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ABSTRACT
The concepts of immobile indices and their immobility orders are objective and im-
portant characteristics of feasible sets of Semi-Infinite Programming (SIP) problems.
They can be used for formulation of new efficient optimality conditions without con-
straint qualifications. Given a class of convex SIP problems with polyhedral index
sets, we describe and justify a finite constructive algorithm (algorithm DIIPS) that
allows to find in a finite number of steps all immobile indices and the correspond-
ing immobility orders along the feasible directions. This algorithm is based on a
representation of the cones of feasible directions in the polyhedral index sets in
the form of linear combinations of extremal rays and on the approach described in
our previous papers for the cases of immobile indices’ sets of simpler structures. A
constructive procedure of determination of the extremal rays is described and an
example illustrating the application of the DIIPS algorithm is provided.
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1. Introduction

Semi-Infinite Programming (SIP) deals with extremal problems that involve infinitely
many constraints in a finite dimensional space. Due to numerous theoretical and prac-
tical applications, today semi-infinite optimization is a topic of a special interest (see
Bonnans and Shapiro (2000), Hettich and Kortanek (1993), López and Still (2007),
Stein (2003), and the references therein). The most efficient methods for solving op-
timization problems are usually based on optimality conditions that permit not only
to test the optimality of a given feasible solution, but also to find better directions
to optimality. Usually the optimality conditions are formulated for certain classes of
optimization problems. This allows for more effective use of specific structures of the
problems under consideration (see e.g. Bonnans and Shapiro (2000), Stein (2003) et
al.).
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In our papers (see e.g. Kostyukova et al. (2008), Kostyukova and Tchemisova
(2014)) we introduce the concepts of immobile indices and their immobility orders
for different classes of SIP problems. For a given a SIP problem, immobile indices can
be defined as indices of the constraints that are active for all feasible solutions. It was
shown that immobile indices are objective and important characteristics of feasible
sets allowing to formulate efficient optimality conditions which do not use constraint
qualifications (CQ) and can be successfully applied for building new constructive nu-
merical methods. We proved optimality conditions for different classes of convex SIP
problems, having formulated these conditions in both implicit and explicit form. Ob-
viously, to use these optimality conditions, as well as to develop numerical methods
based on these conditions, it is necessary to have practical algorithms that deter-
mine the immobile indices and their immobility orders. In our paper Kostyukova et al.
(2008), we described such an algorithm for the case when the indices of the constraints
have dimension one (the index set is a compact on the line). This algorithm cannot
simply be generalized for the case of multidimensional index sets, because in this case
the feasible sets have a more complex structure and, in turn, should be represented
constructively in terms of their extremal rays.

In this paper, we describe and justify a finite constructive algorithm (algorithm
DIIPS) that determines immobile indices in convex SIP problems with polyhedral
index sets. Given a feasible solution and the corresponding set of active indices, we
describe the conforming cones of feasible directions in terms of the extremal rays.
These rays are determined using a procedure that was specially elaborated for this
purpose. Next, we use the DIIPS algorithm to find the set of immobile indices of the
SIP problem and the corresponding immobility orders along the extremal directions.
An example illustrating application of the DIIPS algorithm is provided.

2. Immobile indices and immobility orders in SIP problems with
polyhedral index sets

Consider a convex Semi-Infinite Programming problem in the form

(P ) : min
x∈Rn

c(x) (1)

s.t. f(x, t) ≤ 0 ∀t ∈ T = {t ∈ Rs : hTk t ≤ ∆hk, k ∈ K}, (2)

where K is a finite index set; the objective function c(x), and the constraint functions
f(x, t), t ∈ T, are convex w.r.t. x ∈ Rn; vectors hk ∈ Rs and numbers ∆hk, k ∈ K
are given. Notice that here the index set T is a convex polyhedron. Denote by X the
feasible set of problem (P ): X = {x ∈ Rn : f(x, t) ≤ 0 ∀t ∈ T}.
Given t ∈ T , denote by Ka(t) ⊂ K the corresponding set of active indices:

Ka(t) := {k ∈ K : hTk t = ∆hk},

and by L(t) the corresponding set of feasible directions in T :

L(t) := {l ∈ Rs : hTk l ≤ 0, k ∈ Ka(t)}. (3)

Let Ta(x) ⊂ T be the set of active in x ∈ X indices: Ta(x) := {t ∈ T : f(x, t) = 0}.
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Definition 2.1. An index t̄ ∈ T is immobile in problem (P ) if

f(x, t̄) = 0 for all x ∈ X. (4)

Denote by T ∗ the set of all immobile indices in (P ). It is evident that T ∗ ⊂ Ta(x)
for all x ∈ X.

Definition 2.2. The constraints of problem (P ) satisfy the Slater condition if there
exists x̄ ∈ Rn such that f(x̄, t) < 0, t ∈ T.

In Kostyukova and Tchemisova (2012), it is proved that the convex SIP problem
(P ) with X ̸= ∅ satisfies the Slater condition (the Slater CQ) if and only if the set of
immobile indices in this problem is empty. Therefore, the emptiness of the set T ∗ can
be considered as a constraint qualification which is equivalent to the Slater CQ.

The following definition determines important quantitative characteristics of the
immobile indices.

Definition 2.3. Given an immobile index t̄ ∈ T ∗ and a nontrivial feasible direction
l̄ ∈ L(t̄), let us say that t̄ has the immobility order q(t̄, l̄) along l̄ if

(1) dif(x,t̄+αl̄)
dαi

∣∣∣
α=+0

= 0 ∀x ∈ X, i = 0, . . . , q(t̄, l̄),

(2) there exists a feasible x̄ = x(t̄, l̄) ∈ X such that d(q(t̄,l̄)+1)f(x̄,t̄+αl̄)
dα(q(t̄,l̄)+1)

∣∣∣
α=+0

̸= 0.

Here and in what follows, we consider the set {i = s, ..., k} to be empty if k < s.

We denote d0f(x,t̄+αl̄)
dα0

∣∣∣
α=+0

:= f(x, t̄).

Notice that Definition 2.3 can be easily generalized for all indices t ∈ T if one sets
q(t, l̄) := −1 for any t ∈ T \ T ∗, l̄ ∈ L(t).

3. The cone of feasible directions in the case of a polyhedral index set

Given the convex SIP problem (P ), consider an index t̄ ∈ T. Denote by L̄ := L(t̄) the
set of feasible in t̄ directions that is defined in (3). Evidently, L̄ is a polyhedral cone
in Rs and hence it is finitely generated by some vector set in Rs. In this section we
will present constructive rules for finding this vector set.

3.1. Representation of the set L̄ in terms of the extremal rays

Given t̄ ∈ T, consider the corresponding set K̄ := Ka(t̄) and the set ∆L̄ ⊂ Rs defined
as follows: ∆L̄ := {l ∈ Rs : hTk l = 0, k ∈ K̄}. Evidently, ∆L̄ = {0} for m = s and
∆L̄ is a subspace of Rs for m < s, where m = rank(hk, k ∈ K̄).

Set p := s−m and suppose that the set

{bi, i = 1, . . . , p} (5)

is a basis of ∆L̄. Consider the set ∆¯̄L = L̄
∩

∆L̄⊥, where ∆L̄⊥ is the orthogonal

complement of the subspace ∆L̄ in Rs. One can easily prove that the set ∆¯̄L is a
pointed cone, i.e. it is a cone with the following property:

for any l ̸= 0 it holds: l ∈ ∆¯̄L ⇒ −l /∈ ∆¯̄L.
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Then there exists a finite set of vectors

{ai ∈ ∆¯̄L, i ∈ I}, (6)

such that the cone L̄ can be represented in the form

L̄ = {l ∈ Rs : l =

p∑
i=1

βibi +
∑
i∈I

αiai, αi ≥ 0, i ∈ I}, (7)

where vectors bi, i ∈ {1, . . . , p}, are defined in (5) and βi ∈ R, i ∈ {1, . . . , p}.
Therefore, for any t̄ ∈ T there exist (finite) sets of vectors (5) and (6) such that

the set of feasible directions in t̄ can be represented in the form (7). The vectors of
the sets (5), (6) are usually referred to as extremal rays, vectors (5) being bidirectional
and vectors (6) being unidirectional rays.

3.2. The rules for constructing the extremal rays

In the literature, different methods for constructive representation of polyhedral cones
are proposed (see for example, Chernikova (1968) and Fernandez and Quinton (1988)).
Here we describe a simple procedure that can be used for the determination of the
sets of extremal rays (5) and (6) and, therefore, for the representation of the set L̄ in
the form (7).

Given k ∈ K̄, consider vector hk defining the index set of the problem (P ). Denote
by hki, i ∈ S := {1, 2, . . . , s}, the components of this vector: hTk = (hki, i ∈ S). Let
H be a |K̄| × |S|− matrix composed by these components:

H =

(
hki, i ∈ S

k ∈ K̄

)
.

Consider subsets S0 ⊂ S and N0 ⊂ K̄ such that |S0| = |N0| = m and the matrix

H0 = H(N0, S0) =

(
hki, i ∈ S0

k ∈ N0

)
(8)

is not singular: det(H0) ̸= 0. By construction, H0 is a square sub-matrix of the matrix
H such that rank H = rank H0 = m.

Construct vectors

b̄i = (b̄ij , j ∈ S), i ∈ S\S0, (9)

whose components are defined by the following rules: b̄ij = 0, j ∈ S\(S0
∪

i), bii = 1,

(b̄ij , j ∈ S0)
T = −H−1

0

(
hki

k ∈ N0

)
, i ∈ S\S0.

It is easy to verify that vectors (9) form a basis of the space KerH = ∆L̄. Therefore
we can set in (5) that {bi, i = 1, . . . , p} = {b̄i, i ∈ S\S0}.

Consider vector h0 :=
∑
k∈K̄

hk. If h0 = 0 ∈ Rs, then the set of vectors (6) in (7) is

empty.
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Suppose that h0 ̸= 0. Denote by Ω the set of subsets N∗ ⊂ K̄ such that |N∗| = m−1
and det(D(N∗)) ̸= 0, where D(N∗) = (h0, hk, k ∈ N∗; bi, i = 1, . . . , p)T ∈ Rs×s.

Given N∗ ∈ Ω, let a(N∗) be the first column of the matrix −D−1(N∗), i.e.
a(N∗) = −D−1(N∗)e1. Set Ω∗ := {N∗∈Ω : hTk a(N∗) ≤ 0, k ∈ K̄\N∗}. It can be easily
verified that for representation (7) we can choose the set of vectors ai, i ∈ I, in the
form

{ai, i ∈ I} := {a(N∗), N∗∈Ω∗}. (10)

Remark 1. From the constructions above, it follows that in the case m = |S0| = |K̄|,
we have I = {1, . . . ,m}, and the vectors ai = (aij , j ∈ S), i ∈ I, can be constructed
by the following rule: aij = 0, j ∈ S\S0; (aij , j ∈ S0)

T = −H−1
0 ei, i = 1, . . . ,m,

where ei ∈ Rm is the i-th vector of the canonic basis of Rm, and the matrix H0 is
given in (8).

Remark 2. In the case m = |S| = s, the set {bi, i = 1, . . . , p} is empty since p = 0.

Remark 3. As it was noted above, the set {ai, i ∈ I} is empty (I = ∅) when h0 = 0.
It can be proved that h0 ̸= 0 if the interior of the polyhedral index set T is not empty,
i.e. if the constraints defining T satisfy the Slater condition

∃t̃ ∈ T : hTk t̃ < ∆hk ∀k ∈ K.

4. Determination of the immobile indices and their immobility orders

4.1. Immobile indices and CQ-free optimality conditions

Assumption 4.1. Suppose that given a convex SIP problem in the form (P ), it holds:
X ̸= ∅, the set T is bounded, and

q(t, l) ≤ 1, ∀t ∈ T ∗, ∀l ∈ L(t) \ {0}. (11)

We consider here that conditions (11) are trivially fulfilled if T ∗ = ∅.
The following result is proved in Kostyukova and Tchemisova (2014) (Proposition

3.1).

Proposition 4.2. Assumption 4.1 implies that the set of immobile indices T ∗ consists
of a finite number of elements: T ∗ = {t∗j , j ∈ J∗} with some finite index set J∗, and
there exists x̄ ∈ X such that |Ta(x̄)| < ∞.

For any immobile index t∗j , j ∈ J∗, consider the corresponding cone of feasible
directions L(t∗j ) defined in (3). Denote by

bi(j), i = 1, . . . , pj , ai(j), i ∈ I(j), j ∈ J∗, (12)

the extremal rays generating this cone. These rays can be found by the rules described
in the previous section.

Denote

I0(j) := {i ∈ I(j) : q(t∗j , ai(j)) > 0}, I∗(j) := I(j) \ I0(j). (13)
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It can be proved that under Assumption 4.1, the optimality conditions for prob-
lem (P ) have the form of the following criterion (Theorem 3.2 in Kostyukova and
Tchemisova (2014)).

Theorem 4.3. Let Assumption 4.1 be fulfilled for the convex SIP problem (P ). Then
a vector x0 ∈ X is optimal in this problem if and only if there exists a finite set of
indices {tj , j ∈ Ja(x

0)} ⊂ Ta(x
0) \ T ∗ where |Ja(x0)| ≤ n, such that the vector x0

is optimal in the following auxiliary problem:

min
x∈Rn

c(x)

s.t. f(x, tj) ≤ 0, j ∈ Ja(x
0),

f(x, t∗j ) = 0,
∂fT (x,t∗j )

∂t B(j) = 0,
∂fT (x,t∗j )

∂t A0(j) = 0,
∂fT (x,t∗j )

∂t A∗(j) ≤ 0,

(βT (j), αT
0 (j))(B(j), A0(j))

T ∂2f(x,t∗j )

∂t2 (B(j), A0(j))

(
β(j)
α0(j)

)
≤0,

∀(β(j), α0(j))∈ Rp(j) × R|I0(j)|
+ , j ∈ J∗.

Here Rm
+ := {t ∈ Rm : t ≥ 0} and for every immobile index t∗j ∈ T ∗, j ∈ J∗ it holds

B(j) := (bi(j), i = 1, ..., p(j)), A0(j) := (ai(j), i ∈ I0(j)), A∗(j) := (ai(j), i ∈ I∗(j)).

Theorem 4.3 gives optimality conditions for problem (P ) in the form of an implicit
optimality criterion and uses the information about the immobile indices and the ex-
tremal rays representing the corresponding cones of feasible directions. In Kostyukova
and Tchemisova (2014), these conditions were reformulated in different forms, includ-
ing explicit optimality conditions. All these conditions are CQ-free and more efficient
when compared with other optimality conditions known from the literature.

It is evident that to apply Theorem 4.3 one should know the set of immobile indices
T ∗ and the corresponding index sets (13). In the next section, we present a constructive
algorithm for determination of the set of immobile indices and the corresponding sets
(13) for problem (P ). We call this algorithm DIIPS since it Determines the Set of
Immobile Indices in SIP problems with Polyhedral index Sets.

4.2. Algorithm DIIPS

Given a convex SIP problem in the form (P ), suppose that Assumption 4.1 is sat-
isfied. It follows from Proposition 4.1 that there exists a feasible solution x̄ ∈ X
such that Ta(x̄) = {t̄j , j ∈ J̄} with |J̄ | < ∞. Suppose here that such a fea-
sible solution x̄ ∈ X, the corresponding set Ta(x̄) = {t̄j , j ∈ J̄}, the vectors
bi(j), i = 1, . . . , pj ; ai(j), i ∈ I(j), defining the cones L(t̄j), j ∈ J̄ , and the index

sets Ĩ(j) = {i ∈ I(j) : ∂fT (x̄,t̄j)
∂t ai(j) = 0}, j ∈ J̄ , are known.

Initializing. Set J
(0)
∗ := ∅.

General iteration. We start the (k + 1)-st iteration of the algorithm (k ≥ 0)
having the following sets constructed on the previous iteration:

J
(k)
∗ ⊂ J̄ , I

(k)
0 (j) ⊂ Ĩ(j), j ∈ J

(k)
∗ .
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Notice that at the first iteration (k = 0) we do not use the sets I
(k)
0 (j) ⊂ Ĩ(j), j ∈ J

(k)
∗ ,

since the set J
(0)
∗ is empty.

Given j ∈ J
(k)
∗ , define

L
(k)
j := {l ∈ Rs : l = B(j)βj+A

(k)
0 (j)α

(k)
j , α

(k)
j ≥ 0, lT

∂2f(x̄, t̄j)

∂t2
l = 0, ||l|| = 1}, (14)

where for l ∈ Rs, ||l|| = max
i=1,...,s

|li|. Here B(j) := (bi(j), i = 1, ..., pj), βj ∈ Rpj ;

A
(k)
0 (j) := (ai(j), i ∈ I

(k)
0 (j)), α

(k)
j ∈ R|I(k)

0 (j)|
+ .

Let us consider the following set:

X(k+1) := {x ∈ Rn : f(x, t̄j) ≤ 0, j ∈ J̄ \ J (k)
∗ ; f(x, t̄j) = 0,

∂fT (x, t̄j)

∂t
bi(j) = 0, i = 1, . . . , pj ;

∂fT (x, t̄j)

∂t
ai(j)

{
= 0, for i ∈ I

(k)
0 (j)

≤ 0, for i ∈ Ĩ(j)\I(k)0 (j)
, lT

∂2f(x, t̄j)

∂t2
l ≤ 0, ∀l ∈ L

(k)
j , j ∈ J

(k)
∗ }.

It can be shown that x̄ ∈ X(k+1).
For all j ∈ J̄\J (k)

∗ , consider an auxiliary problem

min f(x, t̄j), s.t. x ∈ X(k+1). (Aux(1))

Set x(j) := x̄ if x̄ is optimal in the problem above; otherwise let x(j) be any vector
satisfying the following conditions: x(j) ∈ X(k+1), f(x(j), t̄j) < 0.

Set ∆J
(k+1)
∗ := {j ∈ J̄\J (k)

∗ : f(x(j), t̄j) = 0}.

For all i ∈ Ĩ(j)\I(k)0 (j), j ∈ J
(k)
∗ , consider the following auxiliary problem:

min
∂fT (x, t̄j)

∂t
ai(j), s.t. x ∈ X(k+1). (Aux(2))

Let x(ij) := x̄ if vector x̄ is optimal in problem (Aux(2)), otherwise choose any

vector x(ij) ∈ X(k+1) such that ∂fT (x(ij),t̄j)
∂t ai(j) < 0.

Set ∆I
(k+1)
0 (j) := {i ∈ Ĩ(j)\I(k)0 (j) : ∂fT (x(ij),t̄j)

∂t ai(j) = 0}, j ∈ J
(k)
∗ .

If ∆J
(k+1)
∗ = ∅ and ∆I

(k+1)
0 (j) = ∅ ∀j ∈ J

(k)
∗ , then the algorithm stops with

T ∗ = {t∗j := t̄j , j ∈ J∗ := J
(k)
∗ },

and

q(t∗j , ai(j)) = 1, j ∈ I0(j) := I
(k)
0 (j); q(t∗j , ai(j)) = 0, i ∈ I∗(j) = I(j)\I(k)0 (j), j ∈ J∗.

Otherwise (if at least one of the sets ∆J
(k+1)
∗ and ∆I

(k+1)
0 (j) is not empty), we set

J
(k+1)
∗ := J

(k)
∗
∪

∆J
(k+1)
∗ , I

(k+1)
0 (j) :=

{
I
(k)
0 (j)

∪
∆I

(k+1)
0 (j) for j ∈ J

(k)
∗

∅ for j ∈ ∆J
(k+1)
∗

,
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and proceed to the next iteration. The algorithm is described.

4.3. Justification of the algorithm DIIPS

To simplify the presentation, first suppose that we are applying the algorithm DIIPS
to a linear w.r.t. x SIP problem in the form (P ) that satisfies Assumption 4.1.

It is evident that the algorithm should stop after a finite number of iterations.
Suppose that the algorithm has stopped on the (k + 1)-st iteration. Then we have

the sets J
(k)
∗ ⊂ J̄ , I

(k)
0 (j) ⊂ Ĩ(j), j ∈ J

(k)
∗ , and vectors x(j) ∈ X(k+1), j ∈ J̄\J (k)

∗ ,

x(ij) ∈ X(k+1), i ∈ Ĩ(j)\I(k)0 (j), j ∈ J
(k)
∗ such that

f(x(j), t̄j) < 0, j ∈ J̄\J (k)
∗ ,

∂fT (x(ij), t̄j)

∂t
ai(j) < 0, i ∈ Ĩ(j)\I(k)0 (j), j ∈ J

(k)
∗ .

Since the function f(x, t) is supposed to be linear w.r.t. x and the set X(k+1) is
convex, then there exists x̂ ∈ X(k+1) such that

f(x̂, t̄j) < 0, j ∈ J̄\J (k)
∗ ,

∂fT (x̂, t̄j)

∂t
ai(j) < 0, i ∈ Ĩ(j)\I(k)0 (j), j ∈ J

(k)
∗ . (15)

It follows from the algorithm DIIPS that {t̄j , j ∈ J
(k)
∗ } ⊂ T ∗ and q(t̄j , l) > 0 for

l = Bjβj +A
(k)
0j α

(k)
0j = (Bj , A

(k)
0j )

(
βj

α
(k)
0j

)
̸= 0, α

(k)
0j ≥ 0, j ∈ J

(k)
∗ ,

where A
(k)
0j = (ai(j), i ∈ I

(k)
0 (j)), α

(k)
0j ∈ R|I(k)

0 (j)|, Bj = (bi(j), i = 1, ..., pj), βj ∈ Rpj .
Hence from Assumption 4.1, it follows

q(l, t̄j) = 1, for l = (Bj , A
(k)
0j )

(
βj

α
(k)
0j

)
̸= 0, α

(k)
0j ≥ 0, j ∈ J

(k)
∗ . (16)

Lemma 4.4. Let Assumption 4.1 be fulfilled and j ∈ J
(k)
∗ . Then there exists x∗j ∈ X

such that

(Aβ̃)T
∂2f(x∗j , t̄j)

∂t2
Aβ̃ < 0 for all β̃ = β̃(j) = (βj , α

(k)
0j )

T , α
(k)
0j ≥ 0, ||β̃|| = 1, (17)

where A = A(j) := (Bj , A
(k)
0j ).

Proof. Define the following function:

F (x, β̃) := (Aβ̃)T
∂2f(x, t̄j)

∂t2
Aβ̃ ≤ 0, β̃ ∈ B, x ∈ X, (18)

where B := {β̃ = (βj , α
(k)
0j )

T , α
(k)
0j ≥ 0, ||β̃|| = 1}.
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By construction, X ⊂ Rn is a convex set, B is compact, and the function F (x, β̃)
is convex w.r.t. x. Consider any set of vectors

{β̃r : β̃r ∈ B, r = 1, . . . , n+ 1}. (19)

According to (16) we have q(t̄j , l) = 1, for all l = Aβ̃ ̸= 0, β̃ ∈ B. Then, by Definition

2.3, for each w = 1, . . . , n+1, there exists x(w) ∈ X, satisfying the following inequality:

F (x(w), β̃w) < 0.

From the condition x(w) ∈ X, it follows that F (x(w), β̃r) ≤ 0 ∀r ̸= w, r = 1, . . . , n+ 1.

Set ¯̄x := 1
n+1

n+1∑
ω=1

x(ω). It is easy to check that

¯̄x ∈ X and F (¯̄x, β̃r) < 0, ∀r = 1, . . . , n+ 1. (20)

Thus we have showed that for any set (19) there exists the vector ¯̄x satisfying (20).
Then, according to Proposition 3 from Kostyukova and Tchemisova (2012), for the

given j ∈ J
(k)
∗ , there exists x∗j ∈ X such that F (x∗j , β̃) < 0, ∀β̃ ∈ B, i.e. inequalities

(17) take place. �

Set x̃∗ :=
∑

j∈J(k)
∗

x∗j

|J (k)
∗ |

, where x∗j ∈ X, j ∈ J
(k)
∗ , are the vectors considered in Lemma

4.4. Then x̃∗ satisfies the following conditions:

x̃∗ ∈ X, lT
∂2f(x̃∗, t̄j)

∂t2
l < 0 ∀l = Biβj +A

(k)
0j α

(k)
0j ̸= 0, α

(k)
0j ≥ 0, j ∈ J

(k)
∗ .

Moreover, we know that given an immobile index t̄j , j ∈ J∗ = J
(k)
∗ , for any x ∈ X, it

holds

f(x, t̄j) = 0,
∂fT (x, t̄j)

∂t
bi(j) = 0, i = 1, . . . , pj ;

∂fT (x, t̄j)

∂t
ai(j) = 0, i ∈ I

(k)
0 (j), j ∈ J

(k)
∗ .

Then, evidently, for the constructed above vector x̃∗, we have

f(x̃∗, t̄j) = 0,
∂fT (x̃∗, t̄j)

∂t
bi(j) = 0, i = 1, . . . , pj ;

∂fT (x̃∗, t̄j)

∂t
ai(j) = 0, i ∈ I

(k)
0 (j),

∂fT (x̃∗, t̄j)

∂t
ai(j) ≤ 0, i ∈ I(j) \ I(k)0 (j), j ∈ J

(k)
∗ .

Let z := 1
2(x̃

∗ + x̄) ∈ X, where x̄ is the vector introduced in section 4.1. Then, by
construction, the following relations are satisfied:

9



f(z, t̄j) ≤ 0, j ∈ J̄ \ J (k)
∗ , f(z, t̄j) = 0, j ∈ J

(k)
∗ ;

∂fT (z, t̄j)

∂t
bi(j) = 0, i = 1, . . . , pj ;

∂fT (z, t̄j)

∂t
ai(j)

{
< 0, i ∈ I(j) \ Ĩ(j)
≤ 0, i ∈ Ĩ(j);

lT
∂2f(z, t̄j)

∂t
l < 0 ∀l ∈ L0k(t̄j); lT

∂2f(z, t̄j)

∂t
l ≤ 0 ∀l ∈ L(z, t̄j), j ∈ J

(k)
∗ ,

where

L0k(t̄j) := {l = Biβi +A
(k)
0i α

(k)
0i , α

(k)
0i ≥ 0, (βi, α

(k)
0i ) ̸= 0};

L(z, t̄j) := {l = Biβi +Aiαi, αi ≥ 0,
∂fT (z, t̄j)

∂t
l = 0} , j ∈ J

(k)
∗ .

Given λ ∈ [0, 1], let us consider vector x(λ) := (1−λ)z+λx̂, where vector x̂ ∈ X(k+1)

satisfies (15). Taking into account the linearity of f(x, t) w.r.t. x, we have

f(x(λ), t̄j) = (1− λ)f(z, t̄j) + λf(x̂, t̄j).

Then we can conclude that for 0 < λ < 1, it holds

f(x(λ), t̄j) < 0 for j ∈ J̄ \ J (k)
∗ ; f(x(λ), t̄j) = 0 for j ∈ J

(k)
∗ ;

∂fT (x(λ), t̄j)

∂t
bi(j) = 0, i = 1, . . . , pj ;

∂fT (x(λ), t̄j)

∂t
ai(j) = 0, i ∈ I

(k)
0 (j),

∂fT (x(λ), t̄j)

∂t
ai(j) < 0, i ∈ I(j) \ I(k)0 (j);

lT
∂2f(x(λ), t̄j)

∂t2
l < 0 ∀l ∈ L0k(t̄j), j ∈ J

(k)
∗ .

(21)

It is evident that for a sufficiently small λ > 0, we can guarantee that there exists
ε(λ) ≥ 0 such that ε(λ) → 0 as λ → 0 and

f(x(λ), t) < 0, t ∈ T \
∪

j∈J(k)
∗

Tε(λ)(t̄j), (22)

where Tε(t) = {τ ∈ T : ||t− τ || ≤ ε}.
Suppose that j ∈ J

(k)
∗ . Then any t ∈ Tε(λ)(t̄i) can be presented in the form t =

t̄j + ∆tj , ∆tj ∈ L(t̄j), ||∆tj || ≤ ε(λ) and in a rather small neighborhood of t the
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following asymptotic expansion holds:

f(x(λ), t) = f(x(λ), t̄j +∆tj)

= f(x(λ), t̄j) +
∂fT (x(λ), t̄j)

∂t
∆tj +

1

2
∆tTj

∂2f(x(λ), t̄j)

∂t2
∆tj + o(||∆tj ||2)

=
∑

i∈I(j)\I(k)
0 (j)

∂fT (x(λ), t̄j)

∂t
ai(j)αi(j)

+
1

2
(βj , αj)

T (Bj , Aj)
T ∂

2f(x(λ), t̄j)

∂t2
(Bj , Aj)

(
βj
αj

)
+ o(||(βj , αj)||2),

where αj = (αi(j), i ∈ I(j)) ≥ 0.

Notice here that if (αi(j), i ∈ I(j) \ I(k)0 (j)) ̸= 0, then the first-order term in the

expansion above is negative. If (αi(j), i ∈ I(j) \ I(k)0 (j)) = 0, then this term vanishes
and we get

f(x(λ), t) = (βj , α
(k)
0j )

T (Bj , A
(k)
0j )

T ∂
2f(x(λ), t̄j)

∂t2
(Bj , A

(k)
0j )

(
βj

α
(k)
0j

)
+ o(||(βj , α(k)

0j )||
2).

In this case, f(x(λ), t) < 0 when (βj , α
(k)
0j ) ̸= 0 (taking into account (21)), and

f(x(λ), t) = f(x(λ), t̄j) = 0 when (βj , α
(k)
0j ) = 0. Then

f(x(λ), t) < 0, t ∈ Tε(λ)(t̄j) \ t̄j , j ∈ J
(k)
∗ , (23)

for sufficiently small λ > 0.
Therefore, it is proved that for a sufficiently small λ > 0 the vector x̃ = x(λ) has

the following properties:

(P1) x̃ ∈ X, i.e. x̃ is a feasible solution of problem (P ) (it follows from (22), (23)).
(P2) The following relations are valid:

f(x̃, t̄j) = 0,
∂fT (x̃, t̄j)

∂t
bi(j) = 0, i = 1, . . . , pj ;

∂fT (x̃, t̄j)

∂t
aj(j) = 0, i ∈ I

(k)
0 (j),

∂fT (x̃, t̄j)

∂t
ai(j) < 0, i ∈ I(j) \ I(k)0 (j);

lT
∂2f(x̃, t̄j)

∂t2
l < 0 ∀l ∈ L0k(t̄j), j ∈ J

(k)
∗ ;

f(x̃, t) < 0, t ∈ T \ {t̄j , j ∈ J
(k)
∗ }.

Recall that by construction, {t̄j , j ∈ J
(k)
∗ } ⊂ T ∗, I

(k)
0 (j) ⊂ I0(j), j ∈ J

(k)
∗ . Then,

taking into account Definition 2.3, we can conclude that

T ∗ = {t̄j , j ∈ J
(k)
∗ }, I0(j) = I

(k)
0 (j), ∀j ∈ J

(k)
∗ ,

and the algorithm DIIPS is justified.
In the case of convex (w.r.t. x) constraint functions, the steps of the algorithm are

the same. To justify the algorithm in this case, one can use the same scheme as above,
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taking into account Lemmas 1-4 from Kostyukova and Tchemisova (2015).

Lemma 4.5. In Assumption 4.1, condition (11) is equivalent to the following state-
ment: for any immobile index t̄ ∈ T ∗, there exists x̄ = x̄(t̄) ∈ X such that vector t̄
satisfies the sufficient conditions of strict local maximum in the problem

max f(x̄, t), s.t. t ∈ T,

and these conditions have the form

∃yk ≥ 0, k ∈ K̄ = {k ∈ K : hT
k t̄ = ∆hk} such that

∂f(x̄, t̄)

∂t
=
∑
k∈K̄

hkyk,

lT
∂2f(x̄, t̄)

∂t2
l < 0 ∀l ∈ L(t̄, x̄) := {l ∈ Rs : l ̸= 0,

∂fT (x̄, t̄)

∂t
l = 0, hT

k l ≤ 0, k ∈ K̄}.

(24)

Proof. Suppose that Assumption 4.1 is satisfied. It was proved above that there
exists a vector x̃ that satisfies properties (P1) and (P2). Hence for any t̄ ∈ T ∗ we can
choose the vector x̄ = x̄(t̄) = x̃.

Now let us consider a situation when for some t̄ ∈ T ∗ there exists a vector x̄ ∈ X
satisfying (24). If suppose that condition (11) is not satisfied, then we get that there
exists l̄ ∈ L(t̄), l̄ ̸= 0 such that q(t̄, l̄) > 1. Then from the definition of the immobility
order it follows that

∂fT (x, t̄)

∂t
l̄ = 0, l̄T

∂2f(x, t̄)

∂t
l̄ =0 ∀x ∈ X.

These equalities with x = x̄ ∈ X contradict (24), and the lemma is proved. �

4.4. Remarks

• It is evident that if the constraint function f(x, t) is linear w.r.t. x, then the corre-
sponding auxiliary problems (Aux(1)) and (Aux(2)) are linear w.r.t. x. On the base
of Lemmas 1-4 from Kostyukova and Tchemisova (2015), one can prove that in the
case of a convex w.r.t. x constraint function f(x, t), the auxiliary problems (Aux(1))
and (Aux(2)) are also convex w.r.t. x.

• On the iterations of the algorithm, we do not need to solve the auxiliary problems
(Aux(1)) and (Aux(2)). We only check the optimality of the given feasible solution
x̄ in each of these problems and in the case when the solution is not optimal, find a
feasible solution with a better (smaller) value of the cost function. Notice that this
better solution is needed only for the justification of the algorithm.

• Often the sets L
(k)
j , j ∈ J

(k)
∗ , are either empty or consist of a finite number of

elements. In these cases, in each of two problems (Aux(1)) and (Aux(2)), there is a

finite number of constraints. In the general case, when a set L
(k)
j consists of an infinite

number of elements (it can be the union of a finite number of polyhedrons), at least
one of the corresponding problem (Aux(1)) or (Aux(2)) possesses an infinite number
of constraints

g(x, l) := lT
∂2f(x, t̄j)

∂t2
l ≤ 0 ∀l ∈ L

(k)
j . (25)
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But we should notice that these constraints are simpler than the original constraints
f(x, t) ≤ 0 since the function g(x, l) is quadratic w.r.t. the index variable l, while the
dependence of the function f(x, t) on the index variable t, as a rule, is more complex.
The case when f(x, t) depends linearly on t, is not of particular interest since then the
original SIP problem (1) can be reduced to a convex programming problem (with a
finite number of constraints).

5. Example

Consider the following SIP problem:

min−x2 + x3,

s.t. f1(x, t) ≤ 0, ∀t ∈ T1, f2(x, t) ≤ 0, ∀t ∈ T2,
(26)

where x = (x1, x2, x3, x4)
T ∈ R4, t = (t1, t2)

T ∈ R2, and

f1(x, t) = −t21x1 + t1t2x1 + t1x2 + (sin t1)x3 + t1x4 − t22,

f2(x, t) = t2x1 + (t2 + 1)2x2 + (1− t2)x3 + x4 − (t1 − 3)2 + (t1 − 3)t2;

T1 = {t ∈ R2 : −t1 + t2 ≤ 0, t1 ≤ 2, −1 ≤ t2},
T2 = {t ∈ R2 : t1 − t2 ≤ 3, 2 ≤ t1 ≤ 4, 0 ≤ t2 ≤ 2}.

The index set here has the form T = T1
∪

T2, where the sets T1 and T2 are polyhe-
drons which can be represented as follows:

T1 = {t ∈ R2 : hT1 t ≤ 0, hT2 t ≤ 2, hT3 t ≤ 1},
T2 = {t ∈ R2 : gT1 t ≤ 3, gT2 t ≤ 4, gT3 t ≤ −2, gT4 t ≤ 2, gT5 t ≤ 0},

if we suppose that hT1 = (−1, 1), hT2 = (1, 0), hT3 = (0,−1), gT1 = (1,−1), gT2 = (1, 0),
gT3 = (−1, 0), gT4 = (0, 1), gT5 = (0,−1).

Problem (26) admits a feasible solution x̄ = (x̄1, x̄2, x̄3, x̄4)
T , where

x̄1 =
sin2 + 2

2
≈ 1.455, x̄2 =

(x̄1)
2 + x̄1(sin2− 6)

−2(sin2− 2)
≈ −2.425, (27)

x̄3 = x̄1 + 2x̄2, x̄4 = −3x̄2 − x̄1.

It can be shown that the active index set at x̄ has the form Ta(x̄) = {t(1), t(2), t(3)}
with t(1) := (0, 0)T ∈ T1, t(2) := (3, 0)T ∈ T2, t(3) := (2, x̄1)

T ∈ T1, and

f1(x̄, t
(1)) = f2(x̄, t

(2)) = f1(x̄, t
(3)) = 0.

Let us describe the cones of feasible directions L̄(t(i)), t(i) ∈ Ta(x̄), i = 1, 2, 3, (see
(3)) in the form (7) using the rules from section 3.

Consider, first, the active index t(1) = (0, 0)T . Since Ka(t
(1)) = {1} and h1 =

(−1, 1)T , we conclude that L̄1 = L̄(t(1)) = {(l1, l2)T : −l1 + l2 ≤ 0}.
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In this example s = 2, and hence S = {1, 2}. SinceKa(t
(1)) = {1}, the corresponding

matrix H has the form H = [h11 = −1, h12 =1]. Having supposed S0 = {1}, N0 = {1},
we get H0 = H(N0, S0) = [−1] and H−1

0 = [−1].
Taking into account that S \ S0 = {2}, we can find the components of the bidirec-

tional extremal ray b(1) corresponding to t(1): b̄22 = 1 and b̄21 = −H−1
0 h12 = 1. Then

b(1) = (1, 1)T . Now, let us find the unidirectional rays corresponding to t(1). Consider
vector h0 = (−1, 1)T ̸= 0. Sincem = 1, we get that |N∗| = m−1 = 0 and henceN∗ = ∅.

Then the matrix D(N∗) has the form D(N∗) =

(
−1 1
1 1

)
, D(N∗)

−1 =

(
−1

2
1
2

1
2

1
2

)
, and

a(N∗) = −
(
−1

2
1
2

)
, hT1 a(N∗) = (−1, 1)

(
1
2

−1
2

)
= −1 ≤ 0, and a(1) = (12 ,−

1
2)

T .

Therefore we conclude that the set L̄1 has two extremal rays, b(1) = (1, 1)T and
a(1) = (12 ,−

1
2)

T .
In an analogous way, we can show that the extremal rays of the set

L̄2 = L̄(t(2)) = {(l1, l2) : l1 ≤ l2, l2 ≥ 0},

have the form a1(2) = (1, 1)T , a2(2) = (−1, 0)T , and the extremal rays of the set
L̄3 = L̄(t(3)) = {(l1, l2) : l1 ≤0} have the form a(3) = (−1, 0)T and b(3) = (0, 1)T .

Hence in this example we have the following extremal rays: a(1) = (1,−1)T , b(1) =
(1, 1)T , a1(2) = (1, 1)T , a2(2) = (−1, 0)T , and a(3) = (−1, 0)T , b(3) = (0, 1)T .

Now we will apply the algorithm DIIPS and determine the immobile indices and
their immobility orders in the problem from the example. Notice that

∂fT
1 (x̄, t(1))

∂t
a(1) = 0,

∂fT
2 (x̄, t(2))

∂t
a1(2) = 0,

∂fT
2 (x̄, t(2))

∂t
a2(2) = 0,

∂fT
1 (x̄, t(3))

∂t
a(3) ̸= 0.

Using the same notations as in section 4.2, we consider the following sets:

J̄ = {1, 2, 3}, Ĩ(1) = {1}, Ĩ(2) = {1, 2}, Ĩ(3) = ∅.

On the first iteration of the algorithm set k = 0. Then J
(0)
∗ = ∅ and

X(1) ={x ∈ Rn : f1(x, t
(1)) ≤ 0, f2(x, t

(2)) ≤ 0, f1(x, t
(3)) ≤ 0}

={x ∈ R4 : x2 + x3 + x4 ≤ 0, (2x̄1 − 4)x1 + 2x2 + sin 2 · x3 + 2x4 − (x̄1)
2 ≤ 0}.

Consider the auxiliary problem (Aux(1)) for each j ∈ J̄ = {1, 2, 3}. When j = 1,
this problem has the form

min
x∈X(1)

f1(x, t
(1)).

Since for each x ∈ X(1) it holds f1(x, t
(1)) = 0, we can set x(1) = x̄.

Let j = 2. In this case the problem (Aux(1)) takes the form

min
x∈X(1)

f2(x, t
(2)).
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Since the objective function of this problem, f2(x, t
(2)) = x2+x3+x4, is not bounded

from below, then according to the algorithm, we can choose any feasible solution x
such that f2(x, t

(2)) < 0. Choose x(2) = (0, 0, 0,−1)T such that f2(x
(2), t(2)) = −1 < 0.

The same situation occurs for j = 3: the objective function of the problem

min
x∈X(1)

f1(x, t
(3)), with f1(x, t

(3)) = (2x̄1 − 4)x1 + 2x2 + sin 2·x3 + 2x4 − (x̄1)
2,

is not bounded from below, and we can set x(3) = (0, 0, 0, 0)T since f1(x
(3), t(3)) =

−(x̄1)
2 < 0.

Find the sets ∆J
(1)
∗ := {i ∈ J̄ : f(x(i), t(i)) = 0} = {1}, ∆I

(1)
0 (1) := ∅.

Since ∆J
(1)
∗ = {1} ̸= ∅, we proceed to the next iteration with

J
(1)
∗ = J

(0)
∗
∪

∆J
(1)
∗ = {1}, I

(1)
0 (1) = ∆I

(1)
0 (1) = ∅ and J̄\J (1)

∗ = {2, 3}.

On the next iteration (k = 1) we consider the set

X(2) = {x ∈ R4 : f2(x, t
(2)) ≤ 0, f1(x, t

(3)) ≤ 0, f1(x, t
(1)) = 0, ∂f

T
1 (x,t(1))
∂t b(1) = 0,

∂fT
1 (x,t(1))
∂t a(1) ≤ 0, lT ∂2f1(x,t(1))

∂t2 l ≤ 0, l ∈ L
(1)
1 },

where the set L
(1)
1 is defined as in (14) for J

(1)
∗ = {1}: L

(1)
1 = ∅ since lt ∂

2f1(x̄,t(1))
∂t2 l < 0

for all l ∈ R2 \ {0}. Then

X(2) = {x ∈ R4 : x2 + x3 + x4 = 0, (2x̄1 − 4)x1 + 2x2 + sin 2 · x3 + 2x4 − (x̄1)
2 ≤ 0}.

For j = 2, the auxiliary problem (Aux(1)) has the form

min
x∈X(2)

f2(x, t
(2)).

Since f2(x, t
(2))= x2 + x3 + x4 = 0 ∀x ∈ X(2), we can set x(2) = x̄.

For j = 3, the problem (Aux(1)) takes the form

min
x∈X(2)

f1(x, t
(3)) with f1(x, t

(3)) = (2x̄1 − 4)x1 + 2x2 + sin 2 · x3 + 2x4 − (x̄1)
2,

and it easy to conclude that the objective function of this problem is not bounded
from below. Then we can choose x(3) = (0, 0, 0, 0)T , as f1(x

(3), t(3)) = −(x̄1)
2 < 0.

Construct the set ∆J
(2)
∗ = {i ∈ {2, 3} : f(x(i), t(i)) = 0} = {2}.

Since Ĩ(1)\I(1)0 (1) = {1}, we have to consider the auxiliary problem (Aux(2))

min
x∈X(2)

∂fT
1 (x, t

(1))

∂t
a(1).

Since ∂fT
1 (x,t(1))
∂t a(1) = x2 + x3 + x4, the objective function of this problem is equal to

zero for all feasible solutions and therefore we can choose x(11) = x̄.
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According to the DIIPS algorithm,

∆I
(2)
0 (1) = {j ∈ {1} :

∂fT
1 (x

(1), t(1))

∂t
a(1) = 0} = {1} ̸= ∅.

Construct the sets

J
(2)
∗ = J

(1)
∗
∪

∆J
(2)
∗ = {1, 2}, I

(2)
0 (1) = I

(1)
0 (1)

∪
∆I

(2)
0 (2) = {1}, I

(2)
0 (2) = ∅

and proceed to the next iteration.
For k = 2, we construct the set

X(3) = {x ∈ R4 : f1(x, t
(3)) ≤ 0, f1(x, t

(1)) = 0, f2(x, t
(2)) = 0,

∂fT
1 (x,t(1))
∂t b(1) = 0, ∂fT

1 (x,t(1))
∂t a(1) = 0, lT ∂2f1(x,t(1))

∂t2 l ≤ 0, l ∈ L
(2)
1 ,

∂fT
2 (x,t(2))
∂t a1(2) ≤ 0, ∂fT

2 (x,t(2))
∂t a2(2) ≤ 0, lT ∂2f2(x,t(2))

∂t2 l ≤ 0, l ∈ L
(2)
2 },

where L
(2)
1 and L

(2)
1 are defined in (14). Since lT ∂2fi(x̄,t(i))

∂t2 l < 0 for all l ∈ R2 \ {0},
i = 1, 2, we have L

(2)
1 = L

(2)
2 = ∅. Substituting the functions and simplifying the

expression, we get

X(3) = {x ∈ R4 : (2x̄1 − 4)x1 + 2x2 + sin 2·x3 + 2x4 − (x̄1)
2 ≤ 0,

x2 + x3 + x4 = 0, x1 + 2x2 − x3 ≤ 0}.

Then the problem (Aux(1)) takes the form

min
x∈X(3)

f1(x, t
(3)),

or explicitly

min (2x̄1 − 4)x1 + 2x2 + sin 2 · x3 + 2x4 − (x̄1)
2

s.t. x2 + x3 + x4 = 0, x1 + 2x2 − x3 ≤ 0,

− 4x1 + 2x̄1x1 + 2x2 + sin 2 · x3 + 2x4 − (x̄1)
2 ≤ 0.

The objective function is not bounded from below. Choose x(3) = (0, 0, 0, 0)T with

f1(x
(3), t(3)) < 0 and construct ∆J

(3)
∗ = {i ∈ {3} : f1(x

(i)), t(i)) = 0} = ∅.
For j ∈ J

(2)
∗ = {1, 2}, consider the sets Ĩ(j) \ I(2)0 (j):

Ĩ(1) \ I(2)0 (1) = ∅, Ĩ(2) \ I(2)0 (2) = Ĩ(2) = {1, 2}.

For i ∈ Ĩ(2)\I(2)0 (2) = {1, 2}, the corresponding auxiliary problems (Aux(2)) take
the forms

min
x∈X(3)

∂T f2(x, t
(2))

∂t
a1(2), and min

x∈X(3)

∂T f2(x, t
(2))

∂t
a2(2),
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or equivalently,

(A) : min
x∈X(3)

x1 + 2x2 − x3, and (B) : min
x∈X(3)

0.

The problem (A) can be rewritten in the form

min x1 + 2x2 − x3,

s.t. x2 + x3 + x4 = 0, x1 + 2x2 − x3 ≤ 0, (sin 2− 2)x3 − (x̄1)
2 ≤ 0.

Since the objective function of this problem is not bounded from below on the set
X(3), we choose x(21) = (0,−2, 0, 2)T such that f2(x

(21), t(2)) = −4.
Notice here that in the auxiliary problem (B), the value of the objective function is

constant and equal to zero. Hence we can consider any feasible solution as the optimal
and set, for example, x(22) = x̄.

Then ∆I
(3)
0 (1) = ∅ and ∆I

(3)
0 (2) = {i ∈ {1, 2} : ∂fT

2 (x(2i),t(2))
∂t ai(2) = 0} = {2}.

Here we have ∆J
(3)
∗ = ∅, ∆I

(3)
0 (1) = ∅, but ∆I

(3)
0 (2) ̸= ∅, and, therefore, we pass to

the next iteration, with k = 3, the sets

J
(3)
∗ = J

(2)
∗
∪

∆J
(3)
∗ = {1, 2}, I

(3)
0 (1) = I

(2)
0 (1)

∪
∆I

(3)
0 (1) = {1},

I
(3)
0 (2) = I

(2)
0 (2)

∪
∆I

(3)
0 (2) = {2},

and

X(4) = {x ∈ R4 : f1(x, t
(3)) ≤ 0, f1(x, t

(1)) = 0, f2(x, t
(2)) = 0,

∂fT
1 (x,t(1))
∂t b(1) = 0, ∂fT

1 (x,t(1))
∂t a(1) = 0, lT ∂2f1(x,t(1))

∂t2 l ≤ 0, l ∈ L
(3)
1 ,

∂fT
2 (x,t(2))
∂t a1(2) ≤ 0, ∂fT

2 (x,t(2))
∂t a2(2) = 0, lT ∂2f2(x,t(2))

∂t2 l ≤ 0, l ∈ L
(3)
2 }.

Having substituted the explicit representations of the sets and functions involved in
the description of the set X(4), and having simplified the obtained expressions, we get

X(4) = {x ∈ R4 : (2x̄1 − 4)x1 + 2x2 + sin 2·x3 + 2x4 − (x̄1)
2 ≤ 0,

x2 + x3 + x4 = 0, x1 + 2x2 − x3 ≤ 0}.

Then, the auxiliary problem (Aux(1)) takes the form

min
x∈X(4)

(2x̄1 − 4)x1 + 2x2 + sin 2·x3 + 2x4 − (x̄1)
2.

The objective function of this problem is not bounded from below, therefore we can

choose x(3) = (0, 0, 0, 0)T . Then f1(x
(3), t(3)) = −(x̄1)

2 < 0, ∆J
(4)
∗ = ∅.

For i ∈ Ĩ(2) \ I(3)0 (2) = {1}, the auxiliary problem (Aux(2)) has the form

min
x∈X(4)

x1 + 2x2 − x3,

and its objective function is not bounded from below on the set X(4). For x(21) =

(0,−2, 0, 2)T ∈ X(4) we have f2(x
(21), t(2)) = −4 < 0. Hence ∆I

(4)
0 (2) = ∅. Since

∆I
(4)
0 (2) = ∅, ∆J

(4)
∗ = ∅, the algorithm stops with T ∗ ={t(j), j ∈ J

(3)
∗ } = {t(1), t(2)}.
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The immobility orders of the immobile indices along the extremal rays are as follows:

q(tj , ai(j)) = 1, i ∈ I
(3)
0 (j); q(tj , ai(j)) = 0, i ∈ Ĩ(i)\I(3)0 (j), j ∈ J

(3)
∗ .

Hence we conclude that

q(t(1), a(1)) = 1, q(t(1), b(1)) = 1, q(t(2), a2(2)) = 1, q(t(2), a1(2)) = 0.

Let us show that there exists a vector x̃ satisfying properties (P1) and (P2). We
will search for this vector in the form x̃ = x(λ) = (1 − λ)x̄ + λx̂, for some λ ∈ [0, 1].
Let us set x̂ := 1

2(x
(3) + x(21)) = (0,−1, 0, 1)T .

Due to linearity of functions fi(x, t), i = 1, 2, w.r.t. x we have

fi(x(λ), t) = (1− λ)fi(x̄, t) + λfi(x̂, t), i = 1, 2.

It is easy to check that

f1(x̂, t) = −t22 =⇒ f1(x̂, t) < 0 for all t = (t1, t2), t2 ̸= 0;

f2(x̂, t) = −t22 + t1t2 − t21 + 6t1 − 5t2 − 9 =⇒ f2(x̂, t) < 0 for all t = (t1, t2) ∈ T2 \ {t(2)}.

Taking into account that

f1(x̄, t) < 0 for all t ∈ T1 \ {t(1), t(3)}, f2(x̄, t) < 0 for all t ∈ T2 \ {t(2)},

we conclude that

f1(x(λ), t) < 0 for all t ∈ T1 \ {t(1)}, f2(x, t) < 0 for all t ∈ T2 \ {t(2)}, ∀ λ ∈ (0, 1).

It is easy to check that ∂fT
2 (x(λ),t(2))

∂t a1(2) = −2λ and ∂fT
2 (x(λ),t(2))

∂t a1(2) < 0 ∀λ ∈ (0, 1).

Notice that L
(3)
j = ∅, j ∈ J

(3)
∗ . Hence we have shown that all vectors x(λ), λ ∈ (0, 1),

satisfy properties (P1) and (P2).
If we set λ := 1

2 , we get x̃ = 1
2 x̄+ 1

2 x̂ = (x̃1, x̃2, x̃3, x̃4)
T , where by construction,

x̃1 =
1
2 x̄1, x̃2 =

1
2(x̄2 − 1), x̃3 =

1
2 x̄3, and x̃4 =

1
2(x̄4 + 1).

6. Conclusions

The main contribution of the paper consist in the following: we have proposed a simple
constructive procedure for the determination of the extremal rays of polyhedral cones,
described and justified the algorithm DIIPS for the determination of the immobile
indices and their immobility orders in convex SIP problems with polyhedral index
sets. These results can be easily implemented by different numerical procedures.

The algorithm DIIPS presented in the paper has several important applications:

• it can be applied for the determination of the immobile indices and therefore,
for verifying the Slater constraint qualification;

• it may be used for formulation and testing the CQ-free optimality conditions for
different classes of convex SIP problems which can be described in terms of the
SIP problems with polyhedral index sets (for example, semi-infinite polynomial
programming problems, copositive programming problems);
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• it can be applied in presolving procedures during numerical solving of convex
SIP problems.

The main steps of the algorithm can be reformulated for more general classes of
problems, such as, for example, SIP problems with finitely represented index sets. In
this case some substantial modifications of the algorithm should be done and this is
the purpose of our future work.
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López M, Still G. 2007. Semi-Infinite Programming. EJOR 180(2): 491–518.
Stein O, Still G. 2000. On optimality conditions for generalized Semi-infinite Programming

problems. J. Optim. Theory Appl. 104(2):443-458.
Stein O. 2003. Bi-level strategies in Semi-infinite Programming. Kluwer, Boston.

19


