any pressure applied in the sensing cells. This is a tremendously limiting 

factor in the normal use of the insoles since, ideally, the insole should be inert to any kind 

of contribution from the natural bending of the human foot during gait. 

Although these effects were not observed in the original insole (presented in this work), 

some changes were devised for a future optimization of the prototype. Thus, it is suggested 

the replacement of the middle layer (layer 2), originally made of epoxy resin, by a cork 

sheet. In addition, a 1.5 mm gap around the sensing cells and between the several parts 

where the cells were placed (Figure 5.1). 



42 

 

  
(a) (b) 

Figure 5.1 – (a) New insole configuration. (b) Layer 2 made from a cork sheet, cut by CO2 

laser.  

This layer can be easily obtained by CO2 laser cut process. Thus, the insole adapts to a 

greater variability of movements of the normal walking, allowing the isolation of the FBGs’ 

signal, intended for measurement of the plantar and shear pressures.  

Two prototypes of this insole were fabricated with sensing cell A and D installed. However, 

due to time constraints, these were not fully tested yet. 

Moreover, and considering that the bending of the insoles may result in a pressure applied 

in the bottom part of the insole – thus triggering the FBG wavelength shift – a vertical air 

gap between the bottom layer and the epoxy resin cell may be introduced. 

e-Health systems 

The results obtained by the sensor insoles emphasize the assumption of these as a viable 

solution for e-Health and dynamic monitoring systems. The insole proposed in this work 

would be part of a mobile e-Health system for continuous monitoring of plantar and shear 

pressures, in patients with gait disorders. This non-invasive solution comprises the sensing 

element, described and tested in this work; the interrogation system and finally, the mobile 

app. The interrogator, an expensive tool in this system, allows the recording of Bragg 

wavelength for subsequent conversion to pressure values. The mobile app would be a 

versatile tool, capable of being installed on a computer or mobile phone with wireless 

connection, where the monitoring results obtained by the sensors and presenting stats that 

can be consulted over a period. The system would be capable to transfer the continuously 

measured data to a cloud, allowing the health professionals to easily consult the patient 

performance, to elaborate a more consistent analysis, according to the displayed results.  
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Publications 

During this dissertation, a scientific paper entitled "Gait Shear and Plantar Pressure 

Monitoring: A Non-Invasive OFS Based Solution for e-Health Architectures” was published 

at MDPI Sensors journal in April of 2018. Doi: 10.3390/s18051334. 

Also, a book chapter entitled “Fiber Bragg Gratings as e-Health enablers: an overview for 

gait analysis applications”, was submitted in Application of Optical Fibre for Sensing, 

IntechOpen, London, United Kingdom, 2018. 
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