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palavras-chave 

 

Tratamento de águas residuais industriais, digestão anaeróbia, metano, 

geopolímeros, pH, soro de leite.  

resumo 

 

 

Num processo anaeróbio, o pH é um dos parâmetros que mais 
influencia o funcionamento dos sistemas, afetando tanto as reações 
bioquímicas como a atividade microbiológica, devido à sensibilidade 
dos microorganismos a variações de pH. Assim, é essencial o controlo 
do pH para que haja estabilidade de todo o processo anaeróbio, 
especificamente quando se tratam substratos facilmente 
biodegradáveis.  
Este trabalho teve como principal objetivo estudar a utilização, a longo 
prazo, de geopolímeros para o controlo de pH em processos 
anaeróbios para produção de metano, tratando substratos facilmente 
acidificáveis. Foram usados reatores descontínuos anaeróbios com 1 L 
de volume de trabalho e soro de leite como substrato, e efetuados dois 
estudos. No primeiro estudo, e de modo a selecionar a concentração e 
tipo de geopolímeros que permitiam a maior produção de metano, 
utilizaram-se três reatores com adição de geopolímeros com diferente 
porosidade e em diferentes concentrações e um reator com adição de 
alcalinidade química (referência). O segundo estudo, com o objetivo de 
avaliar o comportamento e a reprodutibilidade da ação dos 
geopolímeros a longo prazo, foi dividido em quatro fases, com adições 
sucessivas de substrato. Para tal utilizou-se um reator como referência 
e dois reatores com as condições selecionadas no primeiro estudo do 
trabalho (tipo e concentração de geopolímeros). 
No primeiro estudo observou-se que o reator em que se adicionou o 
tipo de geopolímeros mais poroso na concentração de 16 g/L foi o que 
produziu maior volume de metano.  
Em ambos os estudos, e de um modo geral, os reatores apresentaram 
um comportamento semelhante em termos de evolução de pH e CQO, 
observando-se um aumento nos valores de CQO no período inicial 
(fase 1) nos reatores com adição de geopolímeros, o qual se deve à 
lixiviação dos seus componentes orgânicos. Após as várias adições 
sucessivas de substrato, a diminuição mais rápida dos valores de CQO 
demonstrou a capacidade de remoção de matéria orgânica e de 
recuperação do sistema. O rápido consumo dos ácidos orgânicos 
voláteis sugeriu uma boa adaptação da cultura microbiana para a 
produção de metano. 
Os resultados obtidos confirmam que é possível controlar o pH para 
produção de metano em processos anaeróbios, utilizando geopolímeros 
à base de cinzas volantes. Assim, este trabalho pode trazer novas 
perspetivas para os atuais problemas relacionados quer com o controlo 
de pH em processos de digestão anaeróbia, quer com a deposição de 
cinzas volantes em aterro e aos respectivos problemas ambientais 
associados a este tipo de resíduos. 
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abstract 

 

In an anaerobic process, pH is one of the parameters which greatly 
influence the performance of these systems, affecting both chemical 
reactions and microbial activity, due to the microorganisms sensitivity to 
pH variations. Hence, it is essential pH control to the entire anaerobic 
process stability, especially when dealing with easily biodegradable 
substrates. 
The present work had as main objective the study of the long-term 
utilization of geopolymers for pH control in anaerobic processes for 
methane production, treating easily acidifiable substrates. It was used 
anaerobic batch reactors with 1 L of working volume and cheese whey 
as substrate, and performed two studies. In the first study, in order to 
select the concentration and type of geopolymers that promote a higher 
methane volume production, it were used three reactors with the 
addition of geopolymers with different porosity and concentrations and 
one reactor with the addition of chemical alkalinity (reference). The 
second study, in order to evaluate the long-term geopolymers 
performance and reproducibility, it was divided in four phases, with 
successive additions of substrate. So, it was used one reactor as 
reference and two reactors with the selected conditions in the first study 
(type and concentration of the geopolymers). 
In the first study, it was observed that the reactor with the addition of 16 
g/L of geopolymers with higher porosity produced the highest methane 
volume.  
In both studies, and in general, the reactors presented a similar pH and 
COD performance, with an increase in COD values in the start-up 
period (phase 1) in the reactors with addition of geopolymers, due to the 
lixiviation of organic compounds from the spheres. After the various 
successive substrate additions, the fastest decrease in the COD values 
showed the capacity of organic matter removal and recovery of the 
system. The rapid VFA consume suggested a good adaptation of the 
microbial culture methane production.  
The results herein obtained confirm that the fly-ash containing 
geopolymers allow the control of pH for methane production in 
anaerobic processes. In light of this, this work could bring new insights 
to the current problems either related with pH control in AD process, or 
landfill disposal of fly ash and the associated environmental problems of 
this type of residues.  
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Chapter 1. Contextualization 

 

Anaerobic digestion (AD) is a process carried out by microorganisms that degrade 

organic materials under anaerobic conditions, with the formation of biogas, a mixture of 

methane (CH4) and carbon dioxide (CO2) (Chen et al., 2008). According to Appels and 

colleagues, biogas is one of the most future dominant renewable energy resources, 

considering that it can provide a continuous power generation (Appels et al., 2011). 

Currently, the global energy demand is growing rapidly, and about 88 % of this 

demand is insured by fossil fuels. Along with the rapid increase of the greenhouse gases 

(GHG) concentration in the atmosphere and energy security concerns, since most of the 

known conventional oil and gas reserves are concentrated in politically unstable regions 

(Weiland, 2010), there is a growing interest in alternative energy sources like biogas. 

Biogas can be used as replacement of fossil fuels in power and heat production, and it 

can also be used as gaseous vehicle fuel (Weiland, 2010). In addition, it can be an 

alternative to minimize pollution (Jha and Schmidt, 2017), considering that the 

industrialization processes generate large amount of effluents, with high organic content 

(Rajeshwari et al., 2000). 

The efficiency of AD process is highly dependent on substrate characteristics, reactor 

configuration and various operational parameters (Montañés et al., 2014). Among the 

various process parameters with influence in AD, the most relevant are the concentration 

of volatile fatty acids (VFA), temperature, carbon to nitrogen ratio, ammonia concentration, 

organic loading rate, retention time and pH (Neshat et al., 2017).  

The pH value is one parameter which greatly influence the digestion process (Hagos 

et al., 2017). It affects both chemical reactions and microbial activity (Montañés et al., 

2014), due to the microorganisms sensitivity to pH variations (Braguglia et al., 2017). 

Hence, pH regulation is essential to the process stability and it can be accomplished by 
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manual or automatic methods. Currently, the most used method to control pH is the 

addition of chemical compounds, which may have some side effects that can lead to the 

process inhibition (Neshat et al., 2017). A recent approach is the use of porous biomass 

fly ash-containing geopolymers, which have the ability to promote pH control over time 

(Novais et al., 2016b). The production of this type of geopolymers contributes also to the 

material valorization of fly ash, thus decreasing the need of its disposal in landfill and 

associated environmental problems (Novais et al., 2018). 

Along these lines, the dissertation main objective was the study of the long-term 

utilization of geopolymers for pH control in anaerobic reactors for methane production, 

treating easily biodegradable substrates. Therefore, the experimental work was divided in 

two studies: the first one was the optimization of the concentration and type of 

geopolymers to be used, and the second study aimed to evaluate the long-term 

geopolymers performance and reproducibility in anaerobic systems. 
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Chapter 2. State of art 

2.1. Introduction 

In the energy infrastructures of today the use of fossil fuels is considered the largest 

source of anthropogenic emissions of carbon dioxide, which is considered the main cause 

of global warming and climate change (Deepanraj et al., 2017). Thus, due to the finite 

nature of fossil fuels and their negative environmental effects, there has been a growing 

interest in alternative energy sources like the renewable ones (Kumanowska et al., 2017). 

Examples of renewable energy resources are solar, wind, geothermal, hydropower 

and biofuels such as biogas, biodiesel, and bio-ethanol (Deepanraj et al., 2017). Biogas is 

mostly composed of carbon dioxide and methane, which is also one of the greenhouse 

gases but it could be captured and valued in renewable energy (André et al., 2017). This 

gas can be produced from a wide range of solid or liquid wastes through anaerobic 

digestion processes (Deepanraj et al., 2017) and is essentially used for thermal and 

electrical renewable energy production by combustion in combined heat and power plants 

(Gaida et al., 2017). Alternatively it can be upgraded to natural gas purity and be used  in 

the production of electricity, heat and steam in household and industry, injected into the 

natural gas grid or used as a vehicular fuel (Ullah Khan et al., 2017). 

Anaerobic digestion is a biological process in which a group of microorganisms 

biodegrade organic matter (substrate) in the absence of oxygen (O2) (Montañés et al., 

2014). This is not a newly emerged treatment and Alessandro Volta, who studied the 

relationship between organic loading and gas production, conducted the first study in 

1776. The process has long been used as an energy providing method, especially in 

Asian countries such as China and India (Neshat et al., 2017). 

The EU’s renewable energy directive sets that by 2020 20% of the final energy 

consumption is from renewable sources (Kumanowska et al., 2017). Therefore, anaerobic 
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digestion is an important method to achieve this objective. The number of anaerobic 

digestion systems had increased rapidly in the last years especially in Europe (Lora 

Grando et al., 2017). This is the result of financial incentives for renewable energy 

facilities, governmental policies on climate change and an increasing energy need 

(Fagbohungbe et al., 2017). According to Ullah Khan and co-workers, it is estimated that 

biogas usage in the world will be doubled in the next years, growing from 14.5 gigawatts 

(GW) in 2012 to 29.5 GW in 2022 (Ullah Khan et al., 2017). 

 

2.2. Anaerobic Digestion 

Anaerobic digestion is a biological process under anaerobic conditions (absence of 

oxygen) in which a microbial consortium breaks down complex biodegradable organic 

matter into different end products as methane (approximately 50-80%), carbon dioxide 

(approximately 30-50%) (Lora Grando et al., 2017) and traces of other gases such as 

hydrogen and nitrogen (Kamali et al., 2016). 

By contrast with other bioenergy technologies, AD can be applied to a high diversity 

of substrate compositions, even those with high moisture content and impurities (Appels 

et al., 2011; Xu et al., 2017), as long as they contain carbohydrates, proteins, fats, 

cellulose, and hemicelluloses as main components (Weiland, 2010). Consequentially, 

different types of microorganisms are involved in the degradation process (Lin et al., 

2017). 

The nature of the organic residue can be diversified and grouped in different 

categories: sewage sludge, animal manures, food industry wastes, energy crops and 

harvesting residues, organic fraction of municipal solid waste (Romero-Guiza et al., 2016) 

and wastewater sludge (Yang et al., 2016). According to Lora Grando and co-workers, the 

distribution of potential sources of biogas at world level are 75% Ww in agricultural crops, 

17% Ww in municipal and industrial organic waste and 8% Ww in sewage wastewater 

treatment facilities (Lora Grando et al., 2017).  

Wastewater plants involves the biological treatment of solid materials and 

transformation of dissolved and suspended organic matter to a large volume of sludge 

with high organic content and a host of pathogenic vectors (Yang et al., 2016). The sludge 

disposal is a potential source of soil and water pollution and, according to Neumann and 

colleagues, its management can represent more than 50% of the total cost of wastewater 

treatment (Neumann et al., 2016). Thus, wastewater sludge must be treated or stabilized 
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prior to environmental disposal and AD is the most widely used technology for the 

treatment (Yang et al., 2016).  

Anaerobic digesters can be operated at different modes, namely continuous, semi-

continuous or batch. In batch systems, a reactor is loaded with feed and will run until 

methane production stops. This type of reactors benefit from technical simplicity, low 

operating costs, and short digestion times (Braguglia et al., 2017). The anaerobic 

biological system can have one or two separated stages, where in one stage the 

microorganisms are kept together in a balance and with two stages there is a physical 

separation between the acidogenic and methanogenic phases  (De Gioannis et al., 2017). 

Additionally, the reactors can be continuously stirred, using an intermittent stirring mode, 

or not be stirred at all. In an intermittent mode, the stirrer is turned on and off according to 

a preset time interval that can range from a few seconds of stirring per day to an almost 

continuous stirred mode (Lindmark et al., 2014). 

In addition to methane production, AD has several advantages over other 

conventional techniques, such as the reduction of the produced sludge volume by 30–

70% comparing with aerobic processes, design simplicity, non-sophisticated equipment 

requirement, cost-effectiveness in terms of low capital and operating cost, applicability in 

different scales and a high rate of pathogen destruction (Kamali and Khodaparast, 2015). 

However, the process efficiency can be influenced by a high number of factors, such as 

environmental conditions (e.g., pH, C:N ratio and retention time), by-products (e.g., 

volatile fatty acids and ammonia), physical and chemical properties of the substrate (e.g., 

nutrient content) (Mao et al., 2017) and reactor configuration (Montañés et al., 2014). 

Hence, the main difficulties of the process are the operational instability, the quality of the 

digested product and the substrates that can generate metabolic intermediates that are 

inhibitory of the microbial activity (Fagbohungbe et al., 2017).  

The anaerobic decomposition process of organic matter can be divided into four 

steps: hydrolysis, acidogenesis, acetogenesis and methanogenesis; in Figure 1 is 

presented a simplified scheme of the process. There are two main groups of 

microorganisms involved in the AD: Bacteria (acidogens and acetogens) and Archaea 

(methanogens). Bacteria decompose complex substrates into volatile fatty acids (VFA), 

CO2 and H2, while Archaea are responsible for methane production (Ren et al., 2017). 

These two groups differ in terms of physiology, nutritional needs, growth rates, and 

sensitivity to environmental conditions (Fagbohungbe et al., 2017; Jha and Schmidt, 

2017). The primary cause of reactor instability occurs when the balance between these 
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two groups is not maintained (Chen et al., 2008) and, consequently, microorganisms can 

be indicators of the AD process stability or failure (P. Wang et al., 2017). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.1. Hydrolysis 

Hydrolysis is the first step of the AD process, where the complex organic matter 

(polymers) are decomposed into smaller units (mono and oligomers) (Matheri et al., 

2017). During this phase, organic matter is broken into easily dissolved monomers, 

including the transformation from carbohydrates, protein and fat to sugar, amino acid and 

long-chain fatty acid, respectively (Ren et al., 2017), by the action of a diverse community 

of hydrolytic bacteria (Braguglia et al., 2017) and their extracellular enzymes; as displayed 

Figure 1: Schematic representation of the anaerobic digestion process, adapted from 

(Almeida Streitwieser, 2017; Zhang et al., 2014). 
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in Figure 1. The decomposition of proteins generally takes place faster than the 

transformation of carbohydrates (Adekunle and Okolie, 2015). 

The organic matter composition in the substrates has a strong impact on AD 

performances, which shows the existence of a relationship between the quantity of 

methane produced and the organic matter used, not only the biodegradable fraction but 

also the non-biodegradable fraction (Nielfa et al., 2015). However, the non-biodegradable 

compounds are resistant to biological degradation (Bouallagui et al., 2005). 

Hydrolysis is considered the rate limiting step for complex, hard biodegradable 

organic substrates, due to the formation of toxic by-products or non-desirable volatile fatty 

acids (Ren et al., 2017) and can be accelerated by pre-treating the substrate before 

digestion (Braguglia et al., 2017). 

 

2.2.2. Acidogenesis 

The second step of the AD process is acidogenesis, where sugars and other 

monomeric organic products obtained from hydrolysis are converted into volatile fatty 

acids, predominantly acetic, propionic, formic, butyric and lactic (Matheri et al., 2017), 

alcohols, hydrogen and carbon dioxide (Jha and Schmidt, 2017). VFA are monocarboxylic 

aliphatic acids, produced from a series of complex biochemistry reactions by the action of 

acidogenic and acetogenic bacteria (Fang et al., 2017; Lee et al., 2017). 

The by-products obtained differ with the types of bacteria present as well as the 

environmental conditions (Braguglia et al., 2017). Carbon dioxide, hydrogen and acetic 

acid skip the third stage, and are converted directly by the methanogenic bacteria in the 

final stage to produce biogas, composed mainly by methane and carbon dioxide (Matheri 

et al., 2017). 

This is the fastest phase in the AD process, therefore if the feedstock does not have 

suitable buffering capacity and/or the organic loading rate is too high, occurs a rapid 

accumulation of VFA. This accumulation may result in pH drop that will inhibit the 

methane production in the last step (Braguglia et al., 2017). Hence, this inhibition results 

in  lower biogas output and even failure of the system (D. Wang et al., 2017). 

 

2.2.3. Acetogenesis 

As represented in Figure 1, in the third phase of the anaerobic digestion process, the 

volatile fatty acids produced in acidogenesis, are converted into acetic acid, hydrogen 
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(Jha and Schmidt, 2017; Ren et al., 2017) and carbon dioxide (Zhang et al., 2014). The 

hydrogen and carbon dioxide are reduced to acetic acid by homoacetogenic 

microorganisms (Braguglia et al., 2017). The by-products are used in the last step of the 

process by methanogens for methane production (Jha and Schmidt, 2017; Zhang et al., 

2014). 

The acetogenic bacteria can only survive at a very low hydrogen concentration, so if 

occurs an excessive production of hydrogen from the acidogenesis step, these bacteria 

can be inhibited (Braguglia et al., 2017). 

 

2.2.4. Methanogenesis 

The increased attention towards anaerobic digestion is due to the generation of 

energy (Jha and Schmidt, 2017), which happens in the last phase of the biological 

process, called methanogenesis. The methanogens are able to convert  the products of 

acetogenesis (Jha and Schmidt, 2017) in to methane under strict anaerobic conditions 

(Braguglia et al., 2017).  

Methanogens are divided into two main groups based on their substrate conversion 

capabilities: acetoclastic methanogens and hydrogenotrophic methanogens (Akindele and 

Sartaj, 2017; Montañés et al., 2014). Acetoclastic methanogens convert acetate into 

methane and carbon dioxide and are responsible for a fraction of about 0.7 of the 

methane produced. The hydrogenotrophic methanogens consume hydrogen and carbon 

dioxide to produce methane and are responsible for maintaining the partial pressure of H2 

at a very low level (<10 Pa), which is a needed condition for the process stability (Akindele 

and Sartaj, 2017; Montañés et al., 2014). 

This is considered the limiting step in the production of biogas since methanogens 

grow slowly, resulting in a relatively small population (Montañés et al., 2014). According to 

Almeida Streitwieser, under mesophilic conditions (temperatures between 30ºC and 40ºC 

(P. Wang et al., 2017)), the methanogenesis is the slowest step and the acetoclastic 

methanogens are the main producers of methane (Almeida Streitwieser, 2017). 

 

2.3. Anaerobic Digestion Process Parameters 

The anaerobic digestion process occurs through the interactions of many biotic 

(microbial community) and abiotic (reactor parameters) factors. The understanding of 
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process performance and microbial community during AD is necessary to determine the 

optimum operating conditions (Watanabe et al., 2017). The bioreactor parameters with 

main influence on the process performance and stability are the concentration of VFA, 

temperature, carbon to nitrogen ratio, ammonia concentration, organic loading rate, 

retention time and pH (Neshat et al., 2017). 

Considering the process instability at achieving optimum biogas production (Jin et al., 

2016), precise control of these parameters is crucial, as any deviation from their optimum 

levels can cease the whole process (Neshat et al., 2017).  

 

2.3.1. Volatile Fatty Acids 

VFA are short-chain fatty acids that contain from 2 to 5 carbon atoms (Jankowska et 

al., 2017). A high number of soluble organic acids are included in VFA, although the major 

components are acetic, propionic, butyric, and valeric acids (Khan et al., 2016). Among 

this four acids, acetic and propionic play a dominant role in biogas production (Zhang et 

al., 2014). Acetic acid is usually present in higher concentrations than other fatty acids. 

However propionic and butyric acids have a higher inhibitory effect to methanogens 

(Weiland, 2010) and propionic acid degradation rate is the lowest among VFA (Neshat et 

al., 2017). According to Montañés and co-workers, acetic acid is the least toxic fatty acid, 

whereas an increase in propionic acid concentration is associated with a system failure 

(Montañés et al., 2014). 

Besides being intermediate compounds and indicators of the process state, VFA are 

also essential buffering agents in the AD system (Shi et al., 2017). As potentially 

renewable carbon sources, they have a wide range of applications, such as biological 

removal of nitrogen and phosphorous (Jankowska et al., 2017; Ma et al., 2016), 

production of biopolymers (Jankowska et al., 2017), production of biodiesel, generation of 

electricity through microbial fuel cells and synthesis of complex polymers (M. Zhou et al., 

2017). In addition to applications of mixed VFA, individual components showed a higher 

application potential, for example, butyric acid can be used as a building block for 

pharmaceuticals. Presently, VFA and their derivatives are widely used in food, textile, 

pharmaceutical, leather and plastics industries (M. Zhou et al., 2017).  

Currently, volatile fatty acids are mostly obtained during chemical routes from non-

renewable petrochemicals; however due to intensive exploitation of oil resources and wide 

range of application, the VFA production from biological routes has gained more 
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importance (Jankowska et al., 2017). The anaerobic digestion process has been primarily 

applied to produce methane containing biogas. However, according to Khan and co-

workers, it can also be designed to produce volatile fatty acids and biohydrogen, 

separately or simultaneously with biogas production (Khan et al., 2016). Hydrogen is 

known as an ideal, clean and renewable energy, due to only water is generated after its 

oxidative combustion (M. Zhou et al., 2017) and the energy density per mass is 2,5 times 

compared to fossil fuels (Khan et al., 2016). 

Comparing with methane, the added value of volatile fatty acids is higher and their 

storage and transportation is easier and safer (M. Zhou et al., 2017). According to 

Jankowska and co-workers, the acetic acid has the highest market size, next to propionic 

acid, and the smallest market is for butyric and caproic acids. On the other hand, caproic 

and butyric acid have the highest market prices, followed by lactic acid and propionic acid; 

the lowest price is for acetic acid (Jankowska et al., 2017). 

The operational stability of AD process is highly dependent on the accumulation of 

VFA (García-Sandoval et al., 2016), the products of acidogenesis and acetogenesis (M. 

Zhou et al., 2017). As prior mentioned, when methanogens cannot utilize hydrogen and 

VFA as quickly as they are produced by acidogens and acetogens, it occurs an 

accumulation of VFA (Shi et al., 2017). This accumulation could cause an acidification of 

the system (Cavinato et al., 2017), which will leads to a pH drop to a level below 6 

(Neshat et al., 2017) resulting in the reduction in biogas yields, and even in the failure of 

the digester (Montañés et al., 2014).  

According to Neshat and co-workers, in a stable anaerobic digester, the concentration 

of VFA is about 50–250 mg/L, while a concentration of about 1500–2000 mg/L can 

possibly inhibit the methane formation (Neshat et al., 2017). Hence, VFA have been 

widely used as sensitive and reliable indicators to control and optimize the process, 

considering that they reflect metabolic imbalance when operating parameters suddenly 

change or inhibition occur (Jin et al., 2016). The best strategy for stopping the acidification 

of the system due to the increase of VFA concentration is to cease the feeding to the 

system and let the acetoclastic microorganisms grow and increase the pH level by 

consuming the VFA (Neshat et al., 2017). 

The amount of organic content being hydrolyzed is the primary factor that is directly 

responsible for the quantity of VFA produced (Khan et al., 2016). The most common way 

to produce these intermediate products is throughout the degradation of protein and 

polysaccharide, since they are the dominant macromolecular organic matters (Zhang et 

al., 2017). To increase the production of VFA, some strategies can be used, such as 
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improving hydrolysis rate to produce more soluble substrates for further fermentation, 

promoting acidogenesis and removing the inhibiting factors (M. Zhou et al., 2017). 

There are several methods for monitoring the VFA content in a liquid sample, such as 

titration method, gas chromatography (GC), high performance liquid chromatography and 

mid-infrared spectroscopy. However, as described by Jin and co-workers, these methods 

are time consuming, inaccurate, expensive and typically tested manually (Jin et al., 2017). 

According to Lee and co-workers, CG analysis has a simple procedure, small sample 

requirement, and relatively low detection limit (Lee et al., 2017). 

 

2.3.2. Temperature 

Temperature, one of the most essential parameters in AD process (Nielsen et al., 

2017), has a direct influence on the thermodynamic equilibrium of the biochemical 

reactions of the process and also controls the activities, growth rate and diversity of the 

microorganisms (Khan et al., 2016). Considering that the growth of microorganisms and 

the activity of the enzymes is only effective at certain temperatures, this parameter has an 

important influence on the hydrogen partial pressure of the system, and hence the 

metabolic pathway of the bacteria could be affected (Liu and Lv, 2016). Temperature not 

only influences the activity of enzymes and co-enzymes, but also the methane production 

and digestate (effluent) quality (Zhang et al., 2014). 

The metabolic activity of microorganisms is only possible in certain temperature 

ranges and, in addition, a maximum activity is obtained within this interval for pure 

species. However, AD is carried out by a complex mixed population that have specific 

temperature ranges (Fernández-Rodríguez et al., 2013). In hydrolysis and acidogenesis 

phases, temperature variations can affect hydrolytic bacteria, which are responsible for 

the degradation of complex materials. Also, acidogenic bacteria cannot tolerate high 

temperature changes and are active in a specific temperature range; deviation from 

optimum temperature can cause acidification due to the accumulation of VFA (Neshat et 

al., 2017). In addition, acetogenesis and methanogenesis can only be performed by 

certain specialized microorganisms (acetogenic and methanogenic), which are very 

sensitive towards temperature change (Rajeshwari et al., 2000). Any temperature 

fluctuation can seriously affect the whole process (Neshat et al., 2017). As an example, 

methanogenic bacteria cannot tolerate temperature fluctuations over 1°C/day (Neshat et 

al., 2017). 
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Methane is formed over a wide range of temperatures, from low to high temperatures, 

though not over 65 °C. The different temperature ranges for methane formation can be 

defined by the microbial activity (Matheri et al., 2017), and are presented in Table 1. 

 

Table 1: Conditions for anaerobic microorganisms growth, adapted from (P. Wang et al., 2017; Zhang et al., 

2014). 

 

 

 

 

 

An increase in process temperature causes a higher microbiological activity and 

metabolism, hence, the substrate consumption rate is higher (Fernández-Rodríguez et al., 

2013; Liu and Lv, 2016), which will result in an increment in AD performance (Zhang et al., 

2014). Accordingly, under thermophilic conditions, AD has a shortened retention time 

(Watanabe et al., 2017) and higher metabolic and specific growth rates (Zhang et al., 

2014).  

With higher temperatures, the reaction and gas yields are faster (Matheri et al., 2017), 

therefore thermophilic conditions have higher biogas production (Zhang et al., 2014). It is 

important to keep a constant temperature during the digestion process, as temperature 

changes or fluctuations will affect the biogas production negatively (Weiland, 2010). 

Nonetheless, according with Neshat and co-workers, higher temperatures generate higher 

biogas production, but not higher methane yields. Considering that biogas mainly consists 

of methane and carbon dioxide, higher biogas production with lower methane content 

means increased amount of CO2. This corresponds to lower heating value of the produced 

biogas and the need for further purification processes (Neshat et al., 2017). 

Thermophilic process has some disadvantages comparing with mesophilic conditions. 

The process is less stable (Matheri et al., 2017; Watanabe et al., 2017), more sensitive to 

environmental changes (Mao et al., 2015; Zhang et al., 2014), needs more energy to 

maintain the constant temperature of the reactor, is harder to control (Hagos et al., 2017), 

needs larger investments (Mao et al., 2015) and has a higher risk of ammonia (Wang et 

al., 2014; Weiland, 2010) and volatile fatty acids inhibition (Neshat et al., 2017; P. Wang 

et al., 2017).  

Mesophilic AD is more widely used, compared with thermophilic digestion (Kamali 

and Khodaparast, 2015). The main advantages are suitable operating performance, 

stability, less sensitivity to inhibitors (Neshat et al., 2017), less energy requirements 

Conditions Temperatures (ºC) 

Psychrophilic 10 - 30 

Mesophilic 30 - 40 

Thermophilic 50 - 60 
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(Kamali and Khodaparast, 2015) and higher richness in bacteria (Mao et al., 2015). A very 

diverse microbial population is expected under mesophilic temperatures, which could be 

beneficial to degrade various types of substrates (Kim et al., 2017). The mesophilic 

bacteria cannot survive in the thermophilic range of temperature, whereas thermophilic 

bacteria can survive in mesophilic range of temperature, but their growth rate is slower 

(Hagos et al., 2017). 

 

2.3.3. Carbon to Nitrogen Ratio 

The carbon to nitrogen ratio is an important indicator for controlling biological 

treatment systems (Wang et al., 2012). In anaerobic digestion processes, it represents the 

relationship between the amount of carbon and nitrogen in the organic materials (Matheri 

et al., 2017), furthermore is one of the main parameters that critically affects the whole 

process (Hagos et al., 2017; Piatek et al., 2016). An optimum C/N ratio is needed to keep 

a favorable nutrient balance for anaerobic bacteria’s growth, as well as for maintain a 

stable environment (Piatek et al., 2016; Zhang et al., 2014). 

An appropriate balance between carbon and nitrogen is required for effective 

digestion, and the ideal C/N ratio for anaerobic digestion depends on the feedstock and 

inoculum, (Zhang et al., 2014). Most studies considered an optimum C/N ratio in the range 

of 20/1 to 30/1 (Matheri et al., 2017; Shi et al., 2017), with a ratio of 25/1 being the most 

commonly used (Yan et al., 2015). The optimum C/N ratio is responsible for the regulation 

of nutrient balance to the methanogens within the reactor (Hassan et al., 2017), 

accordingly deviations from the optimum value affects the biogas production (Neshat et 

al., 2017). 

When the C/N ratio value is higher than the optimum range, it induces a low protein 

solubilization rate and leads to low total ammonia nitrogen and free ammonia 

concentrations within a system (Mao et al., 2015), then resulting in higher nitrogen 

consume rate by the methanogens (Hassan et al., 2017; Matheri et al., 2017). The lack of 

nitrogen leads the process to lower methane production yield and could even cause the 

failure of the entire process (Neshat et al., 2017). According to Miqueleto and co-workers, 

with the increase of the C/N ratio, the daily growth of the microorganisms’ population 

decreased. This suggests that the deficiency of an essential nutrient such as nitrogen can 

limit cellular growth (Miqueleto et al., 2010). 

In the other hand, lower C/N ratios limit the microbial growth due to carbon shortage 

(Neshat et al., 2017), which also leads to ammonia accumulation (Wang et al., 2012). This 
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may result in higher total ammonia nitrogen release and high VFA accumulation in the 

digester, which are inhibitor factors for AD performance (Kamali and Khodaparast, 2015; 

Yan et al., 2015). 

In a study conducted by Piatek and colleagues, tests with lower C/N ratios led to 

ammonia accumulation and increased the pH values, which were toxic conditions to 

methanogenic archaea. On the other hand, under high C/N ratios, the nitrogen was 

consumed rapidly by methanogens and the pH value was lower than the optimum 

demand to anaerobic digestion systems (Piatek et al., 2016). According to Wang and co-

workers, C/N ratio may also interact with temperature and that interaction will result in 

different concentrations of ammonia, as well as inhibitory effects. Hence, when 

temperature increased, an increase was required in the feed C/N ratio, in order to reduce 

the risk of ammonia inhibition (Wang et al., 2014). Thus, it can be concluded that an 

adjustment of the carbon to nitrogen ratio is needed for a stable anaerobic digestion in a 

long-term operation (Zhang et al., 2014). 

2.3.4. Ammonia 

Ammonia is formed during the biodegradation process of protein or other nitrogen-

rich organic substrates (Zhang et al., 2014). It is an essential nutrient for the growth of 

microorganisms involved in anaerobic digestion yet, as previously described, it can also 

be toxic when present at high concentrations (Jha and Schmidt, 2017; Zhang et al., 2014).  

The excess of ammonia leads to an increase of pH, a lowering of biogas production, the 

occurrence of inhibitory effects, and eventually, it may led to process failure (Shi et al., 

2017; Zhang et al., 2014). 

Ammonia exists in two forms, as ionized ammonia or ammonium (NH4
+) and as 

unionized ammonia or free ammonia nitrogen (NH3) (FAN). The combination of these two 

forms of ammonia is expressed as total ammonia nitrogen (TAN) (Akindele and Sartaj, 

2017; Rajagopal et al., 2013). FAN has been suggested to be the main cause of inhibition 

of methanogenic microflora since it is freely membrane-permeable (Chen et al., 2008; 

Rajagopal et al., 2013).  

Free ammonia concentration primarily depends on TAN, pH and temperature. In 

addition, ionic strength can also be considered as a significant parameter, especially for 

concentrated solutions (Rajagopal et al., 2013). Ammonia toxicity increases with 

increasing temperature, and washout of microbial population can occur (Weiland, 2010). 

At thermophilic temperatures, the FAN concentration is expected to be six times higher 

than under mesophilic conditions at the same pH (Rajagopal et al., 2013). The indicated 
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conditions will led to severe inhibition, accumulation of VFA (being acetate the main type 

(Shi et al., 2017)), and eventual process failure (Yirong et al., 2017). Consequently, 

working under mesophilic conditions was proposed as a solution to prevent the ammonia 

inhibition in the digestion process (Neshat et al., 2017). 

Among the different types of anaerobic microorganisms, the methanogens are the 

least tolerant and the most likely to cease growth due to ammonia inhibition (Chen et al., 

2008). These microorganisms can be affected in two ways: ammonium ion may inhibit the 

methane producing enzymes directly or hydrophobic ammonia molecule may diffuse 

passively into bacterial cells, causing proton imbalance or potassium deficiency. A fraction 

of NH3 that enters into the cells causes a pH change due to its conversion into 

ammonium, while absorbing protons in the process (Rajagopal et al., 2013). 

Nonetheless, ammonia has also advantages for the digestion process, as it can 

enhance the buffer capacity of the AD (Zhang et al., 2014), acting as a pH neutralizer 

against VFA accumulation and maintaining the pH at optimum levels and being a valuable 

nitrogen source for methanogenic archaea (Neshat et al., 2017). As formerly explained, 

different ammonia concentrations cause different effects on the process, and Table 2 

summarizes the concentrations at which ammonia is beneficial, inhibitory or toxic to AD. 

 

Table 2: Effects of ammonia levels on anaerobic digestion process (Rajagopal et al., 2013). 

Ammonia 

Concentration 

(mg NH4-N/L) 

Effect on AD process 

50 - 200 Beneficial 

200 - 1000 No antagonistic effect 

1500 - 3000 Inhibition (especially at higher pH values) 

> 3000 Complete inhibition or toxic at any pH 

 

 

As it can be observed in Table 2, between 50 and 200 mg NH4-N/L ammonia has 

beneficial effects, while at higher concentrations (from 1500 mg NH4-N/L) it occurs the 

inhibition of methanogenesis. At high pH values, the unionized form prevails and this form 

is more inhibitory than the ammonium ion. In consequence, an increase in pH results in 

increased toxicity (Rajagopal et al., 2013). 
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2.3.5. Organic Loading Rate 

The organic loading rate (OLR) is a critical operational parameter which represents 

the biological treatment capacity of the anaerobic digestion system (Sun et al., 2017), in 

other words, represents the amount of organic material that is fed to a digester (El Achkar 

et al., 2017). OLR is expressed as chemical oxygen demand or volatile solids fed to the 

system daily per m3 of the digester volume (Matheri et al., 2017) and depends on the 

technology and type of wastes fed to the digester (Dhar et al., 2016). 

This is an important factor for viability of the microorganisms and their optimum 

activity (Neshat et al., 2017). According to Sun and co-workers, microbial analysis 

revealed that the increase on the OLR influenced significantly the structure and behavior 

of microbial consortia (Sun et al., 2017). As an example, loading a high amount of organic 

material into the system at once can lead to a shock, resulting on higher activity of 

acidogenic bacteria when compared to methanogens. Thus, as the organic loading 

increases, the risk of inhibition due to excessive VFA production also increases (Neshat et 

al., 2017; Nghiem et al., 2017).  

The biogas production is significantly affected by this parameter (Sun et al., 2017). 

With increasing OLR, the biogas yield increases to an extent, but the equilibrium and 

productivity of the digestion process can also be disturbed (Mao et al., 2015). Thus, an 

appropriate increase in OLR favored the biogas production, while excess OLR increase 

restrained it and may cause system failure (Sun et al., 2017). If the feeding capacity of the 

system is exceed by the OLR, the gas production decreases due to accumulation of fatty 

acids in the digester sludge (Matheri et al., 2017).  

As previously described, a high organic load enables the microorganism’s growth and 

high biogas production, but it also puts pressure on the microorganisms and can lead to 

process collapse due to acid accumulation, during the acidogenesis stage (El Achkar et 

al., 2017). Thus, digesters are usually operated at low organic loading rate (P. Wang et 

al., 2017). The main advantage of higher loading rates is the lower cost and size of the 

digester (Jain et al., 2015). 

A mesophilic digester can be loaded with concentrated organic substrates when the 

digester is operated at sufficiently long retention times. On the other hand, thermophilic 

digesters have higher conversion rates and allow shorter retention times than mesophilic 

digesters. Though, thermophilic digesters can behave more sensitively with ammonia, 

becoming more toxic at lower concentrations (Aramrueang et al., 2016). 
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2.3.6. Retention Time 

Retention time (RT) is the time required for the complete degradation of the organic 

matter, and differs with process parameters such as type of feedstock and temperature 

(Jain et al., 2015; Matheri et al., 2017). This parameter is directly proportional to the 

degradation rate, the shorter the RT, the lower the degradation rate (Matheri et al., 2017). 

Retention time includes hydraulic retention time (HRT) and solids retention time 

(SRT). SRT is defined as the average residence time of microorganisms in the reactor 

(Aramrueang et al., 2016) and HRT is the average time an input organic matter stays 

inside the digester before it comes out (El Achkar et al., 2017), defined by Equation 1, 

 

    
 

 
              Equation 1 

 

where V is the reactor volume and Q the influent flow rate (Mao et al., 2015; 

Ziganshin et al., 2016). 

SRT determines the time available for substrate degradation and microbial growth 

(Vanwonterghem et al., 2015). A low SRT does not allow enough time for the 

methanogens to consume VFA and produce CH4 and CO2, because the growth rate of 

methanogens is slower when compared with acidogens. Hence, a SRT shorter than the 

optimum value can cause VFA accumulation, washout of the methanogens (Khan et al., 

2016) and significant shifts in the microbial population, as bacteria and archaea present 

became less diverse (Manser et al., 2015). On the opposite, acidogens require a minimum 

SRT to perform the hydrolysis of the substrates (Khan et al., 2016). 

A long SRT provides sufficient time for the methanogens, enables more biogas 

production (Khan et al., 2016), allows a decrease in toxicity and maintain digester stability 

through microbial adaptation and acclimation (Aramrueang et al., 2016). However, longer 

SRT may also increase the capital and operational cost (Chen et al., 2018). 

According to El Achkar and colleagues, hydraulic retention time is one of the most 

important parameters affecting significantly microbial ecology (El Achkar et al., 2017). The 

microorganisms need a specific time to consume the substrate and synthetize the 

products, so if the process could not be maintained at its optimum HRT, unfavorable 

metabolic activity of microorganisms and undesirable products will result (Neshat et al., 

2017). 
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Low values of HRT affects the microbial community composition (Ziganshin et al., 

2016), can result in accumulation of VFA and has a potential risk of biomass washout 

from the system, leading in the end to a low methane yield (Khan et al., 2016; Neshat et 

al., 2017). Differently, long HRT values can lead to the death of microorganism due to the 

shortage of nutrients (Neshat et al., 2017) and need large digester sizes (Mao et al., 

2015). 

 

2.3.7. pH 

Between all the parameters with influence on anaerobic digestion process, pH is one 

of the most important. The pH value is a measurement of acid or basic concentration in 

aqueous substances (Matheri et al., 2017) and affects the chemical reactions and the 

activity of the microbial consortia (Montañés et al., 2014). The microorganisms are 

sensitive to pH variations and each anaerobic phase shows a different pH sensitivity 

(Braguglia et al., 2017).  

Due to the direct impacts on microbial activity and community stability, pH influences 

the organic biodegradation and biogas production (Mao et al., 2017). The growth of each 

type of microorganism happens only within a characteristic pH range and the maximum 

growth rate occurs at an optimum pH value (Montañés et al., 2014). In Table 3 are 

represented the optimal intervals of some bacteria involved in AD process, according to 

the literature.  

 

Table 3: Optimum pH range to different types of microorganisms involved in anaerobic digestion process. 

Microorganisms 
Optimum 

Range 
References 

Hydrolytic 5.5 - 6.5 (Hagos et al., 2017) 

   

Acidogenic 
4.0 - 8.5 

(Braguglia et al., 2017; Hagos et al., 2017; Piatek et al., 

2016) 

5.5 - 6.5 (Khan et al., 2016; Mao et al., 2015) 

   

Methanogenic 

6.5 - 7.2 
(Braguglia et al., 2017; Piatek et al., 2016; Zhang et al., 

2014) 

6.5 - 7.5 (J. Zhou et al., 2017) 

6.5 - 8.2 (Khan et al., 2016; Mao et al., 2015) 

 

The optimum pH for anaerobic digestion process changes in the various stages. As 

can be observed in the Table 3, the optimum pH for methanogenic bacteria is higher than 



 

 

19 
 

the optimum pH for hydrolytic and acidogenic bacteria. It can also be noticed that there is 

a greater discrepancy in the literature values for acidogenic values comparatively with the 

methanogenic bacteria. According to Table 3, methane formation takes place within a 

relatively narrow pH interval, from about 6.5 to 8.2 and, according to Hagos and co-

workers, 7.0 is the optimal value (Hagos et al., 2017). The pH increases due to ammonia 

accumulation, while the accumulation of VFA decreases the pH value and reduces the 

methane production (Neshat et al., 2017; Weiland, 2010). Accordingly, if the pH value is 

outside the optimum range the process is severely inhibited (J. Zhou et al., 2017).  

The growth rate of acidogenic bacteria is much higher than that of the methanogenic 

microorganisms and, as it can be seen in Table 3, the acidogenic bacteria are active in 

lower pH values, whereas methanogenic archaea are not active (Kim et al., 2017). Thus, 

the pH of anaerobic digestion is typically maintained between methanogenic limits to 

prevent the predominance of the acid forming bacteria, which may cause VFA 

accumulation (Rajeshwari et al., 2000). 

The different optimum pH value is one at the main reason to separate the process 

into two-phase digesters as acidogenic phase and methanogenesis phase (Hagos et al., 

2017). Also, co-digestion, the simultaneous anaerobic digestion of a mixture of two or 

more substrates (Montañés Alonso et al., 2016), can facilitate stable pH by avoiding 

extreme acidification conditions. 

As previously described, the microbial activity may alter the pH values during the AD 

process. For this reason pH regulation is essential and one of the appropriate ways to 

increase methane yield (Yang et al., 2015). However, the initial pH adjustment may be 

insufficient to analyze the relationship between biogas production and microbial 

communities (Zhou et al., 2016). 

The pH can be maintained at a desired level manually or automatically. Examples of 

automatic methods can be programmable logic control (Latif et al., 2017) or the use of a 

alkali and acid pump (Strik et al., 2006). Manually, chemical products such as  

hydrochloric acid (HCl) or sodium hydroxide (NaOH), among others (Chen et al., 2012; 

Tomaszewski et al., 2017) can be added. However, the use of chemicals may have some 

side effects, for instance, the ionization of these chemicals and the production of certain 

ions, can inhibit the process. As an example, the presence of Na+ at high concentrations 

can inhibit AD and may decay the whole process (Neshat et al., 2017). A recent method of 

pH control is the use of geopolymers with high buffer capacity (Novais et al., 2016b). 
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2.4. Geopolymers 

Geopolymers, also known as alkaline cements or inorganic polymers, are materials 

with a tri-dimensional aluminosilicate structure that result from the chemical interaction 

between a strongly alkaline solution and a source of aluminosilicates (Aguirre-Guerrero et 

al., 2017). Their microstructure consists of chains or networks of inorganic molecules 

linked by covalent bonds (Nikolov et al., 2017). These materials, that emerged as a result 

of attempts to model the geological formation of zeolites, have good mechanical and 

physical properties (Majidi, 2009) and have been attracting increased attention due to the 

low CO2 emissions associated with their production (Novais et al., 2016b). 

 A variety of aluminosilicate materials can be used as solid raw materials in the 

geopolymerization technology, such as, metakaolin, kaolinite, feldspar and industrial solid 

residues like fly ash, metallurgical slag or mining wastes (Singh et al., 2015). To develop 

stable geopolymers, the source materials should be highly amorphous, possess sufficient 

reactive glassy content, low water demand and be able to release aluminum easily (Singh 

et al., 2015). The geopolymers are considered as a green construction material since in its 

production it can be used, as main ingredients, solid wastes such as fly ash and industrial 

slags (Panda et al., 2018). 

Depending on the raw material selection and processing conditions, geopolymers can 

exhibit a wide variety of properties and characteristics. Their main advantages are 

production technology, non-flammable and high temperature stability, safe for humans, 

highly resistant towards freezing/thawing cycles, high compressive strength and low 

shrinkage (Feng et al., 2015; Novais et al., 2016a).  

Despite this wide variety of attributes, these properties are not necessarily inherent to 

all geopolymeric formulations (Duxson et al., 2007). The properties of geopolymers can be 

optimized by a proper selection of the raw materials, correct mix and processing design to 

suit an appropriate application (Singh et al., 2015). Among the wide range of applications, 

geopolymers can be used in the construction industry as an alternative to Portland cement 

(building materials, concrete, fire resistant coatings, fiber reinforced composites), waste 

immobilization solutions for the chemical, nuclear industries and bulk materials for military 

applications, automotive sector and marine applications (Palmero et al., 2015; Singh et 

al., 2015).  

A type of geopolymers uses fly ash from porous biomass burning to energy 

production (Novais et al., 2016b). The main products of biomass combustion are H2O, 

CO2, combustion air and excess O2. However, other compounds can also be formed 



 

 

21 
 

depending on the constitution of the fuel and the conditions of combustion (Nunes et al., 

2017). The use of biomass as fuel generates large amounts of residual ash which can 

cause serious environmental problems. Fly ash particles are highly contaminating due to 

their enrichment in potentially toxic trace elements which condense from the flue gas, thus 

research on the potential applications of these wastes has environmental relevance and 

industrial interest (Ahmaruzzaman, 2010). Accordingly, the production of this type of 

geopolymers will contribute to the material valorization of fly ash, decreasing the need of 

its disposal in landfills and associated environmental problems (Novais et al., 2018). 

Porous biomass fly ash containing geopolymers, when immersed in water, have the 

ability to control pH over time (Novais et al., 2016b), by leaching significant amounts of 

OH- from their structure (Novais et al., 2018). Hence, geopolymers can be used as pH 

regulators in applications where high buffer capacity is required, for instance wastewater 

treatment systems and in biogas reactors (Novais et al., 2016b). 

The use of fly ash based geopolymers instead of commercial alkaline materials in AD 

process results in process simplicity, since no continuous pH adjustment is required. 

Besides, according to Novais and colleagues, the biogas production was also enhanced 

by geopolymers addition, which can be related with the release of suitable alkali metals 

that improve the process stability and performance (Novais et al., 2018).  
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Chapter 3. Materials and Methods 

3.1. Experimental Set-up 

A schematic representation of the experimental set-up used in the laboratory to study 

the long-term utilization of geopolymers for pH control in anaerobic reactors for methane 

production is shown in Figure 2. 

 

 

 

 

 

The set-up was composed by an anaerobic glass reactor in a bath with controlled 

mesophilic temperature of 37 ºC, using a thermostat. The batch reactor had one sampling 

point to take samples with a syringe for analysis. From the reactor until the bubbler lies 
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1. Graduated cylinder 

2. Separation funnel 

3. Bubbler 

4. Sampling point of biogas 

5. Clamp 

6. Bath 

7. Anaerobic reactor 

8. Thermostat 

9. Sampling syringe 

Figure 2: Representation of the experimental set-up. 
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the gas circuit, where samples were frequently taken to analyze the biogas composition 

by gas chromatography. After the bubbler lies the water displacement circuit, where the 

produced biogas volume was measured by water displacement method, using a 

graduated cylinder.  

 

3.1.1. Operation Mode 

The experimental work was divided in two studies with different objectives, yet both 

experiments were carried out in batch mode using anaerobic reactors with 1 L of working 

volume. At the beginning of the experiment was added anaerobic sludge, cheese whey as 

carbon source, distilled water, 2 mL/L of macronutrients and 1 mL/L micronutrients to 

each reactor (Table 4). Macronutrients are indispensable constituents for biomass 

development and micronutrients are crucial cofactors in numerous enzymatic reactions 

involved in the biochemistry of methane formation (Romero-Guiza et al., 2016).  

 

Table 4: Micro and macro nutrients added to the reactors, as described by (van Lier et al., 1997). 

  
Element of 

interest 
Stock Solution 

Concentration (mg/L) 

Micronutrients 

NH4Cl N 86.802 

KH2PO4 P 16.456 

CaCl2.2H2O Ca 4.248 

MgSO4.7H2O Mg 1.733 

Macronutrients 

FeCl2.6H2O Fe 0.403 

CoCl2.6H2O Co 0.483 

MnCl2.4H2O Mn 0.135 

CuCl2.2H2O Cu 0.011 

ZnCl2 Zn 0.023 

H3BO3 B 0.009 

(NH4)6Mo7O24.4H2O Mo 0.048 

Na2SeO3.5H2O Se 0.029 

NiCl2.6H2O Ni 0.012 

EDTA (C10H16N2O8) EDTA 0.976 

 

The volume of anaerobic sludge and cheese whey added to each reactor was 

determined in order to obtain a concentration of 2 g/L VSS of biomass and 8 g/L COD of 
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substrate, based on previous anaerobic tests (Silva et al., 2013). In the reactors with 

addition of alkalinity a buffer solution of NaHCO3 and KHCO3 it was used to promote pH 

autoregulation, to achieve 4 g/L of alkalinity measured as CaCO3. Before sealing, the 

reactors were purged with nitrogen gas to remove any residual oxygen. 

The objective of the first study was to evaluate the influence of the concentration and 

the type of geopolymers in AD process and it were operated four reactors for 87 days. A 

schematic representation of the study is displayed in Figure 3. 

 

 

 

 

 

 

 

 

At one of the anaerobic reactors it was added 4 g/L of alkalinity concentration 

measured as CaCO3 (A1) whereas to the other three assays it was add two types of 

geopolymer spheres, with the same composition but different porosity (type L- low 

porosity and type H- high porosity). Two assays use geopolymer spheres with the lowest 

porosity and two distinct concentrations (12 g/L (L1) and 16 g/L (L2)) and the other assay 

uses 16 g/L of geopolymer spheres with the highest porosity (H1). After 56 days of 

operation most of the organic matter had already been removed, so cheese whey 

(substrate) was again added in order to evaluate the ability of the geopolymers to control 

pH after a long incubation time. Thus, the first study was composed by two phases, where 

the first phase began in day 0 and ended in day 55, and the second phase began with the 

substrate addition at the day 56 until the end of the study (day 87). 

In the second study the objective was to evaluate the long-term geopolymers 

performance and reproducibility. So, accordingly with the first phase results, it was used 

one anaerobic reactor with 4 g/L of CaCO3
 (A2) and two reactors with 16 g/L of 

geopolymer spheres with the highest porosity (type H) (H2 and H3), as shown in Figure 4. 

 

 

 

 

 

Figure 3: Representation of the conditions applied in the first study. 

Figure 4: Representation of the conditions applied in the second study. 
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This study had the duration of 128 days, during which it were made three additions of 

cheese whey at days 48, 79 and 104 of operation, according to the observed removal of 

organic matter. Therefore, the study was divided into four phases: from day 0 until day 47 

(phase 1), from day 48 until day 78 (phase 2), from day 79 until day 103 (phase 3) and 

from day 104 until day 128 (phase 4). Before the samples were taken for analysis, the 

reactors were manually stirred. 

 

3.2. Inoculum and Substrate Characterization  

The anaerobic microbial mixed culture used as inoculum in the laboratory stet-up was 

obtained from a wastewater treatment plant (WWTP) located near Aveiro. This WWTP 

performs the treatment of urban and industrial effluents from Ílhavo, Mira, Vagos and part 

of Aveiro city (Águas do Centro Litoral, 2018). The volume of inoculum to be added to the 

reactors was determined before in order to obtain an initial volatile suspended solid (VSS) 

concentration of 2 g/L in each reactor. 

The substrate used was cheese whey powder, an industrial by-product with high 

acidogenic potential. A concentrated solution of cheese whey was prepared, and the 

volume of substrate used was determined to achieve an initial substrate concentration 

corresponding to a soluble chemical oxygen demand (COD) of 8 g/L. The inoculum and 

substrate characterizations are presented in Table 5. 

 

Table 5: Characterization of the inoculum and substrate used in the experimental work. 

Parameters Inoculum Substrate 

pH 7.37 5.72 

Total Suspended Solids (g/L) 33.40 11.36 

Volatile Suspended Solids (g/L) 23.57 10.09 

Total Chemical Oxygen Demand (g/L) NA 144.67 

Soluble Oxygen Demand (g/L) 0.00 128.25 

Total Organic Carbon (g/L) NA 24.83 

Note: NA- not analysed 
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3.3. Geopolymers Preparation 

The geopolymer spheres were produced following a procedure described by Novais 

and colleagues (Novais et al., 2017). The mixture composition of the two types of 

geopolymers (with lower and higher porosity) is represented in Table 6. 

 

Table 6: Mixture composition utilized in geopolymers preparation. 

 

 

 

 

 

The activating solution (mixture of sodium hydroxide and sodium silicate) was added 

to the solid components (fly ash (FA) and metakaolin (MK)) and to a constant water 

amount. The components were mixed thoroughly during 2 min and the foaming agent 

(Sodium dodecyl sulphate) was added to slurry and blended for another 5 min to ensure 

that a homogeneous paste was produced. The foaming agent was added in different 

amounts, since one of the objectives of this work was study the influence of spheres 

porosity in the geopolymers pH buffer 

Finally, the geopolymeric slurry was injected into a polyethylene glycol medium (PEG) 

to produce the geopolymeric spheres. Afterwards, the spheres were immediately 

collected, washed with distilled water and cured for 24h in controlled conditions (at slightly 

elevated temperature, 40 ºC, and at 65% relative humidity). Lastly, the spheres were 

cured at room temperature and humidity. In Figure 5, is shown the obtained geopolymer 

spheres. 

 

 

 

 

 

 

Geopolymers 

Type 

Mixture proportion (g) 

FA MK 
Alkaline 

activator 
H2O 

Foaming 

agent 

Type L 
10.00 10.00 24.38 4.15 

0.59 

Type H 0.75 

Figure 5: Geopolymer spheres used in the experimental work. 
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3.4. Analytical Procedures and Calculations 

During the assays, samples were taken to control the reactors operation and 

performance. It was analyzed pH, alkalinity, total and volatile suspended solids (TSS and 

VSS) content, total and soluble chemical oxygen demand (tCOD and sCOD), volatile fatty 

acids (VFA), total organic carbon (TOC) and biogas. All analyses were performed in 

accordance with Standard Methods (APHA, 2012).  

In the first study, biogas volume and composition were monitored daily; pH, sCOD, 

TOC, VFA, TSS and VSS were analyzed twice a week. During the second study, the 

biogas volume and composition were also monitored daily; pH, sCOD and VFA were 

analyzed weekly and the solids were analyzed only when substrate was added to the 

reactors. 

 

3.4.1. pH and Alkalinity 

The pH was measured in accordance with electrometric method 4500-H+ B (APHA, 

2012), using a portable equipment Consort P602. 

Alkalinity, the capacity of an aqueous solution to neutralize acids (Neshat et al., 2017), 

were was measured according to titration method 2320 B (APHA, 2012), using a portable 

equipment Consort P602. It was titrated 50 mL of sample with hydrochloric acid (HCl) 1 N 

and the pH was monitored until reach the value of 4.5. The alkalinity concentration was 

obtained through Equation 2. 

 

                        
             

         
  Equation 2         

 

A represents the volume of standard acid used and B represents the normality of the 

standard acid. 

 

3.4.2. Total and Volatile Suspended Solids 

The total suspended solids analysis was performed according to the method 2540 B 

and the volatile suspended solids according to the method 2540 E (APHA, 2012). It was 

used an analytic scale PrecisaTM XB 120A, a drying oven WTCTM Binder E28 and a muffle 

furnace TermolabTM Fuji PXR-9. Two replicates were made to each reactor and sample 

and the determination of the solids contents was calculated via Equations 3 and 4. 
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(   ) 

               
            Equation 3              

A is the weight of dried residue and filter and B is the weight of filter, in g. 

 

                                         
(   ) 

               
              Equation 4          

  
      

A is the weight of residue and filter before ignition and C is the weight of residue and 

filter after ignition, in g. 

 

3.4.3. Total and Soluble Chemical Oxygen Demand  

The COD test is used to measure the oxygen equivalent of the organic material in 

wastewater that can be oxidized chemically, using dichromate in acid solution 

(Tchobanoglous et al., 2003). tCOD was determined according to Raposo and colleagues 

(Raposo et al., 2008) and sCOD was measured in accordance with colorimetric method 

5220 D (APHA, 2012), using an AqualyticTM AL125 thermoreactor and a 

spectrophotometer equipment AqualyticTM COD Vario PC compact (which presents the 

results in mg/L). The COD concentrations were obtained through Equation 5. 

 

               
 

               
               Equation 5 

     

The organic matter removal, considering the initial value of COD, was calculated via 

Equation 6. 

 

                             
(                   )    

          
             Equation 6 

 

3.4.4. Volatile Fatty Acids  

VFA quantification was made by gas chromatography, injecting 0.5 μL of filtered 

sample containing 10 % (v/v) of formic acid (PanreacTM) in a gas chromatograph 

PerkinElmerTM Clarus 480 with an injector set to 300 °C, a flame ionization detector set to 

240 °C, a 25 m × 0.53 mm SGETM ID-BP1 5.0-μm column, and helium as carrier gas. 
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The temperature program used was based on the work of Gameiro and co-workers 

(Gameiro et al., 2015), as follows: 1 min at 70 °C, rise of 20 °C min−1 to 100 °C and then 

kept for 2 min; rise of 10 °C min−1 to 140 °C, and kept for 1 min; and rise of 35 °C min−1 to 

235 °C, and kept for 6 min (18.21 min of total running time). The calibration curves 

(Appendices) were obtained by injecting nine standard solutions of acetic, propionic, iso-

butyric, n-butyric, iso-valeric, n-valeric, iso-caproic, and n-caproic acids (Riedel-de 

HaënTM), in a range of concentrations between 0.05 and 5 g/L. Acids concentrations 

obtained from calibration measured in grams per liter were converted into COD according 

to the oxidation stoichiometry represented in Table 6. 

 

Table 7: Values of oxidation stoichiometry for VFA in mg COD mg
-1

. 

Acetic 

acid 

Propionic 

acid 

i-Butyric 

acid 

n-Butyric 

acid 

i-Valeric 

acid 

n-Valeric 

acid 

n-Caproic 

acid 

1.067 1.514 1.818 1.818 2.039 2.039 2.207 

 

The degree of acidification (DA) was the main parameter used to evaluate the 

acidogenic potential of the substrate and was calculated via Equation 7. 

 

                        ( )   
∑           

          
        Equation 7 

 

 

The VFA yield was determinate by the quotient between the VFA produced and the 

substrate consumed, as can be observed in Equation 8.  

 

         (     
        )   

                      

(                        ) (                    )
Equation 8 

 

 

3.4.5. Total Organic Carbon  

Total organic carbon is a more convenient and direct expression of total organic 

content than COD (APHA, 2012). For TOC determination, the samples were acidified with 

HNO3 and keep in the fridge until analysis. Posteriorly, the samples were diluted as 
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necessary and TOC was measured using a TOC/-TNb Analyzer Analytik JenaTM multi N/C 

3100, at CESAM laboratories. 

 

3.4.6. Biogas 

The volume of biogas produced was measured by water displacement method and 

the biogas composition was analyzed by a gas chromatograph SRITM 8610C with thermal 

conductivity detector set to 75 °C using 80/10 × 2.5 m CRS HayesepTM column set to 61 

°C and helium as the carrier gas.  

The equipment provided values of methane, carbon dioxide and air; the variable 

called air includes various gaseous components. Through the integration software 

PeakSimple three different peaks were obtained. The first peak was the area of air in the 

sample, the second peak, to a retention time of approximately 1.2 min, was the CH4 area 

and the peak at a retention time of approximately 2 min was the area of CO2. The 

percentages of methane and carbon dioxide in the biogas were calculated via Equations 

9 and 10, respectively. 

 

               (
  

 
)         Equation 9 

 

 

               (
  

 
)          Equation 10 

 

 

x1 represents the CH4 area, x2 the CO2 area and x the sum of the two areas. 

The methane yields, considering the initial COD values, were calculated via 

Equations 11 and 12. 

 
   

          
 

            

                     
   Equation 11 

 
 

      
   

          
 
            

          
              Equation 12 

 

 

The degree of methanization, which expresses the COD conversion into methane, 

was calculated through Equation 13. 
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                        ( )  
      

          
     Equation 13       

 
 

The methane production in COD units, CODCH4. This conversion was calculated via 

Equation 14, based on the equation of perfect gases. 

 

 

          
                                 

      
   Equation 14 

 

fCH4 represents the methane content in biogas, Qbiogas the volume of biogas, R the 

perfect gases constant, T the temperature of experimental conditions and ThODCH4 the 

theoretical oxygen demand of methane obtained from the oxidation stoichiometry (64 g O2 

mol-1). 
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Chapter 4. Results and Discussion 

 

4.1. Optimization of the concentration and type of 

geopolymers 

4.1.1. pH Evolution 

The main objective of the first study was the optimization of the concentration and 

type of geopolymers for pH control in anaerobic reactors for methane production. Due to 

the importance of pH level to the microorganisms responsible for methane production, its 

evolution is a crucial parameter for an anaerobic process. In light of this, the pH variation 

inside the four anaerobic reactors during the 87 days of operation is represented in Figure 

6. 

 

 

 

 

 

 

 

 

 

 

  

Figure 6: pH variation as a function of time in anaerobic reactors with the addition of chemical 

alkalinity and different concentrations and types of geopolymers. 
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 As can be observed in Figure 6, in the beginning of the study, the pH value of the 

reactor with chemical alkalinity (A1) was higher (7.76) than the values of the reactors with 

geopolymers (6.87). Nevertheless, in all reactors the pH dropped in the first day of 

incubation to values in the range 4.80 - 5.15 probably due to the rapid substrate 

degradation, followed by a pH increase. At around the 15th day, pH reached favorable 

values for the development of the methanogenic archaea (between 6.5 and 7.5), which is 

in accordance with the beginning of methane production (Figure 9). Until the end of the 

first phase (day 55 of operation), pH was favorable for the methanogenic archaea, with 

the exception of day 24 in reactor H1 (6.04). However, as this pH level just occurred for a 

short period of time, it didn’t affect the methane production. 

  In the 56th day of operation most of the organic matter had already been removed 

(Figure 7). Based on this, an amount of substrate equal to the beginning of the assays (8 

g COD/L) was added to all reactors (Phase 2). After this addition, pH values suffered 

again a considerable decrease, although not so high as in the first phase, to values 

between 5.56 and 6.10, which confirmed an adaptation of the biomass. Three of the 

reactors (A1, L2 and H1) reached favorable values for methane production 8 days after 

the addition of the substrate (cheese whey), whereas reactor L1 (with the lowest spheres 

concentration) was at a low pH (5.56) for 4 days, after which the pH value also increased. 

This fact most probably affected the behavior of this reactor, with a much lower methane 

production, as can be seen in Figure 9. 

Comparing the performance of the reactors with the same type of geopolymers (L1 

and L2) and different spheres concentration it can be observed that the pH behavior 

during both assays was similar in the first phase, although different in the second phase, 

with the reactor with a lower concentration of spheres experienced more fluctuations in its 

values. On the other hand, the two reactors with different types of spheres and the same 

concentration, displayed different behavior in the first phase and a similar behavior in the 

second phase. However, globally, the pH for the reactor with spheres with higher porosity 

(type H) varied between 5.15 and 7.46, whereas the pH of the reactor with lower porosity 

(L2) varied between 5.03 and 7.63. The pH obtained in the reactors with spheres with 

lower porosity (type L) and lower concentration (L1) had greater fluctuations, ranging 

between 4.80 and 7.93. The reactor with chemical alkalinity (A1) was the fastest to 

increase pH to values favorable to methane formation. Nevertheless, after a start-up 

period, it presented similar values to the reactors with geopolymers spheres and, during 

the study, the pH ranged between 5.15 and 7.76. 
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4.1.2. Soluble Chemical Oxygen Demand Evolution 

Figure 7 presents the evolution of COD soluble (sCOD) inside the reactors. As can 

be seen in this figure, in the beginning of the assays, the sCOD values were close to 8 g 

COD/L, which is in accordance with the amount of substrate added to each reactor. After 

this start-up period, the sCOD values decreased in the reactor with chemical alkalinity 

(A1). In opposition, in the three reactors with geopolymers the sCOD values increased 

significantly, being that increase higher in the reactors with higher amounts of spheres (L2 

and H1). This can be due to the lixiviation of polyethylene glycol (PEG), which is used in 

the preparation of geopolymeric spheres and is attached in the spheres surface. Only 

after 11 days in the reactors with lower porosity (L1 and L2) and 15 days in the reactor 

with higher porosity (H1), the sCOD values decreased. 

 

 

 

 

 

 

 

 

 

 

 

 

The reactor A1 reached a concentration at around 1 g COD/L after 25 days of 

operation, and the reactors L1 and L2 after 29 days. The reactor H1 stabilized at values 

close to 1.5 g COD/L after 29 days since the beginning of the assays. Despite the time 

needed to decrease the COD concentration, the organic matter removal performance in 

the anaerobic reactors was not significantly affected. After the second subtract addition in 

the 56th day of operation, the sCOD reached concentrations close to 1 g COD/L in a 

shorter period (15 days), which demonstrated the adaptation capacity of the system for 

Figure 7: sCOD evolution in anaerobic digesters as a function of time, with addition of chemical alkalinity 

and different concentrations and types of geopolymers. 
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organic matter removal. In fact, as observed for pH, the COD increase at the beginning of 

the second phase was lower than the observed in the first phase. In the second phase, it 

was not observed a different COD increase between the reactors with and without 

spheres, which supported the theory that the increase in the first phase was due to 

lixiviation of polyethylene glycol (PEG) from the spheres.  

The percentages of organic matter removal for all reactors, calculated with Equation 

6, for phase 1 and phase 2 (Table 8), allows to conclude that the removal percentages 

were higher after the second addition of substrate to the anaerobic reactors, which 

supported the theory of biomass adaptation. 

 

Table 8: Organic matter removal (%) in the two phases of the study. 

 

 

 

 

 

 

 

 

 

 

4.1.3. Total Organic Carbon Evolution 
 

 

During the study, TOC analysis was also performed in order to verify any similarity 

with the COD performance. Through Figure 8, it can be observed that the TOC values 

displayed a similar behavior as the sCOD values, increasing in the start-up period in the 

reactors with the addition of geopolymers (L1, L2, and H1), supporting the theory that 

there was lixiviation of organic matter present in the geopolymers spheres.  

 

 

 

 
 

 

Reactor 

 

 
Organic matter 

removal (%) 

A1 
Phase 1 91.98 

Phase 2 97.90 

   

L1 
Phase 1 90.62 

Phase 2 95.00 

   

L2 
Phase 1 90.14 

Phase 2 95.85 

   

H1 
Phase 1 82.08 

Phase 2 92.67 
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4.1.4. Methane and Biogas Production 

 As previously described, pH for all assays reached values higher than 6.5, which 

favored the methanogenesis step after 15-20 days. The evolution of the methane 

production during the 87 days of the study is illustrated in Figure 9. 

In the previous figure, it can be seen that reactor H1 had the highest accumulated 

volume of methane produced, whereas reactor L1 produced the lowest accumulated 

volume. Reactors A1 and L2 demonstrated a similar behavior during the study. The 

results herein obtained suggest that, in these experimental conditions, regardless the 

porosity of the geopolymers selected, higher concentrations of spheres (L2 and H1) lead 

to higher productions of methane.  

 

 

 

Figure 8: TOC and COD concentrations during time in anaerobic digesters. 
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As can be observed in Table 9, reactor L1 produced the lowest methane production 

in both phases, most probably due to the lowest pH values achieved after substrate 

addition, showing a lower recovering capacity of this reactor for methane production, 

suggesting that the amount of speres was not sufficient. Reactors A1 and L2 produced 

similar methane accumulated volumes, with an average of 1350 mL in phase 1 and 1600 

mL in phase 2, showing a 17% increase, most probably due to biomass adaptation. 

Reactor H1 presented the highest values, 3670 mL (phase 1) and 2020 mL (phase 2), 

where the difference obtained in phase 1 most probably result from PEG (spheres 

lixiviation) degradation. Considering just the values obtained in phase 2 (without spheres 

lixiviation), it was obtained values between 1690 e 2029 mL, being the highest one for the 

reactor H1.  

The methane production yields (YCH4/CODremoved and YCH4/CODinitial) and the degrees of 

methanization considering the COD initial, for both phases of the study, are presented in 

Table 10. 

 

 

 

 

Figure 9: Cumulative methane produced in anaerobic reactors, with the addition of chemical alkalinity 

and different concentrations and types of geopolymers. 
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Table 9: Accumulated volume of methane and biogas produced in the two phases of the study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 10: Methane production yields and degrees of methanization for both phases of the study. 

 

 

Similarly to what happened to methane production, reactor L1 produced the lowest 

methane production yields and degrees of methanization in both phases, supporting the 

lowest recovering capacity of this reactor for methane production. Reactors A1 and L2 

produced similar methane yields, with an average of 0.186 LCH4/gCODrem in phase 1 and 

0.188 LCH4/gCODrem in phase 2. In reactor H1, in the first phase, much higher values were 

Reactor 

 

 Volume (mL) 

 
Methane Biogas 

A1 

Phase 1 1438.0 3806.3 

Phase 2 1685.0 3367.8 
Average 

value 
1561.5 3587.1 

    

L1 

Phase 1 321.7 1393.8 

Phase 2 261.6 1049.0 
Average 

value 
291.7 1221.4 

    

L2 

Phase 1 1287.6 3783.5 

Phase 2 1509.3 3230.5 
Average 

value 
1398.5 3507.0 

    

H1 

Phase 1 3673.5 7960.8 

Phase 2 2021.9 4227.5 
Average 

value 
2847.7 6094.2 

Reactor 

 
 

YCH4/CODremoved 

(LCH4/gCOD) 

YCH4/CODinitial 

(LCH4/gCOD) 

% methanization  

(gCH4-COD/gCOD) 

A1 
Phase 1 0.182 0.168 42.60 
Phase 2 0.187 0.183 46.51 

     

L1 
Phase 1 0.047 0.043 10.89 
Phase 2 0.029 0.028 7.02 

     

L2 
Phase 1 0.190 0.172 43.59 
Phase 2 0.189 0.182 45.90 

     

H1 
Phase 1 - - - 
Phase 2 0.203 0.188 47.79 
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obtained, as a result of COD removed that was converted into methane from the lixiviation 

of organic compounds present in geopolymers in the beginning of the study (phase 1). So, 

considering just the values obtained in phase 2 for reactors A1, L2 and H1, not having 

spheres lixiviation, it was obtained similar values between 0.187 and 0.203 LCH4/gCODrem, 

being the highest value for the reactor H1.  

Regarding the degree of methanization, similar conclusions can be drawn. Reactor L1 

presented the lowest percentages in both phases (7-10%), which is in accordance with 

the lowest methane productions (Figure 9). Likewise, reactors A1 and L2 presented 

similar percentages, ranging in average, 43% in phase 1 and 46% in phase 2. 

Considering just phase 2, the degree of methanization ranged from 46-48%, being the 

highest value for reactor H1. Hence, it can also be verified, that the reactor H1, which had 

geopolymers with higher porosity, had a higher degree of lixiviation of polyethylene glycol 

than in the reactors with addition of geopolymers with lower porosity (L1 and L2). 

 

 

4.1.5. Volatile Fatty Acids Production 

The VFA determined in the four reactors by gas chromatography, are represented in 

Figure 10. All reactors presented similar behaviors in terms of VFA production, with 

higher concentrations after both additions of substrate, reflecting the easily 

biodegradability of the substrate (cheese whey). The most produced acid was n-butyric 

with concentrations higher than 3000 mg COD/L, followed by acetic and propionic acids. 

The other acids (i-butyric, i-valeric, n-valeric and n-caproic acids) were detected at lower 

concentrations, and mainly in the first phase of the study (until day 56 of operation). 

Although the n-butyric acid reached the highest concentrations (c.a. 3500 mg COD/L) in 

the four reactors, it was rapidly consumed afterwards. In contrast, acetic and propionic 

acids maintained higher concentrations during some time, acetic (1000-1500 mg COD/L) 

and propionic (500-750 mg COD/L), being the propionic acid the last being consumed.  

As can be expected, VFA production was related to the pH and sCOD evolution in the 

system (Figure 11). For all reactors, the highest concentrations of accumulated VFA were 

achieved when the pH values were lower in the first days of each phase, i.e., when a new 

addition of substrate was made to the reactors. In the same way, when the pH values 

increased, the VFA concentrations decreased and the methane production increased. The 

soluble COD concentration displayed a similar behavior as the VFA concentration. 



 

 

41 
 

 

Figure 10: VFA composition during time in anaerobic digesters for the distinct systems, in the first study. 

Figure 11: pH, VFA, sCOD and methane evolution during time in anaerobic digesters for the distinct 

systems, in the first study. 
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In Table 11 are indicated the degrees of acidification and VFA yields obtained during 

the two phases of the study. As expected, it can be observed that the first phase was the 

most favorable to the system acidification, showing higher percentages of maximum 

acidification in all reactors (72-85%). After the second substrate addition (phase 2) the 

maximum degrees of acidification obtained were much lower (52-58%) suggesting a good 

adaptation of the microbial culture, especially the methane production ones. Hence, it was 

observed a decreased system capacity to maintain low pH values that favor the VFA 

production in detriment of methane production, in accordance with the main objective of 

the study. 

 

Table 11: Maximum degrees of acidification and VFA yields in the two phases of the first study. 

 

 

 

 

 

 

 

 

 

 

 

 

4.1.6. Total and Volatile Suspended Solids 

The total and volatile suspended solids evolution during the study is indicated in 

Figures 12 and 13, respectively. TSS and VSS concentrations exhibited similar behavior, 

as expected, because they reflect mostly the amount of biomass inside the reactors. The 

solids concentrations increased after each addition of substrate, which reflected the 

microbial growth, the solids input from the substrate and the batch mode of the 

experiment. The reactor H1, with 16 g/L of geopolymers with higher porosity, in most of 

the experimental period, had a higher solids concentration than the other reactors during 

the study, probably due to the COD input from the spheres lixiviation, which may had 

resulted in higher biomass growth. 

Reactors 
 

Degree of 

Acidification (%) 

 

YVFA/COD max 

(gVFA /gCOD) 

A1 
Phase 1 71.90 0.98 

Phase 2 57.47 0.84 

    

L1 
Phase 1 71.94 0.49 

Phase 2 56.74 0.83 

    

L2 
Phase 1 79.55 0.97 

Phase 2 51.62 0.79 

    

H1 
Phase 1 84.50 0.61 

Phase 2 55.06 0.81 
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4.1.7. Geopolymers Mass Loss 

The mass of geopolymer spheres in the reactors after 87 days of operation was lower 

than the initial one (Table 12). The reactor with geopolymer spheres with higher porosity 

(H1) that produced the highest accumulated methane volume during the study, exhibited 

the highest mass loss, 48% of the initial one. The reactors with lower porosity spheres 

(denominated L1 and L2), displayed an identical loss mass percentage (38 – 40%), being, 

Figure 12: Total suspended solids concentration obtained in anaerobic reactors during the first 

study. 

Figure 13: Volatile suspended solids concentration obtained in anaerobic reactors during the first 

study. 

https://www.powerthesaurus.org/exhibit/synonyms
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as expected, slightly higher in the reactor with a higher mass of spheres added. The 

observed mass loss was due to the lixiviation of compounds from the geopolymers, which 

allowed the pH control during the assays and favored the methanogenic archaea activity. 

 

Table 12: Difference in geopolymers mass between the start and the end of the first study. 

Reactors mgeopolymers initial (g) mgeopolymers final (g) Mass loss (g) Mass loss (%) 

L1 12.03 7.45 4.58 38.07 

L2 16.01 9.60 6.41 40.04 

H1 16.01 8.27 7.74 48.34 
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4.2. Long term geopolymers performance 

Considering the results obtained in the first study, the conditions chosen for further 

studies where those of the reactor with 16 g/L of geopolymer spheres with higher porosity 

(H1), which produced the highest accumulated methane volume. Along these lines, and 

as previously mentioned, a reactor with 4 g/L of CaCO3 (A2) was also considered, as 

reference, besides two reactors with 16 g/L each of geopolymers type H (H2 and H3). 

 

4.2.1. pH Evolution 

Similar to the previous study, in the first day after substrate addition, the pH value of 

the reactor with chemical alkalinity (A2) was higher (8.60) than the values of the reactors 

with geopolymers (7.59). Immediately after, as can be seen in Figure 14, the pH values 

for all reactors decreased, reaching the lowest values on the third day of operation (6.09 

for reactor A2, 5.22 for reactor H2 and 5.14 for reactor H3). After this decrease, the pH 

increased, and reactors A2 and H3 reached favorable pH values for the methanogenic 

archaea development at day 13 and the reactor H2 at day 16 of operation. The methane 

production started at day 13 in reactor A2, at day 21 in reactor H2 and at day 20 in reactor 

H3 (Figure 16). 

Figure 14: pH evolution in the different phases during the second study as function of time, with 

addition of chemical alkalinity and geopolymers spheres with higher porosity. 
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In phase 2, after the second substrate addition (day 48), the pH values of all reactors 

decreased as expected, but with a lower decrease (Figure 14), with the reactor H2 

achieving the lowest pH value (5.92). Yet, all reactors reached favorable values for 

methane production 16 days after the cheese whey addition, showing much better 

recovery than in phase 1. In phases 3 (from day 79 until 103) and 4 (from day 104 until 

128), after new substrate addition, pH values decreased as in previous phases but 

reaching higher values, and achieving more rapidly favorable range for methanogenic 

microorganisms development. In the fourth phase, the reactor H2 reached a lower value 

than the other reactors (7.07), although in a neutral range, similar to what had happened 

in phase 2. 

In terms of pH evolution, the reactors with the same concentration of geopolymer 

spheres (H2 and H3) demonstrated a similar behavior during the study, except in day 55 

and 111, when the reactor H2 reached a lower pH value. The pH values ranged between 

7.78 and 5.23 in reactor H2 and between 7.59 and 5.14 in reactor H3. The reactor with the 

addition of chemical alkalinity (A2) exhibited higher pH values in the first phase than the 

reactors H2 and H3, but during the remained study, it displayed a similar tendency as the 

reactors with geopolymers. The pH values of this reactor during all study varied between 

8.60 and 6.04. 

 

4.2.2. Soluble Chemical Oxygen Demand Evolution 

The temporal evolution of sCOD in all anaerobic reactors is represented in Figure 15. 

In day zero the sCOD values were near 8 g COD/L, which corresponded to the quantity of 

substrate initially added to each reactor. After the initial period, the sCOD decreased in 

the reactor A2 and increased in the reactors H2 (15.72 g COD/L) and H3 (14.14 g 

COD/L). As previously described, this increase resulted from the polyethylene glycol 

lixiviation of the geopolymers. Only after 20 days, the sCOD values started to decrease in 

reactors H2 and H3, reaching low values equivalent to reactor A2 at around day 34. 

Through the four different phases, it can be observed that the system was requiring 

less time to consume the organic matter, and from phase 2 on the behaviour of the three 

reactors became very similar. In the first phase, it took for all reactors around 34 days to 

reach a sCOD concentration below 1 g COD/L, and this time was successively decreased 

to 24, 18 and 14 days in the subsequent phases (phases 2, 3 and 4, respectively). The 

multiple substrate additions illustrated the increasing recovery capacity of the anaerobic 

system for the organic matter removal, along the operation of the system for a long period 
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of time (128 days). The percentages of organic matter removal in the different phases, 

represented in Table 13, were very high and similar for all reactors, ranging mostly from 

91–95%. However, it can be emphasized, that reactor H3 had the highest average 

efficiency (92.5%), most probably due to the fact that it had lower pH fluctuations. 

 

 

Table 13: Organic matter removal (%) in the four phases of the study. 

 

 

 

 

 

 

 

 

 

 

 

 

Reactor 

 
 

Organic matter 

removal (%) 

A2 

Phase 1 92.69 

Phase 2 95.05 

Phase 3 83.81 

Phase 4 91.24 

   

H2 

Phase 1 93.04 

Phase 2 90.52 

Phase 3 91.89 

Phase 4 85.38 

   

H3 

Phase 1 92.78 

Phase 2 92.50 

Phase 3 93.22 

Phase 4 91.45 

Figure 15: sCOD evolution in the different phases during the second study, as a function of time, with 

addition of chemical alkalinity and geopolymers spheres with higher porosity. 
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4.2.3. Methane and Biogas Production 

Figure 16 represents the cumulative methane production during the study, where it 

can be observed that reactor H2 produced the highest and reactor H3 the lowest 

accumulated methane volume. 

 

The cumulative volumes of methane and biogas produced in the four phases of the 

study for each reactor are represented in Table 14. In the first phase, the reactors with the 

addition of geopolymers (H2 and H3) presented a lower pH (lower than 6), than the 

reactor with chemical alkalinity (Figure 14), which required more time to recover, hence 

resulting in a higher cumulative methane volume produced in reactor A2. The first phase 

was the phase of biomass adaption, which can explain the lower methane volume 

produced for al reactors (Table 14, when compared to the values obtained in the 

remaining phases. 

After the first phase, the reactors H2 and H3, despite having the same concentration 

of geopolymer spheres displayed a different performance, with reactor H2 producing 

larger methane volumes in phases 2 and 3. Reactor A2 displayed a higher volume in 

phase 4 (1500 mL). However, in average (excluding first phase), reactor A2 had a value of 

993.6 mL, reactor H2 of 1265.3 mL (the highest) and reactor H3 of 734.5 mL (the lowest).  

Figure 16: Cumulative methane produced in the different phases during the second study, with 

addition of chemical alkalinity (A2) and geopolymers spheres with higher porosity (H2 and H3). 



 

 

49 
 

Compared with reactor H1, which was under the same conditions, reactors H2 and 

H3 produced a much lower average cumulative methane volume (c.a. of half). It should be 

referred that the anaerobic sludge used in both studies was the same. However, as it was 

stored for a long time between both assays, the microorganisms would no longer be 

active, requiring a longer time to adapt, which could explain the difference in the produced 

methane volumes obtained in both sequential studies. 

 

 Table 14: Volume of methane and biogas produced in the four phases of the study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The methane production yields and degrees of methanization for all reactors in the 

different phases of the study are presented in Table 15. According to the cumulative 

produced volume, the higher methane production yields were obtained in phase 4 in 

reactors A2 and H3 and in the phases 3 and 4 in reactor H2. Excluding the yields obtained 

in phases 1 and 2 for reactor A1, and phase 1 for reactor H2, and phases 1, 2 and 3 for 

reactor H3 (with degrees of methanization lower than 30%), due to the longer adaptation 

of biomass, it was obtained similar yields for all reactors, respectively 0.210, 0.167 and 

0.161 LCH4/gCODremoved for reactors A2, H2 and H3. The calculated methane yields in the 

second study were lower than the ones obtained in the first study, by either comparing 

Reactor 

 

 Volume (mL) 

 
Methane Biogas 

A2 

Phase 1 370.4 2674.0 

Phase 2 769.3 2958.5 

Phase 3 711.7 1993.8 

Phase 4 1499.7 2508.0 
Average 

value 
837.8 2533.6 

    

H2 

Phase 1 269.2 1536.8 

Phase 2 1513.6 3273.3 

Phase 3 1362.9 3309.8 

Phase 4 919.3 1395.3 
Average 

value 
1016.3 2378.8 

    

H3 

Phase 1 284.2 1022.0 

Phase 2 426.0 1195.5 

Phase 3 611.9 1622.8 

Phase 4 1165.5 1883.0 

Average 
value 

622.15 1430.8 
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reactors A1 with A2 or reactors H1 with H2 or H3, which support the idea of biomass with 

a lower activity in the second study. 

Generally, the highest degrees of methanization were obtained in the last phase of 

the study (phase 4), which suggests also that the biomass required longer times for 

adaptation in all reactors, with or without the addition of geopolymers.  

 

Table 15: Methane production yields and degrees of methanization in the four phases of the study. 

 

4.2.4. Volatile Fatty Acids Production 

In Figure 17 is represented the VFA concentrations identified in the anaerobic 

reactors. In phase 1 all reactors presented higher concentrations of n-butyric acid (higher 

than 3500 mg COD/L) followed by acetic acid (1000-1500 mg COD/L). In reactors with the 

addition of geopolymers (H2 and H3), n-caproic acid was also detected. In phase 2 the 

three reactors displayed high concentrations of acetic (c.a. 1500 mg COD/L) and 

propionic (c.a. 500 mg COD/L) acids. In reactors H2 and H3 n-butyric was also presented 

in high concentrations (c.a. 3500 mg CD/L), although being rapidly consumed during the 

phase. In phase 3, all reactors show an identical performance, with n-butyric, acetic and 

propionic acids presented in higher concentrations, respectively 2000, 1500 and 500 mg 

COD/L, than the remaining acids. In phase 4, acetic acid exhibited higher concentrations 

in reactor H2 (about 1700 mg COD/L). Consequently, in this phase, the accumulated 

volume of the methane produced in this reactor was lower (Table 13) than the values 

obtained in the reactors with a lower concentration of acetic acid (about 500 mg COD/L in 

A2 and 700 mg COD/L in H3).  

Reactor 

 
 

YCH4/CODremoved 

(LCH4/gCOD) 

YCH4/CODinitial 

(LCH4/gCOD) 

% methanization 

(gCH4-COD/gCOD) 

A2 

Phase 1 0.056 0.052 13.12 
Phase 2 0.070 0.066 16.38 
Phase 3 0.095 0.079 30.64 
Phase 4 0.210 0.192 73.61 

     

H2 

Phase 1 0.039 0.037 9.30 
Phase 2 0.146 0.132 33.54 
Phase 3 0.176 0.162 49.26 
Phase 4 0.167 0.142 95.73 

     

H3 

Phase 1 0.042 0.039 9.81 
Phase 2 0.038 0.036 9.02 
Phase 3 0.082 0.076 28.37 
Phase 4 0.161 0.147 51.06 



 

 

51 
 

Figure 18: pH, VFA, sCOD and methane evolution during time in anaerobic reactor for the distinct systems, in the second study. 

Figure 17: VFA composition during time in the different phases for the distinct systems, in the second study. 
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In Figure 18 is represented the relation between pH, VFA, sCOD and methane 

evolution during the study. In the start-up period of this study, and after the different 

substrate additions, the pH reached low values due to high concentrations of accumulated 

VFA. Likewise, when the pH increases to values close to 7.5, the VFA concentrations 

decrease and the methane production became favored (Figure 18). The sCOD presented 

a similar performance as the VFA concentrations. Comparing the results obtained for 

reactors H2 and H3 with the ones obtained for reactor H1 from the first study (Figure 11), 

it can be observed that, in general, the reactors performance was identical, despite the 

higher cumulative methane volume produced in the first study.  

 

Table 16: Maximum degrees of acidification and VFA yields in the different phases of the second study. 

 

 

 

 

 

 

 

 

 

 

  

According to Table 16, the higher degrees of acidification in all reactors were 

obtained in the first phase of the study, which demonstrates that this phase was the most 

favorable to the system acidification. Like in the first study, the percentages of acidification 

decreased in the remaining phases, which may be a result to the microbial culture 

adaption to methane production. Hence, it was observed a decreasing capacity of the 

system to maintain low pH values that favor the VFA production, in detriment of methane 

production.  

Reactors 
 

Degree of 

Acidification (%) 

 

YVFA/COD max 

(gVFA /gCOD) 

A2 

Phase 1 90.15 0.98 

Phase 2 22.32 0.82 

Phase 3 45.76 0.82 

Phase 4 15.01 0.49 

    

H2 

Phase 1 85.28 0.90 

Phase 2 62.26 0.84 

Phase 3 50.11 0.52 

Phase 4 37.64 0.66 

    

H3 

Phase 1 81.40 0.55 

Phase 2 56.61 0.93 

Phase 3 53.06 0.87 

 Phase 4 11.68 0.42 
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4.2.5. Total and Volatile Suspended Solids 

The total and volatile suspended solids concentrations in the start-up and conclusion 

of each of the four phases of the study are displayed in Figures 19 and 20, respectively. 

The solids concentrations increased immediately after the substrate was added to the 

reactors (time zero) and decreased with the evolution of each phase, probably due to the 

consumption of particulate substrate biodegradation. Before the second substrate addition 

(phase 2), it was necessary to add more inoculum to the reaction media, because volatile 

solids concentration was near or even lower than the pre-set conditions (2 g SSV/L). H2 

was the reactor that exhibited the higher increase in the solids concentrations. In phase 4, 

reactors A2 and H3 presented an increase in TSS and VSS concentrations, probably due 

to biomass growth, being reactor H2 the one presenting the highest concentration.  

 

 

 

 

 

 

 

 

 

According to Figure 20, and in opposite to what had happened in the other three 

phases, there was an increase on VSS in all reactors during phase 4, most probably due 

to the increase of methanogenic biomass, which is in accordance with the much lower 

acidification degrees achieved in this phase. This fact suggests also that it was necessary 

a longer period for the biomass to adapt for methane production, when compared to the 

first study. 

Figure 19: Total suspended solids concentration obtained in the different phases during the second 

study. 

https://www.powerthesaurus.org/exhibit/synonyms
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4.2.7. Geopolymers Mass Loss 
 

Such as in the previous study, the geopolymers spheres lost mass during the 

experimental trial (Table 17), due to the lixiviation of compounds present in the spheres, 

which allowed the pH control during the assays. Both H2 and H3 lost approximately 32% 

of their initial mass during the 128 days of operation. Reactor H1 had lost c.a. of 48% of 

geopolymers mass (Table 12) in less time (87 days) of operation than the reactors H2 and 

H3. This may be related with the lower methane volume obtained in the second study; 

meaning that it was required a smaller contribution to pH control of the geopolymers 

spheres in reactors H2 and H3, which had resulted in a smaller dissolution of these 

materials. 

 

Table 17: Difference in geopolymers mass in the start and end of the second study. 

Reactors mgeopolymers initial (g) mgeopolymers final (g) Mass loss (g) Mass loss (%) 

H2 15.99 10.84 5.15 32.23 

H3 16.00 10.79 5.21 32.57 

 

 

Figure 20: Volatile suspended solids concentration obtained in the different phases during the second study. 
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Chapter 5. Conclusions 

 

The main objective of this work was the use of waste-based geopolymers for pH 

control in anaerobic reactors for methane production, treating easily acidifiable substrates. 

The experimental work was divided in two studies, with different goals. The first study, that 

had two phases and four batch anaerobic reactors, was done to optimize the 

concentration and type (level of porosity) of the two geopolymers under study, to achieve 

a higher methane production. After this selection, the second study was divided in four 

phases and performed with three anaerobic reactors, in order to evaluate the long-term 

geopolymers performance and reproducibility. 

In the first study, pH evolution was similar in all reactors with and without spheres, 

reaching favorable values for methane production after an initial period where it was 

observed a decrease in this parameter. In addition, all reactors presented a similar sCOD 

performance, except in the start-up period (phase 1) in the reactors with the addition of 

geopolymers, where it was observed an increase of this parameter, due to the leaching of 

some of the organic components present in these materials. In the second addition of 

substrate (phase 2) it was observed a decrease in the sCOD values for all reactors, 

reaching very low values in smaller times than in phase 1, which showed the recovery 

capacity of the system for organic matter removal. The VFA production in the beginning of 

each phase were rapidly consumed, which suggest a good adaptation of the microbial 

culture to methane production. 

Regarding the methane production, in the first study, the reactor with the addition of 

geopolymers with higher porosity (H1) produced the highest volume of about 2020 mL of 

CH4 in phase 2, correspondent to a methane yield of 0.203 LCH4/gCOD removed. Comparing 

the reactors with geopolymers with lower porosity and different concentrations (L1 and 

L2), it was observed that the reactor with the highest concentration (16 g/L) produced a 
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superior methane volume of about 1510 mL of CH4 in phase 2, correspondent to a 

methane yield of 0.190 LCH4/gCOD removed.  

Thus, considering the results from the first study, the geopolymer spheres with higher 

porosity (type H) and the higher tested concentration (16 g/L) were the conditions selected 

to the second study of the experimental work. 

In the second study, the pH performance was similar in all reactors, immediately 

decreasing after substrate addition followed by an increase to favorable values for the 

development of the methanogenic archaea in 13 days (A2 and H3) and 16 days (H2) in 

phase 1. Like in the first study, the sCOD values of the reactors with addition of 

geopolymers increased in the start-up period due to the geopolymers leaching. The time 

that the reactors needed to remove the organic matter between phases decreased, which, 

once again, proved the increased recovery capacity of the system.  

The methane volume produced in reactors H2 and H3 in the second study was 

expected to be close to the obtained in the first study with the reactor H1, which did not 

occur. In the same conditions, in the first study reactor H1 produced 2020 mL of CH4 in 

phase 2, and in the second study reactor H2 1360 mL of CH4 in phase 3 and reactor H3 

1170 mL in phase 4. This could be due to the anaerobic microbial mixed culture used as 

inoculum, since it was stored for a long period between studies, which could have resulted 

that the microorganisms could no longer be active, needing more time to adapt. Hence, it 

was observed that in the second study it was necessary to wait 3-4 phases for the system 

to adapt and to respond to methane improvement. This fact happened with and without 

polymers addition for pH control.  

During both studies, it was observed a mass loss in the geopolymers. In the reactors 

H2 and H3 (second study), approximately 32% of the initial mass was lost during the 128 

days of operation. On the other hand, in the first study, reactor H1 had lost 48 % of 

geopolymers mass in the 87 days of operation. The higher dissolution of geopolymers in 

reactor H1 can be related with the higher required contribution to pH control, which may 

be explained by the higher methane volume obtained. 

The results obtained demonstrated the usefulness of geopolymers in anaerobic 

digestion processes. It was confirmed that it is possible to control the pH for methane 

production in anaerobic processes at around 6.5 - 7.5, using geopolymer spheres 

containing fly ash. Besides, using these sustainable waste-based materials instead of 

commercial alkaline materials in AD processes result in environmental sustainability.  

In conclusion, the goals of this thesis were successfully achieved and the obtained 

results bring new insights that can contribute to solve the current problems associated 



 

 

57 
 

with pH control in AD, and also to contribute to the valorization of fly ash, thus decreasing 

the needs for its landfill disposal and the associated environmental problems. 
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Chapter 6. Future Perspectives 

 

To confirm the feasibility of using fly-ash based geopolymers for pH control in 

anaerobic digestion process, further studies are required. As a continuation of the 

experimental work carried out in this thesis, it can be suggested: 

 Identification of the compounds that are leachate from the geopolymeric 

spheres, which promoted the COD and TOC increasing in the start-up period 

of the studies, and assessment of their biodegradability. 

 Study of the reuse of the geopolymer spheres. Is was confirmed that it was 

possible to perform several series, of approximately 30 days each. However, 

due to the geopolymers mass loss during the assays, the number of series 

may be limited. In this sense, it is necessary to perform more studies to verify 

their capacity to maintain the pH values in the desired range, promoting the 

methane production. 

 Determination of the geopolymers concentrations and/or compositions that 

allow to obtain, in alternative, an anaerobic acidogenic process, reaching pH 

values favorable to the accumulation of volatile fatty acids (below 6.5). 

 Study the anaerobic process in a continuous mode, using the geopolymers 

spheres as buffer materials, reducing the cost of chemicals and promoting a 

sustainable process.  
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Appendices 

The calibration curves used to volatile fatty acids analysis by gas chromatography are 

represented in the following figures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: Calibration curve of acetic acid. 

Figure 22: Calibration curve of propionic acid. 
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Figure 23: Calibration curve of i-butyric acid. 

Figure 24: Calibration curve of n-butyric acid. 

Figure 25: Calibration curve of i-valeric acid. 
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Figure 26: Calibration curve of n-valeric acid. 

Figure 27: Calibration curve of n-caproic acid. 


