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Abstract  25 

In this work, a granular activated carbon (GAC) was produced using primary paper 26 

mill sludge (PS) as raw material and ammonium lignosulfonate (AL) as binder agent. PS is 27 

a residue from the pulp and paper industry and AL is a by-product of the cellulose pulp 28 

manufacture and the proposed production scheme contributes for their valorisation together 29 

with important savings in GAC precursors. The produced GAC (named PSA-PA) and a 30 

commercially available GAC (GACN), used as reference material, were physically and 31 

chemically characterized. Then, they were tested in batch experiments for the adsorption of 32 

carbamazepine (CBZ), sulfamethoxazole (SMX), and paroxetine (PAR) from ultra-pure 33 

water and wastewater. Even though GACN and PSA-PA possess very similar specific 34 

surface areas (SBET) (629 and 671 m
2
 g

-1
, respectively), PSA-PA displayed lower maximum 35 

adsorption capacities (qm) than GACN for the pharmaceuticals here studied (6 ± 1 - 44 ± 5 36 

mg g
-1

 and 49 ± 6 - 106 ± 40 mg g
-1

, respectively). This may be related to the 37 

comparatively higher incidence of mesopores in GACN, which might have positively 38 

influenced its adsorptive performance. Moreover, the highest hydrophobic character and 39 

degree of aromaticity of GACN could also have contributed to its adsorption capacity. On 40 

the other hand, the performance of both GACs was significantly affected by the matrix in 41 

the case of CBZ and SMX, with lower qm in wastewater than in ultra-pure water. However, 42 

the adsorption of PAR was not affected by the matrix. Electrostatic interactions and pH 43 

effects might also have influenced the adsorption of the pharmaceutical compounds in 44 

wastewater. 45 

 46 

Keywords: Industrial wastes, Waste management, Chemical activation, Agglomeration, 47 

Adsorptive water treatment, Emerging contaminants  48 
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1. Introduction 49 

Activated carbons (ACs) are carbonaceous materials with high adsorption capacity 50 

towards a vast number of organic and inorganic compounds, such as pharmaceuticals, 51 

pesticides, personal care products, dyes and metals (Rodriguez-Narvaez et al., 2017). 52 

Commercial ACs, which are commonly produced from wood or coal (bituminous and sub-53 

bituminous varieties), are available in powdered (PAC) or granular (GAC) formulations 54 

(Bandosz, 2006). GAC and PAC are used in water treatment, both presenting advantageous 55 

features and drawbacks depending on specific applications. PAC has the main advantage 56 

of, generally, possessing higher specific surface area (SBET); however, it is usually applied 57 

in batch mode (due to inadequate particle size to be used in fixed-bed columns and difficult 58 

separation from the treated water in continuously stirred reactors). In the case of GAC, 59 

main advantages include its regeneration capability by thermal or chemical treatment and, 60 

therefore, its reuse, and the easiness of application in continuous mode, increasing the 61 

applicability in water treatment systems (Marsh and Rodríguez-Reinoso, 2006). The use of 62 

AC for the removal of organic contaminants from water, namely pharmaceuticals, is highly 63 

documented (e.g. Wang and Wang, 2016; Yang et al., 2017). Both PAC and GAC possess a 64 

great potential for the adsorption of these contaminants; yet, the use of PAC in wastewater 65 

treatment is usually associated to increased implementation and application costs and so 66 

GAC is generally the preferred option (Yang et al., 2017).  67 

The production of AC from wastes has been proposed as an innovative and 68 

sustainable strategy (Silva et al., 2018), in line with an increasingly rigorous environmental 69 

legislation on the waste management that discourages disposal practices such as landfilling 70 

and incineration (European Commission, 2016 -  Directive 2008/98/EC). Primary paper 71 

mill sludge (PS) is produced in large amounts, resulting from wastewater treatment in the 72 
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pulp and paper industry, so constituting an important waste management issue within this 73 

sector. Therefore, the use of PS to produce an added-value material such as AC can be 74 

considered as a valuable circular economy option, aligned with the challenges of this 75 

industry. Simultaneously, the use of PS as AC precursor has also proved to be 76 

advantageous since its characteristics present low variability throughout time, pointing out 77 

to its consistency to be used as raw material (Jaria et al., 2017). PAC produced from PS has 78 

already been used for the removal of pharmaceuticals from water, presenting similar or 79 

even higher adsorptive capacities than a commercial PAC (Jaria et al., in press). However, 80 

due to the fibrous and brittle structure of PS (mostly constituted by cellulose), attempts to 81 

use wastes with similar constitution to produce GAC have failed. In fact, a main problem of 82 

waste-derived GACs is usually the low attrition resistance of the produced materials, which 83 

may inhibit their use in adsorption beds (Smith et al., 2012). Different strategies have 84 

already been proposed to produce hardened GACs with high attrition resistance, being 85 

pelletization and/or the utilization of binder agents the most commonly used. The 86 

introduction of a pelletization step is usually the approach when the AC is produced by 87 

physical activation while the utilization of binders is usually the strategy in the case of 88 

chemical activation (Carvalho et al., 2006). Several patents have been published on the 89 

production of GAC employing binders such as urea-lignosulfonate (Blackmore, 1988) or 90 

ammonium lignosulfonate (Kovach, 1975). Also, in the scientific literature, the utilization 91 

of binders like humic acids (Lozano-Castelló et al., 2002) or clays (Carvalho et al., 2006) 92 

has been proposed. A comparison of different binders was carried out by Lozano-Castelló 93 

et al. (2002), who used a humic acid derived sodium salt, polyvinyl alcohol, a phenolic 94 

resin, Teflon and an adhesive cellulose-based binder for the preparation of AC monoliths. 95 

Also, Smith et al. (2012) compared the utilization of ammonium lignosulphonate, polyvinyl 96 
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alcohol, phenolic resin, araldite resin, lignosulphonic acid, calcium salt, and carboxymethyl 97 

cellulose sodium salt for the production of GACs from sewage sludge. The authors of both 98 

studies (Lozano-Castelló et al., 2002; Smith et al., 2012) highlighted the importance of 99 

selecting an appropriate binder so to avoid the deterioration of the adsorption performance 100 

of the final material. 101 

In the above described context, this work aimed to give a step forward in the 102 

production of AC from PS and take on the challenge of obtaining, for the very first time, a 103 

cellulosic waste-based GAC to be used in the removal of pharmaceuticals from water. For 104 

the production of GAC, ammonium lignosulfonate (AL), which is a by-product derived 105 

from the sulphite process applied in the manufacture of cellulose pulp, was used as binder 106 

agent. The physicochemical characterization of the obtained GAC (PSA-PA) and of a 107 

commercial GAC (GACN, results of which are taken as reference), was performed and 108 

both adsorbents were tested under batch operation conditions for the adsorption of 109 

pharmaceuticals from ultra-pure water and also from wastewater. The versatility of the 110 

produced GAC was tested by studying the uptake of three pharmaceuticals from different 111 

therapeutic classes and with different physicochemical properties: the antiepileptic 112 

carbamazepine (CBZ), the antibiotic sulfamethoxazole (SMX), and the antidepressant 113 

paroxetine (PAR). 114 

 115 

2. Materials and Methods 116 

2.1. Reagents 117 

AL was used as binder agent and was kindly provided by Rayonier Advanced 118 

Materials. KOH (EKA PELLETS, ≥86%) was used as chemical activating agent. For the 119 

washing step, HCl (AnalaR NORMAPUR, 37%) was used. The pharmaceuticals studied in 120 
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the adsorption tests were CBZ (Sigma Aldrich, 99%), SMX (TCI, >98%) and PAR 121 

(paroxetine-hydrochloride, TCI, >98%). These pharmaceuticals belong to three different 122 

therapeutic classes (anticonvulsants, antibiotics and antidepressants, respectively) and 123 

present different physicochemical properties (depicted in Table S1 in Supplementary 124 

Material (SM)). The GAC used as reference (GACN, DARCO 12×20, particle size between 125 

0.8 and 1 mm) was kindly provided by Norit.  126 

All the solutions were prepared in ultra-pure water obtained from a Milli-Q 127 

Millipore system (Milli-Q plus 185) or in wastewater (details on sampling and 128 

characterization are presented in section 2.4). 129 

 130 

2.2. Production of GAC from PS 131 

 For the production of a GAC using PS as raw material, several experimental 132 

approaches were tested until obtaining a material with suitable hardness to withstand the 133 

target application. In this context, the following factors were tested: type of activating 134 

agent; impregnation ratio between the precursor, the activating agent and the binder agent; 135 

impregnation order (activating agent followed by the binder agent or vice versa); and one- 136 

or two-step pyrolysis (detailed procedures are shown in Table 1). The optimized production 137 

methodology was achieved by a two-stage process (test N in Table 1). All the other tested 138 

conditions failed to produce a granular material. Accordingly, in the first stage, 30 g of PS 139 

was mixed with 70 mL of AL aqueous solution (at 35%), resulting in a final PS:AL ratio 140 

(w/w) of 6:5. The mixture was stirred overnight in a head-over-head shaker (80 rpm) and 141 

left drying at room temperature followed by overnight oven-drying at 105 ºC. The dried 142 

mixture was pyrolysed under inert atmosphere (N2) at 500 ºC for 10 min. In a second stage, 143 

each 10 g of the resultant carbon (named PSA) was activated with 20 mL of a solution of 144 
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KOH (at 50%), resulting in a PSA:KOH final ratio (w/w) of 1:1. The mixture was stirred 145 

for 1 h in an ultrasonic bath and oven-dried at 105 ºC overnight. This material was then 146 

pyrolysed at 800 ºC for 150 min, then washed with 1.2 M HCl and finally rinsed with 147 

distilled water until neutral pH was reached. The final GAC, named PSA-PA, was crushed, 148 

grounded and sieved to obtain a particle diameter between 0.5 and 1.0 mm. 149 

 150 

2.3. Physicochemical characterization of PSA-PA and GACN 151 

The physicochemical analysis of PSA-PA and GACN was performed by means of 152 

the determination of the total organic carbon (TOC) and inorganic carbon (IC); proximate 153 

and ultimate analyses; SBET and Hg porosimetry; determination of the surface functionality 154 

by Boehm’s titration; determination of the point of zero charge (pHpzc); Fourier Transform 155 

Infrared Spectroscopy with Attenuated Total Reflectance (FTIR-ATR); X-Ray 156 

Photoelectron Spectroscopy (XPS) and Scanning Electron Microscopy (SEM). Detailed 157 

procedures are explained in section 2 of SM. 158 

 159 

2.4 Wastewater sampling 160 

The performance of PSA-PA and GACN was evaluated in a real wastewater matrix 161 

for the three considered pharmaceuticals. Wastewater samples were collected between May 162 

2017 and January 2018 (5 sampling campaigns) at a local sewage treatment plant (STP) 163 

that treats domestic sewage (average daily flow of 39 278 m
3
 day

-1
; designed to serve 164 

159 700 population equivalents). The STP operates both primary and biological treatments 165 

and the collected wastewater samples corresponded to the final treated effluent (after 166 

secondary decanting), which is discharged into the aquatic environment. After collection, 167 
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wastewater samples were filtered through 0.45 μm, 293 mm membrane filters (Gelman 168 

Sciences), stored at 4 °C until analysis and used within no longer than 15 days.  169 

Wastewater samples were characterized by measuring conductivity (WTW meter), 170 

pH (pH/mV/°C meter pHenomenal
®
 pH 1100L, VWR) and TOC (Shimadzu, model TOC-171 

VCPH, SSM-5000A). The properties of wastewater samples used in this work are presented 172 

in section 3 of SM. 173 

  174 

2.5. Batch adsorption experiments with PSA-PA and GACN  175 

Kinetic and equilibrium batch experiments were performed to determine the 176 

adsorption of CBZ, SMX and PAR onto PSA-PA and GACN. For each pharmaceutical, 177 

solutions with a known initial concentration were prepared in both ultra-pure water and 178 

wastewater and stirred together with PSA-PA or GACN in an overhead shaker (Heidolph, 179 

Reax 2) at 80 rpm and under controlled temperature (25.0 ± 0.1 ºC). After stirring, 180 

solutions’ aliquots were filtered through 0.22 µm PVDF filters (Whatman) and then 181 

analysed for the remaining concentration of pharmaceutical. For all the initial 182 

concentrations and pharmaceuticals, controls (containing the pharmaceutical solution, but 183 

not GAC) were run simultaneously with experiments, which were carried out in triplicate. 184 

The solutions were analysed by Micellar Electrokinetic Chromatography (MEKC) using a 185 

Beckman P/ACE MDQ instrument (Fullerton, CA, USA), equipped with a photodiode 186 

array detection system, according to the procedure described by Calisto et al. (2015). 187 

Briefly, a dynamically coated silica capillary with 40 cm (30 cm to the detection window) 188 

was used and the electrophoretic separation was accomplished at 25 ºC, in direct polarity 189 

mode at 25 kV, during 5 min runs. Ethylvanillin was used as internal standard and sodium 190 

tetraborate was used to obtain better peak shape and resolution and higher repeatability, 191 
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both spiked to all samples and standard solutions at final concentrations of 3.34 mg L
-1

 and 192 

10 mM, respectively. Detection was monitored at 214 nm for CBZ and at 200 nm for SMX 193 

and PAR. Separation buffer consisted of 15 mM of sodium tetraborate and 30 mM of 194 

sodium dodecyl sulfate. All the analyses were performed in triplicate.  195 

For the kinetic studies, a predefined mass of each GAC was placed in polypropylene 196 

tubes and put in contact with 40 mL of a 5 mg L
-1

 aqueous single solution of each 197 

pharmaceutical. The concentrations of both PSA-PA and GACN were: in ultra-pure water, 198 

70 mg L
-1

 for CBZ, 50 mg L
-1

 for SMX, and 80 mg L
-1

 for PAR; in wastewater, 150 mg L
-1

 199 

for CBZ and PAR, and 200 mg L
-1

 for SMX. The solutions were shaken for different time 200 

intervals between 0.5 and 72 h. The adsorbed concentration of pharmaceutical onto each 201 

GAC at time t, qt (mg g
-1

), was calculated by Eq. 1: 202 

   
        

 
  (1) 203 

where C0 (mg L
-1

) is the initial concentration of pharmaceutical, Ct (mg L
-1

) is the 204 

concentration of pharmaceutical in solution at time t, V (L) is the volume of solution and m 205 

is the mass of adsorbent (g). The kinetic models used for fitting the experimental data are 206 

presented in Table S3 (section 4 of SM); non-linear fittings were performed using 207 

GraphPad Prism, version 5. 208 

 Equilibrium experiments were carried out to determine the adsorption isotherms, 209 

which allow to conclude about the adsorption capacity of the adsorbents. Equilibrium tests 210 

were performed by varying the initial concentration of the pharmaceutical and keeping the 211 

adsorbent mass constant. Hence, 40 mL of single solutions of each pharmaceutical, with 212 

concentrations varying between 5.0 and 0.5 mg L
-1

 (a minimum of 6 concentrations were 213 

considered for each system), were added to a predefined mass of carbon. In ultra-pure 214 
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water, the concentrations of PSA-PA were 50, 40 and 60 mg L
-1

 for the adsorption of CBZ, 215 

SMX and PAR, respectively; and the concentrations of GACN were 50, 40 and 40 mg L
-1

 216 

for the adsorption of CBZ, SMX and PAR, respectively. In wastewater, the PSA-PA 217 

concentrations were of 125, 150 and 100 mg L
-1

 for the adsorption of CBZ, SMX, and 218 

PAR, respectively, while 125, 150 and 80 mg L
-1

 of GACN were used for the adsorption of 219 

CBZ, SMX, and PAR, respectively. 220 

The adsorbed concentration of each pharmaceutical onto each GAC at the 221 

equilibrium, qe (mg g
-1

) was calculated by Eq. 2:  222 

   
        

 
  (2) 223 

where Ce (mg L
-1

) is the concentration of pharmaceutical in solution at the equilibrium and 224 

all the other variables are defined as in Eq. 1. The isotherm models used for describing the 225 

experimental results are presented in Table S4 (section 4 of SM); non-linear fittings were 226 

performed using GraphPad Prism, version 5. 227 

 228 

3. Results 229 

3.1. Physicochemical characterization of PSA-PA and GACN 230 

3.1.1. Chemical characterization  231 

PSA-PA and GACN present a high value of TOC, 72 ± 2% and 79.7 ± 0.8%, 232 

respectively, and a very low value of IC, 0.029 ± 0.003% and 0.0204 ± 0.0002%, 233 

respectively. Thus, the results obtained for TOC and IC were very similar for the produced 234 

and reference GACs. Comparing the values for PSA-PA with those for the precursor (TOC 235 

= 29 ± 1% and IC = 3.3 ± 0.2% (Jaria et al., 2017)), the increase in the TOC content of the 236 

produced carbon compared with the precursor is clear.  237 
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The results of proximate and ultimate analyses are presented in Table 2 and show 238 

that both materials possess a high content in fixed carbon (77 and 81% for PSA-PA and 239 

GACN, respectively). The percentage in heteroatoms is higher for PSA-PA, namely in 240 

oxygen (13 and 6% for PSA-PA and GACN, respectively). Also, the H/C ratio indicates 241 

that GACN possesses a higher degree of aromaticity (lower H/C ratio) than PSA-PA. 242 

Regarding FTIR-ATR analysis, the spectra for PSA-PA and for GACN are depicted 243 

in Figure S1 (section 2 of SM). The spectrum of PSA-PA (Figure S1a) shows peaks at 1530 244 

cm
-1

, which is characteristic of aromatic compounds and can be also associated to 245 

secondary amide N–H and C–N bending (1560-1530 cm
-1

) (Stuart, 2004). The bands at 246 

1100 and 1180 cm
-1

 might be associated with secondary alcohols C–O stretch and the bands 247 

between 3800 and 3600 cm
-1

 can be assigned to alcohol/phenol O–H stretching (Coates, 248 

2000; Stuart, 2004). GACN spectrum (Figure S1b) revealed a broad band at 1125 cm
-1

 and 249 

a band at 1530 cm
-1

, which can be associated to secondary alcohols C–O stretch and to the 250 

aromaticity of the material, respectively. Bands at 3605 and 3720 cm
-1

 evidence the 251 

presence of alcohol/phenol O–H stretching (Coates, 2000).  252 

The determination of the surface functional groups (Table 3) indicated that both 253 

GACs have an acidic nature. This was confirmed by the values of pHpzc determined for 254 

PSA-PA and GACN (Table 3). Also, from results in Table 3, it is possible to infer that the 255 

oxygen atoms present in both GACs are likely present in the form of carboxyl (particularly 256 

for GACN) and phenol groups, with lower incidence of lactones.  257 

To complement the surface functionality characterization, XPS analysis was 258 

performed and the results are presented in Table 4. The results showed that PSA-PA 259 

possesses a high amount of oxygen compared with GACN. In fact, the XPS data indicate 260 

contents of 74.76% of carbon, 17.32% of oxygen and 2.34% of nitrogen for PSA-PA, and 261 
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90.49% of carbon and 7.26% of oxygen for GACN. These results are coincident with those 262 

from the ultimate analysis (Table 2). By deconvolution of the C 1s region, the prevalence of 263 

graphitic C sp
2
 is evident (especially for GACN), along with the presence of C–C sp

3
 bonds 264 

associated to phenolic, alcoholic and etheric carbons at the edge of the graphene layer 265 

(especially for PSA-PA) (Nielsen et al., 2014; Velo-Gala et al., 2014). These results are 266 

coincident with the FTIR-ATR spectra, presenting bands characteristic of alcohols 267 

(between 3800 and 3600 cm
-1

), mainly observed in PSA-PA spectrum. Peaks associated to 268 

carbonyl or quinones and to carboxyl or ether groups are present in relatively similar 269 

percentages for both GACs (peaks 3 and 4, respectively, for C 1s). These results do not 270 

seem to be in agreement with the Boehm’s titration results, since in those the carboxylic 271 

groups are in greater amount, especially in the case of GACN. These differences can be due 272 

to the fact that XPS is a surface technique while Boehm’s titration is a bulk technique. Both 273 

spectra also present a peak at 291 eV, which can be associated to C π-π* transition (Velo-274 

Gala et al., 2014). Concerning the O 1s spectra, PSA-PA presents a peak at 535.5 (peak 3) 275 

which may be attributed to chemisorbed oxygen (Velo-Gala et al., 2014). Also, it presents a 276 

peak at 531 eV which can be assigned to C=O bonding in quinones and carbonyl groups, 277 

and a peak around 533 eV assigned to oxygen atoms of hydroxyl groups and to lactones 278 

and anhydrides. These two peaks (at 531 and 533 eV) are likewise in the GACN XPS 279 

spectrum, which also presents a peak at 534.4 eV that may be associated to oxygen of 280 

carboxyl groups, which is coincident with the Boehm’s titrations results.  281 

For PSA-PA it was also performed the fitting of the peaks associated to N 1s. In 282 

fact, comparing the overall spectra of the two GACs (Figure S2 in section 2 of SM) it is 283 

possible to clearly observe a peak in the N 1s zone for PSA-PA, while for GACN this peak 284 

is not noticeable. This is consistent with the higher N content of PSA-PA in comparison 285 
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with GACN, as revealed by the ultimate analysis (Table 2). The fitting indicates the 286 

presence of two peaks, at 398.0 and 400.1 eV, which might be attributed to pyridinic and 287 

pyrrolic N, respectively (Li et al., 2014; Wei et al., 2016).  288 

  289 

3.1.2. Physical characterization  290 

For the study of the textural features of the materials, nitrogen adsorption isotherms 291 

and SEM were used as characterization techniques. The results of SBET and Hg porosimetry 292 

are presented in Table 5. For both GACs, SBET and micropore volume (W0) values are very 293 

similar; however, GACN possesses larger total pore volume (Vp) and average pore diameter 294 

(D) values than PSA-PA, which might have important implications in the adsorptive 295 

performance of the materials, as explained below (see section 3.2). Observing the pore size 296 

distribution (Figure 1), it is evident that PSA-PA possesses a narrower pore size 297 

distribution with prevalence of pores with 5 nm of diameter and smaller, whilst GACN 298 

presents a broader distribution, including a significant amount of larger pore sizes in the 299 

mesopores’ range (2-50 nm). This may be an interesting feature of PSA-PA considering the 300 

selective adsorption of molecules with different sizes. On the other hand, the apparent 301 

density is similar for both materials, although it is slightly superior in the case of GACN.  302 

The surface morphological structure of the two GACs was analysed by SEM 303 

(Figure 2). It is interesting to observe that, at the lowest magnifications, GACN appears to 304 

have a more homogeneous morphology but, at higher magnifications, the structure becomes 305 

rougher and the porosity is revealed. In the case of PSA-PA, at the lowest magnifications, a 306 

more disordered structure (possibly due to fragments of fibres that have not been destroyed) 307 

can be observed, but at higher magnification, porosity is also clearly observed. 308 

 309 
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 310 

3.2. Batch adsorption experiments with PSA-PA and GACN  311 

3.2.1 Kinetic studies 312 

The graphical representation of experimental and model results, and the parameters 313 

of the fitted models for the adsorption kinetics of CBZ, SMX and PAR onto the two studied 314 

GACs (PSA-PA and GACN) in ultra-pure water and in wastewater are presented in Figure 315 

3 and Table 6, respectively. The kinetic models used to describe the adsorption 316 

experimental results were the pseudo-first order (PFO) and pseudo-second order (PSO) 317 

models (Table S3, section 4 in SM). 318 

As it may be seen in Table 6, the fittings to the PFO and the PSO models presented 319 

R
2
 values above 0.90, except for the adsorption kinetics of PAR onto GACN, in ultra-pure 320 

water. Therefore, both models (PFO and PSO) were considered to reasonably describe the 321 

experimental data. In general terms, it may be said that, for CBZ and SMX, the results were 322 

slightly better described by the PSO model, while PFO model was the most adequate to 323 

describe the adsorption kinetics of PAR.  324 

In relation to the rate constants k1 and k2, the values vary between 10
-6

 and 10
-3

 325 

(min
-1

 or g mg
-1

 min
-1

, respectively). These low values are in agreement with the relatively 326 

long equilibrium times (above 24 h) here determined. It must be taken into account that, 327 

due to the particle size of GACs, adsorption kinetics are usually slower than onto powdered 328 

materials. Nevertheless, it is possible to observe that GACN presents a slightly faster 329 

adsorption rate than PSA-PA for CBZ in ultra-pure water (2 times higher k2), and for PAR 330 

in ultra-pure and wastewater (3.6 and 3.25 times higher k1, respectively), while PSA-PA 331 

presents a faster adsorption rate than GACN in the case of CBZ in wastewater (4 times 332 
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higher k2) and SMX in both matrices (3.5 times higher k2 in ultra-pure water and 22 times 333 

higher k2 in wastewater).   334 

3.2.2. Equilibrium studies 335 

Experimental equilibrium and model results, and the corresponding parameters of 336 

the non-linear fittings, for the adsorption of CBZ, SMX and PAR onto PSA-PA and GACN 337 

in ultra-pure water and in wastewater are presented in Figure 4 and Table 6, respectively. 338 

The isotherm models used to describe the equilibrium experimental results were Langmuir, 339 

Freundlich and Sips models (Table S4, section 4 in SM). 340 

Equilibrium results of the three pharmaceuticals onto PSA-PA, either in ultra-pure 341 

or wastewater, were better described by the Langmuir and the Sips models than by the 342 

Freundlich model. In the case of GACN, the Sips model revealed to be not suitable to 343 

model the experimental data, with most of the fittings being ambiguous. Considering the 344 

other tested models, even though the Freundlich equation has presented fittings with R
2
 345 

values slightly higher in some cases, it can be said that the equilibrium results were mostly 346 

best fitted by the Langmuir isotherm. Thus, to allow the comparison of the results of all the 347 

studied systems, the Langmuir model was selected.  348 

The Langmuir maximum adsorption capacity (qm) of GACN is higher than that of 349 

PSA-PA. For the latter, qm values range from 24 ± 5 to 44 ± 5 mg g
-1

 and from 6 ± 1 to 34 ± 350 

9 mg g
-1

, in ultra-pure water and wastewater, respectively. Meanwhile, for GACN, the qm 351 

range from 64 ± 12 to 98 ± 17 mg g
-1

 and from 49 ± 6 to 106 ± 40 mg g
-1

, in ultra-pure 352 

water and wastewater, respectively. Both GACs present better performance for CBZ and 353 

SMX in ultra-pure water than in wastewater. However, the effect of the aqueous matrix in 354 

qm was not remarkable for the adsorption of PAR, particularly in the case of PSA-PA.  355 
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As it may be seen in Figure 4, the adsorption of CBZ onto GACN was much lower 356 

in wastewater than in ultra-pure water. The decrease was not so evident in the adsorption of 357 

CBZ onto PSA-PA, but, still, qm decreased from 24 ± 5 mg g
-1 

(in ultra-pure water) to 10 ± 358 

1 mg g
-1 

(in wastewater). The qm determined for the adsorption of SMX onto both carbons 359 

in wastewater was lower than in ultra-pure water. However, while in the case of GACN the 360 

adsorption capacity decreased to a half (from 98 ± 17 to 49 ± 6 mg g
-1

), the decrease was 361 

more accentuated for PSA-PA (from 44 ± 5 to 6 ± 1 mg g
-1

). Finally, as evidenced in Figure 362 

4 and confirmed by the parameters in Table 6, the adsorption of PAR onto both carbons 363 

remained mostly the same in wastewater and in ultra-pure water. 364 

  365 

4. Discussion 366 

 Analysing the structural properties of both carbons (Table 5), it is possible to see 367 

that SBET and W0 are very similar, indicating that these parameters are probably not the 368 

main factors influencing the differences observed between the GACs with respect to the 369 

adsorption of the studied pharmaceuticals. However, Vp and D of GACN are significantly 370 

superior to those of PSA-PA. Taking into account the similar value of the W0 for both 371 

GACs, a larger Vp in GACN indicates that this carbon has a higher presence of mesopores 372 

in its porous structure. Furthermore, the pore size distribution (Figure 1) clearly evidences 373 

that GACN has a broader distribution of the pore sizes in the range of mesopores (2-50 374 

nm), while PSA-PA has a higher presence of pores below 5 nm. Therefore, the mesoporous 375 

character of the GACN could explain to a certain extent the better results of the adsorption 376 

experiments for this adsorbent. This might be due not only to the importance of mesopores 377 

as channels that guarantee the accessibility to micropores but also to the molecular sizes of 378 

the studied pharmaceuticals, which are very close to the PSA-PA average pore diameter 379 
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(between 0.653 and 1.174 nm for CBZ and between 0.623 and 1.362 nm for SMX (Nielsen 380 

et al., 2014)). The influence of these parameters in the adsorption of pharmaceuticals onto 381 

waste-based activated carbons has also been reported by Mestre et al. (2009). On the other 382 

hand, for PSA-PA, which possesses a higher amount of functional groups (Table 3), surface 383 

interactions are more likely to be present.  384 

Considering the adsorption of CBZ, for both GACs and matrices, the compound is 385 

mainly in the neutral form (see pKa values in Table S1, in section 1 of SM), which indicates 386 

that electrostatic forces do not play a significant role in the adsorption process. Also, CBZ 387 

has a low solubility in water at 25 ºC and a high log Kow (Table S1, in section 1 of SM), and 388 

therefore, hydrophobic interactions may play an important role mainly in ultra-pure water. 389 

Considering that the adsorption of CBZ onto GACN is higher than in PSA-PA, GACN 390 

might be more hydrophobic than PSA-PA, since it possesses fewer surface functional 391 

groups and higher prevalence of graphitic carbon and thus a higher degree of aromaticity 392 

(Tables 2-4). In this context, and particularly for GACN, π–π interactions may occur 393 

between CBZ benzene rings (that act as a π–electron acceptor due to the amide 394 

functionality, which functions as an electron withdrawing group (Cai and Larese-Casanova, 395 

2014)) and the aromatic benzene rings of the graphitic part of the carbon that can act as π–396 

electron donor groups, forming a π– π electron donor-acceptor complex.  397 

 Relative to the adsorption of SMX and similarly to CBZ, π–π interactions can occur 398 

between the π-donor hydroxyl substituent groups of the benzene rings and the π-acceptor of 399 

SMX amino group and N-heteroaromatic rings (Zhang et al., 2010). This last interaction 400 

may have contributed, in part, to the higher adsorption capacity of SMX onto GACN, since 401 

according to the H/C ratio (Table 2) and as above referred, this carbon presents a higher 402 

degree of aromaticity and, therefore, of graphitic carbon (as confirmed by the XPS results 403 
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(Table 4)). The reduction of the adsorption capacity of the GACs towards SMX from ultra-404 

pure water to wastewater can be explained by the pH change, since in the case of the 405 

wastewater matrix (pH between 7 and 8), both GACs present a negative net charge (pHpzc 406 

between 4 and 5) and SMX species are mostly present in the anionic form (see pKa values 407 

in Table S1, in section 1 of SM), and therefore, electrostatic repulsion is likely to occur. 408 

Besides, SMX is the pharmaceutical possessing the lowest log Kow value (see Table S1, in 409 

section 1 of SM), being the less adsorbed pharmaceutical in this condition. 410 

For the adsorption of PAR onto both GACs, no significant differences were verified 411 

between adsorption capacities in ultra-pure water and wastewater (Figure 4). In fact, PAR 412 

is mostly present in its positive form in both matrices (see pKa values in Table S1, in 413 

section 1 of SM) and thus, in the case of wastewater, electrostatic interactions have 414 

certainly an important role in the adsorption process, balancing competitive effects that 415 

may affect the carbons’ adsorption capacity. Also, PAR possesses a high value of log Kow 416 

(see Table S1, in section 1 of SM), which is considered to positively influencing the 417 

adsorption onto the nonpolar surface of activated carbons (Çeçen and Aktaş, 2011). 418 

All the target pharmaceuticals possess hydrogen-bonding acceptors, namely, three H 419 

bond acceptors in CBZ, four in PAR and six in SMX (Table S1, in section 1 of SM). 420 

Analysing the qm values for the three pharmaceuticals in ultra-pure water for PSA-PA, it is 421 

possible to observe some correlation with the number of hydrogen-bonding acceptors as 422 

PSA-PA shows a higher adsorption capacity for SMX (the pharmaceutical with higher 423 

hydrogen bond acceptors), and a smaller adsorption capacity for CBZ (the one possessing 424 

the lowest number of hydrogen bond acceptors). This can point out hydrogen bonding as 425 

one of the possible mechanisms occurring in the adsorption of these pharmaceuticals in 426 

ultra-pure water onto PSA-PA. This tendency, however, is not maintained in the 427 
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wastewater matrix, where the highest adsorption capacity is obtained for PAR, followed by 428 

CBZ, and SMX. Thus, as referred above, pH effects and electrostatic interactions appear to 429 

be important factors ruling the adsorption of the studied pharmaceuticals in wastewater.  430 

5. Conclusions 431 

In this work, fourteen different procedures were tested to accomplish the challenge 432 

of producing a GAC from an industrial waste. The production of a GAC was only possible 433 

using AL as binder agent and it was successfully achieved by a procedure involving a two-434 

step pyrolysis. Then, the resulting material (PSA-PA) was applied for the adsorptive 435 

removal of CBZ, SMX and PAR from water. It was found that PSA-PA exhibits very 436 

similar physicochemical properties to a commercial GAC (GACN, used as reference) in 437 

what concerns SBET, micropore volumes, predominance of surface phenol and carboxylic 438 

groups and acidic pHpzc. However, PSA-PA possesses a total pore volume and an average 439 

pore diameter twice lower than GACN, indicating a significantly higher presence of 440 

mesopores in GACN, which may be responsible for the lower adsorption capacity of PSA-441 

PA towards the considered pharmaceuticals. On the other hand, the adsorption capacity of 442 

PSA-PA and GACN was strongly affected by the matrix, with a significant decrease in the 443 

adsorption of CBZ and SMX from wastewater as compared with ultra-pure water. 444 

However, the same effect was not verified for the adsorption of PAR, which could be 445 

explained by pH effects and electrostatic interactions. Although PSA-PA showed lower 446 

adsorption capacities than GACN for ultra-pure water and wastewater tests, it should be 447 

considered that the produced adsorbent is a waste-based carbon, and other parameters apart 448 

from the maximum adsorption capacity (such as its dynamic behaviour and cost) need to be 449 

studied in detail in future works. For example, relatively fast adsorption rate for some of the 450 

studied cases was here verified, indicating the potential of PSA-PA. Overall, this study 451 
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represents a step forward in the utilization of PS as raw material for GAC production, 452 

enabling its application in fixed-bed systems for the adsorption of pharmaceuticals, which 453 

will be considered in future work of this research group.  454 
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Table 1 – Experimental conditions tested for the production of a GAC using primary paper mill sludge (PS) as 

precursor, ammonium lignosulfonate (AL) as binder agent and different chemical activating agents (AA). 

 

Test 
Activating agent 

(AA) 

Ratio  

(w/w/w) 
Procedure 

A K2CO3 10:10:1
a
 AL was mixed in different proportions with PS and with the AA solution. It 

was left to dry and pyrolysed at 800 ºC for 150 min. From tests A to C, AL 

was added as an aqueous solution; from tests D to H, AL was added as a 

powder. 

B K2CO3 4:4:1
a
 

C K2CO3 2:2:1
a
 

D K2CO3 10:10:1
a
 

E K2CO3 4:4:1
a
 

F K2CO3 2:2:1
a
 

G KOH 2:2:1
a
 

H H3PO4 2:2:1
a
 

I KOH 2:2:1
a
 PS was firstly washed with HCl 1.2 M and then with distilled water until 

neutral pH was reached, for the removal of ashes. Next, washed PS was mixed 

with AL (in powder) and AA, left to dry and pyrolysed at 800 ºC for 150 min. 

J KOH 2:2:1
a
 PS was mixed with AL (in solution) in an overhead shaker for 12 h. After 

drying at room temperature, it was added to AA, left to dry and pyrolysed at 

800 ºC for 150 min. 

K KOH 2:2:1
a
 PS was mixed with AA and left to dry at room temperature. Next, AL (in 

solution) was added and the mixture was dried and pyrolysed at 800 ºC for 

150 min. 

L K2CO3 2:2:1
a
 

M K2CO3 6:5
b
 and 1:1

c
 PS was mixed with the AL (in solution), dried and pyrolysed at 500 ºC for 10 

min. The obtained carbon (PSA) was then mixed with the AA at a 1:1 ratio 

(PSA:AA, w:w). This mixture was shaken during 1 h in an ultrasonic bath, 

dried and pyrolysed at 800 ºC for 150 min. The final carbon (PSA-PA) was 

then washed with HCl 1.2 M and distilled water until neutral pH was reached. 

N KOH 6:5
b
 and 1:1

c
 

   

a
PS:AA:AL ratio; 

b
PS:AL ratio; 

c
PSA:AA ratio 

Note: All the pyrolysis experiments were carried out under N2 atmosphere. 
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Table 2 – Proximate and ultimate analyses for PSA-PA and GACN. 

  PSA-PA  GACN 

Proximate Analysis (db)   

Moisture (wt%) 8 8 

Volatile Matter (wt%) 13 6 

Fixed Carbon (FC) 77 81 

Ash (wt%) 9 13 

FC/VM 6 14 

Ultimate Analysis (dab)   

%C 81.2 92.4 

%H 1.9 0.75 

%N 3.0 0.75 

%S 0.80 0.05 

%O 13.1 6.0 

H/C 0.02 0.008 

O/C 0.16 0.06 

N/C 0.04 0.008 

Notes:  

Except for moisture, all values in proximate analysis are presented in a dry basis (db).  

FC values were determined by difference.  

Ultimate analysis is presented in a dry and ash free basis (dab). 

The values of %O were estimated by difference: %O = 100% - (%C + %H + %N + %S). 

 

 

 

Table 3 – Amount of acidic and total basic functional groups of PSA-PA and GACN determined by Boehm’s 

titration. 

Material 

Amount of functional groups (mmol g
-1

) 

pHpzc 
Carboxylics Lactones Phenols Basic (total) 

PSA-PA 1.29 0.29 0.96 0.31 4.3 

GACN 1.03 0.02 0.31 0.34 4.8 

 

 

 

 

 

 

 

 

 

 

 



 

Table 4 – X-ray photoelectron spectroscopy (XPS) results for PSA-PA and GACN. 

 
 PSA-PA  GACN 

 
Possible bond assignment 

 
Peak 

Binding 

Energy (eV)  
%   

Binding 

Energy (eV)  
%   

 

C 1s 1 284.5 58.5  284.6 68.4  C sp
2
; graphitic carbon

 

 2 285.8 22.0  285.8 10.2  C-C sp
3
; C-(O, N, H): phenolic, alcoholic, 

etheric carbon 

 3 287.6 7.3  287 8.2  C=O: carbonyl or quinone 

 4 289 6.3  288.9 5.4  O-C=O: carboxyl or ether 

 5 291 5.9  291 7.7  π-π* transition in C 

O 1s 1 531.1 20.1  531.2 24.4  C=O: carbonyl or quinone 

 2 533 54.6  533 44.4  C=O: carboxyl/carbonyl or 

sulfoxides/sulfones; O-C: phenol/epoxy, 

ether, ester, anhydride, carboxyl 

 3 - -  534.4 22.0  -COOH or -COOR 

 535.3 17.5  - -  Water or chemisorbed oxygen 

 4 537.6 7.7   536.5 9.2   Chemisorbed water  

N 1s 1 398.0 18.9  - -  Pyridinic N (N-6) 

 2 400.1 81.9  - -  Pyrrolic N (N-5) 

 

 

Table 5– Textural characterization of PSA-PA and GACN. 

Sample 

Apparent 

density, 

ρHg 

(g cm
-3

) 

N2 adsorption at −196 °C 

SBET  

(m2 g-1) 
Vp 

(cm3 g-1) 

Dubinin-Radushkevich 

(DR) 
D  

(nm) 

Dubinin-Astakhov 

(DA) 

W0 

(cm3 g-1) 
L  

(nm) 
W0 

(cm3 g-1) 
L  

(nm) 

PSA-PA 0.61 671 0.37 0.27 1.44 1.11 0.28 1.58 

GACN 0.65 629 0.75 0.27 - 2.38 0.30 1.71 

Vp - total pore volume; W0 - micropore volume; L - average micropore width; D - average pore diameter (2Vp/SBET, 

assuming slit-shaped pores) 
 

 

 



 

Table 6 – Fitting results of the kinetic and equilibrium models for the adsorption of CBZ, SMX and PAR from ultra-pure water and wastewater (STP effluent) 

onto PSA-PA and GACN. 

 PSA-PA GACN   PSA-PA GACN   PSA-PA GACN 

CBZ  SMX  PAR 

ultra-pure 

water 

STP 

effluent 

ultra-pure 

water 

STP 

effluent 
  

ultra-pure 

water 

STP 

effluent 

ultra-pure 

water 

STP 

effluent 
  

ultra-pure 

water 

STP 

effluent 

ultra-pure 

water 
STP effluent 

Kinetic models               

PFO qt 44 ± 1 14 ± 1 52 ± 2 22 ± 2  38 ± 3 4.3 ± 0.3 60 ± 3 20 ± 1  34 ± 3 20 ± 5 23 ± 3 21.0 ± 0.8 

 k1 (1.22 ± 

0.08) x10-3 

(2.0 ± 0.6) 

x10-3 

(2.3 ± 0.2) 

x10-3 

(1.1 ± 0.3) 

x10-3 

 (2.4 ± 0.6) 

x10-3 

(3.8 ± 0.8) 

x10-3 

(1.5 ± 0.2) 

x10-3 

(1.1 ± 0.2) 

x10-3 

 (1.1 ± 0.3) 

x10-3 

(4 ± 2)  

x10-4 

(4 ± 1) 

x10-3 

(1.3 ± 0.1) x10-

3 

 R2 0.991 0.863 0.986 0.932  0.936 0.944 0.977 0.971  0.928 0.923 0.847 0.986 

PSO qt 53 ± 2 15 ± 1 63 ± 4 26 ± 3  43 ± 5 4.8 ± 0.3 71 ± 4 24 ± 1  43 ± 7 31 ± 12 26 ± 5 26 ± 2 

 k2 (2.4 ± 0.2) 
x10-5 

(2.1 ± 0.9) 
x10-4 

(3.9 ± 0.8) 
x10-5 

(5 ± 2)  
x10-5 

 (7 ± 3) x10-

5 
(1.1 ± 0.3) 
x10-3 

(2.4 ± 0.5) 
x10-5 

(5 ± 1) x10-

5 
 (2 ± 1)  

x10-5 
(9 ± 10) 
x10-6 

(2 ± 1)  
x10-4 

(5 ± 2)  
x10-5 

 R2 0.995 0.916 0.980 0.950  0.901 0.952 0.983 0.986  0.913 0.918 0.790 0.972 

Isotherm models 

Langmuir qm 24 ± 5 10 ± 1 85 ± 14 Not 

Converged 

 44 ± 5 6 ± 1 98 ± 17 49 ± 6  31 ± 6 34 ± 9 64 ± 12 106 ± 40 

 KL 1.3 ± 0.8 0.5 ± 0.1 2.2 ± 0.9  0.6 ± 0.2 1 ± 1 0.6 ± 0.2 0.30 ± 0.06  0.6 ± 0.2 0.3 ± 0.1 0.6 ± 0.2 0.2 ± 0.1 

 R2 0.895 0.984 0.946  0.970 0.866 0.967 0.995  0.973 0.967 0.960 0.982 

Freundlich KF 12 ± 2 3.2 ± 0.2 57 ± 3 12 ± 1  16 ± 1 3.2 ± 0.5 36 ± 3 10.6 ± 0.4  12 ± 1 8 ± 1 23 ± 3 19 ± 1 

 n 3 ± 1 1.8 ± 0.2 2.4 ± 0.4 1.1 ± 0.1  1.9 ± 0.2 3 ± 1 1.6 ± 0.3 1.3 ± 0.1  1.7 ± 0.3 1.4 ± 0.2 2.0 ± 0.5 1.2 ± 0.1 

 R2 0.845 0.969 0.966 0.950  0.968 0.781 0.937 0.986  0.958 0.947 0.923 0.984 

Sips qm 20 ± 4 8 ± 1 Ambiguous 
fitting 

Ambiguous 
fitting 

 58 ± 45 5.0 ± 0.3  70 ± 10  Ambiguous 
fitting 

 18.5 ± 0.6 19 ± 2 43 ± 2 Ambiguous 
fitting 

 KS 2 ± 2 0.7 ± 0.2    0.4 ± 0.4 5 ± 4 1.3 ± 0.5   2.4 ± 0.4 0.8 ± 0.2  1.3 ± 0.2  

 N 0.6 ± 0.4 0.8 ± 0.2    1.2 ± 0.6 0.3 ± 0.1 0.6 ± 0.1   0.39 ± 0.04 0.5 ± 0.1 0.43 ± 0.06  

 R2 0.905 0.986    0.971 0.959 0.979   0.998 0.982 0.996  

 

   – Amount of adsorbate removed at time t per unit mass of adsorbent (mg g-1);    – Rate constant of pseudo-first order (min-1);    – Rate constant of pseudo-second order (g mg-1 min-1); 

PFO – Pseudo-first order model; PSO – Pseudo-second order model; qe - Amount adsorbed at equilibrium (mg g-1); Ce - Equilibrium concentration of the adsorbate (mg L-1);    – Maximum 

adsorption capacity (mg g-1);    – Equilibrium constant related with the free energy of adsorption (L mg-1);    – Relative adsorption capacity (mg1-1/n L1/n g-1);   – Constant related with the 

degree of non-linearity of the equation;  KS – Affinity coefficient of the Sips model (mg g1- (mg L-1)-1/N); N – degree of non-linearity of the Sips model. 

 



Figure Captions 

 

Figure 1 – Pore size distribution of PSA-PA and GACN. 

Figure 2 – Scanning electron microscopy (SEM) images for PSA-PA and GACN at magnifications 

of 300x, 3000x, 10 000x and 50 000x. 

Figure 3 – Kinetic experimental results and fittings to pseudo-first order (PFO, full line) and 

pseudo-second order (PSO, dashed line) kinetic models for the adsorption of CBZ, SMX and PAR 

onto PSA-PA (dots) and GACN (triangles) in ultra-pure water (full symbols) and in wastewater 

(open symbols). Note: Error bars stand for standard deviations (N = 3). 

Figure 4 – Equilibrium experimental data and fittings to Langmuir (full line) and Freundlich 

(dashed line) isotherm models for the adsorption of CBZ, SMX and PAR onto PSA-PA (dots) and 

GACN (triangles) in ultra-pure water (full symbols) and in wastewater (open symbols). Note: Error 

bars stand for standard deviations (N = 3). 
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