
Universidade de Aveiro Departamento de
2018 Eletrónica, Telecomunicações e Informática

João Rafael
Duarte de Almeida

Ferramenta de gestão de protocolos clínicos

Software solution for clinical protocol
management

Universidade de Aveiro Departamento de
2018 Eletrónica, Telecomunicações e Informática

João Rafael
Duarte de Almeida

Ferramenta de gestão de protocolos clínicos

Software solution for clinical protocol
management

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Mestrado Integrado
em Engenharia de Computadores e Telemática, realizada sob a orientação
científica de Prof. Doutor José Luís Oliveira, Professor Associado com
Agregação do Departamento de Eletrónica, Telecomunicações e Informática
da Universidade de Aveiro, e co-orientação da Doutora Joana Guimarães
Costa, Endocrinologista no Centro Hospitalar Baixo Vouga.

o júri / the jury

presidente / president Prof. Doutor Augusto Marques Ferreira da Silva
Professor Auxiliar da Universidade de Aveiro

vogais / examiners committee Prof. Doutor Rui Pedro Sanches de Castro Lopes
Professor Coordenador do Instituto Politécnico de Bragança

Prof. Doutor José Luís Guimarães Oliveira
Professor Associado com Agregação da Universidade de Aveiro (orientador)

agradecimentos /
acknowledgements

Obrigado a todos por tudo... Talvez não seja o suficiente. Certas pessoas
merecem muito mais do que um simples obrigado, e certamente este espaço
não é suficiente para exprimir toda a minha gratidão.

Ao meu orientador, o professor José Luís Oliveira, gostaria de agradecer
esta oportunidade, e por todo o apoio que me deu durante este percurso.
Sem a sua ajuda, nada teria sido possível. Também gostaria de agradecer à
doutora Joana Guimarães, pela orientação, disponibilidade e simpatia.

Agradeço também a todos os membros do grupo de Bioinformática
do Instituto de Engenharia Electrónica e Informática de Aveiro (IEETA),
pelo apoio e bom ambiente de trabalho.

Gostaria de agradecer à Olga por ter-me apoiado e incentivado a
perseguir este objetivo. Ela sem dúvida foi uma amiga que contribuiu
imenso para o sucesso deste trabalho.

Um agradecimento especial ao Bastião, Pratas, João, Malta, Cajús,
Jorge e ao Arnaldo pois foram os amigos que mais me acompanharam
durante esta jornada.

Por último, mas não menos importante, gostaria de deixar um especial
agradecimento à minha família, que me apoiaram da melhor forma que
conseguiram.

Aos restantes, que não mencionei... Obrigado a todos por tudo.

Thanks to all for everything.

Palavras-chave Registo electrónico de pacientes, Sistema de apoio à decisão, protocolos
clínicos, endrocrinologia

Resumo Nos últimos anos, têm sido estudadas diversas metodologias para
aumentar a qualidade da execução dos tratamentos oferecidos aos doentes
hospitalizados. Foram igualmente desenvolvidos sistemas computacionais
para auxiliar a tomada de decisões clínicas.

O objetivo deste trabalho consistiu no desenvolvimento de uma aplicação
web para apoiar a execução de tratamentos clínicos, seguindo regras
previamente estabelecidas. Estas regras constituem as premissas base que
definem o procedimento a aplicar, ou seja, a estrutura do protocolo clínico.
Este trabalho teve como principal motivação o tratamento de pacientes
com diabetes que são internados ou atendidos em serviços hospitalares não
especializados nesta doença. Contudo, para não limitar a sua aplicação a
um cenário específico, a solução foi pensada para ser flexível e ser aplicável
em qualquer cenário clínico. Esta aplicação segue o modelo cliente-servidor.
com base numa arquiteture de microserviços, fornecendo uma interface de
utilizador web moderna.

O projeto decorreu em estreita colaboração com o Centro Hospitalar
do Baixo do Vouga, tendo como resultado uma solução que auxilia os
profissionais de saúde no tratamento de doentes internados, reduzindo o
risco de erros e aumentando o controlo e monitorização dos cuidados de
saúde.

Keywords Electronic health records, clinical decision support system, clinical protocols,
endocrinology

Abstract Decision support systems are currently important tools to guide the
clinician’s decisions and to help on the patient’s treatments. These systems
have been studied over the last decades, leading to some well-defined best
practices for building new solutions.

This project had the objective of building a clinical decision system with a
core engine based on predefined rules, which can be customized by end-users.
This work had as main motivation the treatment of diabetic inpatients and
outpatients, in hospital services others than endocrinology. To keep the
solution generic, the system does not depend on any specific patient data,
neither on the protocols. This application follows the client-server model.
based on a microservice architecture, providing a modern web user interface.

The project was carried out in a close collaboration with the Hospital
Center of Baixo do Vouga, resulting in a solution that can assists health
professionals in the treatment of patients, reducing errors and providing a
better monitoring of health care services.

List of contents

1 Introduction 1

1.1 Objectives . 2

1.2 Outline . 3

2 The Motivation: Diabetes Management 5

2.1 Diabetic inpatients . 6

2.2 Hypoglycemia . 11

2.3 Surgical diabetic inpatient . 12

2.4 Continuous intravenous infusion . 16

2.5 Summary . 17

3 The Current Methodology 19

3.1 Clinical Decision Support Systems . 20

3.2 CDSS Tools: General Solutions . 21

3.3 CDSS Tools: Diabetes Solutions . 24

3.4 Systems Comparison . 25

3.5 Summary . 25

4 System Requirement Analysis 27

4.1 Challenges . 27

4.2 Functional Requirements . 28

4.3 Non-Functional Requirements . 30

4.4 Use Case Analysis . 31

4.5 Summary . 34

5 Solution Architecture 35

5.1 Client-Server model . 36

5.2 Server Side Modules . 36

5.3 Client Side Modules . 40

5.4 Summary . 42

i

6 The System Implementation 43
6.1 Server Side Implementation . 44

6.1.1 Technologies used . 45
6.1.2 Web Services . 46
6.1.3 Tests . 47

6.2 Client Side Implementation . 47
6.2.1 Technologies used . 48
6.2.2 Web Services Client . 50

6.3 Deployment . 50
6.4 Interface Components . 54
6.5 Summary . 60

7 Conclusion 61

A Web Services 69

B Application Links 71

ii

List of figures

2.1 Flowchart of the hypoglycemia protocol . 13
2.2 Flowchart of the surgical diabetic inpatient protocol 15

4.1 Use case diagram . 32

5.1 System architecture, which follows a client-server model 36
5.2 Architecture overview (including the Server Side on the left, and the Client Side

on the right). 37
5.3 Backend architecture. 38
5.4 History model logic. 38
5.5 Database structure for storing dynamically the patient’s clinical variables. . . . 39
5.6 Frontend architecture. 41

6.1 System technologies. 44
6.2 Client component architecture. 48
6.3 Comparison between containers and virtual machines. 51
6.4 System deployment logic. 53
6.5 Home page. 54
6.6 Initial dashboard. 55
6.7 Patient information visible to the health professionals. 56
6.8 Backend dashboard. 56
6.9 Backend database management (Configuring new clinical variables). 57
6.10 Protocol creation page (Visualization mode). 57
6.11 Protocol assignments. 58
6.12 Protocol execution (Complex type). a) Starting the protocol execution; b)

Third step of the protocol execution. 59
6.13 Protocol execution (Simple type). 60

iii

iv

List of tables

2.1 Example of different sliding scales with the necessary adjust per patient response. 8
2.2 Percentage of long-acting and short-acting insulin, and units for the sliding

scale insulin, to adjust the current dosage at the reevaluation moment. 9
2.3 Percentage of long and short acting insulin from the most common insulin

products. 10
2.4 Unit of short-acting insulin to administrate according to the blood glucose. . . 14
2.5 Procedures to take when blood glucose is below the target range. 16
2.6 Changes in the infusion rate. 17
2.7 Rate change considering the current clinical state of the patient. 18

3.1 Clinical decision support systems features comparison. 26

v

vi

List of acronyms

API Application Programming Interface

BG Blood Glucose

CASNET Causal ASsociational NETworks
CAT Clinical Decision Support Administration Tool
CBMS Computer-Based Medical Systems
CDSS Clinical Decision Support Systems
CHBV Centro Hospitalar do Baixo Vouga
CMS Centers for Medicare and Medicaid Services
CPOE Computer-based Physician Order Entry
CRUD Create, Read, Update and Delete
CSS Cascading Style Sheets

DSS Decision Support Service

EHR Electronic Health Records

GESDOR Guideline Execution by Semantic Decomposition of Representation
GLEE Guideline Execution Engine
GLIF Guideline Interchange Format

HbA1c Glycated Haemoglobin
HL7 Health Level Seven International
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol

ICE Immunization Calculation Engine
IT Information Technology
IV Intravenous

JSON JavaScript Object Notation

NoSQL Not Only SQL

vii

NPM Node Package Manager

ORM Object-Relational Mapping

PIP Pip Installs Packages

RBAC Role-Based Access Control Policies
RDBMS Relational DataBase Management System
RESTful REpresentational State Transfer

SOA Service Oriented Architecture
SQL Structured Query Language

TCP Transmission Control Protocol
TDD Total Daily Dosage

URL Uniform Resource Locator

vMR Virtual Medical Record

viii

CHAPTER 1

Introduction

”The beginning is the most important part of the work.”
— Plato, The Republic

In the past sixty years, many efforts have been made to automate and improve healthcare
processes through technological systems [1]. However, its impact in medical practice remains
low, in comparison to other areas.

Therefore, developers and physicians are committed in building better solutions by
improving guidance in clinical decisions and preventing medical errors. This commitment
has already led to the creation of Computer-based Physician Order Entry (CPOE) systems,
which were developed to better manage the orders and preventing human errors [2, 3]. These
approaches improved the quality and safety of patients’ care [4–6]. However, these solutions,
per si, are not enough to guide all treatments protocols. This lack led to the creation of Clinical

1

CHAPTER 1. INTRODUCTION

Decision Support Systems (CDSS), which are computer systems designed to aid clinical
decisions of individual patients at the time these decisions are being made [7]. Currently,
the CDSS is a key requirement in Electronic Health Records (EHR), as it was established by
the Centers for Medicare and Medicaid Services (CMS) [8].

Clinical decision support can be provided by textbooks, teaching, or through other ways.
However, these methodologies could lead to misunderstandings or human errors, due to the
complexity of some clinical protocols, which contain complex calculations or a large set of
iterations. Thus, if used properly, CDSS has the potential to change the way medicine
has been practiced. This raises the question: how can a computerized system can help
assisting treatments? Within the current state of healthcare systems, it is possible to
identify technological advances in some health areas. However, frequently, there are gaps
in the treatment management. For instance, when a physician is not available to supervise a
specialized patient treatments.So, this monitoring could be performed using a system, which
would support the clinical decisions and help guide nurses along the treatments. Indeed,
some attempts to develop such systems have already been made. There are some clinical
decision support systems designed to perform simple but repetitive tasks, such as recognizing
that a laboratory test result is out of a normal range, or that a medication ordered has a
dangerous interaction with another one that a patient is already taking [1]. There are, also,
some solutions for specific diseases, prepared to guide the treatments [9, 10].

The problem with the above mentioned systems is the lack of adaptability, i.e., they were
developed for a specific medical purpose, and its reuse in different contexts is quite difficult.
Furthermore, there is no open source solution, generic enough, to be adapted to any situation,
i. e., a generic clinical decision support system.

This dissertation proposes a generic solution to support and guide treatments
independently of the disease. Additionally, as a proof of concept, a demo installation was
made to guide diabetes treatments.

1.1 Objectives

The purpose of this dissertation was to investigate a new software solution to guide and
manage clinical protocols, independently of the medical context.

In a first phase, a detailed analysis was made to understand how a clinical decision support
system is defined. Then, all the necessary protocols for the application scenario have been
described. This step helped in the identification of the requirements for our solution. After this
analysis, the solution architecture was studied and designed, followed by its implementation.

All these steps resulted in a set of goals, which can be expressed in the following order:

1. develop a solution capable to fulfill the application scenario - diabetes treatment
management;

2

CHAPTER 1. INTRODUCTION

2. assure that the solution is adaptable to different medical scenarios;

3. and implement the protocols used in the Centro Hospitalar do Baixo Vouga (CHBV).

1.2 Outline

This dissertation is organized into six more chapters, which are briefly described below.
The Chapter 2 describes in detail the protocols that led to this research. This chapter

contains detailed medical and technical information needed to implement the protocols used
in the proof-of-concept scenario.

Chapter 3 aims to provide a state-of-the-art description related to this work. With the
intention to solve this dissertation’s goal, some solutions and different approaches were studied
and evaluated.

The following chapter, chapter 4, analyses the major challenges of the system’s conception.
It details all the essential requirements, which results in functional and non-functional
requirements.

Chapter 5 describes the solution’s architecture as an answer to the requirements mentioned
before. This detailed solution follows a client-server model, with a micro-kernel architecture.

In chapter 6 the final solution is presented the system’s model and the specifications
from the server and client sides, are discussed. Finally, a brief description of the solution’s
deployment and the automated tests, to assure the quality of the system is also contemplated.

The last chapter presents the conclusions pointing out some future developments that can
improve the system.

3

CHAPTER 1. INTRODUCTION

4

CHAPTER 2

The Motivation: Diabetes Management1

”The greatest wealth is health.”

— Virgil

Hyperglycemia is a health condition characterized by abnormally high blood glucose,
typically caused by a deficient usage, or lack, of insulin. Due to the metabolic derangements
of this clinical condition, its regular monitoring, as well as the administration of the most
effective treatment, are major concerns for healthcare institutions.

The control of inpatient hyperglycemia is a special concern in medical institution systems.
Inpatient hyperglycemia is an event that occurs frequently, with a rate of approximately 40%

1This chapter is mainly based on the publication Simplifying the digitization of clinical protocols for diabetes
management, 2018 IEEE 31th International Symposium on Computer-Based Medical Systems (CBMS) [11].
All the protocols presented have been discussed with Dra Joana Guimarães, an endocrinologist at the CHBV

5

CHAPTER 2. THE MOTIVATION: DIABETES MANAGEMENT

of all hospitalizations, a quality metric that deserves a special attention from health care
institutions and public health services [12].

To manage the hyperglycemia of hospitalized diabetic patients, a basal-bolus insulin
therapy is generally recommended [13]. However, this therapy is related to the high rates
of hypoglycemia, reaching values up to 32%. The main reason for this occurrence is that the
meal insulin and food intake do not match [14]. As a result, it is possible to recognize that
most of the adverse medication occasions and blunders happen when insulin is prescribed or
administered. These cases of hypoglycemia in non-intensive care unit settings are a concern
because they have been associated with increased length of stay, hospital complications, and
mortality [15]. To reduce these high rates, several protocols were proposed for glycemic
administration [16]. However, these procedures are normally available on paper and difficult
to follow, which hinders its regular use by non-trained professionals.

The goal of this research is to reduce this numbers using a system to support the execution
of the protocols. With a proper system, some calculation errors, data analysis to perform
these calculations and misunderstood instructions can be avoided. The main objective is to
implement some protocols, already in use in the hospital and to enable the implementation of
new protocols, which provide more accurate dosages of insulin, in order to hide the protocols’
complexity from health professionals. Thus, in the subsequent sections, the following protocols
are described in detail:

1. Diabetic inpatients [17]

2. Hypoglycemia

3. Surgical diabetic inpatient

4. Continuous intravenous infusion [18]

2.1 Diabetic inpatients

The protocol Diabetic inpatients should be applied to inpatients with type two diabetes.
However, this protocol has two different executions, depending on the patient clinical state.
The first execution will be addressed to the patient if, in the admission moment, s/he is on
oral hypoglycemics. The execution details in case the patient is on insulin prior to admission,
will be described posteriorly.

However, the measurements schedule for this two different types of patients is similar.
The factor that can influence this schedule is the patient’s diet. For instance, if the patient is
eating, the measurements should be done before meals and at bedtime. On the other hand,
if the patient is on an zero diet, i.e. the patient does not eat, measurements should be done
every 4 hours. In both cases, some target values have been defined, such as the blood glucose,

6

CHAPTER 2. THE MOTIVATION: DIABETES MANAGEMENT

which should be between 140 and 180 mg/dl and the HbA1c, that should not be higher than
8%.

This protocol has two main stages: 1) the starting phase, where the patient starts the
treatment and is only done at the beginning of the protocol execution; and 2) the reevaluation
phase, which happens time to time, normally in intervals of 48 until 72 hours. In the
study carried out within this dissertation, the reevaluation phase happened every 72 hours of
observations.

In the starting phase, which duration is 72 hours, the HbA1c and the blood glucose are
measured. Regarding these values, if the HbA1c value of the patient is greater than 8% or if
his blood glucose average is greater than 180 mg/dl, the basal-bolus insulin must be started.
The insulin dosage is calculated following some rules. Firstly, the insulin’s Total Daily Dosage
(TDD) for a patient is calculated, considering his weight. However, in some situations, the
weight is not available, so there are some default values. The weight information is key, so
that the insulin dosages can be more precise.

The insulin’s TDD for patients with the right weight information in the system, are
0,4 units/kg when the fasting blood glucose value is less than 200 mg/dl, and 0,5 units/kg
otherwise. The resulting value will be used as a reference for the basal or long-acting insulin
dosages, which in this hospital will be INN-insulin glargine.

This long-acting insulin is administered at bedtime or before breakfast, and the dosage is
half of the insulin’s TDD. The moment at which this insulin is administrated depends on the
bedtime and the breakfast measurement values. If the blood glucose is higher at the bedtime
comparing to the breakfast value, this administration is done before breakfast. Otherwise, it
will be done at bedtime.

The prandial insulin, which is 1
6 of the insulin’s TDD, is administrated with the three daily

meals. Each dosage is one-third of the total prandial insulin and it should be administrated
before the meals. This insulin is a short-acting type, and this hospital uses the Lispro.

When the patient’s weight information is missing, the units of long-acting insulin should
be 10 units, if the blood glucose value is greater than 180 mg/dl. If the blood glucose value is
grater than 280 mg/dl an additional 10 units should be added, establishing a total of 20 units
of long-acting insulin.

Additionally, supplemental or "sliding scale" insulin should be administrated to the patient.
This insulin should be the same type as the prandial insulin, i.e., it should be insulin Lispro.
This insulin dosage should be administrated only before the meals, since at bedtime it can
cause hypoglycemia in patients on long-acting insulin. This kind of insulin should, also, be
adjusted considering the patient’s degree of insulin resistance. Usually, lean patients are more
insulin-sensitive and obese patients are more likely to be insulin resistant. However, this does
not necessarily apply in all situations. Table 2.1 presents the units to be administrated to
patients considering the plasma glucose and the patient resistance.

7

CHAPTER 2. THE MOTIVATION: DIABETES MANAGEMENT

Table 2.1: Example of different sliding scales with the necessary adjust per patient response.

Plasma glucose Sensitive Usual Resistant

<150 mg/dl 0 units 0 units 0 units

151 - 200 mg/dl 1 2 4

201 - 250 mg/dl 2 4 7

251 - 300 mg/dl 3 6 10

301 - 350 mg/dl 4 8 13

>350 mg/dl 5 10 16

In the reevaluation phase, it is necessary to adjust the long-acting insulin, as well as
the pre-meal and sliding scale insulin. For the long-acting insulin, the adjustments are
made according to average values of the blood glucose observed before breakfast. Table 2.2
presents the percentage of insulin that should be added (or subtracted) to the current dosage,
considering the resulting average referenced above.

The same principle is applied in the sliding scale insulins. However, in this case, units are
added or subtracted, accordingly to the average blood glucose observed before breakfast.

Finally, additional conditions should be considered. For instance, if the blood glucose is
high (greater than 180 mg/dl) at lunch and normal at dinner, the pre-breakfast short-acting
insulin should be increased, according to the table’s percentages. In addition, if the blood
glucose is high at bedtime, the pre-dinner short-acting insulin must be increased.

All the described steps and conditions only applied to patients, that in the admission
moment, are on oral hypoglycemics. In what follows, the additional conditions of this protocol
for patients on insulin prior to admission, is analyzed.

Firstly, the insulin used by the patient at home needs to be converted to the ones used
in the hospital. These conversions will be analyzed later in this section. Then, adjustments
to the insulin dosages taken by the patient at home must be made when s/he is admitted to
the hospital. These patients may take only long-acting insulin dosages at home, or may taken
both, short and long-acting insulin dosages.

For patients which only take long-acting insulin, the dosage should be decreased in the
hospital by 25%, if s/he is on oral diet, and 50% in zero diet situations. If a patient takes
both, long and short-acting insulin, without being mixed, the long-acting insulin will follow
the same pattern described above. The short-acting insulin will be reduced to 25% on oral

8

CHAPTER 2. THE MOTIVATION: DIABETES MANAGEMENT

Table 2.2: Percentage of long-acting and short-acting insulin, and units for the sliding scale
insulin, to adjust the current dosage at the reevaluation moment.

Plasma glucose Percentage of insulin Units for sliding scale insulin

<70 mg/dl Call endocrinologist

71 - 120 mg/dl - 10% - 2 units

180 - 230 mg/dl 10 % 2

231 - 280 mg/dl 15 % 4

281 - 330 mg/dl 20 % 6

>330 mg/dl 25 % 8

diet and removed if the patient is in zero diet.
However, some patients may have been taking biphasic insulin, which is a premixed insulin,

with prandial and basal aspects of glucose regulation [19], normally with different percentages
of long and short-acting insulins. In addition, the percentage of each can change depending
on the brand. For these situations, it is necessary to interpret and calculate the insulin’s TDD
for each (long and short-acting insulin) that the patient is taking at home, adding all the daily
administration dosages. Then, the dosage to be administrated in the hospital will be 2

3 of the
resulting values. In case of decimal values, the dosage is rounded down.

The administration schedule for this situations, for the long-acting insulins, is at the same
moment the patient takes the biggest dosage at home, i.e., if the patient takes more insulin
units ate breakfast, in the hospital s/he receives his/her dosage at that moment too. In the
case of short-acting insulin, the resulting value will be divided into the three daily meals in
the hospital. The conditions described above are exemplified next.

Example: Consider a patient taking Mixtard 30 Penfill dosages. This insulin contains
70% of long-acting and 30% of short-acting insulin [20], and consider that this
patient is taking 30 units before breakfast and 15 units before dinner. So, his daily
dosage insulin is 45 units, and because only 70% of this units are long-acting insulin,
the patient will need 2

3 of 31,5 units of long-acting insulin at the breakfast. The
short-acting insulin will be the 2

3 of the remaining daily dosage, which is 13,5 units,
divided by the three daily meals into equal portions. Additionally, the sliding scale
insulin needs to be administrated, but this will no be detailed. To easily understand
the detailed conversions, table 2.3 describes the amount of each insulin type for the

9

CHAPTER 2. THE MOTIVATION: DIABETES MANAGEMENT

most popular biphasic insulin.

Table 2.3: Percentage of long and short acting insulin from the most common insulin products.

Insulin products Long-acting insulin Short-acting insulin

Mixtard 30 Penfill 70% 30%

Insuman Comb 25 75% 25%

Humulin M3 70% 30%

NovoMix 30 70% 30%

Humalog Mix 25 75% 25%

Humalog MIx 50 50% 50%

There are two more different insulin types that need to be converted to the long or
short-acting insulin. In the case of short/neutral insulin, this is converted to the short-acting
insulin used in the Hospital, and the dosage will be 2

3 of the dosage the patient takes at home.
These dosages will be administrated at the same moment the patient takes them at home.
The following insulin products are used in this situations:

• Actrapid Penfill

• Insuman Rapid

• Humulin Regular

Finally, the isophane insulins, which are intermediate-acting insulins, will be replaced by
long-acting insulin. The procedure is similar to some previously described. The amount
of insulin taken by the patient at home will be added, then 2

3 of the resulting value is
administrated at the same time the patient takes the biggest dosage at home.

Finishing the protocol description, from a medical point of view, some more information is
necessary to perform its execution in the system. A particular aspect is the clinical variables
for each patient. Therefore, for this particular protocol, the following variables are necessary:

• BG: The blood glucose variable is normally collected in each interaction with the patient.
Its value is used to define the insulin dosage for the patient.

10

CHAPTER 2. THE MOTIVATION: DIABETES MANAGEMENT

• HbA1c: This widely used variable may have the same amount of records as BG.
Similarly to the blood glucose, the value of this variable is used to decide if the patient
needs insulin.

• Diet: The variable diet, in this case, only defines if the patient is eating or not.

• Weight: The variable weight is optional; However, as already mentioned, this
information will provide more precise insulin dosages.

• Insulin resistiveness: The sliding scale to have more precise dosages, can provide
different values according to the patient insulin resistiveness. Therefore, the value of
this variable defines if the patient is sensitive, usual or resistant to the insulin.

• State prior to admission: This state defines if the patient was on oral hypoglycemics
or on insulin when admitted to the hospital.

• Insulin used at home: This variable is optional, and indicates the insulin product
that the patient uses at home. Using table 2.3 and this information, the right dosage
can be defined based on the insulins in use at the hospital.

• Insulin dosage used at home: This variable depends on the previous one and is only
used if the patient is taking insulin at home.

• Percentage of long-acting insulin taking at home: Although the system is already
configured with some insulin products and their percentages, this variable, which is
optional, can be useful in special situations, or when the patient is only taking long-acting
insulin at home.

• Percentage of short-acting insulin taking at home: As the previous clinical
variable, this variable has the same role, but in this case for the short-acting insulin.

However, this does not mean that these variables are confined only to this protocol. These
variables can be reused in other protocols, but, it is worth noting, that without these variables,
the protocol cannot be executed properly.

2.2 Hypoglycemia

This protocol for hypoglycemia applies to patients with hypoglycemia. This is a fast-acting
protocol and the measurement’s periodizations are quite short, i.e., measurements should be
made every 15 minutes if the blood glucose patient is less than 80 mg/dl.

The protocol methodology only requires the knowledge of the patient’s diet and his blood
glucose values. When the patient is able to eat, he receives one sugar packets (which is about
6 grams of sugar) if the blood glucose value is between 50 and 70 mg/dl. However, if this

11

CHAPTER 2. THE MOTIVATION: DIABETES MANAGEMENT

value is less than 50 mg/dl, the patient receives two sugar packets. A patient on a zero diet
receives half of a 30% IV glucose ampoule and glucose serum 5%, when the blood glucose
value is between 50 and 70 mg/dl, and a 30% IV glucose ampoule and glucose serum 5% when
it is less than 50 mg/dl.

Moreover, the application of this protocol suggests that there is something wrong with the
patient. Therefore, the endocrinologist should be informed because some adjustments in the
current therapeutic scheme, may be necessary.

Concerning the protocol description from a medical point of view, its description lies in
what has been described previously. From a technical perspective, the following required
clinical variables were defined for this protocol:

• BG: In this protocol, this variable indicates if the protocol should proceed or not. When
it’s value is less than 80 mg/dl, the application of this protocol is required.

• Diet: The diet type is a condition that decides what the nurses should do in the
treatment. However, this information is only introduced into the system a few times
during the protocol execution, since this value does not change as frequently as the
blood glucose values.

In Figure 2.1 this protocol is represented, and all the steps followed by the system in
its execution. All these steps are not perceptible for the final user. S/he only introduces
the necessary data and receives a set of instructions. However, this representation helps the
non-medical people to understand the protocol’s logic.

2.3 Surgical diabetic inpatient

The next protocol applies to the surgical diabetic inpatient. This protocol influences
the surgery realization. Initially, it is verified if the patient’s HbA1c is higher than 8.5%,
in which case the possibility of postponing the surgery should be considered. The blood
glucose measurements before and after the surgery must be made before meals and before
bed. Furthermore, the oral hypoglycemics must be interrupted in the day of the surgery. In
case of metformin, the oral hypoglycemics is always suspended 48 hours after the IV contrast
administration.

There are three different scenarios for this protocol. When the surgery is minor and the
patient is diabetic type 2, with a good metabolic control, the following recommendations
should be applied:

• suspend the morning antidiabetic;

• avoid glycosylated serum;

12

CHAPTER 2. THE MOTIVATION: DIABETES MANAGEMENT

Figure 2.1: Flowchart of the hypoglycemia protocol

• perform blood glucose measurements every 4 hours and administrate sliding scale insulin
if needed, the dosages are represented in table 2.4;

• and restart the antidiabetic when the patient starts eating.

Concerning minor surgeries with a type 1 diabetic inpatient with good metabolic control,
the precautions that should be taken are a little different. Below is a description of all the
actions needed:

• administrate half of the normal isophane/intermediate/short-acting insulin dosages in
the surgery morning. However, if it was administrated the night before, the dosage is
kept;

• do not administrate short-acting insulin in the morning of the surgery;

• use glucose serum at 5%;

• administrate the sliding scale insulin every 4 hours, as represented in table 2.4;

13

CHAPTER 2. THE MOTIVATION: DIABETES MANAGEMENT

Table 2.4: Unit of short-acting insulin to administrate according to the blood glucose.

Plasma glucose Short-acting insulin units

140 - 180 mg/dl 2 units

181 - 220 mg/dl 4

221 - 260 mg/dl 5

261 - 300 mg/dl 6

301 - 340 mg/dl 7

341 - 380 mg/dl 8

>380 mg/dl 10

• and perform glucose measurements every 2 hours.

Finally, when the surgery is major, the patient is diabetic type 1 with bad metabolic
control, or did not eat for more than 12 hours, the protocol applied is the continuous
intravenous infusion, detailed in section 2.4.

Analyzing the technical perspective of this protocol, the required clinical variables for
this implementation and execution, were defined. The following list details these variables,
explaining their usefulness:

• BG: As can be noticed, this variable is present in all protocols. After all, the insulin
dosages depends on these values.

• HbA1c: This variable helps to understand the patient’s clinical state. In some
situations, the value of this variable could influence a surgery delay.

• Diet: The diet, like before, only to defines if the patient is eating or not.

• Metformin: This variable only indicates if the patient is taking this kind of oral
hypoglycemics.

• Surgery type: The protocol depends on the surgery type, as previously described. So,
this variable indicates if the surgery is major or minor.

• Diabetic type: The diabetic patient’s type is a non-optional variable. There are several
procedures that are taken depending on this value.

14

CHAPTER 2. THE MOTIVATION: DIABETES MANAGEMENT

Figure 2.2 describes, in a flow chart, the defined protocol. By following all the steps in this
workflow, the system should provide a result to the user. However, there are several conditions
that lead to another protocol execution. In this case, the system should not execute the new
protocol automatically, but it should inform the user about the situation.

Figure 2.2: Flowchart of the surgical diabetic inpatient protocol

15

CHAPTER 2. THE MOTIVATION: DIABETES MANAGEMENT

2.4 Continuous intravenous infusion

This protocol is a bit different from the previous ones. From a medical perspective, it
works differently. The continuous intravenous infusion is an interrupt procedure with regular
adjustments that will lead to a more precise insulin dosages for the patient. This is one of the
scenarios where it would be good to have a machine learning model to suggest more precise
dosages [21]. However, this work was not made thinking in this kind of implementations.

This protocol is intended to be used in hyperglycemic adult patients in the intensive
care unit. It should not be used in diabetic ketoacidosis or hyperosmolar hyperglycemic
state, as these patients may require higher initial insulin doses. In any patient with blood
glucose greater then 500 mg/dl, the initial orders should also be carefully reviewed with the
endocrinologist [18]. The blood glucose target is between 140 and 180 mg/dl.

The infusion begins considering the current blood glucose value. One unit of short-acting
insulin is added to the result of the following formula: Divide initial blood glucose level
by 100, then round down to the nearest 0.5 unit and add this result to the initial infusion
rate. However, if the enteral/parenteral nutrition abruptly stopped, the infusion rate must be
reduced by 50%. In the following example, exemplifies how the previous calculation are made.

Example: Initial BG = 274 mg/dl: 274÷ 100 = 2.74, round to 2.5:

These initial steps are made only to start the infusion rate. Afterwards the blood glucose
must be monitored every hour, until 3 consecutive measurement values are in the target range.
Then, the measurements can be done every 2 hours. If needed, some adjustments should be
made to these measurements.

In the case blood glucose values are below the target range the dosage described in the
table 2.5 should be administrated. Afterwards, the blood glucose values need to be rechecked
every 15 minutes until they reach 90 mg/dl. Measure every hour until the value obtained lies
in the target range, then wait for 30 minutes and restart the insulin infusion at the percentage
described in the table 2.5, of the most recent rate.

Table 2.5: Procedures to take when blood glucose is below the target range.

Plasma glucose Dosage to administer Infusion rate percentage

<50 mg/dl 1 amp (25g) D50 IV 50%

50 - 79 mg/dl 1/2 amp (12.5g) D50 IV 50%

80 - 119 mg/dl - 75%

Finally, when the blood glucose values are on target or above, the adjustments should

16

CHAPTER 2. THE MOTIVATION: DIABETES MANAGEMENT

follow the table 2.7. The first 4 columns represent the blood glucose ranges and each cell
contains the hourly blood glucose interval change. Then, after identifying the right cell in
which the patient fits, the instruction in the last column should be followed, supported by the
infusion rates represented in the table 2.6.

Table 2.6: Changes in the infusion rate.

Current rate
(Units/hr)

∆ = Rate change
(Units/hr)

2∆ = 2x Rate change
(Units/hr)

<3.0 0.5 1

3.0 - 6.0 1 2

6.5 - 9.5 1.5 3

10.0 - 14.5 2 4

15 - 19.5 3 6

>20 (unusual) 4 8

This protocol only requires the current and the last blood glucose values. So, the clinical
variable to support this protocol are the blood glucose and its history. All the actions follow
the previous table and conditions, providing the necessary adjustments in the infusion.

2.5 Summary

This chapter details the protocols that should be implemented in the required system. All
the protocols are described in detail since they were the main reason that led to this research.
As a health professional, it is hard to memorize and follow all the steps described previously.
Furthermore, as detailed, some protocols required periodic measurements to decide which is
the best treatment.

Concerning these needs, in the next chapter we will evaluate the traditional methodology.
This simplified the search for a solution, because the comprehension of these protocols
helped to feel the struggle that every health professional faces when treatments are updated.
Therefore, now, there is a well-defined starting point to search for existing solutions, that, at
least, fulfill these requirements.

17

C
H

A
P

T
E

R
2.

T
H

E
M

O
T

IV
A

T
IO

N
:D

IA
B

E
T

E
S

M
A

N
A

G
E

M
E

N
T

Table 2.7: Rate change considering the current clinical state of the patient.

BG: 120 - 139 mg/dl BG: 140 - 178 mg/dl BG: 180 - 220 mg/dl BG: >220 mg/dl Instructions

- - BG ↑ by > 60 mg/dl/hr BG ↑ ↑ infusion by 2∆

- BG ↑ by > 40 mg/dl/hr
BG ↑ by 1 - 60 mg/dl/hr

or
BG Unchanged

BG Unchanged
or

BG ↓ by 1-20 mg/dl/hr
↑ infusion by ∆

BG ↑
BG ↑ by 1-40 mg/dl/hr,

BG Unchanged, or
BG ↓ by 1-20 mg/dl/hr

BG ↓ by 1-40 mg/dl/hr BG ↓ by 21-60 mg/dl/hr No infusion change

BG Unchanged
or

BG ↓ by 1-20 mg/dl/hr
BG ↓ by 21-40 mg/dl/hr BG ↓ by 41-60 mg/dl/hr BG ↓ by 61-80 mg/dl/hr ↓ infusion by ∆

BG ↓ by > 20 mg/dl/hr BG ↓ by > 40 mg/dl/hr BG ↓ by > 60 mg/dl/hr BG ↓ by > 80 mg/dl/hr hold 30 min, then
↓ infusion by 2∆

18

CHAPTER 3

The Current Methodology

”Research is creating new knowledge.”
— Neil Armstrong

Clinical decisions can be made without a computational system, following well-defined
guidelines. However, medicine knowledge is always growing and new and better treatments
are often found. These treatments usually follow some rules, that can quickly become very
complex. It is challenging for a physician to follow these new protocols and it could lead to
mistakes due to the numerous of treatment conditions.

Currently, there are some systems that can potentially be used to assist clinical
decisions [7]. Moreover, in the past years, the healthcare information systems have been
incorporated with decision support features. However, the common use of these features is to
support retrospective analyses of financial and administrative data [22, 23]. The problem is

19

CHAPTER 3. THE CURRENT METHODOLOGY

that when vendors advertise systems with decision support capabilities, they are not normally
designed for treatments guidance. Concerning this issue, the interest of having a Clinical
Decision Support Systems (CDSS) directed to guide treatments has increased. Thus, more
EHR vendors have begun to include these CDSS as a system feature, or at least provide a
way to include them from external sources [24, 25].

This chapter is divided into four sections. The first section briefly describes CDSS types
and how they can be useful. However, for the issue investigated in this dissertation, the
nonknowledge-based approach is not the best solution, once health professionals need a
different type of system. Thus, these type of solutions are not analyzed. In the next section,
which concerns the knowledge-based CDSS tools, or, as some authors usually call it, the
rule-based CDSS, describes the existent solutions and why these can not solve the presented
problem. In the third section, some of the existent ad-hoc solutions, specifically designed
for diabetes management, are analyzed. The main goal of this research is a generic solution,
however, the problem could be solved with an ad-hoc solution, this research would have
followed a different direction with different goals. Finally, all the CDSS solutions will be
compared, in order to try to understand what can be done that was not already done.

This analysis, followed some specifications to guide the evaluation of the existent solutions.
These specifications are constituted by the essential needs of the health professionals in the
CHBV. However, some technical requisites must, also, be followed, keeping always in mind
that these ones can be a somewhat flexible. Therefore, the functional requirements used are
represented in the following list:

• User roles and activities must be controlled by an administrator, using role-based access
control policies;

• The physician should be able to define protocols;

• The defined protocol most support adjustments;

• The system needs to notify health professionals about the patients monitoring schedule
and treatments;

• Assigned protocols should be open for adjustments over time.

3.1 Clinical Decision Support Systems

There are two main types of CDSS [25]:

• Nonknowledge-based, which are based on artificial intelligence, and use support vector
machines and neural networks;

20

CHAPTER 3. THE CURRENT METHODOLOGY

• and Knowledge-based, which are mainly based on defined rules that most often take the
form of IF-THEN rules.

The nonknowledge-based CDSS are mainly computers trying to simulate the human’s
thinking [26, 27]. These systems use artificial intelligence to learn from past experiences or
recognize patterns in the clinical data [28].

This type of systems has the goal of inferring from a collection of data the facilitation of
the decision-making processes [29, 30]. However, this implies the use of statistical approaches
to model the data [31] and which implies the necessity of selecting features to classify the
data in one or more groups of classes. This could be an interesting approach, but without an
expert to help the system in the learning phase, this could produce wrong decisions.

The system developed in this dissertation follows a rule-based approach, since the
requirements established for this phase lead to this type of methodology.

A rule-based system is a system where the specialist can configure the protocol conditions
following a rule-based approach. Normally, such CDSS is divided into three parts: 1) the
knowledge base; 2) the inference engine; and 3) the mechanism to communicate with the
user [32].

The knowledge base consists of a compilation of information in a format legible for the
system, which is often, but not always, in a if-then format.

The second part of the CDSS, the inference engine, contains all the formulations to combine
the rules in the knowledge base, using the patient clinical data.

Finally, the last part is the bridge between the health professionals and the system, i.e.,
this part is the way of getting the patient’s clinical data into the system and getting the
system’s outputs that will support the user’s decision.

Most of the CDSS solutions are incorporated in EHR systems. This way, the data is already
managed by the core system, and the CDSS only need to access that data [33]. However, the
objective of this work is to create a autonomous solution to work without having to be attached
to a EHR system.

3.2 CDSS Tools: General Solutions

Decision support systems can be used in different clinical scenarios, namely, as disease
diagnosis, laboratory procedures, as treatment orientation, which is the objective. The
following solutions are some of the most relevant for this work.

The Open Clinical Organization1, is an organization created to promote the use of
decision-making systems, clinical workflows, and knowledge management technologies. This
organization presents some methodologies to represent the medical algorithms, and some
standard formats for modeling and execute clinical guidelines.

1http://www.openclinical.org/

21

CHAPTER 3. THE CURRENT METHODOLOGY

The Causal ASsociational NETworks (CASNET) was the first system developed for
diagnosis and treatments. This system was a prototype system created for the diagnosis
and therapy of glaucoma [34]. It follows a causal reasoning approach, which is a process of
identifying causality, defining the relationship between a cause and its effect. Currently, there
is not much information available about the system, and it is more a historical mark in the
progression of this research.

GLIF3 is an object-oriented query language for clinical decision support and has been
designed to support computer-based guideline executions [35]. This language defines the
logical criteria, the patient’s clinical data, the clinical actions and the guideline workflow. This
is an update of the GLIF2 language, with new specifications and inclusion of new features [36].
The GLIF3 Guideline Execution Engine (GLEE), was developed to execute guidelines in the
GLIF3 format. Its goal is the execute the guideline workflow, recording the state of each
guideline step and their transitions [37, 38]. This system follows a hybrid approach, where
it is not directly connected to any EHR system, but it allows the integration with external
sources. It also traces the patient’s records, when a guideline is applied to the patient. As
a first look, it seems to be a good solution. However, no installation or way to test/use the
system is available, and the lack of more details and information about it was discouraging.
Furthermore, the few system screenshots available have an outdated design. This conveys the
idea that the system does not allow its executions in mobile devices, which is one of the health
professional requirements.

The Guideline Execution by Semantic Decomposition of Representation (GESDOR)
follows the approach used by GLEE. However, in contrast to GLEE, which executes guidelines
in the GLIF3 format, the GESDOR uses generalized guidelines [39]. This way, the guidelines
can be encoded in different formats and then stored in the repository. The problem with this
approach is that no system is available. It is only a model to execute guidelines that are
encoded in different formats.

The OpenEMR2 is an open-source EHR system, designed for medical records and patient
management [40]. It is a complete system with many features that are not related to this
dissertation’s subject. However, this system supplies a feature designed for clinical decision
rules. This module has some features, that were identified in the initial requirements, and
which could almost fulfill the health professional needs. The system has a reminder feature for
the physicians and for the patients and allows a fully customization of the protocols. However,
despite being an excellent system, it is an EHR system, which brings a lot of complexity to
install and maintain. Furthermore, the integration of two different EHR systems is not an
easy task [41]. Finally, after studying the clinical decision support module, the conclusion is
that it is not very user-friendly.

The OpenCDS3 is an open-source system that provides a reference implementation of the
2https://www.open-emr.org/
3http://www.opencds.org/

22

CHAPTER 3. THE CURRENT METHODOLOGY

Decision Support Service (DSS). This system is considered a service-oriented framework and it
is compliant with the HL7 Virtual Medical Record (vMR) and HL7 Decision Support Service
(DSS) standards [42]. In theory, the system almost fulfills the evaluation requirements, but
after a local installation, some gaps were found. The system does not have a web client, it
only provides some guidelines for the ones that want to develop its own client. The decision
to use this system as an engine was discarded, due to the lack of documentation.

The Immunization Calculation Engine (ICE) is an open-source system designed for the
forecast immunization, and it has two major components. The core component that evaluates
the patient’s history and generates a recommendation, which is designated as ICE Web
Service. This component runs using the OpenCDS middleware. The second component is
the Clinical Decision Support Administration Tool (CAT), which is a GUI tool [43]. This
project is a composition of different systems, new in the market, and therefore the use of it
was discouraging. Additionally, this system was designed for the forecast immunization and
to use it in another scenario, some effort would be required. This effort is hard to estimate
since the system is still in an early stage.

The IndiGO is an individualized clinical guideline system based on the Archimedes model,
which takes into account more than 30 different variables of the patient’s data [44, 45]. This
could lead to a problem in the future, since patient’s clinical data should be flexible over
time. The system can also be integrated with EHR systems, and it can create individual
protocols for each patient. However, this system was not consider as a solution due to a lack
of documentation.

The MedCPU4 is a platform created to guide in real time the clinicians and notify them
when necessary. This platform can be integrated with EHR systems using HL7 connectivity.
This system can also promote protocols for patients, individually. However, this tool follows
a text processing paradigm, which is not quite the goal of this work. This system is not
open-source, so the access to more documentation is restricted.

EGADSS5 is an open source tool created for clinical guideline alerts and recalls for primary
care. It supports clinical workflows and it was designed to be used as part of a service-oriented
architecture. Therefore, this tool can be integrated with external systems, such as EHR
systems [46]. However, this project ended in 2006, so currently, not much documentation and
IT support exist.

Odyssey6 is a commercial service that provides advice and care pathways. This system
already is fulfilled with protocols, and it is hard for a health specialist in a specific disease to
introduce new protocols. The fact that the system is not an open-source solution and that it
does not allowed the introduction of a protocol by external specialist, led to the exclusion of
this system as a solution for the dissertation’s problem.

4http://medcpu.com/
5http://egadss.sourceforge.net/
6https://www.oneadvanced.com/solutions/odyssey/

23

CHAPTER 3. THE CURRENT METHODOLOGY

The LogicNets7 is another commercial tool that aims the decision-making processes. This
tool is a web-based decision support platform that provides an interactive design environment
for the users to easily create clinical process diagrams. It has a modern design and it can
be used on different devices, desktop or mobile. However, this solution, as indicated, is a
commercial solution. Furthermore, the decisions made by this system follow a form approach,
i.e., the user needs to answer forms, and in the end, the system provides a decision. It is
a close approach for what is intended in this work, but due to the commercial license, the
solution cannot be customize programmatically for some more specific requirements.

3.3 CDSS Tools: Diabetes Solutions

As an attempt to only solve the present issue, without using or creating a generic system,
some more specific solutions were searched for. A ready-to-use solution, if some exists, should
be the path to follow. Afterwards, with this issue solved, more things could be done, to
improve the current procedures. However, as described below, there is no solution that fits in
the health professionals needs.

The Glucommander [47] is a system intended to control the blood glucose, which provides
the expected measure of insulin required by the patient’s organism. This amount of insulin
is calculated using an algorithm, that processes some patient parameters, e.g. glucose, and
informs the health professionals about the amount of insulin to be administrated, and when
the next blood glucose measurement must be done. This system fails in some crucial aspects.
The used algorithms in the system are not easy to change or update by the institutional
experts. Additionally, the carbohydrates quantity in the estimation is not include and the
system does not respond quickly to unforeseen changes in glucose.

The EndoTool8 is another system designed to manage inpatient insulin therapies. This
glucose management system uses several more algorithms to predict the insulin dosages, and it
also provides insulin dose recommendations for intravenous and subcutaneous administration.
This system seems to have more advantages when contrasted with the previous one, however,
the possibility to easily configure new protocols to calculate the insulin doses is a crucial
missing feature.

GlucoStabilizer9 is a software application with the same aim as the previous ones. In the
same way, this application uses insulin factors and blood glucose to calculate the insulin doses
to be administrated. Additionally, the carbohydrate ratios are contemplated, which helps to
predict an adequate insulin dosage [48].

Since these systems are ad-hoc solutions, the main focus is the health professionals
needs. The technical aspects were not analyzed due to the lack of functional requirements

7https://medical.logicnets.com/
8https://monarchmedtech.com/
9http://glucostabilizer.net/

24

CHAPTER 3. THE CURRENT METHODOLOGY

accomplished in each solution. Furthermore, the discussed systems are commercial
solutions which allow guiding insulin therapies, being especially useful in hospitals without
endocrinologists or diabetes experts.

3.4 Systems Comparison

Table 3.1 presents, a comparison considering only the solution ready to use. In the previous
sections, some approaches have been described, but, since these do not lead to a final solution,
they were not included in this table.

Solutions integrated with modules in several open source EHR systems, can also be found.
However, despite being a good and integrated approach, these solutions can not be used
autonomously with others EHR systems, discouraging its installation and use [49].

3.5 Summary

This chapter reviews the existing systems that could potentially fulfill the goal of this
dissertation. Without finding a solution that completely fulfills the health professional needs,
a different approach was tried. Ad-hoc solutions for diabetes were studied, since the treatments
of this diseases are the reason for this work.

In conclusion, a new solution must be created and the initial requirements used in the
evaluation are not sufficient to guide the development of a solution intended by health
professionals. Therefore, the next step is a deep analysis of the solution’s requirements and
this is discussed in the next chapter.

25

C
H

A
P

T
E

R
3.

T
H

E
C

U
R

R
E

N
T

M
E

T
H

O
D

O
LO

G
Y

Table 3.1: Clinical decision support systems features comparison.

Platforms

Feature GLEE OpenEMR OpenCDS ICE/CAT IndiGO MedCPU Odyssey LogicNets

Base Language Java PHP Java Java Unknown Unknown Unknown Unknown

License Unknown GNU Apache 2 GNU Commercial Commercial Commercial Commercial

Requirements Needs a
EHR system

Needs the
incorporated
EHR system

Needs a
front-end
client

Unknown Unknown None None None

Category Middleware Full System Engine Full System Full System Full System Full System Full System

Documentation Very Sparse Extensive Sparse Sparse Very Sparse Very Sparse Very Sparse Very Sparse

Web Services No Yes Yes Yes Unknown Unknown Unknown Unknown

Web Based No Yes Yes Yes Yes Yes Yes Yes

RBAC Unknown Yes Unknown Unknown Unknown Unknown Unknown Unknown

Protocol
Customization Yes Yes Yes Unknown Yes Yes No Yes

Notifications Yes Yes Yes Unknown Yes Yes Yes Unknown

26

CHAPTER 4

System Requirement Analysis

“Faith is a necessary prerequisite for a courageous act.”
— Sunday Adelaja

In the previous chapter, an evaluation of the existent solutions following a small set of
requirements, was made. However, from this analyzes the conclusion was to build a new
solution, the requirements used in the evaluation are not enough to proceed the development.
Thus, this chapter details the final solution’s requirements.

4.1 Challenges

Following the literature reviews, the project analyses, and the physician’s needs, some
well-defined specifications were established. Since there are already some attempts to solve

27

CHAPTER 4. SYSTEM REQUIREMENT ANALYSIS

the issue discussed in this dissertation, there are some starting points to help in the problem’s
formulation. However, there are some challenges which need to be very well specified to solve
the problem in the best way possible.

Creating, customizing and allowing the future edition of the protocol, i.e., all the protocol
setup and management, could be one of the hardest challenges in this project. At a first look,
it seems an easy issue. However, the complications begin when a physician needs to interpret
some protocols already existing in paper, and these protocols must be inserted in the system.
This operation needs to be as simple as possible. Additionally, the system needs to be flexible
enough to be able to deal with the patient’s data and all the protocol rules. All of this gives
rise to a small set of requirements.

The system needs to work in different health fields, therefore a dynamic and flexible
solution must be build. This specification carries a particular issue since the protocol requires
some patient’s data to perform its execution. However, this data cannot be defined in the
database model during the development stage. In other words, all the patient’s data needs
to be configurable and adjustable in the system’s installation, and at any moment. That is
especially important because a new protocol could require some undefined patient’s variables.
Thus, this definition needs to be done pos-installation, at runtime.

Finally, but not least, the system needs to hide all the complexity involved in the protocols
management, and patient’s data acquisition and storage. That may seem obvious, but some of
the end users do not have experience using new technologies. Consequently, some of their old
habits could not motivate them to endorse, with a positive outlook, this new methodology.
Maybe build a solution that influence the users to adopt this new system and left the old
paper notes, will be the biggest challenge.

4.2 Functional Requirements

In collaboration with the health professionals from Centro Hospitalar do Baixo Vouga
(CHBV), some functional requirements have been established, to ensure that the final solution
fits the users’ needs. The following topics describe these requirements:

1. Multi-User

The system only supports registered users, which registration needs to be controlled by
an administrator. After a user does a registration, the administrator must approve it.
Without the approval, the user cannot perform any action in the system. Furthermore,
the user’s profile must be defined by the administrator during the approval process, to
assure that there is no leak in the privileges.

28

CHAPTER 4. SYSTEM REQUIREMENT ANALYSIS

2. Create and Manage Protocols

The protocol is composed of rules that will interact with the patient’s data. This
protocols are exclusively created and managed by the physicians. Moreover, the
physician should be able to replicate them.

3. Adjust and Customize Protocols

The protocol must be able to be customized for each patient, if necessary. Additionally,
the protocol must support adjustments over time, when needed, even if it is already
assigned to a patient.

4. Patient Management

The patients must be managed by the physician. Additionally, the system needs to
keep all the patient’s data, interactions, and protocol history, over time. Clinical
variables will store the patient’s data, and its configuration is the responsibility of the
administrator. In this configuration, the administrator must be able to add or hid
the current variables, without losing the data history. Furthermore, after leaving the
hospital, these data must be kept in the system for futures admissions.

5. Protocol Assignment

The relation between patients and protocols must be a relation of many-to-many, i.e.,
distinct protocols can be prescribed to each patient, such as more than one patient
could have the same treatment. Therefore, assigning a protocol to a patient must be
possible at any moment, as long s/he is admitted to the hospital.

6. Private Workspace

Nurses will have a private list of patients under their responsibility. However, patients
may be not assigned to a specific nurse. The physicians should have a private space
to have their own protocols. That is important for ongoing protocols, in which the
physician is working on, and are not ready to be public in the system. The physician
may, also, not want to share a protocol because it is a customized protocol.

7. Notifications

The system needs to notify nurses about the patients’ monitoring schedule and
treatments, due to the existence of some protocols that require a patient check, in
time intervals, which need to be strictly respected.

8. Platform Administrators

The system needs to have a workspace for administrators, where the entire system
can be managed without accessing it from the client side. In this area, administrators

29

CHAPTER 4. SYSTEM REQUIREMENT ANALYSIS

must be able to manage the patient’s variables, visualize the history of all interactions
on the system, and manage all the database data.

4.3 Non-Functional Requirements

Concerning the non-functional requirements, namely portability, modularity and
cross-platform deployment, some mandatory aspects are detailed in this section. Below, the
essential requirements for the system are described:

1. Service-Oriented Architecture

The system must be easily used in multiple platforms, as a service provider. This
can be simplified by following a service-oriented architecture, based on REST web
services [50]. This architecture, also simplifies the integration with other tools, if in
the future this need occurs.

2. Micro-Kernel Core Architecture

The system core must follow a micro-kernel approach to simplify the software extension
through plugins [51]. These plugins, which constitute the system core, are detailed in
chapter 6.

3. Role-Based Access Control Policies (RBAC)

All the user’s roles and activities must be controlled by an administrator, using
role-based access control policies [52]. Thus, each user will have a role which has
different privileges in the system.

4. Easy deployment

The system must be easy to set up, from the installation to the stage where it is
ready to use. This installation process should be simplified through easy-to-deploy
technologies [53].

5. Support mobile and modern web

The client’s application will be used at different points of the hospital, i.e., some users
will use the application close to the patient beds. Concerning that, the application
must fully work in smartphones and tablets. There is no need to create different client
applications, one to mobile use and another one to desktops. However, the application
needs to be responsive and work well in both scenarios. Regarding this requirement,
and keeping in mind the creation of only one client, this one should focus on modern
web practices. It must work on browsers such as Chrome and Firefox, and adopt
techniques such as HTML5 and CSS3 features [54].

30

CHAPTER 4. SYSTEM REQUIREMENT ANALYSIS

6. Software Quality Assurance

Regardless the tests automation is essential to increase the project efficiency [55].
Regarding this, all the modules in the system should pass through software quality
tests (unit, integration and feature tests).

7. HL7 Integration

The system must include a communication module for data exchange with external
systems, through HL71 [56].

4.4 Use Case Analysis

During the requirements analysis, the actors that will use the system were defined:

1. Physicians, who have the most important role in the application, because they create
and manage the protocols and the patients;

2. Nurses, the entity that executes the protocols;

3. Administrators, who do not work with the system daily, but need to keep it operational.

These entities have different roles in the system, with different privileges. Therefore, it was
mandatory to define the responsibilities to each one. In Figure 4.1, which is a typical use-case
diagram, these entities and their actions on the system are represented. It is possible to identify
three main action areas in the system: 1) Protocol Management; 2) Patient Management; and
3) System Administration.

The actions associated to these areas are the following:

1. Manage Protocol

Physicians should manage all the protocols. However, it is necessary to allow these
permissions to the administrator, just in particular situations. For instance, when the
protocol has some complex calculations, the physician could ask the administrator for
help in the implementation stage.

2. Search Protocols

Searching for protocols also should be done by physicians. This activity is important
in situations where the system has a high number of protocols, or to check if other
physicians have introduced the desired protocol. Nurses should not be allowed to
search for protocols, to avoid misinterpretations.

1http://www.hl7.org/

31

CHAPTER 4. SYSTEM REQUIREMENT ANALYSIS

Figure 4.1: Use case diagram

32

CHAPTER 4. SYSTEM REQUIREMENT ANALYSIS

3. Assign Protocols to Patients

When the patient is admitted to the hospital, or even later, the protocol assignment
should only be made by the physician. Nurses do not have permissions to take this
kind of decisions.

4. Customize Protocol

The protocol customization is another activity which needs to be highlighted. Despite
being associated with the protocol management, this action is very singular, because
changes are only for the protocol assigned to one patient, i.e., for the system, it is a new
protocol. Additionally, only specialists in the disease have the knowledge necessary to
perform customizations. This action belong to the physician responsibility.

5. See Protocol Notifications

This requirement is very useful namely for patients follow-up (nurses). The notification
system increases the measurements accuracy. Although it is not a task for physicians,
they have access to the notifications.

6. See Assigned Protocols

The assigned protocols should be available to all entities. Nurses need to know what
to do and how to perform the treatment. Physicians need to know what has been done
by the nurses. This track helps them to understand if a protocol change is necessary.

7. Patient Clinical Data

Patients’ information needs to be added by both entities as well. Some of this
information is given by the physician when s/he checks the patient state. However,
nurses also need to introduce the measurements for the protocols’ calculations.

8. Manage Patient

The patient management should only be done by the physician, because nurses are not
allowed to discharge the patients, neither to admit them in the hospital.

9. Patient History

Allowing nurses to navigate through the patient history could be a tricky decision.
A patient’s history may contain sensitive data, but it could help a nurse to know if
s/he already performed the treatment or if s/he tipped the right data in the system.
Regarding this, a patient’s history access by nurses should be controlled. However,
physicians will not need these restrictions.

33

CHAPTER 4. SYSTEM REQUIREMENT ANALYSIS

10. System History

This activity is more useful for system administration, so, only the administrators
should be able to navigate through the system’s history. That will allow to see if the
system is stable and in correct use.

11. Manage Clinical Variables

After the system’s installation, the patient’s clinical variables must be defined. Since
it is back office activity, and to assure the system’s stability, this activity should only
be performed by administrators. However, if a physician needs more clinical variables,
s/he should request it to the system’s administrators.

12. Manage Users

All users in the system, physicians and nurses, should be managed by a registered
administrator. Nurses and physicians should not be able to manage other users in any
situation.

All the above requirements can also be executed by administrators, just to provide a
simple way s/he can test the system’s stability when necessary. However, this should be made
carefully, because this role implies a lot of responsibilities.

4.5 Summary

This chapter discussed the specifications that supports the system’s development. Some
of these requirements are functional, which describes what the system must be able to do.
Additionally, it analyzed some non-functional requirements, which specifies how the system
should work technically.

34

CHAPTER 5

Solution Architecture

”Whatever good things we build, end up building us.”

— Jim Rohn

After discussing and describing the main requirements, the solution’s architecture will be
analyzed. This architecture needs to fulfill the technical requirements described before, as well
as provide a good foundation for the current functional requirements,. allowing the system’s
scalability and adaptability to new features.

This chapter describes the system’s architecture, which follows a client-server model.

35

CHAPTER 5. SOLUTION ARCHITECTURE

5.1 Client-Server model

The proposed architecture follows a Client-Server model, in which each side is sub-divided
in several layers (Figure 5.1).

Figure 5.1: System architecture, which follows a client-server model

The Client side encapsulate mostly of the presentation part of the system. It is divided
into 2 layers, the presentation, and the controller layer. The presentation layer is responsible
for the user interfaces. The controller layer consumes the backend webservices and provides
the data to the presentation layer.

The Server, which is mainly the backend core, is subdivided into 3 sub-layers: 1) business;
2) persistence; and 3) service provider. The persistence layer is responsible for storing and
maintaining the system’s data. The business layer contains most of the application’s logic.
Finally, the service layer provides a RESTful API with services prepared to interact with all
the system’s functions with or without the client. This layer will be used by the client to
access all the core features.

Figure 5.2 presents the system’s architecture, where this decoupled approach is emphasized,
namely the core modules and the extensions elements, without having to interact with the
rest of the system. All these elements will be detailed in the following sections.

5.2 Server Side Modules

One of the goals for our application was that it should be modular and extensible. To
address this, the core was reduced to the minimum, allowing its extensibility through the
introduction of new plugins.

36

CHAPTER 5. SOLUTION ARCHITECTURE

Figure 5.2: Architecture overview (including the Server Side on the left, and the Client Side
on the right).

Figure 5.3 represents the backend architecture with all the constituent components. Except
for the FlapPages, which is an application to store HTML pages in the database, the remained
components will be detailed below.

History

One of the requirements was to keep all the patient’s log. However, it was decided that
recording all actions performed in the system, would be better, which implies keeping track
of who performs which protocols in which patients, i.e., record the history for everything.

For this, we took advantage of previous work in a similar project [57, 58].
The objective of this module is, mainly, recording each action performed on the system

in a database table. For each entry, there are some entities associated: 1) an Actor, which
is the user that performs the action; 2) an Event, which defines the operations performed by
the user in the system; 3) an Object, that can be every object in the system and is the object
associated with the actions; and 4) the Viewers, which is a group of users, not directly related
with the action, but which should be associated and, in some cases, informed about this.

The Events are actions that can include the Create, Read, Update and Delete (CRUD)
operations, as well as some other more specific operations. These operations are always
associated with a system’s object, for instance, the insertion of a new patient, or a protocol
execution.

37

CHAPTER 5. SOLUTION ARCHITECTURE

Figure 5.3: Backend architecture.

The Viewers are users that do not perform the action, buy they are attached to it for
consistency system log purposes. This methodology is resumed in Figure 5.4.

Figure 5.4: History model logic.

Accounts

Another requirement is the creation of a multi-user platform, where only registered and
approved user can access the system. Additionally, different users could have different
privileges, following a role-based access control policies, controlled by an administrator.

This module is responsible for managing those users, in this case the health professionals
and the IT administrators. This module also manages the recovery password requests, the

38

CHAPTER 5. SOLUTION ARCHITECTURE

user’s roles and all action that allows the users to customize their profiles.
Patients are not considered users of the system and they have been left outside this module

Patients

The patient management is a key element of this system, since almost every action is
related to patients or, with protocols that are assigned to patients.

Briefly, this module manages the patient’s clinical data. Since these are dynamic, the
administrator needs to add or hide patient’s clinical variables at runtime, i.e, without changing
the source code or the database design.

The adopted approach is the creation of a database structure that is able to deal with
these changes. (Figure 5.5). The table CVPatient stores the patient and clinical variable
primary keys. The clinical variable column is the variable identifier, not the variable content.
The content is stored in the value column. Briefly, this table stores all the measurements and
other data from all patients registered in the system.

Figure 5.5: Database structure for storing dynamically the patient’s clinical variables.

To set up a new clinical variable, a new entry is added in table ClinicalVariable. Finally,
the CVGroup table was created to allow grouping variables in the user interfaces, in reporting
or in other data management operations.

Protocols

Protocols are the other biggest element of this system. In fact, the system was designed
to manage clinical protocols, independently of the medical context.

There are two types of protocols: 1) Simple type, that is based on data insertion, providing
a response in the end; and 2) Complex type, which is based on a workflow of tasks. Both
protocols are similar, but the first is mainly a group of rules to interact with some patient’s

39

CHAPTER 5. SOLUTION ARCHITECTURE

clinical variables, providing an output after the protocol’s execution. The user only inserts
the clinical variables, needed by the protocol. All the condition’s complexity and the protocol
flow is hidden to the user.

The Complex type is more a step by step execution protocol, where the user interacts with
the protocol following a pipeline. For each step, the output defines which is the next step, and
each action needed by the user. This step could be data insertion, analyzing data, or chose
the protocol behavior considering the defined conditions, or it could only be instructions to
help the user.

Regardless of the protocol type, also both of them need a schedule to be executed, and
patients to be assigned. This module is responsible for managing these actions. Additionally,
the protocol customization is another responsibility of this module.

Protocol Elements

Protocol elements are the basic units of the protocols. Each protocol is at least composed
by one element, and this composition follows a well-defined structure that must be respected in
the execution. Therefore, each element has an output that specifies which is the next protocol
element to be executed.

This module is responsible to manage all protocol elements, by providing an API to easily
integrate new protocol elements. By default, the system includes three types of elements: 1)
Decision elements, in which the next action depends on some condition; 2) Inquiry elements,
where the user needs to supply some information to the system; and 3) Action elements,
that only provide information about what users need to do. However, more elements can be
created, including hardware integration, for instance, to simplify the recorded patient’s clinical
data using medical devices.

Utils

This module is mostly responsible for the flat pages management, the multilingual
of the system, and some system variables that could be defined in the installation, or
post-installation.

5.3 Client Side Modules

The Web Client follows the same micro-kernel pattern as the server. This layer interacts
with the backend web services, displaying the information through an easy-to-use interface,
aiming the simplification of the protocol management.

Figure 5.6 resumes the web client core architecture with all the components and the
way that they communicate and use each other. Almost all the components finish in an
API connector as the information source. Additionally, they end up connecting to the State

40

CHAPTER 5. SOLUTION ARCHITECTURE

Handler for keeping their status update in all the application. Furthermore, all the components
are connected to the User component due to the authentication control. In the following
subsections, these components are detailed.

Figure 5.6: Frontend architecture.

Patient

The Patient module provides a visual interface for patient management. This interface
represents all the patient’s clinical data, but also all the treatments prescribed and a history log
with all the interactions between the patient and the health professionals. Since this module
manages all the patient’s information, it is also responsible for admitting and dismissing
patients in the system.

The data used by these interfaces, as well as the related actions are provided by the server
side. To access these data and methods, the module ends up using the API Connector. The
logic layer of this module is only for presentation proposes, such as the components rendering
and some visual actions.

Protocol and Protocol Elements

These modules are mostly responsible for the protocol management and protocol
assignment.

41

CHAPTER 5. SOLUTION ARCHITECTURE

As it was explained in the subsection 5.2, there are two different types of protocols. The
main difference between these two types is the execution, where one of these is visually more
complex.

The execution of the workflow-based protocol type, which is mainly a step-by-step
execution, requires more logic in the control layer. For each step, a new element must be
presented. Since there are different elements, for each of them, different visual components
also exists.

The Protocol Elements is the module responsible for rendering the content of these different
elements. Additionally, it also provides an API to add external elements.

User Account Manager

The module Account Manager allows the managing of user profiles. This allows a user to
login, configure his profile or request for password recoveries. However, This module was not
designed for the administrators who manage the users directly in the backend.

The users components is connected to all the other modules, to keep the track by who
performed what action in the system. This way, the system can keep a consistent history log.

API Connector

The API Connector is the source of data for the client side. This module has the
responsibility to do the bridge between the interface components to the server side.

Since almost all the webservices in the backend needs an authentication, this module has a
strong relationship with the User component. Without login, only the new user’s registration
is allowed.

5.4 Summary

This chapter details the system architecture and its main components, without considering
the technologies used for the implementation.

The next chapter will focus on the system’s implementation, describing the technologies
used to develop each component.

42

CHAPTER 6

The System Implementation

”Everything is theoretically impossible, until it is done.”

— Robert A. Heinlein

The problem was studied, different solutions were analyzed, following the definition of a
set of requirements, which led to a system planning, i. e., the software architecture. All
these topics have been described in the previous chapters. This chapter will discuss the
implementation details.

Following the architecture model defined in the section 5.1, several technologies were
selected to fulfill the architectural requirements. Figure 6.1 represents an overview of the
main technologies used in the system.

43

CHAPTER 6. THE SYSTEM IMPLEMENTATION

Figure 6.1: System technologies.

6.1 Server Side Implementation

The server side, which is the application core, was developed following the architecture
described in section 5.2. This section is divided in three parts:

• Technologies used, where the main technologies used to develop the system backend are
described;

• Persistence, a brief description of the database structure;

• Web Services, are the indispensable piece of the system to provide an API for the client;

44

CHAPTER 6. THE SYSTEM IMPLEMENTATION

• Tests, since the system was developed following a testing methodology, it is important
to describe this implementation phase.

6.1.1 Technologies used

The technologies used for the backend core are mainly python based. This was influenced
by the fact that the core was developed using the Django framework, which is detailed
below. For the database management, PostgreSQL was used, for several reasons that are
also explained below.

Django

Django1 is an easy-to-use programming framework to build web or mobile applications [59].
This framework is known by its simplicity, allowing the creation of pieces without unnecessary
complexity [60].

This framework is the basis of the whole system, creating a python based CDSS. The
main reason for choosing this framework is the excellent documentation and the support that
it provides. It also allows the creation of a stable system with a good core. In other projects [57,
58, 61] currently in a production environment, which use this framework as backend core, the
resulting systems are stable and with a robust core.

Another positive factor of using Django is the ability to have isolated and decoupled
components, which greatly simplifies the integration of a micro-kernel architecture. This is a
requirement for this system, making it modular and expandable. Additionally, the framework
uses a package manager, the Pip Installs Packages (PIP) to install new packages. This package
manager is very useful to replicate the development environment, keeping track of which
packages are installed.

Finally, Django has a big community of contributors. This community maintains and
develops new third-party applications, which can be integrated into this system. One example
is the configuration of the Django console layout. Using the Django JET2 application, which
is a modern template for Django admin interface with improved functionalities, the database
management can be simplified. Another example is the Django Constance3, which allows easy
configuration of dynamic settings in Django applications.

Django REST Framework

Django REST Framework4 is the recommended solution for building RESTful API over
Django. The framework has a detailed and well-written documentation, with a great

1https://www.djangoproject.com/
2http://jet.geex-arts.com/
3https://django-constance.readthedocs.io/en/latest/
4http://www.django-rest-framework.org/

45

CHAPTER 6. THE SYSTEM IMPLEMENTATION

community support, similar to Django. It is also supported by authentication policies including
the packages OAuth1a and OAuth2, and serialization mechanisms [62].

The Service Oriented Architecture (SOA) defined for this system implies the use of some
technology for communications between the server and client sides. Django REST Framework
takes an important role in this point. It is used in all the system modules, providing a
communication API to the outside.

Celery

Celery5 is an asynchronous task queue system, with support for real-time or scheduled
executions. It supports integration with Django applications, being useful for handling
background tasks in this system, allowing, for instance, the action scheduling, or the execution
of long-running events, such as email sending.

This framework schedules the protocol executions. It is a backend task running for checking
if there are protocols to be executed. Currently, it only notifies the user of the main dashboard.
However, in the future, if users want to receive an email notification, this is the module
responsible for it.

PostgreSQL

Django includes Object-Relational Mapping (ORM) to automatically handling the
database integration. The used database was PostgreSQL6, a popular open-source Relational
DataBase Management System (RDBMS). It uses in the database markups the free SQL,
which is currently a standard language for relational database management. Additionally,
Django works very well with this database driver.

There are some expectations of storing large amounts of data in some tables, such as the
patient’s clinical variables records. However, the authors [63] used this framework to deal
with simple datasets and then used a NoSQL framework that makes it easier to work with
larger volumes and more heterogeneous data sources. The use of a NoSQL framework was
considered for handling the patient’s clinical data, using HBase7, MongoDB8 or Cassandra9,
which are NoSQL database engines to deal with big data. However, in this first stage of the
system, only the relational model was kept.

6.1.2 Web Services

Concerning the web service implementation, which are JSON based, and detailing a bit
deeper into the technical aspects, each system module has several data models and several

5http://www.celeryproject.org/
6https://www.postgresql.org/
7https://hbase.apache.org/
8https://www.mongodb.com/
9http://cassandra.apache.org/

46

CHAPTER 6. THE SYSTEM IMPLEMENTATION

views. For each view, there is a serializer, which allows complex data such as query sets and
model instances to be converted to native Python data types [64]. Additionally, each view has
filters defined, used for data sorting, filtering, and which model fields can be filtered.

For each view, an URL is defined, allowing the mapping of each method. With the goal
of homogenizing the web services definition, an URL structure was defined. This will help
developers to understand from which module, model, and view, the method has been called.
This way, all web service starts with the path ’/api, followed by the module’s name and view.
Then, the next element in the path can be the method to call or the id, depending on the web
service’s definition.

There are different views, with different purposes. Thus, some of those do not have all the
RESTful standard methods defined. Appendix A presents the list of all web services.

Regarding the listing web services, which are the ones that accept parameters on the
requests, they follow the GET parameter ’?page=<x>’ and ’?page_size=<x>’, to retrieve
the defined page and the number of records of a query set. Additionally, for each one, the
possibility exists to filter or sort the results, using the GET parameters ’?<field>=<value>’
and ’?ordering=<field>’, respectively.

6.1.3 Tests

Testing is not only about making sure that the system works, but also to ensuring the
quality of the system, preventing that the application results in unexpected behaviors.

During the development phase, every module built in the backend was tested. To do this,
the testing features provided by Django was used. This feature requires a stack of testing
instruction, indicating the desired behavior of the implemented methods. Therefore, a stack
of tests for each data model, view or serializer was created and every defined method was
tested.

These tests were helpful during the development stage, once the system suffer some changes
during this process. Furthermore, these tests will be an advantage and save time in the future
when new features are created.

To tests the backend, more precisely the actions related to the data models, it was necessary
insert testing data in the database. Also, this data must be the same in every test. Thus,
to do this, Django allows the creation of temporary databases, that are created and deleted
every time the tests are running.

6.2 Client Side Implementation

Similar to the server side, the client was also built keeping the modularity and extensibility
in mind. A good way to achieve these goals is using the ReactJS and RefluxJS combo, with
their unidirectional data flow, leading to a well-known pattern composed by actions and data

47

CHAPTER 6. THE SYSTEM IMPLEMENTATION

stores. The actions initiate new data to pass through stores before coming back to the view
components. When a view component has an event that requires some changes in the data
stores, it sends a signal to the data store through the actions available. Figure 6.2 represents
this three-tier structure and flows.

Figure 6.2: Client component architecture.

6.2.1 Technologies used

As already indicated, ReactJS was used as a frontend developing framework. However, by
itself, this technology is not enough to achieve the end result. This subsection describes the
most important technologies used in the client development.

ReactJS

ReactJS10 is a JavaScript library to build web components. It is used for handling a view
layer for web and mobile applications. Currently, it is one of the most popular technologies
used for this purpose.

This framework allows developers to create reusable components, many of them are public
and open-source. Beside that, this framework has a huge community of developers and
third-party components.

Another positive aspect of this framework is the possibility to create large web applications,
that can change data without reloading all the page, only the component. Consequently, this
increases the application speed, providing fast, scalable and simple solutions.

RefluxJS

RefluxJS11 could be consider a pattern instead of a technology. As briefly explained in
the begin of this section, this follows a unidirectional dataflow, which is represented in the
Figure 6.2.

10https://reactjs.org/
11https://github.com/reflux/refluxjs

48

CHAPTER 6. THE SYSTEM IMPLEMENTATION

In this system, for each module, an action and a data store components was created.
These actions are called by the React components, which then are executed in the data stores.
Additionally, the data stores are developed following the singleton pattern, having an internal
state to keep the application’s data.

Bootstrap

Bootstrap12 is the most popular open-source toolkit for development with HTML, CSS,
and JS. Responsive and mobile-first client applications can be build with it. Furthermore, it
has a great community of developers and offers a huge variety of interface components useful
in frontend development, such as buttons, navigation bars, modals, panels and much more.

Font Awesome

To increase the visual appearance of the components, some icons were used. It helps the
user to recognize behavior patterns, because similar objects, should indicate that the buttons
will perform similar actions. For instance, the icon of a saving button is, almost always, a
floppy drive, which is easily perceptible that the button is used to save something.

Currently, one of the most popular free open-source toolkits for web icons is Font
Awesome13. This offers scalable font-based vector icons, that do not require JavaScript or
images.

NPM e NodeJS

Similar to the PIP used in the backend as a package manager, the frontend applications
also have package managers. Currently, some options exists and this project used the Node
Package Manager (NPM)14. This is a well-known package manager for JavaScript, which came
from NodeJS15, which is a JavaScript server application. However, it is independent and can
be used without needing to write Node applications.

Most well-known JavaScript applications support NPM package manager. Besides this,
the ReactJS community uses this package manager to share their components.

Selenium

Beside testing the backend features, it is also important to test the frontend behavior.
Create or change a feature could change the system’s stability in several points that are not
used with frequency, turning the discovery of a bug very difficult. ReactJS has, by itself, no

12https://getbootstrap.com/
13https://fontawesome.com/
14https://www.npmjs.com/
15https://nodejs.org/en/

49

CHAPTER 6. THE SYSTEM IMPLEMENTATION

way to create automatized tests and therefore, it was necessary another framework to perform
this.

Selenium16 is an open-source tool that automates browser actions. Basically, it works
defining a list of steps actions, and the expected result. If some of the actions do not have the
expected behavior the tests fail.

In this project, the desired system behavior is recorded and then, each time a new feature
is stable, the stack of tests is executed, checking for inconsistencies.

6.2.2 Web Services Client

The client side has two layers, the presenting layer, and the controller layer. The previous
section, already described the principal technologies used in the presenting layer. One of the
responsibilities of the controller layers is to consume web services.

For the web service consuming the API Connector was created, making the bridge between
the server side and the data stores. To consume the web services in the data stores, it was
used the Axios17, which is a HTTP client for the browser.

The communication between both sides is mainly the following:

1. The web component needs some data stored in the server;

2. It calls for an action defined for the module that is responsible for providing the desired
data;

3. The actions trigger the data store.

4. The data store request to the API Connector to consume the web service, providing the
necessary information about it;

5. The API Connector communicates with the server side and receives the response;

6. The data store receives the data and updates its state;

7. Finally, with the state change, the component that requested for the data, is also
updated.

6.3 Deployment

The solution’s deployment is not the biggest concern for development teams, but for a
system administrator, it could be tricky. Optimizing this procedure increases the service
quality, preventing the system from being down for long periods of time. However, the
maintenance periods are not the only concern.

16https://www.seleniumhq.org/
17https://github.com/axios/axios

50

CHAPTER 6. THE SYSTEM IMPLEMENTATION

The users do not want to know if the installation is complex or if it takes huge efforts to
be made. They only want a stable and fast system that fulfills their needs. Therefore, a way
to simplify the installation without compromising the quality of the service, must be found.

In the recent years, with the advent of cloud computing, there is a tendency to move the
applications towards virtualization, using virtual machines instead of physical ones. A virtual
machine can support a complete system, making a flexible use of hardware and isolating the
software from the hosting system [65]. Therefore, there were different approaches for different
virtualization technologies.

Docker18 is a container virtualization technology, which is considered a very lightweight
virtual machine [66]. One of the main advantages is the computational resource saving, because
this technology reuses the same OS for different containers [67]. The use of a container was
considered a good tool for deploying microservice-based architectures, which is mainly the
architecture that this system follows [66].

Figure 6.3 presents a comparison between containers and virtual machines. As can be
noticed in this figure, three different application using machine virtualization will need three
different operating system installations (Guest OS). In contrast, using containers, only one
operating system with a container engine is necessary. This container is the layer between the
OS and the applications.

Figure 6.3: Comparison between containers and virtual machines.

18https://www.docker.com/

51

CHAPTER 6. THE SYSTEM IMPLEMENTATION

Docker Images

This system deployment uses two docker images. For the database management a
PostgreSQL image is used, retrieved by the official repository [68]. This way, the database
installation and management are easily processed, being only necessary to establish the
connection with the containers which will access the database.

The other image is the system image. This one was created to set up the system with all
the necessary dependencies. These steps have been defined in a Dockerfile, which is a guide
for the image building [69]. Then, using that image, new containers with this solution can be
instantiated.

This container has three main components: 1) the Nginx19, an efficient web server; 2) the
uWSGI20, an application container for Python code; and 3) the Celery, a component to deal
with synchronous tasks.

Django has an internal development server, but, by itself, it has no way to be used on a
production scale. Regarding this, Nginx was used, which is robust and provides efficiently a
server for web content. This server is designed to serve the page’s content, not to behave like
an application server [70].

The uWSGI is an application container for Python code, that will generate the static
content from the Django code [71]. Additionally, this application is compatible with the
Ngnix. So, these two frameworks are used as the mechanism that gets the project into the
web.

The Celery is used to deal with a different issue, as it was explained before. This framework
is separate from the uWSGI and the communication between them is made through a TCP
channel [72].

Docker Compose

After describing the system deployment composition, it is perceptible that these containers
need to communicate and exchange data between them. Usually, there is a right order to run
these containers and some initial configurations for each one. However, Docker by itself does
not allow the orchestration of the containers. There are however some different approaches to
support this issue, being one of these the use of a Docker Compose21.

With the Docker Compose it is possible to define a set of containers to boot up, and
their runtime properties. The container that interacts with others in some way follows the
specifications in the runtime properties [67].

Considering the advantages of using this orchestrator, it was decided to use it to simplify
the system deployment, since this project has multiple containers.

19https://www.nginx.com/
20https://uwsgi-docs.readthedocs.io/
21https://docs.docker.com/compose/

52

CHAPTER 6. THE SYSTEM IMPLEMENTATION

Figure 6.4: System deployment logic.

Overview

After analyzing and describing the approach used for the solution deployment, Figure 6.4
presents all the previously explained components and the way that they interconnect with
each other.

The settings used for the Docker Compose are defined in the docker-compose.yml file. The

53

CHAPTER 6. THE SYSTEM IMPLEMENTATION

system settings, such as the system environment variables, or the access ports are defined only
in this file, preventing inconsistency errors [73].

To easily start or stop all the system using the proper commands, the Makefile was used,
which adapts the Docker Compose syntax into an easier format. The Makefile is a file that
contains some directives used to automatically execute a set of instructions to accomplish a
specific goal [74]. Therefore, to start the project, only two commands are necessary in the
command line: 1) make for creating the system docker image; and 2) make run to initialize
and run the system containers.

6.4 Interface Components

Different workspaces have been created to cope with the distinct users’ roles. In the
profile nurse/caregiver, for instance, the first view is the list of patients under supervision.
When selecting a patient entry, one can follow the protocol assigned to that patient and
what measurements or actions need to be performed in each instance. After executing a
protocol, the system presents the prescription that better fits the patient, under the collected
conditions. This automatic procedure avoids performing manual calculations or consulting
hospital guidelines to identify the right dosages. The management of insulin dosage is provided
by the system and this makes the whole process much more simpler.

This section shows and briefly describes the main interface components of this solution.
The first page of the system is shown in the Figure 6.5. It is an entry page without much
information, allowing the user to sign up or login because the system is protected through a
login-based mechanism.

Figure 6.5: Home page.

54

CHAPTER 6. THE SYSTEM IMPLEMENTATION

After the login, the system displays a list of all the admitted patients in the health-care
institution (Figure 6.6). This dashboard, shows where the patients are, when the last protocol
or data measurements were performed, and when will be the next interaction with the patient.
Additionally, it displays the name of the physician responsible for each patient.

Figure 6.6: Initial dashboard.

This layout was used in similar pages, with similar proposes, such as presenting the
protocols and all the users in the system. The table in this page provides searching and
sorting features for each column. Additionally, in the top right corner of the table, there is a
button to open a new page, where new entries in the system can be added. Depending on the
table, this entry can be a new user or a new protocol.

Following the navigation pipeline, if the user clicks in the patient’s name, a page with
all the patient’s information is open. In this page (Figure 6.7), there are two groups of
patient’s data. The first group shows information about the patient, allowing the patient’s
identification. The other group, named as Additional Information, manages all the patient’s
clinical data, treatments’ history and protocols assigned at the moment.

The clinical variables are configurable at runtime, as it was explained before. Additionally,
only the administrator has permissions to do this task. Thus, these functionalities are made
only in the backend console.

55

CHAPTER 6. THE SYSTEM IMPLEMENTATION

Figure 6.7: Patient information visible to the health professionals.

Figure 6.8 shows the backend initial dashboard. This dashboard is the administrator’s
home page and can be customized, with some shortcuts or data analytics.

Figure 6.8: Backend dashboard.

56

CHAPTER 6. THE SYSTEM IMPLEMENTATION

Still in the administrator console analysis, in Figure 6.9 the clinical variables table is shown.
In this table, new clinical variables can be set up to be presented in the patient information
page.

Figure 6.9: Backend database management (Configuring new clinical variables).

In this case, the administrator needs to choose the variable group, the variable name,
and its type. Additionally, it should be defined as the index representation, which allows the
administrator to better organize the position of the menus.

Figure 6.10: Protocol creation page (Visualization mode).

57

CHAPTER 6. THE SYSTEM IMPLEMENTATION

Besides managing the patient’s data, the system was also designed to guide clinical
protocols. Figure 6.10 shows the implementation of the hypoglycemia protocol (described
in the section 2.2). Each protocol is implemented in a workflow structure, following some
rules. For each element, the id, the type, and the next element, when it exists, are defined.
However, each element type has more individual parameters that are not common between
each other.

In Figure 6.10, there are six columns to present the protocol elements and structure. The
first column, the ID parameter, identifies the rules, and this is the value used for the next
protocol element.

The Clinical Variable identifies the patient’s clinical variable and only one of the existent
ones in the database can be chosen. However, not all the rules will need a clinical variable.
For instance, the protocol element from the Action type does not need any clinical variable,
since it is the result of the previous conditions.

The Condition will be a boolean expression that will redirect to one of two elements, this
column is only required for protocol elements of type Decision. However, the Decision type
has another way to perform the decision. If no condition has been defined, it will behave like
a switch-case.

Finally, the Action column has a suggestion to the user at the end of the protocol’s
execution. However, some protocols can have more than one action, and, depending on the
execution type, the actions will be shown in the end, or during the execution.

Figure 6.11: Protocol assignments.

58

CHAPTER 6. THE SYSTEM IMPLEMENTATION

Through the protocol assignment, represented in Figure 6.11, the user can schedule the
execution of several protocols to a patient. However, for the diabetes scenario, for each patient,
it will only be assigned one protocol with different schedules.

After all these steps, the protocols can be executed. The scheduling only remembers the
user about the execution time. Therefore, the system has no way to force the user to execute
a protocol at a given moment, or forbid the user from doing it, if it is not the right time.

Figure 6.12 shows the execution of a complex protocol, where, for each step, the user
needs to interact with the system. The protocol used in the CHBV does not need this type of
execution. Thus, it was used as a protocol for testing purposes, since the health professionals
found this feature very useful in different scenarios.

(a)

(b)

Figure 6.12: Protocol execution (Complex type). a) Starting the protocol execution; b) Third
step of the protocol execution.

The first element of this protocol is the type Inquiry, where a question is defined in the
Condition column. The yes or no answer is related with the True or False in the Next Element

59

CHAPTER 6. THE SYSTEM IMPLEMENTATION

column for redirecting proposes.
Finally, Figure 6.13 describes the protocol execution, as it was required by the health

professionals from the CHBV. In this case, the Inquiry protocol elements are aggregated and
presented to the end-user, which inserts the patient’s clinical data required in these rules.
Then, it provides a list of recommendations based on the defined conditions and variables
values.

Figure 6.13: Protocol execution (Simple type).

6.5 Summary

This chapter described the principal implementation steps, following how to set up the
developed solution. Additionally, it analyses and details the main system features, presenting
a pipeline from the login stage until the execution of an assigned protocol.

60

CHAPTER 7

Conclusion

“The end is never the end. It’s always the beginning of something.”

— Kate Lord Brown, The Perfume Garden

In the previous chapters, several phases of the system conception were described, from the
requirement analyses until the implementation. After a detailed analysis of the problem and
the current state of the art, the decision was made to build a new system.

The system developed was well detailed in the chapters 4, 5 and 6, given an explanation
of its conception, concerning the architectural aspects, focusing on the principal concerns,
followed by the implementation features.

The project was made in collaboration with the health professionals of the CHBV. Also,
they accompanied the solution development process. This cooperation led to new ideas,

61

CHAPTER 7. CONCLUSION

different visions of the problem and the use of methodologies to analyze the question with
the help of professionals from different knowledge areas.

The biggest challenge of this project was the problem analyses and the system design.
Defining all the technical needs for a problem, which has a lot of medical specifications
demanded a huge effort to understanding all the issues and the requirements needed for its
conception. The system implementation has also some interesting challenges, which should
also be considered.

The project also had a scientific contribution, a publication in the IEEE 31th International
Symposium on Computer-Based Medical Systems (CBMS), entitled as Simplifying the
digitization of clinical protocols for diabetes management [11].

Additionally, the conceived system is, hopefully, the biggest scientific contribution. One
of the main goals was creating a tool to manage clinical treatment protocols. However, the
biggest intention was the creation of a tool able to increase the inpatient’s health quality.
Therefore, the resulting system fulfills the health professional needs and it also fulfills the
non-functional requirements. However, this does not mean that the system comes to an end.

Even though this solution fulfills the specified requirements, there are still some points that
can be improved. Some of these emerged in the requirements phase, but due to the complexity,
some of them could not be developed; others emerged in the development. Concerning this,
above is described what can be done and how it should be done in the current system.

It is important connect this system to others systems that already exist in the health
institutions. This feature was considered as secondary for the development plan. The goal
was to have a flexible system, but if possible to integrate this generic solution with other
systems.

The best way is to create a module prepared to communicate with others systems via
HL7 [56]. In the system back-end, another component can be created, only responsible for
this task. Afterwards, it could be configured like the patient’s clinical variables, without
compromising the system’s flexibility. The idea is to allow the system’s administrator to
identify the right variables and services in the external system and map them, considering the
internal variables or the patient’s clinical variables, which are also configurable as described
previously.

During the final meetings with the health professionals from CHBV, a new interesting
requirement was found. A way to test the protocol and check automatically if it is well
implemented in the system. This testing feature should guide the specialist in the protocol
implementation and detect some errors during the protocol’s digitization.

62

References

[1] R. A. Greenes, Clinical decision support: the road ahead. Academic Press, 2011.

[2] R. Shulman, M. Singer, J. Goldstone, and G. Bellingan, “Medication errors: A
prospective cohort study of hand-written and computerised physician order entry in
the intensive care unit”, Critical Care, vol. 9, no. 5, R516, 2005.

[3] G. Schiff, M. Amato, T. Eguale, J. Boehne, A. Wright, et al., “Computerised physician
order entry-related medication errors: Analysis of reported errors and vulnerability
testing of current systems”, BMJ Qual Saf, vol. 24, no. 4, pp. 264–271, 2015.

[4] M. S. Donaldson, J. M. Corrigan, L. T. Kohn, et al., To err is human: building a safer
health system. National Academies Press, 2000, vol. 6.

[5] A. Baker, “Crossing the quality chasm: A new health system for the 21st century”, BMJ:
British Medical Journal, vol. 323, no. 7322, p. 1192, 2001.

[6] D. W. Bates, L. L. Leape, D. J. Cullen, N. Laird, L. A. Petersen, et al., “Effect of
computerized physician order entry and a team intervention on prevention of serious
medication errors”, Jama, vol. 280, no. 15, pp. 1311–1316, 1998.

[7] E. S. Berner and T. J. La Lande, “Overview of clinical decision support systems”, in
Clinical decision support systems, Springer, 2016, pp. 1–17.

[8] D. Blumenthal and M. Tavenner, “The “meaningful use” regulation for electronic health
records”, N Engl J Med, vol. 2010, no. 363, pp. 501–504, 2010.

[9] S. Anakal and P. Sandhya, “Clinical decision support system for chronic
obstructive pulmonary disease using machine learning techniques”, in Electrical,
Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT),
2017 International Conference on, IEEE, 2017, pp. 1–5.

[10] B. Cánovas-Segura, F. Zerbato, B. Oliboni, C. Combi, M. Campos, et al., “A
process-oriented approach for supporting clinical decisions for infection management”,
in Healthcare Informatics (ICHI), 2017 IEEE International Conference on, IEEE, 2017,
pp. 91–100.

63

REFERENCES

[11] J. R. Almeida, J. Guimarães, and J. L. Oliveira, “Simplifying the digitization of clinical
protocols for diabetes management”, in Computer-Based Medical Systems (CBMS), 2018
IEEE 31th International Symposium on, IEEE, 2018.

[12] S. E. Inzucchi, “Management of hyperglycemia in the hospital setting”, New England
journal of medicine, vol. 355, no. 18, pp. 1903–1911, 2006.

[13] G. E. Umpierrez, R. Hellman, M. T. Korytkowski, M. Kosiborod, G. A. Maynard, et al.,
“Management of hyperglycemia in hospitalized patients in non-critical care setting: An
endocrine society clinical practice guideline”, The Journal of Clinical Endocrinology &
Metabolism, vol. 97, no. 1, pp. 16–38, 2012.

[14] G. E. Umpierrez, R. Gianchandani, D. Smiley, S. Jacobs, D. H. Wesorick, et al., “Safety
and efficacy of sitagliptin therapy for the inpatient management of general medicine and
surgery patients with type 2 diabetes: A pilot, randomized, controlled study”, Diabetes
Care, vol. 36, no. 11, pp. 3430–3435, 2013.

[15] Y. Kim, K. B. Rajan, S. A. Sims, K. E. Wroblewski, and S. Reutrakul, “Impact of
glycemic variability and hypoglycemia on adverse hospital outcomes in non-critically ill
patients”, Diabetes research and clinical practice, vol. 103, no. 3, pp. 437–443, 2014.

[16] A. Neinstein, H. W. MacMaster, M. M. Sullivan, and R. Rushakoff, “A detailed
description of the implementation of inpatient insulin orders with a commercial electronic
health record system”, Journal of diabetes science and technology, vol. 8, no. 4,
pp. 641–651, 2014.

[17] D. J. Wexler, P. Shrader, S. M. Burns, and E. Cagliero, “Effectiveness of a computerized
insulin order template in general medical inpatients with type 2 diabetes: A cluster
randomized trial”, Diabetes Care, vol. 33, no. 10, pp. 2181–2183, 2010.

[18] S. Shetty, S. Inzucchi, P. Goldberg, D. Cooper, M. Siegel, et al., “Adapting to the new
consensus guidelines for managing hyperglycemia during critical illness: The updated
yale insulin infusion protocol”, Endocrine Practice, vol. 18, no. 3, pp. 363–370, 2011.

[19] J. Davidson, P. Vexiau, D. Cucinotta, J. Vaz, and R. Kawamori, “Biphasic insulin aspart
30: Literature review of adverse events associated with treatment”, Clinical therapeutics,
vol. 27, S75–S88, 2005.

[20] R. G. Bretzel, S. Arnolds, J. Medding, and T. Linn, “A direct efficacy and safety
comparison of insulin aspart, human soluble insulin, and human premix insulin (70/30)
in patients with type 2 diabetes”, Diabetes Care, vol. 27, no. 5, pp. 1023–1027, 2004.

[21] H. Rathore, A. Al-Ali, A. Mohamed, X. Du, and M. Guizani, “Dlrt: Deep learning
approach for reliable diabetic treatment”, in GLOBECOM 2017-2017 IEEE Global
Communications Conference, IEEE, 2017, pp. 1–6.

64

REFERENCES

[22] J. Oliveira, “A shotgun wedding: Business decision support meets clinical decision
support.”, Journal of healthcare information management: JHIM, vol. 16, no. 4,
pp. 28–33, 2002.

[23] K. B. DeGruy, “Healthcare applications of knowledge discovery in databases”, Journal
of healthcare information management, vol. 14, no. 2, pp. 59–70, 2000.

[24] D. F. Sittig, A. Wright, S. Meltzer, L. Simonaitis, R. S. Evans, et al., “Comparison
of clinical knowledge management capabilities of commercially-available and leading
internally-developed electronic health records”, BMC medical informatics and decision
making, vol. 11, no. 1, p. 13, 2011.

[25] E. S. Berner, Clinical decision support systems. Springer, 2007, vol. 233.

[26] E. H. Shortliffe, S. G. Axline, B. G. Buchanan, T. C. Merigan, and S. N. Cohen, “An
artificial intelligence program to advise physicians regarding antimicrobial therapy”,
Computers and Biomedical Research, vol. 6, no. 6, pp. 544–560, 1973.

[27] R. A. Miller, H. E. Pople Jr, and J. D. Myers, “Internist-i, an experimental
computer-based diagnostic consultant for general internal medicine”, New England
Journal of Medicine, vol. 307, no. 8, pp. 468–476, 1982.

[28] G. M. Marakas, Decision support systems in the 21st century. Prentice Hall Upper Saddle
River, NJ, 2003, vol. 134.

[29] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification. John Wiley & Sons,
2012.

[30] K. Fukunaga, Introduction to statistical pattern recognition. Academic press, 2013.

[31] B. Ozaydin, J. M. Hardin, and D. C. Chhieng, “Data mining and clinical decision support
systems”, in Clinical Decision Support Systems, Springer, 2016, pp. 45–68.

[32] J. K. Tan and S. B. Sheps, Health decision support systems. Jones & Bartlett Learning,
1998.

[33] E. S. Berner, Clinical Decision Support Systems: Theory and Practice. Springer, 2016.

[34] S. Weiss, C. A. Kulikowski, and A. Safir, “Glaucoma consultation by computer”,
Computers in Biology and Medicine, vol. 8, no. 1, pp. 25–40, 1978.

[35] A. A. Boxwala, M. Peleg, S. Tu, O. Ogunyemi, Q. T. Zeng, et al., “Glif3: A representation
format for sharable computer-interpretable clinical practice guidelines”, Journal of
biomedical informatics, vol. 37, no. 3, pp. 147–161, 2004.

[36] M. Peleg, A. A. Boxwala, O. Ogunyemi, Q. Zeng, S. Tu, et al., “Glif3: The evolution of
a guideline representation format.”, in Proceedings of the AMIA Symposium, American
Medical Informatics Association, 2000, p. 645.

65

REFERENCES

[37] D. Wang and E. H. Shortliffe, “Glee–a model-driven execution system for
computer-based implementation of clinical practice guidelines.”, in Proceedings of the
AMIA Symposium, American Medical Informatics Association, 2002, p. 855.

[38] D. Wang, M. Peleg, S. W. Tu, A. A. Boxwala, O. Ogunyemi, et al., “Design
and implementation of the glif3 guideline execution engine”, Journal of biomedical
informatics, vol. 37, no. 5, pp. 305–318, 2004.

[39] D. Wang, M. Peleg, D. Bu, M. Cantor, G. Landesberg, et al., “Gesdor–a generic execution
model for sharing of computer-interpretable clinical practice guidelines”, in AMIA
Annual Symposium Proceedings, American Medical Informatics Association, vol. 2003,
2003, p. 694.

[40] I. Maglogiannis, “Towards the adoption of open source and open access electronic health
record systems”, Journal of Healthcare Engineering, vol. 3, no. 1, pp. 141–161, 2012.

[41] A. Syzdykova, A. Malta, M. Zolfo, E. Diro, and J. L. Oliveira, “Open-source electronic
health record systems for low-resource settings: Systematic review”, JMIR medical
informatics, vol. 5, no. 4, 2017.

[42] P. V. Kukhareva, K. Kawamoto, D. E. Shields, D. T. Barfuss, A. M. Halley, et al.,
“Clinical decision support-based quality measurement (cds-qm) framework: Prototype
implementation, evaluation, and future directions”, in AMIA Annual Symposium
Proceedings, American Medical Informatics Association, vol. 2014, 2014, p. 825.

[43] ICE - CDS Framework Wiki. [Online]. Available: https://cdsframework.atlassian.
net/wiki/spaces/ICE/overview (visited on 06/26/2018).

[44] H. Khan and L. Hederman, “A universal clinical decision support system using semantic
web services”, ESWC, 2012.

[45] J. Bellows, S. Patel, and S. S. Young, “Use of indigo individualized clinical guidelines in
primary care”, Journal of the American Medical Informatics Association, vol. 21, no. 3,
pp. 432–437, 2013.

[46] G. McCallum, “Egadss: A clinical decision support system for use in a service-oriented
architecture”, PhD thesis, 2006.

[47] P. C. Davidson, R. D. Steed, and B. W. Bode, “Glucommander: A computer-directed
intravenous insulin system shown to be safe, simple, and effective in 120,618 h of
operation”, Diabetes care, vol. 28, no. 10, pp. 2418–2423, 2005.

[48] S. A. Nisly, S. Harris, L. Aykroyd, J. Carrol, B. Ulmer, et al., “Use of a subcutaneous
insulin computerized glucostabilizerTM program on glycemic control in the intensive care
setting: A retrospective data analysis.”, Advances in Diabetes and Metabolism, vol. 1,
no. 1, p. 29, 2013.

66

https://cdsframework.atlassian.net/wiki/spaces/ICE/overview
https://cdsframework.atlassian.net/wiki/spaces/ICE/overview

REFERENCES

[49] R. J. Baron, E. L. Fabens, M. Schiffman, and E. Wolf, “Electronic health records: Just
around the corner? or over the cliff?”, Annals of internal medicine, vol. 143, no. 3,
pp. 222–226, 2005.

[50] L. Bass, P. Clements, and R. Kazman, Software architecture in practice. Addison-Wesley
Professional, 2003.

[51] M. Richards, Software architecture patterns. O’Reilly Media, Incorporated, 2015.

[52] D. Ferraiolo, J. Cugini, and D. R. Kuhn, “Role-based access control (rbac): Features and
motivations”, in Proceedings of 11th annual computer security application conference,
1995, pp. 241–48.

[53] D. Merkel, “Docker: Lightweight linux containers for consistent development and
deployment”, Linux Journal, vol. 2014, no. 239, p. 2, 2014.

[54] M. Carver, The responsive web. Manning Publications Co., 2014.

[55] K. Naik and P. Tripathy, Software testing and quality assurance: theory and practice.
John Wiley & Sons, 2011.

[56] T. Benson, Principles of health interoperability HL7 and SNOMED. Springer London:
2010.

[57] J. Almeida, R. Ribeiro, and J. L. Oliveira, “A modular workflow management
framework”, in Proceedings of the 11th International Conference on Health Informatics
(HealthInf 2018), 2018.

[58] J. R. Almeida, T. M. Godinho, L. Bastião Silva, C. Costa, and J. L. Oliveira, “Services
orchestration and workflow management in distributed medical imaging environments”,
in Computer-Based Medical Systems (CBMS), 2018 IEEE 31th International Symposium
on, IEEE, 2018.

[59] A. L. Lemos, F. Daniel, and B. Benatallah, “Web service composition: A survey of
techniques and tools”, ACM Computing Surveys (CSUR), vol. 48, no. 3, p. 33, 2016.

[60] D. Greenfeld and A. Roy, Two Scoops of Django: Best Practices for Django 1.6. Two
Scoops Press, 2014.

[61] L. B. Silva, A. Trifan, and J. L. Oliveira, “Montra: An agile architecture for data
publishing and discovery”, Computer methods and programs in biomedicine, vol. 160,
pp. 33–42, 2018.

[62] Home - Django REST framework. [Online]. Available: http://www.django- rest-
framework.org/ (visited on 07/07/2018).

[63] C. Vitolo, Y. Elkhatib, D. Reusser, C. J. Macleod, and W. Buytaert, “Web technologies
for environmental big data”, Environmental Modelling & Software, vol. 63, pp. 185–198,
2015.

67

http://www.django-rest-framework.org/
http://www.django-rest-framework.org/

REFERENCES

[64] Home - Django REST framework. [Online]. Available: http://www.django- rest-
framework.org/api-guide/serializers/ (visited on 07/07/2018).

[65] J. E. Smith and R. Nair, “The architecture of virtual machines”, Computer, vol. 38,
no. 5, pp. 32–38, 2005.

[66] C. Anderson, “Docker [software engineering]”, IEEE Software, vol. 32, no. 3, pp. 102–c3,
2015.

[67] J. Turnbull, The Docker Book: Containerization is the new virtualization. James
Turnbull, 2014.

[68] Library/postgres - Docker Hub. [Online]. Available: https :/ /hub. docker .com /_/
postgres/ (visited on 07/04/2018).

[69] | Docker Documentation. [Online]. Available: https://docs.docker.com/engine/
reference/builder/ (visited on 07/04/2018).

[70] NGINX Docs | Welcome to NGINX documentation, en. [Online]. Available: https://
docs.nginx.com/index/ (visited on 07/04/2018).

[71] The uWSGI project — uWSGI 2.0 documentation. [Online]. Available: https://uwsgi-
docs.readthedocs.io/en/latest/ (visited on 07/04/2018).

[72] Celery - Distributed Task Queue — Celery 4.2.0 documentation. [Online]. Available:
http://docs.celeryproject.org/en/latest/index.html (visited on 07/04/2018).

[73] Overview of Docker Compose, en, Jun. 2018. [Online]. Available: https://docs.docker.
com/compose/overview/ (visited on 07/04/2018).

[74] GNU make. [Online]. Available: https://www.gnu.org/software/make/manual/make.
html (visited on 07/04/2018).

68

http://www.django-rest-framework.org/api-guide/serializers/
http://www.django-rest-framework.org/api-guide/serializers/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.nginx.com/index/
https://docs.nginx.com/index/
https://uwsgi-docs.readthedocs.io/en/latest/
https://uwsgi-docs.readthedocs.io/en/latest/
http://docs.celeryproject.org/en/latest/index.html
https://docs.docker.com/compose/overview/
https://docs.docker.com/compose/overview/
https://www.gnu.org/software/make/manual/make.html
https://www.gnu.org/software/make/manual/make.html

APPENDIX A

Web Services

• Accounts

<baseurl>/api/accounts

• Protocols

<baseurl>/api/protocols/protocol
<baseurl>/api/protocols/schedule
<baseurl>/api/protocols/assignedprotocols
<baseurl>/api/protocols/executedprotocols

• Patients

<baseurl>/api/patients/patient
<baseurl>/api/patients/clinicalvariables
<baseurl>/api/patients/admission

• Utils

<baseurl>/api/utils/footer
<baseurl>/api/utils/header
<baseurl>/api/utils/language
<baseurl>/api/utils/about
<baseurl>/api/utils/help
<baseurl>/api/utils/home

69

APPENDIX A. WEB SERVICES

70

APPENDIX B

Application Links

• Public links

<baseurl>/
<baseurl>/signinup
<baseurl>/profile
<baseurl>/forgotten
<baseurl>/help
<baseurl>/about

• Authenticated links

<baseurl>/admittedpatients
<baseurl>/allpatients
<baseurl>/run/protocol/:object/:patient
<baseurl>/protocols
<baseurl>/patient/:object
<baseurl>/show/protocol/:object
<baseurl>/add/patient
<baseurl>/assignprotocol/:object

• Authenticated links

<baseurl>/0
<baseurl>/500
<baseurl>/404

71

	Introduction
	Objectives
	Outline

	The Motivation: Diabetes ManagementBackrefHyperFootnoteCounterThis chapter is mainly based on the publication Simplifying the digitization of clinical protocols for diabetes management, 2018 IEEE 31th International Symposium on Computer-Based Medical Systems (CBMS) cbmspaper. All the protocols presented have been discussed with Dra Joana Guimarães, an endocrinologist at the chbv
	Diabetic inpatients
	Hypoglycemia
	Surgical diabetic inpatient
	Continuous intravenous infusion
	Summary

	The Current Methodology
	Clinical Decision Support Systems
	CDSS Tools: General Solutions
	CDSS Tools: Diabetes Solutions
	Systems Comparison
	Summary

	System Requirement Analysis
	Challenges
	Functional Requirements
	Non-Functional Requirements
	Use Case Analysis
	Summary

	Solution Architecture
	Client-Server model
	Server Side Modules
	Client Side Modules
	Summary

	The System Implementation
	Server Side Implementation
	Technologies used
	Web Services
	Tests

	Client Side Implementation
	Technologies used
	Web Services Client

	Deployment
	Interface Components
	Summary

	Conclusion
	Web Services
	Application Links

