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“It is not the critic who counts; not the man who points out how the
strong man stumbles, or where the doer of deeds could have done them
better. The credit belongs to the man who is actually in the arena,
whose face is marred by dust and sweat and blood; who strives valiantly;
who errs, who comes short again and again, because there is no effort
without error and shortcoming; but who does actually strive to do the
deeds; who knows great enthusiasms, the great devotions; who spends
himself in a worthy cause; who at the best knows in the end the triumph
of high achievement, and who at the worst, if he fails, at least fails while
daring greatly, so that his place shall never be with those cold and timid
souls who neither know victory nor defeat.”

— Theodore Roosevelt

Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática
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Aéreos não Tripulados Baseada em Eventos
Modular Event-Driven Unmanned Aerial Vehicles
Control Platform





Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática
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requisitos necessários à obtenção do grau de Mestre em Engenharia In-
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Professor Auxiliar do Departamento de Eletrónica, Telecomunicações e In-
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Resumo Hoje em dia, os drones estão-se a tornar cada vez mais comuns nas
nossas vidas diárias. Com a agilidade, acessibilidade e diversidade dos
drones, eles são uma excelente plataforma para transportar dispositivos
(p.ex., conjunto de sensores, câmeras, unidades computacionais de pe-
quena dimensão). Assim sendo, são uma excelente ferramenta para
tarefas como: explorar e estudar áreas perigosas, monitorizar campos
de agricultura, ajudar na deteção e combate de incêndios ou vigiar
multidões. Para realizar tais tarefas, ferramentas de automação e in-
tegração são essenciais, para que o desenvolvimento se concentre na
própria aplicação e não nos problemas relacionados com a integração
e automação do sistema do drone. Os drones atualmente dispońıveis
não são capazes de lidar com tais complexidades de forma tão trans-
parente. Por exemplo, certos ńıveis de automação são já posśıveis, mas
requerem hardware e software espećıficos do fornecedor; no que toca
a integração, alguns já supportam SDK ou API para interagir com o
drone, mas mais uma vez com a inconveniência de necessitar de con-
hecimento prévio sobre os sistemas dos drones.
Para responder a estas necessidades, esta tese propõe uma plataforma
modular de controlo baseada em eventos para abstrair os processos
de automação e integração da complexidade subjacentes aos drones.
Enquanto que a plataforma permite que as aplicações controlem e
interajam com os drones, a sua complexidade é resolvida dentro da
plataforma, simplificando o processo de integração. Além disso, com a
plataforma proposta, a automação e funcionalidades do drone podem
ser estendidas para estender as funcionalidades de drones mais limita-
dos.
A plataforma desenvolvida foi testada em diferentes cenários, tanto ao
ńıvel das suas funcionalidades como ao ńıvel da análise de desempenho.
Os resultados mostram que, além das funcionalidades suportadas, a
plataforma consegue suportar o controlo e gestão de pelo menos até
64 drones em simultâneo sem ter modificações significativas nos atra-
sos de comunicação e throughput.





Abstract Nowadays, drones are becoming more common in our daily lives. Since
drones are agile, affordable and diverse, they make an excellent platform
to carry devices around (e.g., sensor arrays, cameras, small comput-
ers). With these capabilities, they become an excellent tool for tasks
like: explore and study hazardous areas, agriculture monitoring, help
on the detection and fight in fires, and crowd surveillance. To per-
form such tasks, automation and integration tools are a must have, so
that the development can focus on the application itself and not on
the issues related with the integration and automation of the drone
system. Current available drones are not capable of properly handling
such complexities in a seamless way. For instance, some levels of au-
tomation are already possible, but require vendor specific hardware and
software; for integration, some offer SDK or API interactions, but once
again with the inconvenience of requiring extensive knowledge about
drone systems to implement.
To address these issues, this thesis proposes a modular event-driven
control platform to abstract automation and integration processes from
the underlying complexities of the drones, while the platform lets the
applications control and interact with the drones. The drones’ com-
plexities are resolved within the platform, therefore simplifying integra-
tion process. Moreover, with the proposed platform, drone automation
and functionality can be extended across distinct brands of drones,
while some may already support some features, others may not, and in
that case the platform modules may intervene to extend the features
of less capable drones.
The developed platform has been tested in different scenarios, such as
in terms of its functionalities and in terms of performance analysis. The
results show that, besides the supported functionalities, the platform is
able to handle the control and management of at last 64 simultaneous
drones without significant changes in the communication delays and
throughput.
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Chapter 1

Introduction

1.1 Context

Unmanned Aerial Vehicles (UAVs), commonly known as drones, have long been used
by military forces in diverse scenarios (e.g.: Aerial Surveillance, High-risk Bombing). For
the last few years, interest in aerial drones has grown, both within the scientific community,
and with the general public.

That interest extends to a wide variety of areas (e.g.: cinematography, journalism, se-
curity forces), from professional to leisure purposes. Drones can now be used in virtually
all aspects of our daily lives as a result of their versatility and variety in shapes, sizes and
capabilities.

The interest in drones continues to grow in areas like wildfire or crop monitoring, catas-
trophe recovery or search and rescue. In these areas, drones represent an effective tool to
perform repetitive tasks like gathering aerial images at regular intervals, or transporting
cargo between two points without the need for large-scale infrastructure in place (e.g.,
roads and bridges). However, drone automation and integration tools still require further
development.

Although some levels of automation (e.g.: auto-land/takeoff, hover, go-to location) al-
ready exist, they lack awareness of the drones’ surrounding environment and threats, and
therefore they are effectively flying blind. As a consequence, tools associated with the
currently available drones require a person to either pilot or observe the entire flight to
ensure safety of both the aircraft and its surroundings.

In order to pilot or observe the flight of a drone, a 2.4 GHz radio controller or a Ground
Control Station (GCS) software is required. In most of the cases, the usage of GCS still
requires a radio controller to be present and active, once again for safety purposes.
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Moreover, GCSs are in most cases vendor or technology specific, which limits inte-
gration to a handful of vendors or technologies mostly supporting a single drone being
controlled at a time and requiring a constant dedicated direct wireless connection to the
Flight Controller (FC), generally through the means of a Universal Serial Bus (USB) radio
(commonly known as a ’dongle’) specific to the underlying communication protocol.

In recent years, FCs have extended their interaction capabilities by allowing external
devices to interact with them through Application Programming Interfaces (APIs). These
APIs are still a limiting factor to integrability due to their reliance on physical connectivity
between entities.

Given these shortcomings, the present work aims to develop a modular platform where
each module is single-handedly responsible for monitoring, controlling or extending the
functionality of a drone. Each module abstracts the underlying complexity and require-
ments from other modules, simplifying interactions and improving integrability. Finally,
we take advantage of the improved integration and abstractions of the platform to extend
the automation capabilities of drones.

1.2 Objectives

The main purpose of this dissertation is to provide a platform that abstracts and
decouples the various UAV control processes, therefore building an effective tool to improve
the integration of drones with other applications, functionalities and mechanisms.

To reach this goal, we go through the following steps:

• Develop a solution that enables the decoupling of generic applications from the un-
derlying communications to the FC;

• Provide an abstraction from the underlying API implementation;

• Develop proof-of-concept applications that take advantage of the new platform to
control and monitor a drone.

1.3 Contributions

As a result of the work presented in this thesis, a modular platform which abstracts and
simplifies drone interactions has been created. The usage of brokers at the communica-
tions core of the platform abstracts modules from the underlying communications’ details,
allowing them to focus solely on publishing and consuming messages to and from their
respective channels.

Four applications were developed and integrated to take advantage of the platform: a
GCS-like web application which allows for high level control and monitoring of drones;
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a mobile web-based control application which allows for high-level control of drones; an
application that streams and processes sensor data from drone flights in real time which is
capable of computing new flight variables, detecting and notifying the platform of abnor-
mal/relevant drone behaviors; and a web-based data analysis application which allows to
monitor and review historical sensor data from drone flights.

Finally, two articles were published with results obtained from the study presented in
this document.

The first one was published in INForum 2017, in October 12th and 13th, in the commu-
nication category, entitled “Automated Flying Drones Platform for Automatic and Remote
Sensing”. It was approved and presented through oral presentation and poster.

The second one was published in VEHITS 2018, in March 2018, as a position paper,
entitled “Towards an Automated Flying Drones Platform”. It was approved and presented
through oral presentation.

This platform has been presented in RTCM (Rede Temática de Comunicações Móveis)
seminar in June 2018 with great success.

1.4 Document Structure

This thesis is organized as follows.

• Chapter 1 contains a generalized overview of the work.

• Chapter 2 contains the current state of the art in the field of FCs, autopilot software,
GCSs and drone platforms, and cloud telemetry platforms.

• Chapter 3 presents a proposal for the platform architecture.

• Chapter 4 details the implementation; integration choices are presented and exem-
plified.

• Chapter 5 presents the platform use cases and performance evaluation.

• Chapter 6 concludes the work in this document and proposes future work to be
done.
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Chapter 2

Related Work

This chapter starts by exposing a brief history about drones, how drones can be im-
proved, and a resume about areas where drones can make a significant difference.

Following this brief introduction, Flight Controllers (FCs) are explained, along with
their general capabilities and functionalities, and then several state of the art FCs are
discussed.

A section about community autopilot software follows, starting with an introduction
about their importance and the main differences about the two distinct implementation
approaches, followed by a discussion about several state of the art autopilot software.

To introduce the tools for drone task automation, the next section focuses on the
exploration and discussion of several state of the art Ground Control Stations (GCSs) or
drone platforms. It starts with an introduction about how automation can be performed in
state of the art drones, and then it follows the discussion of their differences and capabilities.

After the exposure of the drones, their key parts and the set of automation tools
currently available, a discussion follows on real world applications where drones are already
used to gather value added information for crops, aerial surveillance, or humanitarian aid.

Finally a discussion about several state of the art cloud based telemetry platforms,
which is a key part of the proposed platform in this work, is presented.

2.1 Unmanned Aerial Vehicles

Unmanned Aerial Vehicles, commonly known as drones, trace their origins back to the
First World War, where they were initially used to carry heavy payloads of explosives
across long distances. Over the years, successive technological evolutions contributed to
the refinement of Unmanned Aerial Vehicle (UAV) technology, and its accessibility to the
general public. The applications for aerial drones have since grown immensely by virtue of
their versatility, reliability, and ease of use [1].

Aerial drones are particularly well-suited for hazardous tasks like criminal pursuit and
eruption surveillance, or wildfire observation without exposure of human lives to potential
threats. Moreover, with automation capabilities, aerial drones are well-suited for repetitive
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tasks like aerial surveillance and image gathering, or the transportation of cargo in areas
without supporting ground infrastructure. Such conceptually simple tasks are crucial for
several civil application scenarios, such as [2, 3]:

Science and Research

• Meteorological research

• Volcanic eruptions – surveillance, tracking and monitoring ash clouds

• Agriculture – mapping plant growth and issues, moisture levels, crop yields

• Measuring nuclear contamination

• Forestry and Natural Resources Management

Public Safety

• Emergency communication network aid

• Monitoring of natural disasters: landslides, tsunamis, wild fires, volcanic eruptions,
flooding, storms, hurricanes, avalanches, tornadoes

• Searches for missing people

• Post-disaster-relief operations

Structure inspections

• Oil pipeline inspection

• Solar panel inspections

• Power line / cable inspections

• Bridge inspections

• Monument inspections

Across the literature, aerial drones are classified in several aspects. Due to the lack of
standards, such classifications are still relative to the author, country or field of activity;
in general, two classifications are identical: type and size.

The most common types of aerial drones are: fixed-wing, helicopter and multi-copter;
but there are others less common like hybrids, and zeppelins or balloons. Regarding size,
aerial drones are classified as: very small, small, medium and large; where very small is
informally subdivided into mini and micro [4].
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2.2 Flight Controllers

The heart of any drone is the FCs; it is the device responsible for performing control
tasks and stabilization adjustments required to keep the vehicle in a steady and balanced
state, while also enabling external control of said vehicle. It is composed of all the necessary
sensors and processors to achieve a stable flight, and are operated by an Autopilot software
which will be detailed in the chapter 2.3.

In general, FCs require at least an Inertial Measurement Unit (IMU), barometer, mag-
netometer, Microcontroller Unit (MCU) and several communication ports to interact with
the engines or servos. While stable flight is achievable with these sensors, it limits the
drone to indoor flight or requires a human operator to correct movements from external
forces like wind, and gusts or currents. Moreover, the built-in magnetometer is often prone
to magnetic interference from auxiliary equipment, resulting in erratic behavior like toilet
bowl effect.

Counteracting these undesired effects, an external magnetometer and Global Position
System (GPS) module is often used, and placed in an isolated area without interference.
With the advantage of the GPS, FCs can correct movements from external forces which is
required for safe outdoor operation of drones.

Control is commonly provided by the drone user himself who triggers the desired ad-
justments to the aircraft’s throttle, pitch, roll, and yaw using sticks on a separate radio
controller. In turn, a radio receiver aboard the drone transmits these inputs to the flight
controller by means of a physical connection, as depicted in Figure 2.1.

Several FCs allow for more advanced handling: as opposed to directly inputting fine
control parameters, the user can request simple tasks such as autonomous take-off and
landing, waypoint flight, and return to the take-off location. More complex tasks such
as planning and automatic path following are also possible in some state-of-the-art flight
controllers. Most of these tasks rely heavily on GPS-assisted control and an external GCS
application to issue the desired tasks, Figure 2.1.

We will now discuss FC offerings from three major vendors: DJI, MicroPilot and Emlid;
and three other offerings from community design: PixHawk, OpenPilot Revolution, and
Sparky.

2.2.1 Vendor FCs

We will now discuss FC offerings from three major vendors: DJI, MicroPilot and Emlid.

DJI

DJI, a Chinese vendor, sells UAVs that are affordable, reliable, and easy to use. DJI
quickly established itself as the number-one brand in the field of aerial drones. After
success with their initial offering of UAVs, FCs and gimbals, their range now includes
drone cameras and camera stabilizers as well [5].
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Figure 2.1: Example of a GCS and a Remote Controller

The latest advancements from DJI in UAVs and FCs include the Matrice UAV Series
and the A3/N1/N3 FC Series. The Matrice UAV Series is aimed at resilient and adaptable
UAV frames on top of which users can add external sensors as needed. The A3/N1/N3 FC
Series extend UAV capabilities by allowing greater precision and improved SDK tools for
programmatic flight parameter interaction and control [6, 7, 8].

The A3 FC is the current flagship of DJI, available in Basic and Pro versions, and
retailing for ∼1000AC and ∼1600AC, respectively. The A3 Pro ships with a full set of sensors
and parts, while A3 Basic features only a minimal set of parts that can be expanded
as desired. Its major features include Real Time Kinematic (RTK) positioning, triple
redundant GPS and IMU sensors, and Software Development Kit (SDK) support [7].

The N3 FC is a more cost-effective controller, similar to the A3 FC but retailing for
∼350AC. The N3 features dual redundant IMU sensors and SDK support, and can be
upgraded with an A3 upgrade kit to enable triple and dual redundancy for IMU and GPS
sensors, respectively [8].

DJI offers robust solutions of UAVs and FCs, and although their offerings retail for
higher than the competition, the ease of usage and reliability of their products is typically
superior. On the other hand, FCs developed by DJI run closed-source firmware, limiting
their use as a platform for research.

MicroPilot

MicroPilot is a Canadian company focused on high-end FCs, and several companion
sensors (magnetometer, ultrasonic altitude sensor). MicroPilot started its FC product line
in 2003, with one 28g FC for fixed-wing UAVs, which rivaled any other on the market at
the time. One year later, MicroPilot launched an SDK for their FC products, allowing for

8



customization of flight parameters and functionalities. In 2007, MicroPilot launched the
MP21283X , their first FC that features Vertical Take-Off and Landing (VTOL) capable
UAVs [9, 10, 11].

The latest FCs from MicroPilot are the MP2128g2 and MP2128HELI2. Although they
are similar in technical specifications, and both have VTOL capabilities, the first one does
not support helicopter UAVs. For simplification, we will look at the MP2128 FCs as one
and include their MP2028g2, which is has the second best technical specifications [12].

MP2128HELI2 is the current flagship FC from MicroPilot, retails for∼8000AC. MP2128HELI2

features high quality IMU and GPS for increased precision, up to 24 servos or motors, sup-
port for Controller Area Network (CAN) and RTK, and autonomous stall and tumble
recovery. The MP2128HELI2 ships with a full set of sensors and weights 40g [12].

MP2028g2 is an FC from MicroPilot that has a lower quality grade than MP2128HELI2

which retails for ∼3500AC. Like MP2128HELI2, MP2028g2 features high quality IMU and
GPS for increased precision with a higher error rate than MP2128HELI2, up to 16 servos
or motors, and lacks the support for CAN, RTK, or the autonomous stall and tumble
recovery. The MP2028g2 ships with a basic set of sensors and weights 24g [12].

Also from MicroPilot, the MP21283X , although it is not an FC, it is an enclosure that
combines three MP2128HELI2. MP21283X offers a fully triple FC redundancy where each
FC is completely autonomous and can assume control over any of the other enclosed FCs.
It ships for ∼25000AC with a triple set of sensors and FCs.

MicroPilot reveals a high-end quality on parts and manufacture for their FCs, but
retails to the highest price of all the competitors. FCs offered by MicroPilot are a result of
the long experience of the company and the partnership with their major consumers like
RAF, NASA, and Northrop Grumman [9, 13]. While MicroPilot FCs are unmatched in a
quality standpoint, much like DJI, their FCs run closed-source firmware, limiting their use
as a platform for research.

Emlid

Emlid is a Russian company focused on precision RTK Global Navigation Satellite
System (GNSS) and FCs for UAVs. Emlid started out with two FCs (Navio+ and Navio2)
and an RTK (Reach RTK), and now sell a new FC called EDGE. Their FCs can be
interacted with via a Python Application Programming Interface (API), and are based on
an open-source project (ArduPilot) thereby allowing full firmware customization [14, 15,
16].

Navio2 is an FC focused on the core requirements for a UAV. It supports up to 12 ser-
vos/motors, plus Universal Asynchronous Receiver-Transmitter (UART), Inter-Integrated
Circuit (I2C), and Analog-to-Digital Converters (ADCs) for interfacing with sensors. A
dual IMU is built-in for increased precision. On Navio2, the Ardupilot software runs di-
rectly on a Raspberry Pi over an Unix-based system, and its sensors are built on a Hardware
Attached on Top (HAT) that connects directly to the Pi’s General Purpose IOs (GPIOs).
The choice of running a full operating system enables full networking capabilities and
allows for an easier integration with external sensors and control platforms [15].
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EDGE is the current flagship FC from Emlid, retailing for ∼700AC. EDGE features dual
IMU and power supplies for increased precision and redundancy, FullHD video streaming,
a dedicated Central Processing Unit (CPU) for navigation, and a second CPU operating
a Linux system. The platform provides a pair of Universal Serial Bus (USB), CAN, and
UART ports, plus support for up to 12 servos or motors [16].

Emlid offers a robust open-source platform with the autopilot software running on top
of a full operating system, which allows for greater flexibility and customization at all
levels. Navio2 FCs are advertised as the more general purpose platform, while the EDGE
FCs are aimed at providing FullHD video streaming from the drones.

2.2.2 Community FCs

We will now discuss FC offerings from community design: PixHawk, OpenPilot Revo-
lution, and sparky.

Pixhawk 2

Pixhawk was developed in parallel with the PX4 autopilot software by a community of
students at ETH in Zürich [17]. PX4 has since then became a collaborative open-source
project to the development of a complete end-to-end platform for UAVs [18].

Pixhawk 2 features five UART, two CAN, one I2C, one Serial Peripheral Interface
(SPI), three ADCs, one micro USB, support for Secure Disk Card (SD Card) and RTK,
redundant power supply, and up to fourteen servos or motors. Pixhawk 2 ships with an
ARM Cortex-M4F CPU, triple redundant IMU, double redundant barometer, and PX4
autopilot software (detailed in chapter 2.3) for ∼300AC [19, 20].

Similar to Emlid, PX4 autopilot software runs on top of a full operating system; Pix-
hawk is a reliable and robust solution as a FC. Its redundancy, reliability and the amount
of communication ports suggests a great level of attention to the detail in the development
of Pixhawk 2 [21]. Moreover, the open-source nature of Pixhawk 2 is a good solution for a
research platform.

OpenPilot Revolution

Revolution was developed by the OpenPilot community. OpenPilot was a group of
volunteers with the focus on development of an open-source autopilot firmware capable of
handling fixed-wing, multi-rotor, and helicopter UAVs. To host the OpenPilot autopilot
firmware, the group developed their own FC board, entitled as ”Revolution” [22, 23, 24].

Revolution features one Universal Synchronous Asynchronous Receiver-Transmitter
(USART), one I2C, one Serial, one micro USB, redundant power supply, up to six servos
or motors, and a telemetry radio transmitter. Revolution ships with an STM32F4-series
MCU, IMU, barometer, and OpenPilot autopilot firmware (detailed in chapter 2.3) for
∼50AC [25].
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Revolution is affordable, compact, open-source, and its autopilot firmware can be
changed later on. Therefore, Revolution represents a good option to be used as a platform
for research.

TauLabs Sparky 2.0

Sparky 2.0 was developed by the TauLabs community. TauLabs was a volunteer group
of individuals interested in UAV technology, focused on the development of high quality
open-source firmware for FCs. TauLabs participated in the early beginnings of OpenPilot,
eventually forked for greater degree of freedom [26].

Sparky 2.0 features three USART, one I2C, one CAN, one micro USB, up to six servos
or motors, telemetry radio transmitter, and an internal flash memory that can be used for
logging. Sparky 2.0 ships with an STM32F4-series MCU, IMU, barometer, and TauLabs
autopilot firmware (detailed in chapter 2.3) for ∼40AC [27].

In comparison to Revolution, Sparky 2.0 is similar and slightly larger in size, which
also makes Sparky 2.0 a good option to be used as a platform for research.

2.3 Community Autopilot Software

Autopilot is the term called to the software running on the hardware of each FC: through
the combination of the FC hardware and the autopilot software, the UAV is capable of a
stable flight.

The capabilities of each autopilot software are specific: while some can achieve cer-
tain levels of complexity in autonomous flight, some others may only provide hover or
stabilization capabilities. In general there are two different types of autopilot software,
the firmware based autopilots which run directly on the FC board, or the software based
autopilots which run on top of an operating system.

Firmware based autopilots tend to be smaller and lighter, with a small software footprint
both in code and computation resources, although in most cases, they lack abstraction and
networking capabilities and may become complex.

On the other hand, autopilot software runs on top of an operating system, which already
has several abstraction layers, networking capabilities, although they tend to be resource
greedy.

We will now discuss several open-source autopilot software options.

ArduPilot

Ardupilot is one of the most well established open-source autopilot software. It has over
five years of intense development and is capable of controlling multiple types of vehicles,
from UAVs to boats and submarines. Ardupilot is shipped with several commercial drones
from brands like 3DR or PrecisionHawk and is used by corporations like NASA, Intel or
Boeing. Ardupilot has been used in automation of heavy farming equipment, autonomous
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UAV aerial surveillance, ground mapping, and Search and Rescue (SAR) missions with
successful results [28, 29].

Ardupilot autopilot software features several simple autonomous tasks like takeoff,
land, and return-to-home, or more complex tasks like autotune and path-follow. More-
over, Ardupilot supports GCS or API interaction and runs on top of an operating system
(currently supports Linux and NuttX, a normal Operating System (OS) and a Real-Time
Operating System (RTOS), respectively) [30, 31].

Given the open-source nature of Ardupilot, and its success in several use cases, it
represents a good autopilot software to be used for a research platform. Moreover, being
an autopilot software that runs on top of an OS, it has the inherent benefits of the OS,
but on the other hand, it requires a companion board to run the OS and actively uses the
companion board CPU.

PX4

The development of PX4 autopilot software was started by a community of students
at ETH in Zürich [17]. PX4 has since then became a collaborative open-source project to
the development of a complete UAV end-to-end platform. PX4 was recently integrated to
the open-source project Dronecode, which started early this year (2018) and is leaded by
the Linux Foundation with the focus on the development of a platform which contains a
complete set of tools to work with UAVs in more complex use cases [18, 32].

Similar to the Ardupilot, PX4 features the same simple autonomous task, but in com-
parison, it contains an autonomous ”Follow Me” task that uses an Android mobile device
to feed GPS coordinate updates to the drone, and a precision landing functionality. On the
other hand, it lacks the autotune of Ardupilot which eases the drone calibration. Also in
similarity to Ardupilot, PX4 autopilot software supports GCS or API interaction and run
on top of an OS, but in this case it only requires a POSIX-API compliant OS [33, 34, 21].

PX4 is in many aspects similar to the Ardupilot: both are suitable tools for a research
platform and their main differences are the community sizes and the features that each of
them support. PX4 is more focused on UAVs, and therefore, is more specialized with less
community adaptations; in fact PX4 has largely more branches than the Ardupilot and a
less active community.

OpenPilot and TauLabs

OpenPilot started in early 2010 with the focus on creating an open-source autopilot
firmware for UAVs to the civilian and academic communities. OpenPilot is aimed to
support fixed-wing, multi-copter and helicopter UAVs. TauLabs is a group of developers
who made part of the OpenPilot firmware, eventually forked from OpenPilot and started
their own autopilot firmware entitled TauLabs; their fork was motivated by the need of
more freedom in the project decisions [22, 23, 26].

OpenPilot and Taulabs feature similar automation tasks, where TauLabs stood out
by the autotune capabilities which were not supported by OpenPilot. Being an autopilot
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firmware, they did not require companion boards neither used part of their resources for
flight operations, although both projects seemed to be gaining momentum and considerable
community sizes. Both projects were discontinued in 2015 and 2016, respectively [35, 36].

dRonin

dRonin is an open-source autopilot firmware which focuses on the devolopment of an
autopilot software capable of handling all kinds of UAVs and in all kinds of tasks, from
racing to autonomous flight. dRonin has support for fixed-wing, multi-copter, helicopter,
rovers, and boats [37].

dRonin autopilot software features multiple simple autonomous flight capabilities like
land, return-to-home, and hover, but is also capable of more complex tasks like path-follow,
point-of-interest or autotune. Also, dRonin has support for GCS or API interaction, a large
range of supported FCs, and runs directly on the FC without requiring a companion board
and use its resources [38, 39, 40].

The dRonin project is a good open-source autopilot firmware for a research platform
with an active community and a wide range of supported FCs. Also, dRonin has been
launching a major release of its software approximately every six months, and is fully
independent.

2.4 GCSs and Drone Platforms

Across all the available UAV Systems, high level command of UAVs requires the use
of a GCS application, or API/SDK. GCSs in general are computer installed applications,
which make GCSs dependent on OS compatibility given by the developers. On the other
hand, with the development of APIs or SDK tools, UAV communication protocols like
UAVTalk or MAVLink started to emerge, allowing for some level of compatibility between
distinct UAV systems and GCSs [41, 42, 43].

GCSs are crucial for some drone tasks, like parameter configuration, software updates,
sensor calibration, or hardware diagnosis through physical connection to the FC, most
GCSs rely on direct link communication to perform high level control of drones, usually
through some sort of radio modem or adapter. Also, GCSs lack the capability to control
multiple drones simultaneously; the ones that support require a dedicated radio per drone
which is undesirable for large scale drone deployments [4].

The limitations of standard GCSs gave room to drone platforms, their focus is to extend
the functionality of both UAVs and GCSs implementations. Some are based on GCS
refactors which change the underlying connectivity from direct links to Internet Protocol
(IP), allowing for multiple drones without dedicated radios. Others take a step forward
and develop cloud based solutions with web browser GCSs or API services that relay the
user inputs either to the drone or a remote GCS host in range of the drone.

We will now discuss several implementations of GCSs or drone platforms and their
features.
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Visionair

Visionair is a GCS software application developed by UAVNavigation, a Spanish com-
pany focused on development of UAVs, external sensors and other UAV parts like parachutes
or cameras [44, 45].

Visionair features simple high level commands like hover, return-to-home, takeoff, and
landing, but also more complex like path-planner with up to one hundred waypoints.
Visionair supports control to up to 16 drones through dedicated radio links, command
relay to a remote GCS through client-server IP connectivity, and area coverage optimization
where, given a geographic area, it returns the most efficient coverage path. UAVNavigation
also claims it is currently developing a flight formation feature which allows the GCS user
to pilot up to three drones in flight formations [44].

Although Visionair supports 16 drones, they must be in autonomous mode, since a
GCS only supports one drone at a time to be remotely piloted. This becomes evident
when UAVNavigation claims to be developing formation flight functionalities and limits
the feature to three drones. Moreover, in order to control 16 drones, in total, 16 dedicated
radio modems need to be connected to the GCS application computer or the remote GCSs
[44].

Visionair presents a good GCS application which stands out for their multi-drone sup-
port, the area coverage optimization, and remote GCS connectivity, but lacks integration
capabilities and only supports UAVNavigation FCs.

Airware

Airware is an American company that focuses on the development of an analytics cloud
platform to work with drone telemetry and aerial camera data manipulation for industrial
areas like mining, construction, and insurance [46].

Airware cloud platform allows their users to gather, process, store and share their
aerial data. Although it is not clear which drone brands are supported and how the data
gathering is performed, some public videos of the company show several distinct drones
like DJI being used [47].

Airware supports automatic 2D and 3D generation of orthophotography or structure
modeling and several volumetric measurement tools, and cloud storage for the obtained
results. Moreover, Airware cloud platform supports path-planning to both planning and
flight stages, whether it supports multiple drones is also unclear [47].

Airware is a good example where drones are completely integrated with other complex
tools like orthophotography generation and offer a value added set of mechanisms for
automation of drone operations.

PrecisionHawk

PrecisionHawk is an American company that focuses on the development of an end-
to-end platform for aerial data. PrecisionHawk started in 2010 with their product ”Wini-
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Hawk”, back then they focused on support to vineyard and executed tasks like aerial
image collection for crop data extrapolation or just chasing pest birds away from the crops
[48, 49].

PrecisionHawk has since then moved their focus to three products: PrecisionFlight,
PrecisionViewer, and PrecisionMapper. Both PrecisionFlight and PrecisionViewer are ap-
plications for computers, smartphones, or tablets, and while the PrecisionFlight focuses on
task planning and execution; the PrecisionViewer focuses on survey data revision and ex-
portation. The PrecisionMapper is on the other hand a cloud based solution much similar
to the Airware, as it allows to process, analyze and share 2D and 3D [48, 50, 51, 52].

While it is not clear if PrecisionHawk applications are compatible with multiple OSs,
they are compatible with iOS and macOS devices. In terms of comparison, PrecisionHawk
and Airware products seem to be very similar, although the information about Airware is
less clear in terms of specifications and capabilities. Therefore, PrecisionHawk gives the
consumer a better picture of what and how their products work and what options are
available.

PrecisionHawk is a great example of a complete integrated solution for drones, which
gives to their users a value added set of tools to take advantage of the capabilities of their
drones. Although they claim to support ”all drones”, they fully support DJI, MicroPilot
and their own drones, and offer a limited support to MAVLink capable drones.

DroneDeploy

DroneDeploy is an American company that focuses on the gathering, processing and
storage of orthophotography or 3D models. DroneDeploy currently offers two products,
one mobile app and a cloud based solution for data aggregation and management [53, 54].

The mobile application is compatible with Android and iOS devices, and it can be used
to pilot, manage and monitor drone flights or review and analyze gathered data, either
from telemetry or external sensors on board of the drone (e.g.: infrared or camera feeds).
The mobile application allows for live orthophotography generation on site, without the
aid of external devices or internet connection [55].

The cloud based solution provided from DroneDeploy acts as an aggregation and ana-
lytics platform for the gathered data, and also, as a flight planing and management system
integrated with the mobile application. This way, it allows other users to improve flight
paths for the next flight of the drone, without the intervention of the drone pilot [56].

DroneDeploy offers a good set of tools to obtain aerial imagery and gather topographic
data, like PrecisionHawk solutions; this requires local on-site hardware to control the drone
and qualified pilots to either overview or control the flight. Although the support is limited
to DJI drones, the strengths of DroneDeploy solutions is the live map generation and the
management cloud based platform for data analytics and exchange.

15



FlytBase

FlytBase is an American company, founded in late 2017 and awarded with several
American Startup awards. FlytBase focuses on the development of a cloud based platform
for drones, to ease the integration and automation processes with drones [57, 58].

The platform developed by FlytBase is composed of two components, FlytOS and Flyt-
Cloud. FlytOS is a linux system responsible for time critical operations and is packed with
several API tools that abstract the FlytBase platform from the underlying FC. The Flyt-
Cloud is a cloud system that processes heavy computation and integration functionalities
of the platform [59, 60, 61].

Also, FlytBase has a starter kit available, called ”FlytPi” which consists on a Raspberry
Pi board with FlytOS already installed and some integration peripherals to connect to the
FC and battery of the drone. FlytBase claims that this starter kit is already compatible
with PixHawk and DJI FCs [60].

FlytBase is the first commercial available platform capable to integrate and extend
current drone capabilities. It is interesting to analyze its implementation, and realize that
its architectural bases are similar to the ones developed in this work. Although similar,
its platform focuses on providing the tools for clients to develop their own solutions, and
do not provide already built-in functions like aerial path optimization, cooperative drone
tasks, or scheduled missions.

MultiDrone

MultiDrone is a collaborative project under the Horizon 2020 research and innovation
programme of the European Union (EU), which focuses on the development of an innovative
intelligent multi-drone platform to cover outdoor events like music festivals and sports.

The goal of MultiDrone is to increase current drone autonomy in decision making to
minimize the workload and interventions of the crews, and to increase the robustness and
safety mechanisms of drones allowing for tasks with errors or without pilot crew.

Although the final objective of MultiDrone is to provide aerial footage, in order to
achieve the project goals, it is planed to build a platform somehow similar to the one
proposed in this work [62].

2.4.1 Discussion

There are several interesting approaches, some focus on integrability, others in exten-
sibility, and more. The last two are similar projects, one commercial solution, FlytBase,
and one funded by EU, MultiDrone. It is clear that no single solution can make a good
general purpose platform for autonomous drone operations that does not include extensive
programming skills and high knowledge about UAV systems. In the table 2.1 we present
a summary of the discussed options in this section.
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Table 2.1: Drone GCSs and platforms overview.

Name UAVs Types FCs Suported Multi-Drone Notes

Visionair Multiple UAVN only Limited support
Limited to flight planning,
monitoring, requires computer

Airware Multiple Unclear Limited support
Limited to flight planning,
monitoring, flight command
and data gathering + analyzes.

PrecisionHawk
Copter

Fixed-wing

DJI
MicroPilot

Own Package
MAVLink Compatible

Unclear
Supports flight planning, monitoring and command
Works as an aerial data aggregator

DroneDeploy Copter DJI only Unlikely
Supports flight planing, monitoring and command
Works as a aerial data aggregator

FlytBase
Copter

Fixed-wing
DJI

MAVLink Compatible
Limited support

Offers an integrated platform for clients
to develop their own solutions with abstraction
of the underlying drone.

Multidrone Unclear Unclear Yes
Mostly aimed for aerial footage, but it is
assumed the project will require some platform
for abstraction and integration.

2.5 Related Work

The scientific community has been proposing a wide number of services and applications
for drones, extended to a multitude of areas like agriculture, gas detection, deliver supplies.
In this section we will discuss some of the proposed applications for drones.

MedizDroids Project

In the MedizDroids project [63] it is proposed the usage of drones to ease the process
of controlling multiple infectious diseases (e.g., Malaria, Chikungunya, Dengue fever). In
most cases, these diseases are propagated through mosquitoes by carrying the disease to
non-carriers after biting infected people or animals.

Medizdroids aims to control the population of mosquitoes to slow the propagation
rate of these diseases. Currently this kind of control is already done through insecticide
spraying to populated areas both indoor and outdoor, and to common incubation areas for
mosquitoes. These methods are usually performed by people carrying spraying backpacks
or by ground or air vehicles for larger spraying areas. The authors claim that these processes
are not affordable and sustainable in the long term, and also that for the case of backpack
spraying, it can potentially expose their carriers to dangerous environments or health risks.

To perform these tasks in a way that is affordable and sustainable, the MedizDroids
Project aims to use drones to replace the ground and air vehicles in spraying and the people
with the backpack spraying. Moreover, they also claim that current available drones cannot
meet the engineering requirements to be used in these tasks, and therefore, they plan to
create a software architecture that can handle these automation needs in a Service-Oriented
Architecture (SOA) manner. According to their publication, they managed to develop a
GCS-like application that can interact with the FC through MAVLink, and propose further
real-life testing of the system. However, after exhaustive search about the project, we did
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not find any further documents about this research.

Flight Control System for Drones

In [64] the authors propose a modular concept architecture to simplify the development
of FC systems for Drones. Such architecture is proposed to be highly flexible to physical
and logical changes, therefore giving the architecture adaptation capabilities to be used
on multiple applications. In the proposal the authors specify that the architecture should
allow for SOA technologies and that its modules should be loosely coupled to increase
modularity. By building an architecture that is compliant with such requirements, it is
claimed that building a specialized application over this architecture should be direct and
simple.

Much like the work proposed in this thesis, the authors claim that current requirements
of drones in terms of integrability require further development, as its relationship between
hardware and software is tightly coupled, and therefore, not suitable for fast and low cost
application development.

Although similar to ours, this proposal focuses only on the internal workings of the
drone, which is still required to the proposed platform in this thesis, but in our case, the
Drone System is only one of the parts of the platform which the authors do not approach in
their work. Moreover, their work only overviews a theoretical approach to the architecture,
and shows no results or actual real-life implementations of the system.

Cooperative Drone Surveillance

In [65] the authors propose a fleet of drones to capture aerial surveillance images from
a previously configured area. They take in consideration collision avoidance to both other
drones and marked obstacles. In their work, mostly simulated, they propose several al-
gorithms that improve the efficiency of multi-camera image gathering and to optimally
spread the drones to improve the surveillance imagery. Also, they have developed a visual
tracking system to locate neighbor drones visually, which they reached real-life testing with
several successful results.

Search and Rescue Drone Fleets

In [66] the authors propose fleets of drones to help search and rescue teams on their
tasks in scenarios of catastrophes or disasters. They propose that multiple types of drones
are used in fleets to perform several key tasks in such scenarios, namely: temporary com-
munication structure, up-to-date maps of the affected areas, search for areas with better
chances to find alive victims. To achieve this, they propose that drones are equipped with
multiple sensors (e.g., infrared cameras, deep penetration radars), and communications
equipment not only for the temporary communications support, but also to detect radio
transiting equipments on the affected areas.
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Medical Transports with Drones

In [67] it is proposed that drones are used to transport critical medical supplies to areas
in need, being that a mass casualty scenario or sudden hospital pharmaceutical lack of
stocks. In normal circumstances, these transports are done through ground vehicles which
are prone to transit delays, or aerial vehicles which are costly to both operate and maintain.
With the proposed solution, the authors claim that delivery times can be decreased and
costs can be lowered significantly. Moreover, they claim that the same platform can even
be used for off-shore or remote incidents to transport supplies and equipment in case of an
abnormal crisis situation.

Agriculture Assessment with Drones

In [68] drones are proposed to facilitate the classification of plowing depths of agriculture
fields. Currently such processes are performed by means of satellite imagery using optical
and multi-spectral techniques, which can give important information about the health of
crops to the agriculturists (e.g., feeding of soils, protection from insects and fungi, rate of
growth). In this case study, they equipped drones with a Xtion Pro sensor to gather depth
data from the crop fields, and concluded that such approaches are feasible with promising
results compared to the current solutions based on satellite imagery.

Gas Detection and Mapping with Drones

In [69] a small and energy gas detection system was developed to be used in unmanned
vehicles (ground or aerial). For their case study a commercial UAV was used in their field
tests. The sensor is capable of detecting gas concentrations in a relative small window of
time, which makes the sensor usable withing drones. With such a sensor developed and
tested, they propose that drones can be used to detect and map city wide concentrations
of gas and create an accurate picture of areas with possible gas leaks or potential gas
pollution issues. Finally, the authors propose that small solar panels are used to extend
the autonomy of the drone. Their tests show consistent results that effectively support the
feasibility of solar panels in small multi-copter UAVs, where flight times can be extended
over 3-4 mins; on the other hand, larger UAVs only show less that 1 min gains in flight
time.

AirChat Network Monitoring with Drones

The AirChat project [70] proposes drones as a mean to transport a small system that
monitors nearby connections of the FireChat application, and is aimed to be used over
crowds to gather the metadata transmitted by the application. The authors claim that,
with the AirChat project, they are able to track individuals through the metadata gathered
by the system onboard the drone, and with that tracking capability, they can view their
progression over time and what are the common communication networks they participate.
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Persistent Surveillance with Multiple Drones

In [71] it is proposed a surveillance system where multiple drones cover a given area.
Within these areas, sub-areas are defined and, for each sub-area, a timestamp is associated
with each passage of a drone. The authors propose an algorithm that is capable of coor-
dinating the three drones to fully cover the surveillance area while keeping the age of the
last past as minimal as possible. Results show that it is possible to create a system where
drones surveillance a given area while keeping the distance between observations low, even
while refueling procedures are added to the experiments, by allowing some drones to refuel,
others will take their place in the monitoring tasks and so on.

Network Supporting with Drones

In [72] it is described an experimental analysis of the challenges and opportunities of
using drones to support wireless networking connectivity. The authors discuss the size
and weight limitations imposed to the networking hardware, the link conditions that are
inherently inconstant due to the high mobility of the drone, the restrictions about drone
autonomy capacities and the requirements to autonomously control the drones. They con-
cluded that there is a high demand for scientific investigation and room to achieve real
impact application solutions using drones, and that such solutions should be generic and
flexible to be easily adapted to its surroundings.

In addition to the presented works, we will now go over some key technologies that
helped the execution of the platform proposed in this thesis.

The fast evolution on the cloud and IoT technologies created and catalyzed several
ecosystems of solutions to support distributed system and on-line drones control and sens-
ing solution. Cloud computing can improve the limited computational capabilities of re-
source constrained mobile nodes and enhance the stability of drones systems [73].

The work proposed in [74] describes a cloud based system for city-wide unmanned air
traffic management to keep the city safe using a control system for collision avoidance.
However, the authors do not clarify how the proposed cloud-based platform reacts when
the flight volumes increase. Therefore, drones cloud-based systems can allow an effectively
deployed solution in the aftermath of a disaster for effective disaster response and mitigation
[75].

Communication between drones, users and the Dronemap planner cloud solution through
the MAVLink protocol is presented in [76], which is supported by commodity drones. The
delivered experimental results show that Dronemap Planner is efficient in visualizing the
access to drones over the Internet, and provides developers with appropriate APIs to easily
program applications for drones. However, due to the asynchronous behavior of Internet,
the QoS of drone control over the Internet should be monitored, and the impact of wire-
less communication delay and quality of drones’ management over the network should be
investigated as well.
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2.6 Conclusion

This chapter started by exposing the history of drones and possible improvements that
would make a significant difference in some areas.

Then, the key components of drones were addressed, namely the FC, autopilot software
and the tools that provide automation functionalities.

Finishing the chapter, the related work in the literature that comprises similar ap-
proaches to ours is presented and discussed with respect to our approach.
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Chapter 3

Platform

This chapter starts by exposing the current challenges involved in task automation
scenarios for drones, and why they require further development. In consequence of the
presented objectives and scenarios, a set of functional and non-functional requirements is
defined.

Following the requirements, the organization and choices made at the architecture level
are exposed and addressed all the entities that make part of the proposed architecture.

Finally, it is presented a technical overview of how the architecture will integrate drones
and how the several entities will be interconnected between them.

3.1 Challenges

In general, most of the current drones are controlled by a piece of hardware called a
Flight Controller (FC) (also known as auto-pilot). From a radio receiver on board, the
drone communicates with it through a physical connection, and receives the user inputs
(e.g.: up, down, left, right, etc.) and proceeds accordingly. Depending on the capability of
the FCs and their firmware, they can support multiple physical communication protocols,
functionalities and automation capabilities.

Considering the best FCs currently available (exposed in chapter 2.2), most of them
already support higher level commands (e.g.: Global Position System (GPS) go-to, GPS
path-planning, auto takeoff/landing, go home, etc.) which need to be issued either by an
Application Programming Interface (API) through an active direct connection or a Ground
Control Station (GCS) application installed on a computer or smartphone.

GCSs (more detailed in chapter 2.4) present interesting features like live sensor data
display and the ability to issue high-level commands; historically, they were a key tool for
pilots to remotely fly aerial vehicles. Nevertheless, they have their drawbacks, for instance:
most require a single dedicated radio per connected drone; very few can connect through
Wi-Fi thus restricting its range; each brand/group of FCs has their own implementation
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therefore lacking uniformity between them.

In the last year (2017), an evolution started to occur: API interaction support from the
FCs started to be generally supported, even by the most closed source commercial versions.
Not surprisingly, such APIs are implementation specific and severely lack standardization,
although some of them followed open-source protocols attempting to reach some level of
standards.

With the rise of FC APIs, GCSs can be improved by separating the visualization and
interaction from the command issuing and connection management; in other words, GCSs
can become visually and interactively similar to humans or machines, but its essence on
how the command is issued and transmitted can change according to the requirements of
the desired aircraft. Given this, it is a significant step forward for drones, but still far from
the desired, since APIs have their own current drawbacks: only accessible through direct
physical connection (e.g.: serial, UART), and few are well documented or fully functional
due to its infancy. Also, in order to interact with the API, given the nature of its connec-
tion, normally an extra piece of hardware will be required to communicate with the FC.
In most use cases, such hardware is a Single Board Computer (SBC).

With the above rationale, this document will address a methodology to allow generic
applications and GCSs to systematically issue control commands to an FC and retrieve
live telemetry information about its state.

3.2 Requirements

Given the objectives previously proposed in this document, this section will detail the
requirements to have into consideration in the architectural choices of the platform: For
organization purposes these requirements are separated into functional and non-functional
requirements.

3.2.1 Functional requirements

Most of GCSs currently available require a direct wireless connection to the drone
through dedicated pairs of transmitters/receivers, which requires to be previously config-
ured by pairing both devices on the ground and drone. As a requirement to the current
work, defined as direct control decoupling, drones and GCS should allow for freely
inter-exchange if desired, without major reconfigurations in all of them.

Moreover, GCS are vendor specific, supporting only a few different types of FCs, which
limits the flexibility to exchange the adjacent technologies. The direct control abstrac-
tion is a requirement to define a generic set of commands (e.g.: up/down, left/right,
forward/backward, go-to GPS location), which will be used to issue commands to the
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drone; therefore, the abstraction from the underlying FC is possible.

Following the same reasoning, if the command issue is limited to a few types of FCs, the
same applies to the sensor data from the drone. Live telemetry abstraction is defined
to address this issue, allowing to generalize the telemetry feed from the aircraft.

Finally, the technical aspects of communications between drone and GCSs/APIs are
strongly dependent on the implementation, not only in terms of required hardware, but
also in relation to communication protocols. In this work, referred as communications
abstraction, it is desired to abstract such implementations from the underlying communi-
cation methodologies, allowing for a flexible exchange of adapters according to application
needs.

3.2.2 Non-functional Requirements

For the architecture development, a set of non-functional requirements are defined.
Starting with modularity, by dividing each set of well-defined problems/contexts modu-
larization contributes to the ease of code/application maintenance and integration.

On the other hand, extensibility is also a concern to keep in mind through the archi-
tecture development. Even with highly modular systems, changes or extensions to modules
can represent the full redesign of the entire module which should be avoided.

Controlling drones, it is crucial that situation awareness and commands are transmit-
ted/received in due time to compensate or act over possible issues during flight. Therefore,
low latency must be ensured between the information source and its destination; the
maximum acceptable delay is set to 1000ms.

Regarding the drone and its researching purpose, it should be able to perform verti-
cal takeoff/landing, therefore not requiring a large space or launch/retrieval apparatus for
takeoff/landing. Moreover, it should allow to carry payloads up to 1 Kg (e.g.: small sensor
arrays, cameras, communication interfaces); this is an important step to test integration
with other devices, on-board and nearby the vehicle. Completing requirements for the
drone, it should be able to hover, easy to perform maintenance and have a flight autonomy
of at lease 10 min with the required payload.

Finally, the architecture should support multiple active drones, in the sense of having
capability to simultaneously receive and process telemetry data streams and issue control
commands, and to support collaborative missions that require multiple drones at once.

25



3.3 Architecture

In the following sections, a detailed analysis and description of the proposed architec-
ture and its internal components will be explored. This proposal attempts to respect all of
the previously exposed functional and non-functional requirements. It is divided into two
major component aggregations entitled Drone System and Ground System.

To integrate and perform interactions between both components, publish/subscribe
design patterns are used, therefore enabling high level of decoupling, transport layer ab-
straction and interaction management. This comes even more useful by allowing drones
to individually subscribe to task specific channels; the same can be said to applications,
scripts or systems that either use or belong to the architecture.

3.3.1 Drone System

Figure 3.1: Drone System Architecture

The Drone System is composed by the flight components that will play a critical role
towards the safe operation of the vehicle.
Drones are a complex aggregation of hardware equipments with their own specifications,
technical aspects and firmware, but all of them are controlled through a microprocessor
with auxiliary sensors that can either be built in or external to the microprocessor board,
known as autopilots or more commonly FCs. Further reference to these technical aspects
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will be mostly mentioned through their common term, FC.
The Drone System architecture is illustrated in Figure 3.1, which contains the components
that belong to the Drone System. A description of the internal components and their
relevance to the overall architecture are presented in the following paragraphs:

• The Drone Broker is the main communication mediator on board of the drone;
it works as a middleware between the several modules and the underlying network.
Through extensive use of this module, the architecture benefits of low coupling be-
tween modules and better integrability. It also has the responsibility to directly relay
back and forward messages with the Ground System (detailed in chapter 3.3.2).

• The Flight Analyzer connects to flight telemetry data to process and analyze be-
haviors of the drone. This process shall be simple and direct, since processing power
can be scarce on board of the drone and it can not be monopolized. Through pattern
detection and behavior profiling, this system can detect anomalies to actively notify
other modules of particular behaviors. This module favors the architecture to de-
couple the detection and analysis of certain events from the actions that such event
requires, for example, a fail-safe module can be waiting to receive certain events to
be deployed instead of actively detect such event.

• The Fail-Safe System(s) is a mechanism that, when triggered, is able to minimize
the consequences of a failure. These actions can be very simple like preventing takeoff
or forcing a safe landing on the detection of low battery levels. The actions can also
become more complex like parachute deployment in a catastrophic engine failure.

• The Drone Logger connects to the necessary broker channels or topics in order to
create a local copy of all the events occurred within the drone for debugging and
registry purposes.

• The Drone Controller acts as an adapter design pattern, translating broker com-
mand messages into FC understandable messages, contributing for abstracting the
platform from technical aspects required to properly interact with the FC, therefore
complying with the direct control abstraction requirement.

• The FC flies and corrects the flight behavior of the drone; it is presented in the
architecture to host the command end-point and telemetry data source.

• The Drone Mapper provides further extension of current geofencing functionalities
of drones. It communicates with its other half, Ground Mapper, to support dynamic
map loading based on current GPS data and a given radius. Moreover, it is ca-
pable to provide richer information like obstacles and minimum/maximum altitude
restrictions, common to urban scenarios.
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Figure 3.2: Ground System Architecture

3.3.2 Ground System

The Ground System is composed of services, systems and processes that are auxiliary
to flight (e.g. data storage, management, front ends, etc.) or can extend flight function-
alities (e.g.: support in-flight drone exchange, automated flight plan for area patrolling
or aerial mapping/surveillance). To give an answer to the non-functional requirements,
components of ground system must be cloud deployable through the usage of a Service-
Oriented Architecture (SOA), allowing that each module can grow independently, giving
room for multiple instances of the same module for higher throughput, if required.

Once again brokers play a key role through their message routing capabilities. With
brokers, development and production instances can co-exist side by side without needing
to build a development oriented deployment of the entire platform. The Ground System
architecture is illustrated in Figure 3.2. In the following paragraphs, a description of each
component will be provided.

• The Ground Broker, like the Drone Broker, serves as the main communication
mediator to the Ground System. To be able to grow (vertically scalable), it has
added responsibility of filtering and routing of each individual drone’ messages. Since
it can be a platform bottleneck, it must be a cluster (horizontally scalable) capable
broker system, which benefits the scalability of the overall architecture.
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• The Drone Manager acts as a proxy entity, which capability is crucial to the
platform architecture because it can easily redirect requests to different endpoints
(drones) without major reconfigurations to the edge entities (drones or controlling
applications), therefore, answering the functional requirement of ”direct control de-
coupling”. The Drone Manager is also capable of tracking the state of each drone
(e.g. waiting, disconnected, low battery, flying) and serves a web service to issue
high-level control commands to drones.

• The Data Storage is a persistent data storage system for later analysis or auditing
purposes of the platform.

• The Ground Logger (there is a similar system in the Drone System) connects to
the required broker channels or topics in order to create a local copy of all the events
occurred within the Ground System for debugging and registry purposes.

• The Diagnostics Dashboard is a visual front-end that can access performance and
sensor data from the entire platform with low latency, allowing for visual trouble
diagnosis. It also contains historic information through older datasets.

• The Control Dashboard is a GCS like front-end in which users may control their
active drones through high-level commands (e.g.: up/down, left/right, etc.). It also
allows control for embedded-drone sensors like video cameras, thermal cameras, etc.

• The Telemetry Stream Processor subscribes to telemetry data sent by the drones,
and it processes the received data to generate new information to feedback the plat-
form (e.g.: compute number of packets received by drone, compute statistical data
for drone behavior analysis, etc.).

• The Telemetry Analyzer connects to the flight telemetry data to analyze behaviors
of the drone and detect anomalies. Through this module, the Ground System can
react to behavior changes in order to mitigate any issue (e.g. parachute deployment,
emergency landing). Unlike its similar process on board of the drone, due to com-
putational capacity available, it can perform complex analysis of flight parameters
potentially gaining extra knowledge and awareness about the drone flight conditions.

• The Ground Mapper extends the natural geo-fencing supported by most of the
drones. It has the responsibility to track each drone location and actively update it
for hazards, safe zones, landing zones, no fly zones, etc. Using dynamic map loading
techniques, therefore it saves memory and storage in the drone, and it also removes
the need to re-update maps and geo-fencing configurations, keeping all the drones
constantly up to date.

• The Drone Coordinator has the task of ensuring that drones in a certain area can
coexist without interfering with each other. Connected to flight telemetry, it can
detect distances between each drone, and upon trespassing a minimum safe distance,
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it can notify each of them and even suggest safe actions on how to proceed, like an
aerial traffic controller.

3.4 Technical Overview

In this section, technical details of the platform will be explained and detailed, starting
with the way the entities within the Drone System are integrated followed by a similar
approach to the entities within the Ground System.

3.4.1 Drone Integration

Figure 3.3: Generic drone overview, remote controller and drone with inside view of main
components

Drones are a complex aggregation of hardware equipments working together to achieve
a controlled flight. They are controlled by a FC which requires input from external commu-
nication receivers, and flight sensors in order to act over the movable surfaces, represented
in Figure 3.3.

Due to the nature of the FC and its critical operational performance, it does not use a
full operating system which could cause serious problems due to Central Processing Unit
(CPU) scheduling and possible concurrency issues. On the other hand, for the proposed
architecture to work, interface abstraction, multitasking and applications are a ’must have’
for abstraction support, meaning that an extra computational node is required on board.
For this same reason, external communications and flight sensors take special relevance:
they are respectively the communications’ link and the source of flight behavior data, this
way supporting interactions between the architecture and the FC. In Figure 3.4 the com-
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putation node is already integrated with the FC.

Figure 3.4: Generic drone overview, with architecture integration

Given that each FC has its own implementations, the communication methods or the
communication protocols change. Therefore the architecture relies on the drone controller
to perform the integration and manage all connectivity to the drone. The drone controller
implements direct control abstraction and is one part of the direct control decoupling. In
the case of non-functional requirements, it makes the link to the FC modular, adaptable
and extensible.

3.4.2 Drone System Integration

This section describes the internal working processes of the Drone System. It will detail
how messages flow in and out from each element, and how and why they are relevant to
the overall architecture.

One of the main features of message brokers is to support message routing. This allows
publishers and consumers to selectively inform the broker about the content/topic of the
messages they want to send/receive. In this architecture this feature is extensively used
to properly route messages between components. For this purpose, four contexts/topics
are considered: control, telemetry, emergency and map. To better exemplify the message
routing within the drone, a schematic overview is illustrated in figure 3.5.

The Drone Logger subscribes to all types of messages, logging them chronologically
in log files in the file system of the computation node. Logging is extremely relevant for de-
bugging and auditing proper working of the application. These logs can be then transferred
to the Ground System if necessary for long term archiving due to resource limitations of
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Figure 3.5: Drone Broker message routing schematic

32



the computation node.

The Drone Mapper will subscribe to telemetry messages, using GPS coordinates re-
ceived to track the current location of the drone. It will also publish and subscribe to map
messages. As previously mentioned, it will work in a dynamic map loading basis, therefore
needing to interact with the ground mapper to update the map through the integration of
configurable parameters and current drone location. It has the responsibility to offer extra
information based on GPS coordinates or other geo-location identification techniques to
other components in the system: as an example, given a set of GPS coordinates, it returns
information about hazards in the area, minimum/maximum flight altitude, safe to land
areas.

The Drone Controller is the source of all telemetry messages coming from the FC,
publishing them to telemetry. The Drone Controller also publishes and subscribes to con-
trol messages: these are high level commands like up/down, left/right, go to some GPS
location, etc. In order to directly issue control commands to the FC, it must first translate
them to understandable commands. Finally, it publishes and subscribes to map messages:
the Drone Mapper can be asked for information about a given geo-location; in order for a
command to be validated as safe, interaction between these two components may occur.

The Fail-safe System(s) will subscribe to emergency messages. The entire system or
systems are a last resort tool to minimize damage for both the drone and its surroundings.
Their actions will be to deploy a security measurement like a loud buzzer and a parachute
or any other preemptive safety measurement required depending on the issue.

The Flight Analyzer subscribes to telemetry messages and publishes in emergency
and control. Through analysis of sensor data coming from the FC, it looks for signs
of detectable abnormal behavior and ensures that sensor readings are within configured
thresholds. In case an issue is detected, it attempts to solve or minimize the issue. As an
example, a drone in the middle of a flight suddenly stops sending telemetry data, which
may be a sign of severe malfunction and may be a scenario of falling: a control message is
issued to power off the drone, and an emergency message is sent to deploy parachute and
buzzer.

The Drone Broker Relay acts as an interconnection agent between the drone and
Ground System. It subscribes and publishes to messages on both brokers. These messages
are then relayed based on configured parameters, which work as a filter to reduce network
bandwidth and processing power usage. Message filtering is performed to only propagate
messages with meaning and relevance to the drone operations. Looking from the perspec-
tive of the Drone Broker, it subscribes to emergency messages in case some critical issue
occurs at Ground System level, publishes telemetry for further analysis and both publish
and subscribe to map and control messages, so interactions can be done between compo-
nents of both systems.
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3.4.3 Ground System Integration

Figure 3.6: Ground Broker message routing schematic

This section details the internal operation of the Ground System. In the case of Ground
System components, five contexts/topics are considered: control, telemetry, emergency,
map and sysMetrics. Figure 3.6 exemplifies the message routing within the Ground Sys-
tem.

The Ground Logger, subscribes to all messages and chronologically stores the message
exchange in files; this can be valuable information for debugging and auditing purposes.

The Data Storage, in charge of long term storage of telemetry data, subscribes to
telemetry messages and stores sensor data information into a time series database in order
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to be used in flight history reviews or as data sets for further data exploration.

The Diagnostics Dashboard is a web based dashboard for flight data overview, there-
fore making it portable and usable by any device with web browser support. Through the
subscription to telemetry messages, it is able to display histograms with near to real time
sensor data information. Moreover with the usage of a connection to the data storage
database, history review of the data can be displayed.

The Control Dashboard is a web based dashboard where users may issue commands
to the drone and other connected components (e.g.: video cameras, thermal cameras, sen-
sor arrays). The architecture is able to support these components through extension of
the current systems and new message routing contexts/topics. In terms of look, it shall be
similar to a generic GCS, since its functionalities are similar to a standard GCS, although
with the support to the architecture features.

The Systems Monitor subscribes to sysMetrics messages to have an overview of the
entire architecture performance and component behaviors. Through the analysis of these
metrics, it can detect possible performance degradations or even total failure of the compo-
nents, which in the case of being a flight critical component, it is able to emit an emergency
command to the drones notifying them about the issue.

The Telemetry Stream Processor publishes and subscribes to telemetry messages.
Through processing sensor data coming from each drone, it generates new telemetry mes-
sages with added information like number of sensor readings per second, or instant power
consumption, removing that extra processing from other components using the telemetry
messages.

The Telemetry Analyzer subscribes to telemetry messages. It has the responsibility
to analyze behavior patterns and abnormal signs. From the architectural point of view
it is similar to the flight analyzer, although in this case, through the availability of more
resources, this can perform more complex analysis to the data (e.g.: machine learning,
multi-drone data correlations).

The Ground Mapper publishes and subscribes to map messages. Both Ground Mapp-
per and Drone Mapper work together to give accurate mapping data to the drone, further
extending the normal geo-fencing supported by most FCs.

The Drone Coordinator subscribes to telemetry and control messages in scenarios
where drones may work together or in close proximity. Through the reception of telemetry
data from each involved drone and its issued commands, it can estimate what each drone
is doing and at which time. For the case when drones may get too close to each other or
fly by each other, it can send control commands directly to each of them overriding the
controls of the current controller as briefly as possible.
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3.5 Summary

This chapter starts by presenting the challenges involved in task automation scenarios
for currently available drones, and why they require further development. In consequence of
the presented objectives and scenarios, a set of functional and non-functional requirements
was defined.

Following the requirements, the organization and choices made at the architecture
level were exposed and all the entities that make part of the proposed architecture were
addressed.

Finally, a technical overview of how the architecture will integrate drones and how the
several entities will be interconnected between them was exposed.
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Chapter 4

Implementation

This chapter starts by exposing the drone used in this work, with a brief exploration of
the several drone options and the rationale behind the final decision on the picked drone.

Then, the implementation decisions about the Drone System are exposed with an
overview of the rationale behind the implementation choices made for each entity. Fi-
nally, a similar description is provided for the Ground System and its internal entities.

4.1 Drone

Based on the requirements presented in Chapter 3.2, the drone shall be able to perform
vertical take-offs/landings, hover and carry up to 1Kg payload. Reviewing the possible
configurations, shapes and capabilities, a small sized quad-copter is the best suited plat-
form given its mechanical simplicity and stability. By having only four movable surfaces
(four rotor engines fitted with fixed pitch propellers), the control is based on rotor speed
adjustments. This is similar to an helicopter that can also fly with four movable surfaces
(two rotor engines fitted with variable pitch blades), but has its mechanical complexity
increased.

Other advantages of multi-copters are the smaller propeller spans in relation to he-
licopter, a linear growth in terms of carry capacity in relation to the number of rotors
(optimal values are approximately 600g per rotor fitted with 22mm fixed pitch propellers),
resilience to rotor or propeller failures when using more than four rotors (which is the
minimum required to properly control a multi-copter).

Regarding other hardware parts required to assemble the drone, several options were
explored. A Do It Yourself (DIY) solution was chosen with the following components:
3S - 5000mA/h Li-Po battery, four 30A Simon Electronic Speed Controllers (ESCs), four
A2212/13T 1000KV rotors with 22mm blades and, most importantly, a Flame Wheel F450
ARF Kit from DJI for the frame and wiring exposure, ease to change peripherals.

An OpenPilot Revolution Flight Controller (FC), equipped with an external Global
Position System (GPS), magnetometer, and power consumption modules, is used. Also, a
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radio receiver is added and connected to the FC, for safety purposes.

As referenced in chapter 3.4, an extra computational node is required to support the
Drone System; a Raspberry Pi 2 equipped with a 4G Universal Serial Bus (USB) dongle,
running Raspbian as Operating System (OS), is used. In relation to other Single Board
Computers (SBCs) at our disposal (Pine64, Raspberry Pi 1/2/3), this one has a bet-
ter balance between power consumption and processing power; however, if for any reason
processing power becomes an issue, the OS abstracts deployment from the underlying hard-
ware. These pieces of hardware in conjunction with an Arduino Nano and a 5V 5000mA/h
Power Bank represent the full payload in the drone. The Arduino Nano is used for direct
control, which is out of the scope of this work, and the Power Bank is used to power both
the Raspberry Pi and the Arduino Nano.

Figure 4.1: Full drone setup implementation

Finally, the option to use a secondary extra battery (powering the Raspberry Pi 2 and
Arduino Nano) is founded by the fact that, otherwise, the main battery would be draining
its own flight autonomy just to power the payload components while not in-flight. How-
ever, with a second, smaller battery just for the payload components, its flight autonomy
capacity is kept and has the Drone System active and waiting for activation.

38



4.2 Drone Systems

This section contains the implementation choices made of the Drone System.

To allow the drone to be abstracted from the platform, an entity called “Drone Con-
troller” was created to act as the adapter to translate the platform commands into com-
mands that can be understood by the drone (Fig 4.2).

In order for the commands to reach the drone, an entity called “Drone Broker” was
created to work as an abstraction layer between the platform and the underlying com-
munication protocols through a relay functionality built within the entity. The relay is
responsible for the exchange of messages between the Drone System and Ground System
and comprises filtering capabilities.

The Flight Analyzer offers a simple system to detect events based on the live telemetry
data produced by the drone. This is useful to detect not only abnormal behaviors but
also to potentially detect the effectiveness of the commands sent to the drone. Finally,
and aggregated to the Flight Telemetry, the Drone Logger will be explained and detailed;
its main objective is to work as a Flight Data Recorder (FDR) black box on-board of the
drone.

Figure 4.2: Drone System implementation overview
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4.2.1 Drone Broker and Relay Mechanism

By architectural design, the Drone Broker needs to be as light as possible in terms of
Central Processing Unit (CPU), memory and storage consumption, since the computation
resources are very limited within the drone. Moreover, the ratio between flight time au-
tonomy versus total weight has to be a well balanced trade-off. Considering these facts,
Mosquitto was chosen to implement this architectural element.

Mosquitto is an open-source project from Eclipse Foundation written in C, where its
main focus aims for a small code/network footprint broker. The executable code is around
120kB consuming approximately 3MB Random Access Memory (RAM) with 1000 clients
connected1. Moreover, Mosquitto makes use of Message Queuing Telemetry Transport
(MQTT) protocol to receive and transmit messages, which was also developed to be
a lightweight publish/subscribe messaging transport protocol2. Finally, the support for
MQTT bridges has also been an advantage to chose Mosquitto, with the possibility of
being the broker itself to bridge the Ground System with the Drone System; this will
be an added value feature to the platform design.

Through the use of MQTT protocol, Mosquitto connects to the ground broker, fur-
ther detailed in section 4.3, relaying configured message topics like: Control, Emergency or
Map back and forth, while tagging the topic with the respective drone identification string,
which is previously configured in the Raspberry Pi. It also filters incoming messages from
the ground systems through the use of topic filters based on the same drone identification
string, therefore removing unwanted messages.

If topics were tagged only by its base topic (e.g.: Control, Emergency, Map), the bridge
would not be able to distinguish outgoing from incoming messages, causing infinite message
loops between the brokers. To prevent these loops within the bridge, each topic was sub-
divided into at least two subtopics: *.in and *.out (e.g.: Control.in, Control.out, Map.in,
Map.out). This way each message is clearly distinguishable, therefore avoiding relay loops.
Also, although the relay is implemented in the Drone Broker, it does not actively filter the
messages; that task is delegated to the Ground Broker through exchange filtering rules,
therefore removing the overhead of receiving and filtering unnecessary messages.

Figure 4.3 shows the possibility to have distinct drones simultaneously connected to
the same Ground System, and the way multiple drones may receive “broadcast” messages.
For example, “unicast” messages are identified with the respective droneID; however, for
“broadcast” messages, specific topics may be used. Finally, these filtering and routing
mechanisms are automatically implemented on the Ground Broker, based on the configu-
ration file of the Drone Broker.

1https://projects.eclipse.org/projects/technology.mosquitto
2http://mqtt.org/
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Figure 4.3: Overview of the filtering and routing mechanisms of the platform

4.2.2 Flight Controller

The FC hardware and firmware have the responsibility of controlling all the flying as-
pects in the aircraft. All flight parameters are relayed to the FC in order to be executed
by the drone (e.g.: move left, climb, descend, take-off, go-to GPS coordinates), although
more complex flight options can be processed and prepared outside the FC. Ultimately
they are translated into FC understandable commands and then transmitted.

The FC hardware chosen to accomplish this task is the OpenPilot Revolution, overviewed
in Chapter 2.2. It was packed with OpenPilot firmware from factory; the last stable release
of OpenPilot was in May 15th, 2015. Since the development of OpenPilot firmware stalled
for almost two years, it was chosen to replace it with dRonin, which is an open-source
firmware compatible with the OpenPilot Revolution that has better documentation and
an active community. The release version 2017-02-13.1 of dRonin is used in the scope of
this document, which was published in March 9th, 2017.

Compared to other firmwares compatible with OpenPilot Revolution, dRonin offered,
among other features, an AutoTune functionality for fine tunning the rotor variables, im-
proving stabilization and avoiding shaking. To have the best results in terms of stabiliza-
tion and shaking, each time the payload is changed in weight, balance or engine/ESC are
replaced, the configuration variables should be readjusted.

Currently this process is manually performed by the drone operator, by adjusting the
parameters by trial and error, which can become extremely time consuming. On the other
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hand, with dRonin, the drone has to be operated for 30 seconds in AutoTune mode and ac-
cept the parameters recommended through the Ground Control Station (GCS) application.

OpenPilot Revolution supports interaction with radio receiver and serial emulated
through USB. The first is used with manual radio transmitter, which sends user inputs
through a unidirectional radio channel, therefore not supporting command feedback. The
second is used either by the GCS application for configuration and management, or by an
Application Programming Interface (API) for control and telemetry interaction. This API
is natively supported by dRonin and uses an open-source communication protocol called
UAVTalk, enabling exchange of data with the connected client. Currently supported clients
are GCS bundled with dRonin and its Python API.

4.2.3 Drone Controller

Most of current drones require a GCS or API to enable remote interaction and auto-
mated flight, which in general is implementation specific, and therefore unable to be reused
in other drones which support different GCS or API.

In our implementation, the Drone Controller abstracts and decouples the surrounding
components of the platform from implementation specific needs, therefore standardizing
interactions with drone.

In chapter 3.4 the architectural details for the Drone Controller were discussed, in
which it was defined that communications would be established through means of a pub-
lish/subscribe design pattern. This communication methodology is generally used to trans-
mit String based messages between publishers/producers and subscribers/consumers. In
our case, these messages are formatted in JavaScript Object Notation (JSON), which is a
String based format, and is also supported by virtually all programming languages.

From the previous chapter, it is known that our current FC uses a serial communication
port, emulated through a USB connection and that supports an API that uses UAVTalk
as its communication protocol. The Drone Controller acts as an adapter between the
platform and the FC formated messages, therefore translating JSON into UAVTalk and
vice versa. In Figure 4.4 it is shown this bridging between JSON and UAVTalk formats,
which is crucial within the platform: it is through extensive use of this mechanism that the
platform achieves abstraction requirements defined in chapter 1.2. The implementation of
this module is performed in Python 2.7 and supports the following 11 commands:

• CONNECT: provides connection initialization between the Drone Controller and
the Drone Manager. Its aim is to formally register and authenticate the drone.

• OBJREQUEST: is a debugging purpose command and requests internal FC ob-
jects.
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Figure 4.4: Main workflow of the Flight Analyzer implementation.

• NAVIGATE: given a set of GPS coordinates, it commands the drone directly to fly
towards that location, maintaining its current altitude.

• DOWN: given a distance in meters, it executes a vertical movement relative to
the drone current location towards/against the ground if the value is respectively
positive/negative.

• NORTH: given a distance in meters, it executes an horizontal movement relative
to the drone current location towards/against cardinal north direction if the value is
respectively positive/negative.

• EAST: given a distance in meters, it executes an horizontal movement relative to
the drone current location towards/against cardinal east direction if the value is
respectively positive/negative.

• ARM: sets the drone in a flight-ready state, starts all the rotors in an idle rotation
and waits for more commands.

• DISARM: sets the drone in a safe state, shuts down all the rotors and ignores all
commands that require rotor operations.

• LAND: initializes the landing procedure of the drone.

• TAKEOFF: initializes the take-off procedure of the drone leaving it hovering at a
configurable altitude.
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• DISCONNECT: it is meant to terminate the connection, it unregisters and deau-
thenticates the drone.

Since the communication medium is a serial emulated over USB, it is bounded to be
accessed only by one process at each given time. Due to this technical restriction, Drone
Controller also has the task of relaying sensor telemetry data from the FC to the platform.
The complete flow of the Drone Controller is represented in a flowchart in Figure 4.5. The
application uses two threads, one to translate commands to the FC and one to publish
the telemetry feed to the platform. Also note that the application is already prepared to
handle other types os commands, not completely related to control the drone but to control
other onboard systems if needed. Currently it is also used to control onboard cameras (take
photographs or capture video streams).

Figure 4.5: Flow chart for the Drone Controller implementation.
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4.2.4 Flight Analyzer and Drone Logger

The Flight Analyzer is developed with the objective of detecting simple events based
on telemetry data being published into the Drone Broker. It is built in Python 2.7 and is
able to effectively detect events such as battery connection, rate of telemetry messages in
general and by measurement.

The Flight Analyzer is very important to be used in early stages of the platform de-
velopment to determine whether or not the telemetry stream is stable and if chronological
order of packets is ensured. The workflow of this early version of the Flight Analyzer is
depicted in Figure 4.6, and does three tasks. First, it logs all the received messages into a
Map that uses the timestamp of the message as its key. Second, it performs several simple
preprogrammed analyses to find if an event can be extracted; if so, the Flight Analyzer logs
the detected event into an event list. Finally, when a SIGTERM is detected, the module
saves all the data to a file for later analysis. At the time of the development of this version
of the module, the brokers of the platform were not yet implemented. As a consequence,
the Flight Analyzer was directly connected to the FC.

Figure 4.6: Flow chart for the Flight Analyzer implementation.

In a second evolution of the module, the flowchart was simplified and parts of the code
were then reused to build the Drone Logger module. Initially they were combined because
of the Serial connection used to communicate with the FC. As seen in the last section,
only one application may be in use of the Serial port at each given time. Given that the
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serial port was no longer required and the Drone Broker was already fully functional, the
Flight Analyzer only needs to subscribe for Telemetry Messages and wait for new messages
to arrive: in the case of a detected event, it simply needs to publish the event back to the
broker. This flowchart is depicted in Figure 4.7.

Figure 4.7: Flow chart for the final Flight Analyzer implementation.

The Drone Logger acts similar to a FDR black box of an airplane. FDRs of airplanes
record everything that is going on within the airplane, from the pilot inputs to the per-
formance of the engines. In our case the Drone Logger records all commands that are
sent to the drone and all the data that can be collected from the telemetry and other
channels of the Drone Broker. The flow chart of the Drone Logger implementation is pre-
sented in Figure 4.8. Once again, like an airplane, the black boxes are useful to understand
what happened onboard the drone in case of a crash. Although in our case, we have live
telemetry data reaching the Ground System, there is the possibility for complete loss of
connectivity and therefore, loss of live telemetry. For that specific case, the Drone Logger
is a key factor to rebuild the last moments before the crash and possibly understand the
reason for the crash of the drone.
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Figure 4.8: Flow chart for the Drone Logger implementation.

4.3 Ground System

This section contains the implementation choices made within the Ground System,
and a description of the reasoning used to justify the implementation choices.

The Ground Broker is implemented using RabbitMQ; it has multiple static queues and
exchanges for routing and simplification purposes.

The Drone Manager is implemented using NodeJS. It works as a development/debug
Control Dashboard, and as a Representational State Transfer (REST) endpoint to issue
high level commands to each drone.

The Control Dashboard is implemented in two distinct languages: a first crude version
of the interface was developed for debugging and simple control, which was integrated with
the Drone Controller module using NodeJS; for a more production like interface, a web
application is developed in PHP 7.0.

The Data Storage is implemented using InfluxDb. This time series database is used to
store historical telemetry data. It also requires a small Python 2.7 application to obtain
the data from the Ground Broker and store it in the database.

The Ground Logger is the general log of the platform. It registers all events in the
Ground System, and it is implemented using Python 2.7.

The Telemetry Analyzer and Telemetry Stream Processor are developed in a first stage
as a single module to take advantage of the implementation based on the Kapacitor ap-
plication. This has worked well for low levels of telemetry data, but started to fail with
higher loads. For this reason, in a second stage the Telemetry Analyzer is implemented
using Python 2.7.

The modules developed in this work are represented in Figure 4.9 with a layout of the
implementation.

47



Figure 4.9: Ground System implementation overview
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4.3.1 Ground Broker

Acting as an aggregator to all the Drone Systems connected to the platform, the Ground
Broker is the endpoint to publish/subscribe messages within the Ground System. Because
at this point Mosquitto is developed into our architecture (chapter 4.2.1), in order to take
advantage of its bridging functionality, MQTT protocol must be supported by the Ground
Broker or an adaptation mechanism would be necessary to translate into other protocols.
Since the Ground Broker is the main communication hub for both Ground and Drone Sys-
tems, and it is where they merge their messages, it must be reliable, robust and extensible
to avoid potential future bottlenecks.

For implementation purposes suiting the architectural requirements, three brokers were
studied: ActiveMQ, Kafka and RabbitMQ. ActiveMQ and RabbitMQ are mostly identi-
cal: both have the same working principles and features, implemented in Java and Erlang
respectively. The choice between the two was purely based on previous knowledge and
practice in the usage of RabbitMQ. Kafka looked more promising: it is built in Java, it
supports a significant amount of features, modules and extensions; it can potentially imple-
ment three of the Ground Systems modules: Ground Broker, Telemetry Stream processor
and Telemetry Analyzer. However it was discarded in favor of RabbitMQ which offered
a web-based management interface tool which eases the management and monitoring of
Queues/Exchanges/Permissions and faster development start due to its better documen-
tation and practical examples to start with. The Advanced Message Queuing Protocol
(AMQP) protocol is used to interconnect the internal modules of the Ground System, and
MQTT is used as the bridging protocol to the Drone System.

Figure 4.10 is a representation of how each module connects to the Ground Broker and
how the messages are internally routed. This figure is a second part of the functionalities
implemented within the Ground Broker, which were explained in the Chapter 4.2.1. In
the left, four modules are connected to distinct exchanges; these exchanges are previously
configured to the RabbitMQ and work as an authentication and permission security fea-
ture, because each of the modules has its own permissions to their respective exchanges.
Moreover, the exchanges are already configured to route their messages to the appropriated
queues.

4.3.2 Drone Manager

According to the architecture design, the Drone Manager connects to the Ground
Broker to publish and subscribe for control messages. It has the task of tracking connec-
tion status of each drone, through the connect/disconnect command, and also to work as
an intermediary between the controller client and the Drone Controller itself. In order to
support the drone replacement mechanism, it has the task of mapping which controller
is controlling each drone and redirect their commands to the correct drone; it acts like a
proxy rerouting each request to its proper place based on rules and available resources.
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Figure 4.10: Internal Message queuing and routing implementation.

A simple version of the module is developed using Python 2.7, aimed to be initially used
for testing purposes through Command Line Interface (CLI) which afterwards would be
extended to a web-based API using JSON. Eventually, such extension was made later into
development through a small NodeJS application which replaced the previous developed
version. This version maps the messages received from the web API and converts them
into control messages to the Ground Broker. Such process is represented in Figure 4.11 and
the following commands are implemented: NAVIGATE, DOWN, NORTH, EAST, ARM,
DISARM. These commands are translated into drone understandable commands by the
Drone Controller.

4.3.3 Data Storage

In the development stage, the only data that needs to be long term stored is the flight
telemetry data. It is extremely useful to detect visible patterns in the flight behavior and,
in the case of a drone crash, be able to diagnose which is probable cause, much like an air-
craft FDR black box but with the advantage of not being on-board the aircraft. Moreover,
it represents invaluable data to be further used in the future of the platform for possible
machine learning purposes, which in our view will eventually be extended to the platform.

Considering the nature of the data being currently stored, it made sense to be imple-
mented in a time-series database. Both Graphite and InfluxDB were considered at first,
in which InfluxDb was chosen for its greater support in client languages and schema-free
storage. Moreover the InfluxDB applications family is easily integratable with Kapacitor,
which could be handful for our Telemetry Stream Processor and Telemetry Analyzer.
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Figure 4.11: Workflow of the Drone Manager for the conversion of messages/requests.

To populate the data to the database, a small standalone Python 2.7 application is
created to make the bridge and to translate the telemetry data into the database object
format; the flow chart of this application is represented in Figure 4.12. The application
starts by connecting to the InfluxDB and then subscribes for telemetry messages at the
Ground Broker where it waits for new telemetry messages to arrive. At that point it con-
verts each message to a valid database object format.

The InfluxDB implementation proved to be effective to the initial purpose of the plat-
form, however an potential issue was discovered which may compromise the initial con-
siderations about InfluxDB within the platform. In future evolutions of this work, this
question should be reviewed.

4.3.4 Diagnosis Dashboard

With flight telemetry data being received and stored by the platform, a tool to visually
display and analyze such data is required. With such tool, most of the troubleshooting of
drones can be done remotely or even in flight.

It is imperative that the tool can support low delay between the data reaching the
Ground System and being displayed in the dashboard, and the ability to filter data based
on dates, drone IDs and type of sensor/metric. Based on the choice made in the last section
about the data storage, the selection of this tool requires to be capable of directly interact
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Figure 4.12: Flowchart of the Python 2.7 application that interconnects the Ground Broker
to the InfluxDB.
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with InfluxDB to facilitate the integration of the tools in use.

Grafana is chosen to implement this module, as it supports all the required features
and is also compatible with other time series databases. Moreover, Grafana has a built-
in alerting system which can be integrated with multiple technologies (e.g.: slack, email)
and has customizable templates that allow for a great level of data display customization.
Moreover, the compatibility with other time series databases is a potential advantage since
it allows for improved adaptability. As mentioned in the last section, there is a strong
possibility of changing the current data storage implementation, and the work done within
this module may be completely reused.

Figure 4.13 depicts an example of a dashboard representation. Through the dash-
boards, we can easily plot and combine multiple telemetry data and perform simple ag-
gregation/transformations with the live telemetry data being received. This feature is
particularly useful for debugging the drone or, in case of a crash, to understand what
might have happened before the crash. These graphs are capable to show near to real time
telemetry data being transmitted from the internal flight sensors, making the requirement
for direct drone connectivity only in very specific cases.

Figure 4.13: Web based drone telemetry dashboard example, where multiple sensory data
(battery levels, power consumption, barometer, accelerometer) are plotted.
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4.3.5 Control Dashboard

Developed in NodeJS, we implemented a small web interface that has the capability
to send basic navigation commands to the platform. This web interface is implemented in
early stages of development of the platform. Its main purpose was to simplify the interface
to test the response of the drone to the commands. As a consequence of its simplicity and
effectiveness, it is still used mainly for debugging or testing purposes. This web interface
is represented in Figure 4.14, and it supports the following commands: GPS coordinate,
up/down, east/west, north/south; the web interface has also a small map that can be
clicked to select a new GPS point to send to the drone, and a button to send the current
location of the device to the drone.

Figure 4.14: Web based drone control dashboard example, which is more mobile friendly,
where commands can be issued to a given drone.

A more complex GCS like interface is also developed. The web-based interface is
capable of displaying drone telemetry data in a near to real time basis, and directly control
a previously selected drone. In order to support this web interface, it connects to the
telemetry message channel filtering the data to the respective active drone, and through
the previously mentioned JSON API to issue control commands to the selected drone. The
interface is illustrated in Figure 4.15.
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Figure 4.15: Web based GCS like control dashboard example, where commands can be
issued to a given drone and some of its telemetry data.

4.3.6 Telemetry Modules

The first implementation of the telemetry stream processor and telemetry ana-
lyzer is merged into the same base implementation while keeping its modularity, by using
Kapacitor from the InfluxDB software family, through its TICKscript language.

This approach was promising at first: it is supposed to work in an internal pub-
lish/subscribe design pattern between Kapacitor and InfluxDB. As data is issued to storage
within the database, a queue is populated with the same data being later received by Ka-
pacitor. Preliminary tests with the implementation worked well and several features have
been implemented, like power calculation, number of drones connected, and number of
telemetry packets by drone.

When the case studies have been tested, it was verified a serious flaw within the In-
fluxDB and Kapacitor relationship: in the case of receiving about 2000 measurements per
second depending on the setup configurations, InfluxDB starts to bottleneck the data being
transmitted to the Kapacitor resulting in faulty measurements.

TICKscript is indeed a good language to be used for this kind of job: it is intuitive,
easy to learn and read even when not fully understanding the language; unfortunately, by
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using the free versions of the supporting software (InfluxDB, Kapacitor), it ceases to work
with higher throughputs of data (with more than 6-8 drones, the performance is seriously
compromised). Moreover, only the payed version of the software, which has to be hosted
on their cloud, has the clustering capability.

To correct this issue to some extent, both modules were converted later into Python
2.7.

4.4 Summary

This chapter started by exposing the drone used in this work, with a brief exploration
of the several drone options and the rationale behind the final decision on the chosen drone.

Then, the implementation decisions about the Drone System were exposed with an
overview of the rationale behind the implementation choices made for each entity. Finally,
a similar approach was done for the Ground System and its internal entities.
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Chapter 5

Platform Evaluation

This chapter presents and discusses the tests and results obtained from this work.
It starts with an overview about how the Ground System modules were deployed and
what hardware specifications have supported the same deployment. Then, it follows with
the conclusions obtained from the initial drone telemetry behavior analysis. It is then
followed by the stream processing mechanisms for drone telemetry implemented in the
platform, and an analysis about the performance of the platform when hosting multiple
drones in simultaneous operation. Finally, it presents an analysis about telemetry gathered
from drones operated by the platform, and multiple cases of telemetry data that can
be automatically combined by the platform to diagnose potential malfunctions or data
extrapolation.

5.1 Deployment

This section will detail the deployment choices made to develop and isolate each of the
modules contained within the Ground System. It will also document the specifications of
the hardware used to host the deployment of the platform.

Ground System Modules

Through all development phases, non-functional requirements (Chapter 3.2) enforced
each module to be self contained and as loosely coupled as possible. Also, by architectural
choice, each module interconnects to each other through the use of a publish/subscribe
design pattern, which further enhances the modularity by decoupling each module from
the underlying network and communication implementations.

From a deployment standpoint, this means that each module can be deployed into
single or multiple machines, the latter being a more complex scenario prone to eventual
challenges. On the other hand, it can add more redundancy and resilience to failures.
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Overlooking into the architecture, the most crucial and prone to failure module is the
Ground Broker, which represents the main connectivity endpoint for the entire platform.
Considering that a drone totally loses connection, such scenario has near to no effect into
the overall performance, since the event can be easily detected and a replacement drone
can be dispatched to continue the work. Such statement cannot be applied into the Ground
Broker, since latency or simply jitter on message exchanging mechanisms can have serious
negative effects to the overall performance.

The same is also true in other key elements within the Ground System, like the Drone
Manager, Telemetry Analyzer or Telemetry Stream Processor. For this reason, it is de-
cided that the platform deployment shall be performed as close as possible to a distributed
scenario. This way each node has responsibility over a few modules of the Ground System,
therefore ensuring the inner communications and decoupling work efficiently, as expected,
and leaving room to add clustering or multi-node to modules that would require more
computational power.

Ground System Hardware

The hardware that supports the Ground System can indirectly impact the platform
and become the performance limiting factor; the hardware has its inherent limits which
can only be overcome by horizontal or vertical scaling. Given the Ground System modular-
ization analyzed in the last chapter, the software is able to support both hardware scaling
options; therefore, deployment can be done either by single or multiple physical computing
nodes.

As it is imposed by current available hardware, the Ground System deployment is per-
formed in a Dell PowerEdge R710 equipped with dual Intel Xeon, dual Gigabit Ethernet,
120 GiB memory, 6 Tb Storage with RAID 6 and running VMWare ESXi 6.0. Later in the
development, an 120Gb SSD is added to the system for caching or Virtual Machine (VM)
dedicated storage.

To host the platform, a VM is configured with 8 core Central Processing Units (CPUs),
8 GiB memory, 30 + 100 Gb virtual storage (for Operating System (OS) and Containers
respectively). Because other parallel VMs are working in the server, this VM is more time
and delay sensitive, therefore higher hardware access priority was set to this VM.

The VM setup includes Ubuntu 16.04 LTS with all available updates at the time. Linux
Containers (LXC) are installed to isolate and simulate the separation between modules; a
container system is chosen instead of a virtual machine to avoid the overhead caused by
virtualization and ease to create and deploy containers “on the go” compared to virtual
machines.
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Docker is also a possible approach to use in this scenario. Docker has some advantages
like a greater number of container images “ready to go” and large community; however, it
lacks the fully working networking stack and is less flexible to add/remove applications as
needed without rebuilding the container all together, which is desirable for the platform
development phase.

Considering that LXC is chosen, both technologies are not mutually exclusive, therefore
a hybrid solution can exist. Also in a “production-like” scenario, both technologies would
be in equal grounds, although Docker would be more appealing for the amount of images
“ready-to-go” available in the community.

5.2 Drone Telemetry Behavior

Telemetry sensor data from a drone can vary both in the amount and variety of mea-
surements from internal sensors or metrics. By default dRonin has a set of configurations
about which sensors/metrics and how many measurements are to be sent as telemetry
data. These measurements are important as they give the position and state of the drone
at each given moment.

To properly understand this behavior, an analysis is conducted to determine how much
telemetry data is transmitted by each drone, therefore estimating how much effort from
the platform is required to receive the measurements. It is also important to determine
the metrics structure, how frequent they are and if they are related with other factors, like
moving switches of the remote controller. This analysis is performed using the dRonin ver-
sion “dRonin2017-07-17” which is entitled as“Neat”, and it is observed that the telemetry
data included 17 distinct UAVTalk objects with an average frequency of ∼22.8 objects per
second as shown in Figure 5.1.

The graphs in Figure 5.2 show the results of several days of combined telemetry data:
they analyze the periods between object observations. This analysis shows that most of the
objects have regular periods between measurements, like: UAVO ActitudeActual, UAVO -
Waypoint, UAVO FlightBatteryState, UAVO PositionActual; very few of them show irreg-
ular periods, like UAVO SystemStats or UAVO WatchdogStatus, as shown in Figure 5.3.

Also from this analysis, it is detected that if the Flight Controller (FC) is only powered
up through Universal Serial Bus (USB) input, the amount of measurements is lower than
when powered by the battery pack of the drone. Such behavior is related to the Global
Position System (GPS) and magnetometer external sensors which require power input from
the battery pack of the drone, and therefore do not transmit their measurements to the FC.

The tests are also extended for longer periods of time (up to 7 days). In this case, it is
not considered the battery pack of the drone, which represented a slightly less amount of
telemetry data due to the lack of external sensors. The results show that active connections
in extended periods of time (over 24 hours) can result in random events of complete lack
of measurements. As shown in Figure 5.4, these events normally last for periods of one
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Figure 5.1: Telemetry object count by second

(a) UAVO AttitudeActual object (b) UAVO Waypoint object

(c) UAVO FlightBatteryState object (d) UAVO PositionActual object

Figure 5.2: Periods between each UAVTalk object that show regular behaviour.
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(a) UAVO SystemStats object (b) UAVO WatchdogStatus object

Figure 5.3: Periods between each UAVTalk object that show irregular behaviour.

to five seconds and there are some extreme cases of up to sixteen seconds. Moreover, it
is detected that the events where telemetry is absent have three distinct patterns: first,
there is the fact of complete lack of the measurements as shown in Figure 5.4a where there
are no measurements around the 300s mark; second, there are events where measurements
seem to be buffered within the FC and then transmitted later on a bigger group as shown
in Figures 5.4c and 5.4d; finally, such events can eventually lead to a complete loss of
connectivity between the Single Board Computer (SBC) and FC as shown in Figure 5.4b.
Several attempts to track the source of this behavior proved to be inconclusive; our best
guess is a firmware glitch at the dRonin serial emulation which has known issues to be-
come unresponsive after an abrupt disconnection and requiring a full FC reboot to regain
connectivity.

During the intensive flight tests with the drone already integrated with the platform,
it was also detected a complete loss of connectivity in short flights; the stability was in-
tensively tested again and did not reveal any signs of connectivity loss in periods lower
than 24 hours. Further examination of the issue revealed that it was related to two fac-
tors: first, vibrations during flight briefly disconnected the emulated open serial channel;
second, again as metioned in last paragraph, dRonin has an open issue about glitches,
which leaves the emulated serial completely unresponsive after an abrupt disconnect. The
dRonin developers claim1 that significant efforts will be done in the next release to fix the
issue.

Finally, the UAVTalk object called ”UAVO FlightBatteryState” is one of the teleme-
trey objects transmitted in the telemetry of the drone. Within this object, there is a

1https://github.com/d-ronin/dRonin/releases/tag/Release-20170717

61



(a)
(b

)

(c)
(d

)

F
igu

re
5.4:

E
x
am

p
les

of
telem

etry
irregu

larities
over

lon
g

p
erio

d
s

of
tim

e.

62



measurement called estimatedFlightTime. This measurement is calculated within the
FC and relates to the expected amount of time the drone has left to fly safely before
depleting its battery pack. The measurements were often inaccurate either by displaying
unrealistic total flight times or negative flight times with a half capacity battery pack. This
behavior often leads the FC into triggering an internal fail-safe measurement that disables
the ability to arm the drone, and is only solvable by rebooting the FC. Several attempts
to track the origin of the issue were inconclusive, since several sensors were used, and over
time all sensors showed that same behavior. We consider this a cumulative error within
the estimation function implemented in dRonin, since other aspects of the sensor metrics,
like current voltage and tension seem accurate; this situation leads to the disable of the
internal fail-safe trigger of the FC.

5.3 Telemetry stream processing

The telemetry data that is transmitted by the drone, in most cases, is raw data from
their sensors. To obtain enriched information, the platform needs to transform the raw
data into more understandable information. This process is achieved through the Teleme-
try Stream Processor module which is implemented using the Kapacitor from InfluxData.
Using the TICKscript language, seven distinct data transformations were built and im-
plemented in Kapacitor, they are: drone detect, battery detect, battery alert, drone pds,
drone pds count, drone pds acceleration, drone pds power.

Drone detect and battery detect are simple binary processors, they detect the pres-
ence/absence of a drone and its battery, respectively. In this way, the platform has an
indirect capability to determine if a drone or battery is being connected or disconnected.
In the particular case of drone detect, it is also capable of sending notifications directly
to several communication channels, in this case, a slack channel receives a message every
time the platform detects the connection or disconnection of a drone.

The Battery alert script can detect the current battery level. With this information,
it determines if a given drone is below or above the safe-to-fly battery level. In the case a
given drone is detected with a battery below the safe-to-fly level, it sends a notification to
the drone and to a slack channel. In the drone, the Drone Controller disables the possibility
to arm the drone as a safety feature.

Drone pds and drone pds count are counters: the drone pds counts the amount of
telemetry messages a given drone has sent in any given second; the drone pds count counts
the amount of drones that sent telemetry messages in any given second. This information
is useful for platform debugging purposes and to ensure that the platform is working as
expected.

Drone pds acceleration and drone pds power are raw telemetry data transform-
ers: the first takes the accelerometer 3-axis data and computes the total acceleration value;
the second takes the battery current and tension to compute the power consumption. Both
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calculate these values for each given drone and metric message received. The information
computed is afterwards stored in the time series database and displayed in the diagnostics
dashboard, like the representation in Figure 5.5.

Figure 5.5: Example of telemetry data conversion with the Telemetry Stream Processor
module.

5.4 Platform Performance

To ensure that the platform performs well with multiple simultaneous active drones,
an emulator that mimics the behavior previously mentioned in this chapter has been de-
veloped.

With data similar to the one used for the analysis of the telemetry behavior of the
drone, the emulator uses a previously generated file and mimics the rules contained within
the file as accurate as a real drone; the only noticeable difference is that the values in the
telemetry messages are always the same; however, it still accurately mimics the load on
the platform in an end-to-end network load and throughput.

Networking delays are a fact that our platform has to deal with. Naturally, networking
delays are not constant and depend on multiple factors (e.g., number of networks it has
to go through, wireless or physical links, amount of data being transmitted). Although
these networking delays change, they normally keep stable values under normal usage
circumstances.

To abstract from networking delays and have accurate timings about clock synchroniza-
tion, the platform experiments are conducted within the virtual machine used to deploy
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the Ground System. Each drone is emulated using a container instance that is running the
Drone Broker and the emulation application; there is also a container that is responsible
to spawn each drone emulator application within each container. These experiments are
performed with powers of two numbers for the amount of drones in each trial, and lasted
for one hour periods. Notice that these results in a real-life scenario would be higher due
to the networking delays; even in extreme cases (over 10 seconds) of delay, the platform
would still work and process the telemetry from the drone, but with the consequence of the
inherent delay. As future work this should be addressed with a module which can detect
the delays, and if needed, safely land the drone.

The results in Figure 5.6 show that the platform performs as expected with up to
64 emulated drones, in which the communications keep stable for the entire length of
the experimentation period, and delivering a median and weighted average of 1 and 1.22
milliseconds of delay, respectively. Moreover, the results in Figure 5.7 show that telemetry
messages are received at a stable rate of ∼22.8 messages per second per drone.

Figure 5.6: Median and weighted average delay values for up to 64 drones and 1 hour
emulation.

To validate calculations made towards the median and weighted average, further anal-
ysis is performed into message count by delay and cumulative distribution probability.
The results shown in Figure 5.8 validate the previous results and clearly demonstrate that
more than 95% of the messages were received within 5 milliseconds, and a vast majority
of messages were received with 1 millisecond of delay, representing ∼4.8 million messages
count; the highest delay value was 148 milliseconds.
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Figure 5.7: Average message count by drone for up to 64 drones and 1 hour emulation

Figure 5.8: Message count by delay and cumulative distribution of messages in relation to
delay with 64 drones.
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5.5 Real-life drone deployment

To evaluate the platform in a real world environment, several experiments were con-
ducted to test the entire platform: some aimed to perform simple tasks like make the
drone climb 1 meter, arm, disarm and so on; others aimed to just gather telemetry data
to further understand the behavior of the drone in-flight.

The results showed that the direct control abstraction and decoupling worked as ex-
pected. During the tests the platform was able to properly command the drone through
multiple instances of the Control Dashboard as well as multiple clients controlling the
drone, ignoring priority and concurrency issues to concurrent clients. Tests in this field
used simultaneously the dashboards presented in Figures 4.14 and 4.15, in terms of multi-
ple controlling devices, multiple mobile phones and laptops.

Near to real time telemetry was also shown to work properly using the Grafana dash-
board which was presented in Figure 4.13. The only downside of this solution is the 5
seconds delay resultant from the maximum allowed refresh rate of 5 seconds inherent to
the Grafana implementation.

The integration of Telemetry modules and Grafana also allowed the exploration of
telemetry data from the drones while filtering it and integrating multiple sensors. To track
its current relative position, dRonin uses a three-dimensional reference frame and a vec-
tor; its axis are called North, East and Down because they are referenced to the magnetic
north, and east which represents the perpendicular axis in the horizontal plane oriented
to the magnetic east; down is the vertical axis of the frame, which is positive towards the
ground, therefore pointing down.

Atmospheric pressure decreases in relation to altitude; therefore, it can be combined
with the “down” axis of the drone. Figure 5.9 is a representation of a 10 minute flight
where it is analyzed that atmospheric pressure and “down” are indeed related and, as
expected, dRonin uses pressure values to obtain a the “down” value.

Figure 5.9: Atmospheric pressure vs “Down” from in-flight telemetry.

In a further more complex combination, a test focused in trying to understand if it is

67



possible to extrapolate what is the drone doing from its current power consumption. Notice
that power consumption is not directly obtainable from the telemetry data; therefore the
Telemetry Stream Processor needs to be actively computing the current power consumption
values.

The experiment consisted in the drone climbing and descending in intervals while main-
tain its current position (hovering): a total of 5 climbs and descents of ∼15 meters were
performed in the test. The results in Figure 5.10 show that it is possible to extrapolate the
current drone behavior from the actual power consumption: in idle it consumes very little
current, 13 Watts; also climb and descent is distinguishable from each other, denoted in
the figure by two horizontal dashed lines (it is shown that climb consumes ∼600 Watts
and descent ∼500 Watts, which is slightly less consumption than while hovering).

Figure 5.10: Power consumption versus drone movement analysis.

Other similar tests have shown that differences between hovering and moving are not
so different in terms of power consumption, and that when climb/descent rate is slow, it
is also not differentiated.

5.6 Summary

The resulting telemetry behaviors analyzed demonstrated how telemetry data flowed
out of the drone. A comparison was made with the data output from the platform and the
data obtained directly from the drone, in order to understand if there was any behavior
change between the drone and the platform output. Such analysis concluded that the
behavior was kept the same, even with high load of up to 64 emulated drones concurrently
transmitting telemetry data. Finally, this chapter performed an analysis of several poten-
tial key telemetry data sources that can be used to detect events, malfunctions or data
extrapolation for safe autonomous operation and diagnosis of drones.
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Chapter 6

Conclusions and Future Work

This thesis aimed to provide an abstraction and decoupling platform to control Un-
manned Aerial Vehicles (UAVs), which can improve integration and extension capabilities
of current state of the art drones. The development process of the platform addressed the
issues about: (1) how to access the drone; (2) how can the platform interact with it and
what sort of behavior does the interactions with the drone have; (3) develop an abstrac-
tion and decoupling solution to allow the platform to interact with the drone; (4) develop
modules to extend or improve the drone functionalities through the platform; and finally,
(5) develop proof-of-concept applications that take advantage of the functionalities of the
platform. The entire development process of the platform was achieved with the following
characteristics:

• Access to the drone was done via Serial Communications emulated through Universal
Serial Bus (USB) cable.

• Interactions were achieved through the usage of a Python Application Programming
Interface (API) that used UAVTalk objects to communicate with the drone. The
behavior of this API was proven to be stable enough for the platform to safely
interact with the drone, but has known issues that are derived from a firmware glitch
with the chosen Flight Controller (FC).

• Abstraction was achieved by using an adapter design pattern module called Drone
Controller which translated platform commands into UAVTalk Objects and vice
versa. Decoupling was achieved by using a modular development approach to the
platform, and the extensive usage of Brokers to abstract the underlying communica-
tion mechanisms and routing.

• Several modules were developed to extend and improve the drone capabilities, like:
the Drone Controller, Telemetry Stream Processor, and Telemetry Analyzer.

• Two web applications were developed to take advantage of the platform capabilities:
the Control Dashboards that allows to control any drone connected to the platform,
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and the Diagnostics Dashboard that allows for live telemetry observation of all con-
nected drones, as well as serve as a remote Flight Data Recorder (FDR) black box
of the current aircraft.

Furthermore, the proposed platform in this thesis was also tested in its capability to
handle multiple drones simultaneously through drone emulations, which revealed that it
is capable of handling up to 64 concurrent drones without significant deterioration to
the normal communication delays and throughput. With the use of the proof-of-concept
applications, we are also confident that the platform is a value added tool to further develop
complex use cases for aerial drones.

6.1 Future Work

Considering that the work developed in this thesis comprises the first steps for a com-
pletely autonomous flying drones platform, there are several directions for the future re-
search that are presented in this section. In the field of the work done in this thesis,
there are some elements that should be improved, for instance: the complete removal of
the Kapacitor implementations in the Telemetry Analyzer and Telemetry Stream Proces-
sor modules; the way Kapacitor was developed by InfluxData for the community version
(Kapacitor simply cannot withstand the volume of data that the platform is capable of
handling and therefore representing a bottleneck for the entire platform); the Dashboards
and Drone Manager have many features that can now be developed on top of the current
work; finally, the Mapper and Fail-safe modules were discussed as architectural modules
for the platform, but were never developed because they were not required to develop the
foundations of the platform.

Furthermore, and considering the extension of the platform and drone capabilities,
several fields have an interesting room to considerably improve the architecture. Some of
such fields are the following:

Multi-drone functionality The platform is already capable of handling multiple drones
in the sense of control and telemetry, but further development efforts should ex-
tend these capabilities to drone cooperation and drone flight formations. The first
addresses scenarios where drones can cooperate with each other to achieve more
complex goals that would be more difficult or even impossible with single drones; the
second addresses the difficulties of coordinating several simultaneous drones in close
formations (e.g.: convoy, line or delta formations).

Drone-to-Drone communications There is room for relieving the Gound System of
unnecessary communications like the ones between drones: if two drones are operat-
ing near each other, it is relevant that both have the location of each other to avoid
collisions; in the context of cooperative work, it is relevant that both have shared
information about the work that each of them is performing. Currently, such sce-
narios would require the Ground System to work as intermediary relay to support
Drone-to-Drone communications.
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Telemetry Analyzer The current implementation of the module is a simplistic proof-of-
concept application. There is a large room to further expand this module in terms
of reliability of autonomous drone operations without human supervision. Concepts
like Machine Learning or Deep Learning are some of the possible forms that can
definitely increase the capabilities of the Telemetry Analyzer module.

Drone Manager Integrations As explained in this thesis, this module is the integration
point for other modules or applications to interact with drones. Further development
of this module is already suggested, but this module should also have a special recom-
mendation. For increased functionality, high level commands like area patrolling or
mapping can benefit the overall capabilities of the platform; note that these are not
simply high-level commands to be issued only to the drone(s). In the first case it is a
complex routine that can be scheduled or triggered by external events; the second is a
complex mechanism that has to autonomously compute a viable path that covers the
pretended area, flies the drone, captures the necessary data, delegates such data to
a distinct module/application, waits for the data process to finish, and then returns
the requested data to the user.

Fail-safe System(s) In order to go beyond the detection of issues on the drone (mal-
function or failures), the platform should be able to actively try to mitigate the
consequences of such events. This requires the platform to be rigged with fail-safe
capabilities and equipment like parachutes that can be deployed in the case of crit-
ical malfunctions, warning buzzers that can warn nearby persons to the presence of
the drone, and safe to land areas where drones can safely land even in the case of
malfunctions.

Latency Module The platform is, to some extent, delay sensitive. These delays can
exist specially over the two edge entities (the user and the drone) because of their
mobility, since it is expected that they may end up in a low network coverage area and
that would result in aggressive delays. For the case of aggressive delays from the user
connection, the issue is not that relevant, as depending of the task at hand it may not
require constant user interaction and may only disrupt the telemetry data reaching
the user. On the other hand, an aggressive delay on the drone connection would
become potentially catastrophic, since the platform would lose the desired situation
awareness from the drone. For these events, a module should constantly monitor the
platform for sources of networking delay, with special attention to the connection
between the drone and the platform, and in the case of abnormal networking delays,
it should abort the mission and safely land the drone.
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