
 
 

 

  

Universidade de Aveiro 

Ano 2018 

EFEITO DA OBESIDADE NO LIPIDOMA DA 
GLÂNDULA MAMÁRIA E A SUA RELAÇÃO COM O 

DESENVOLVIMENTO DE CANCRO  

Departamento de Química 

MARISA  
CONCEIÇÃO 

REIS PINHO 

 



 
 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

O trabalho do laboratório de 

Hormonas e Cancro é apoiado pela 

Fundação para a Ciência e a 

Tecnologia (UID/BIM/04501/2013). 

Apoio financeiro da FCT, da União 

Europeia, QREN, no âmbito do 

Programa Operacional Temático 

Fatores de Competitividade 

(COMPETE).   

 

Apoio financeiro à unidade de 

investigação QOPNA (projeto PEst-

C/QUI/UI0062/2013; FCOMP-01-

0124-FEDER-037296) e RNEM 

(LISBOA-01-0145-FEDER-402-

022125).  

EFEITO DA OBESIDADE NO LIPIDOMA DA 
GLÂNDULA MAMÁRIA E A SUA RELAÇÃO COM 
O DESENVOLVIMENTO DE CANCRO  
 
EFFECT OF OBESITY IN THE MAMMARY GLAND 

LIPIDOME AND ITS RELATION WITH CANCER 

DEVELOPMENT 

 

MARISA  
CONCEIÇÃO 
REIS PINHO 
 

Dissertation in Biochemistry – specialization in biomolecular 

methods, written under the scientific guidance of Prof. Doctor Maria 

do Rosário Gonçalves Reis Marques Domingues, Associated 

Professor with aggregation of the Department of Chemistry University 

of Aveiro and Doctor Luisa Alejandra Helguero Shepherd Assistant 

Professor at the Department of Medical Sciences, University of Aveiro 

Universidade de Aveiro 

Ano 2018 

Departamento de Química 



 
 

 

  



 
 

 

o júri  
 

presidente  Professora Doutora Rita Maria Pinho Ferreira 
Professora auxiliar, Universidade de Aveiro 

   

 

 Doutora Iola Melissa Fernandes  
Equiparada a investigadora principal, Universidade de Aveiro 

  

 

 Professora Doutora Luisa Alejandra Helguero  
Professora auxiliar, Universidade de Aveiro 

  

  

  

  

  

  

  

  

  



 
 

 

 

 

 

Palavras-chave 

Resumo 

Obesidade, cancro da mama, PPAR, metabolismo lipídico, ácidos gordos, 
lipidómica, PE, LPE, PC LPC, SM, Cer, TAG, espetrometria de massa, 
glândula mamária 

A prevalência de excesso de peso e obesidade têm vindo a aumentar 
mundialmente e está associada ao desenvolvimento de diversas patologias 
como: doenças cardiovasculares, hipertensão, diabetes mellitus e outras 
doenças crônicas. Adicionalmente, mais recentemente, estudos 
epidemiológicos mostraram que a obesidade está associada ao aumento do 
risco de desenvolver diversos tipos de cancro, incluindo o cancro de mama. 
Os lípidos têm diversas funções, incluindo sobrevivência celular, proliferação, 
sinalização celular e morte, uma vez que estão envolvidos no armazenamento 
de energia química, sinalização celular, membranas celulares e interações 
célula-célula. Por este motivo, quaisquer alterações no ambiente lipídico 
podem ter consequências graves na resposta celular normal a uma situação, 
contribuindo para o desenvolvimento de cancro. Como tal, o objetivo deste 
trabalho foi estudar as alterações no lipidoma da glândula mamária 
relacionadas com a obesidade e como essas alterações se podem relacionar 
com o aumento do risco de desenvolver cancro de mama na obesidade. Para 
tal foram usadas glândulas mamárias obtidas de um modelo animal onde a 
obesidade foi induzida pela dieta. As técnicas de análise utilizadas foram Q-
TOF (para triacilgliceróis), GS-MS (para os ácidos gordos) e LC-MS (para os 
fosfolípidos). Os resultados mostraram um aumento nos níveis dos 
triacilgliceróis que mais ricos nos ácidos gordos C18:2 (n-6). Esses ácidos 
gordos foram reportados que quando oxidados produzem aldeídos que podem 
formar aductos promutagénicos com o DNA, podendo desta forma contribuir o 
desenvolvimento da carcinogénese. Adicionalmente, os níveis de 
fosfatidilcolinas mais saturadas e com mais carbonos diminuíram, dando 
origem a membranas celulares mais fluidas, característica das células 
cancerígenas, além de uma diminuição nos níveis de ceramidas, lípido que 
tem atividade antiproliferativa, mostrando assim que o processo apoptótico 
pode estar afetado na obesidade. Por último, também relatamos uma 
diminuição nos níveis de fosfatidiletanolamina e plasmenil etanolamina, que 
pode estar relacionado com a diminuição na proteção antioxidante de lipídios 
de membrana. Em suma, na obesidade existe uma alteração no lipidoma da 
glândula mamária que contribui para uma maior predisposição de mutações 
de DNA assim como a alteração na resposta apoptótica e autofágica da célula, 
o que por sua vez pode contribuir para o aumento do risco de desenvolvimento 
de cancro da mama. 
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The prevalence of overweight and obesity is increasing worldwide and has 
been associated several comorbidities like cardiovascular diseases, 
hypertension, diabetes mellitus and other chronic diseases. In addition, more 
recently epidemiological studies have shown that obesity is associated with 
increased risk of many types of cancer, including breast cancer. Lipids have 
many functions, including cellular survival, proliferation, cell signaling and 
death, since they are involved in chemical-energy storage, cellular signaling, 
cell membranes, and cell–cell interactions. For this reason, any alterations in 
the lipid environment can bring severe alterations to the normal cell response 
to a situation, contributing to cancer development. Therefore, the objective of 
this work was to study the alterations in the lipidome of the mammary gland 
related to obesity and how those alterations may be related to the increase 
risk of developing breast cancer in obesity. For such, the mammary gland 
used were obtain from an animal model where obesity was induced by diet. 
The techniques used where Q-TOF (for triacylglycerol), GS-MS (for the fatty 
acids) and LC-MS (for the phospholipids). Our results show an increase in the 
levels of the triacylglycerol richer in fatty acid C18:2 (n-6). Those fatty acids 
have been reported to when oxidized produce aldehydes that form can form 
promutagenic adducts with DNA in human cells and thus may contribute to 
human cancers. In the phospholipids analyses we saw a decreased in the 
levels of phosphatidylcholines, more saturated and with more carbons, giving 
origin to more fluid cell membranes, a characteristic associated to cancer 
cells. In addition, we also saw a decreased in the levels of ceramides a lipid 
that has an anti-proliferative activity, showing this way that the normal 
apoptotic cells response may be impaired in obesity. Lastly, we also report a 
decrease in the levels of phosphatidylethanolamine and plasmyl-
phosphatidylethanolamine which can be associated to a decrease in the 
antioxidant protection of membrane lipids. In sum, in obesity there is a 
modifications in the mammary gland lipidome that contributes for a higher 
predisposition to DNA mutations as well as, for an alteration in the apoptotic 
and autophagy response of cells, being that this may contribute to a higher 
risk of developing breast cancer.  
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1. Introduction 

Obesity is a common but often underestimated condition of clinical and public health 

that has a major impact in many countries around the world. Body mass index (BMI) is a 

simple parameter and is most commonly used for classifying various degrees of overweight 

and obesity. It is calculated from the weight of the individual in kilograms divided by the 

square of the height in meters (kg/m2).Based on the World Health Organization (WHO) 

criteria BMI <18.5kg/m2 is considered underweight, 18.5–24.9 kg/m2 ideal weight, 25–

29.9kg/m2 overweight or pre-obese and  lastly BMI ≥ 30kg/m2  obese. However, BMI may 

not correspond to the same degree of fatness in different populations due, in part, to different 

body proportions.(1) 

Overweight together with obesity affects nowadays around a third of the world’s 

population. However, the prevalence of this conditions is predominant in developed 

countries and has markedly increased between 1980–2008.(2) The higher the BMI the higher 

the risk of developing comorbidities such as diabetes, hypertension, hyperlipidemia and 

cancer.(3,4)The objective of this review it’s to discuss how the lipid alterations seen in 

obesity can be related in breast carcinogenesis and if this lipid alterations could result in 

differential activation of the peroxisome proliferator activated receptors (PPARs). 

2. Animal models of obesity 

The increasing  prevalence of obesity makes it imperative to use animal models that 

share similar characteristics of human obesity and its comorbidities in the pursuit for novel 

preventions and/or treatments.(5) Obesity can be considered polygenetic since more than 

one gene is associated to the tendency to develop this disease. Animal models can be 

partitioned into monogenetic models and polygenetic models. The monogenetic models are 

models in which only a single gene is lacking or dysfunctional in the entire animal. 

Monogenic animal models of obesity are useful because the obesity and the adiposity may 

be severe, resulting in a distinct phenotype. This distinct phenotype might be important for 

certain aspects of obesity research such as the expression of the leptin, insulin secretion and 

resistance.(6,7,8) The monogenic models are: 

- KK-Ay mice are a mouse model with peripheral insulin sensitivity and glucose 

intolerance.(9) The KK strain is an insulin resistant strain that results in diabetes and 

mild obesity.(10) When  an Agouti (Ay) mutation is induced into the KK strain the  

KK-Ay mice are produced.(11) The Ay gene is ubiquitously expressed in the KK-Ay 
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mouse, and the agouti protein is thought to act as a melanocortin 4 receptor 

antagonist, thereby inhibiting the signals from alpha-melanocyte stimulating 

hormone (α-MSH) and affecting the regulation of energy balance.(12,13) Thus, KK-

Ay can be considered a mouse with a monogenic defect but in a polygenic 

background that results in a predisposition for obesity. The obesity is partially caused 

by hyperphagia, and the typical diabetes phenotype of KK-Ay mice exhibits a 

hyperglycemia, hyperinsulinemia, and glucose intolerance.(14,15) 

- Ob/ob mouse model lacks leptin production, it’s a monogenic model used in obesity 

and diabetes. Worldwide several colonies of ob/ob mice exists, each of them with a 

different mutation showing variations of the phenotype.(16) Obesity is the first 

observable phenotypic characteristic of the ob/ob mouse, whereas insulin resistance 

and hyperglycemia follow the development of obesity. In addition, obesity is further 

increased in ob/ob mice because of a defect in thermogenesis in brown adipose tissue 

and therefore a larger deposition of ingested energy as fat.(17),(18) Furthermore, 

lipogenesis, especially hepatic, is enhanced in ob/ob mice, which also adds to the 

disposition for an obese phenotype.(19) 

- The Zucker rat has a homozygotes mutation (fa/fa). It develops an early onset obesity 

because of a defective leptin receptor.(20) Under normal conditions, leptin produced 

from adipose tissue signals acts via the leptin receptor to reduce food intake. In this 

rat, this regulatory path is nonfunctional, and despite high levels of circulating leptin, 

the rats remain hyperphagic.(21) In addition to obesity, the Zucker rat also develops 

insulin resistance, but glycemic levels remain normal, and they do not develop overt 

diabetes.(22) 

In contrast to diseases caused by single-gene defects, many of the most common 

human pathologies, including obesity exhibit continuous phenotypic variation and a 

predominantly multifactorial and polygenic basis.(23) The polygenic models are another 

category of animal models that can be used in different models in obesity. They combine the 

contribution of the genetic (e.g. genes associated with lipid and insulin metabolism) with the 

environmental stimuli responsible for the different obesity phenotypes.(24) The polygenic 

animal models are: 

- Diet-induced obese rats and mice (DIO) are more human-like models since the 

obesity is based on several factors, including an excessive intake of calories. 
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However, in the diet-induced obesity there is a large variation both with respect of 

the diet used as well as the strain used (strain which has a pronounced weight gain or 

strain considered obesity resistant).(25) Different predefined mouse and rat diets for 

obesity induction can vary in the percentage of calories from fat and carbohydrates, 

as well as the source of fat or carbohydrates, all of which can result in minor 

differences in phenotypes. In rodents, a high-fat and high-fructose diet has been 

shown to result in metabolic syndrome with obesity and changed body 

composition.(26,27) 

- Cafeteria diet-induced obesity mainly results from hyperphagia that is partly 

compensated by increased energy expenditure, in particular diet-induced 

thermogenesis (DIT) due to sympathetic activation of brown fat. Overeating of 

cafeteria diets is due to increased average meal size as well as increased meal 

frequency.(28) This contrasts with overeating of palatable diets with no choice of 

foods, which mainly influences meal size.(29) 

- UCD-T2DM rat is a polygenic rat model with adult-onset obesity, insulin resistance 

and late onset type 2 diabetes that maintains leptin signaling without dietary 

intervention.(30) 

- The New Zealand obese (NZO) mouse is a polygenic model that develops 

hyperphagia and juvenile onset obesity, even when fed a low fat diet. In addition, as 

a number of genetic susceptibility loci that favor the development of adiposity and 

hyperglycemia have been identified in NZO mice. This animal model has been 

primarily used for pharmacogenetics studies.(31) 

- Tallyho mouse is a model with moderate obesity and male-derived 

hyperglycemia.(32) The increased food intake and not reduced energy expenditure, 

is the reason for the obesity. In addition, Tallyho mice have hypothalamic leptin 

resistance and upregulation of NPY mRNA levels.(33) 

Table 1 summarizes all the characteristics of the different models discussed in this text. 
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Table 1 - Comparison between the different animal models of obesity. MG- monogenetic model; PG – polygenic model 
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KK-Ay X X X X X 

Ob/ob X X X X Mild 

Zucker X X X X ___ 
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DIO / Cafeteria diet-induced obesity X ___ X X ___ 

UCD-T2DM X X X X X 

NZO X X __ __ X 

Tallyho X X __ __ X 

 In sum, there are a number of valid surrogate animal models of human obesity that 

can be utilized in the discovery and developmental process. All these models differ from 

each other on different aspects, making each of them ideal for the study of distinct aspects 

of human physiology. Human obesity phenotype is mainly caused by the interaction between 

genetic and environmental factors, therefore, the model that best reflects this condition the 

DIO model. 

 In obesity the adipocyte hypertrophy and excessive adipose tissue accumulation 

promotes adiposopathy resulting on abnormal levels of local and circulating lipids, making 

these an important class of biomolecules to study their association with the comorbidities 

related to this disease. 

3. Lipid classes 

 Lipids area major class of biological molecules and play many key roles in different 

processes having structural (e.g., by stabilizing different membrane phenotypes and 

biochemical characteristics) and signaling function.(34,35) Lipids include nine categories: 

fatty acids (FAs), triacylglycerol (TAG), glycerophospholipids (GPLs), glycerolipids (GLs), 

prenol lipids (PRLs), saccharolipids (SCLs), sphingolipids (SLs), sterol lipids (STLs) and 

polyketides (PK) – table 2.(36) The majority of the FAs are esterified in the other lipid 

classes. Structurally, FAs are simple lipids, whereas GPLs, GLs, SLs, and STLs are more 

complex lipids.(37,38) 
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TAGs molecule is made up of 3 molecules of fatty acids that are connected to a 

glycerol molecule. While a glycerol molecule is made up of 3 carbon molecules with an OH 

bond on each, the fatty acid molecule is made up of a long chain of carbon and hydrogen 

(hydrocarbon) atoms with a carboxyl (-COOH) group at one end.(38) 

When it comes to GPLs, there are numerous classes that include numerous molecular 

species with different combinations of polar heads at the sn-3 position and acyl moieties at 

the sn-1 and sn-2 positions, respectively, likephospholipids (PLs) and 

lysophospholipids.(39) Based on the type of polar heads at the sn-3 position of the glycerol 

backbone, PLs be divided into: phosphatidic acid (PA), phosphatidylcholines (PC), 

phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylinositol (PI) and 

phosphatidyloserine (PS).  

SLs are essential bioactive compounds of cellular membrane, and include ceramides, 

cerebrosides, gangliosides, sphingomyelins (SMs) and sulfatides (STs). SL structure is 

formed by a sphingoid base backbone: the head group attached to the primary hydroxyl 

group, N-acyl group and sphingoid-base backbone determines a change in structure of  SLs. 

(41) 

In addition, lipids contain FAs classified according to the presence or absence of 

double bonds as saturated (SFAs—without double bonds), monounsaturated (MUFAs—

with one double bond) and polyunsaturated fatty acids (PUFAs—with two or up to six 

double bonds); further, as cis or trans bond, based on the configuration of the double bonds 

defines n-3 or n-6 PUFAs depending on the position of the first double bond from the fatty 

acid methyl-end.(43,44) 

Table 2 - Classification of lipids based on structures. The table lists different lipid classes and an example for each class: 
fatty acids (FAs), triacylglycerol (TAGs) glycerophospholipids (GPLs), glycerolipids (GLs), prenol lipids (PRLs), saccharolipids 
(SCLs), sphingolipids (SLs), sterol lipids (STLs) and polyketides (PK). 

Lipid 

category 
Example Structure 

FAs Hexadecanoic acid 
 

TAGs 

(6Z,9Z,28Z,31Z)-19-

(16,17,18-trihydroxy-15-

oxooctadecyl)heptatriaconta-

6,9,28,31-tetraene-18,20-dione  
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GPLs 

1-hexadecanoyl-2-(9Z-

octadecenoyl)-sn-glycero-3-

phosphocholine  

GLs 
1-hexadecanoyl-2-(9Z-

octadecenoyl)-sn-glycerol 

 

PRLs 2E,6E-farnesol 
 

SCLs 

UDP-3-O-(3R-hydroxy-

tetradecanoyl)-αD-N-

acetylglucosamine 

 

SLs 
N-(tetradecanoyl)-sphing-4-

enine 

 

STLs Cholest-5-en-3β-ol 

 

PK Aflatoxin B1 

 

In conclusion, lipids are a class of biomolecules may be composed by FAs and can 

be divided into nine categories: FAs, TAGs, GPLs, GLs, PRLs, SCLs, SLs, STLs and PK. 

Each of these class of lipids have different functions that are essential for cell structure and 

functioning, contributing to the homeostasis of the organism. Any alterations of the normal 

lipid composition and profile can be associated with diseases such as cardiovascular 

diseases, cancer and others.(45,46) 
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4. Metabolic Changes in obesity  

The majority of adult mammalian tissues satisfy their lipid requirements through the 

uptake of free fatty acids (FFAs) and lipoproteins, like low-density lipoprotein (LDL), from 

the bloodstream. FAs and cholesterol biosynthesis are restricted to a subset of tissues, 

including liver, muscle and adipose tissues.(47,48,49) In the context of breast cancer, obesity 

and lipid biosynthesis are important because the mammary gland activates lipid metabolism 

during lactogenic differentiation and the mammary epithelium is embedded in subcutaneous 

fatty tissue. Thus, adiposopathies resulting from obesity likely contribute to the increase of 

breast cancer incidence observed in obese women.(50) 

The first step in FA and cholesterol biosynthesis is the production of acetyl-CoA 

from citrate by the enzyme ATP-citrate lyase (ACLY). Acetyl-CoA  is then converted into 

malonyl-CoA by the enzyme acetyl-CoA carboxylase (ACC).(51) Acetyl-CoA and malonyl-

CoA are then coupled to the acyl-carrier protein domain of the multifunctional enzyme fatty 

acid synthase (FASN). The repeated condensations of acetyl groups generate the saturated 

FA: palmitic acid, that can be further elongated and desaturated to generate a diverse 

spectrum of saturated and unsaturated FAs synthesized by mammalian cells and used as 

precursors for GLPs eicosanoids and more.(52) Most of the acetyl-CoA used for de novo FA 

and cholesterol biosynthesis is generated from glucose via the conversion of pyruvate to 

citrate in the tricarboxylic acid (TCA) cycle – figure 1.(53) Humans and mice are not able 

to generate some FAs (Essential FAs - EFAs), the omega n-3 or n-6 (e.g. linoleic acid and 

α-linoleic acid), need to be provided by the diet, however humans are able to synthetize 

longer omega n-3 or n-6 through a series of desaturations and elongations to these 

EFAs.(54,55) 
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Figure 1 - Schematic overview of the pathways involved in the synthesis of FAs (fatty acids), cholesterol, phosphoglycerides, 
eicosanoids and sphingolipids. The enzymes involved in lipid biosynthesis are indicated in red. (a) Glucose- or glutamine-
derived citrate is first converted to acetyl-CoA by ACLY (ATP-citrate lyase). (b) For FA biosynthesis, acetyl-CoA is converted 
into malonyl-CoA. The repeated condensation of acetyl-CoA and malonyl-CoA by the multifunctional enzyme FASN (fatty 
acid synthase) leads to the generation of palmitic acid (16:0). The introduction of a double bond in the Δ9 position of the 
acyl chain by SCD (stearoyl-CoA desaturase) generates mono-unsaturated FAs. (c) Subsequent elongation and further 
desaturation produces FAs with different saturation levels. (d) Essential FAs need to be provided from dietary sources. (e,f) 
Saturated and unsaturated FAs are combined with glycerol-3-phosphate (glycerol-3-P) to generate (e) phosphoglycerides 
and (f) phosphoinositides. (g) Arachidonic acid, is used for the synthesis of eicosanoids. (h) Sphingolipids contain acyl 
chains and polar head groups derived from serine, phosphocholine or phosphoethanolamine. (i) Cholesterol biosynthesis 
is initiated by the conversion of acetyl-CoA to acetoacetyl-CoA. Addition of another acyl group by HMGCS (3-hydroxy-3-
methylglutaryl-CoA synthase) produces 3-methylglutaryl-3-hydroxy-CoA, which is converted to mevalonate by HMGCR (3-
hydroxy-3-methylglutaryl-CoA reductase). Subsequent reactions result in the production of farnesyl-pyrophosphate. 
Cholesterol also forms the structural backbone for steroid hormone biosynthesis. Enzyme abbreviations: ACAT, acetyl-CoA 
acetyltransferase; ACC, acetyl-CoA carboxylase; AGPAT, 1-acylglycerol-3-phosphate O-acyltransferase; COX1/2, 
prostaglandin-endoperoxide synthase (PTGS); DGAT, diacylglycerol O-acyltransferase; ELOVL, fatty acid elongase; FADS, 
fatty acid desaturase; GPAT, glycerol-3-phosphate acyltransferase; PPAP, phosphatidic acid phosphatase; SPHK, 
sphingosine-1-kinase. Metabolite abbreviations: α-KG, α-ketoglutarate; CDP-DAG, cytidine diphosphate-diacylglycerol; 
CER, ceramide; DAG, diacylglycerol; LPA, lysophosphatidic acid; PA, phosphatidic acid; PC, phosphatidylcholine; PE, 
phosphatidylethanolamine; PG, phosphatidylglycerol; PGE2, prostaglandin E2; PGH2, prostaglandin H2; PI, 
phosphatidylinositol; PIPx, phosphatidylinositol phosphate; PS, phosphatidylserine; S1P, sphingosine-1-phosphate; SPH, 
sphingosine; TAG, triacylglyceride. (Adapted from(56) and(57)) 
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In addition, FAs can be used to generate many different types of lipids. They are 

converted into diacylglycerides (DAGs) and TAGs via the glycerol phosphate pathway. 

However, intermediates of this pathway can be converted into different phosphoglycerides, 

including PC, PE, PS, PI e PG. In addition to phophoglycerides, sphingolipids, and 

eicosanoids are also generated from FAs.(58,59) 

An increase in lipid biosynthesis is a major contributor to increased fat mass, while 

its reduction may be protective against the development of obesity. In the case of obesity, 

carbohydrates consumed in thus excess for the hepatic glycogen storage capacity must be 

converted into lipids for subsequent storage. White adipose tissue (WAT) is the primary 

lipid-storing tissue. High-carbohydrate diets and high-fat diet have been shown to activate a 

lipogenic response in liver tissue since they stimulate the expression of both PGC-1β and 

SREBP1 in liver. PGC-1β coactivates the SREBP transcription factor family and stimulates 

lipogenic gene expression. Also high-fat diets contribute to obesity, as the caloric excess 

must be stored, adipose tissue expands to accommodate this increase in exogenous lipids 

and endogenous lipid synthesis.(60,61) 

Another important event besides lipid biosynthesis is the breakdown of lipids such 

as the hydrolysis of triglycerides into glycerol and FFA (lipolysis) – figure 2. The main 

enzymes responsible for lipolysis are adipose triglyceride lipase (ATGL), hormone-sensitive 

lipase (HSL) and monoacylglycerol lipase (MGL).(62) A defect in HSL expression linked 

to an impaired lipolytic capacity is observed in subcutaneous adipocytes of obese 

subjects.(63) In individuals that have obese relatives the maximum expression of HSL is 

lower as well as the lipolytic capacity of adipocytes, suggesting a defect in fat cell lipolysis 

caused by an impaired expression of HSL in normal weight individuals with a family history 

of obesity.(64,65) This information suggest that impaired lipolysis could therefore constitute 

an early event in the development of obesity. In addition to the alteration of the levels of 

hormone-sensitive lipase in obesity, the adipose triglyceride lipase protein expression and 

TAG hydrolase activity were also shown to be reduced in subcutaneous AT of obese 

subjects.(66) 
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Figure 2 - Schematic delineation of the coordinate breakdown of TAG (triacylglycerols) into DAG (diacylglycerol) promoted 
by ATGL (adipose triacylglyceride lipase). Later, HSL (hormone-sensitive lipase) produces MAG (monoacylglycerol) from 
DAG, and lastly MGL (monoglyceride lipase) transforms MAG into G (glycerol). These enzymes promote the release of FFA 
(free fatty acids). 

Obesity and excessive accumulation of adipose tissue are well known risk factors for 

several types of cancer, including breast cancer. Especially in obesity, the dysfunctional 

adipose tissue releases increased amounts of FFAs. Furthermore, it was shown that breast 

cancer cells and adipocytes, which are a major component of the stromal environment of 

mammary tumors are able to directly interact with each other. On a molecular level, studies 

show that adipocytes exert tumor-promoting effects on breast cancer cells.(67,68,69) The 

elevated levels of FAs can be used by cancer cells for the production of lipids that serve as 

oncogenic lipid signaling molecules, such as lysophosphatidic acid (LPA), prostaglandins 

and sphingosine-1-phosphate (S1P).(70,71,72) 

 In the adipose tissue, oleic acid (C18-1 n-9)  is the most abundant fatty acid esterified 

to TAGs and for this reason has been studied for its potential role in cancer 

progression.(73,74) Recently it was demonstrated that oleic acid induces the expression of 

angiopoietin-like 4 (ANGPTL4) in breast cancer cells, resulting in anoikis resistance and 

metastasis via upregulation of fibronectin.(75) In addition, the expression of ANGPTL4 was 

also induced by palmitic acid and linoleic acid.(76,77) In another study, it was showed that 

AMPK is activated in highly metastatic breast cancer cells treated with oleic acid. AMPK 

promoted the rates of fatty acid oxidation and ATP synthesis in these cells, enabling 

increased cell growth and cell migration. In low metastatic cancer cells, oleic acid reduced 

cell proliferation and migration, indicating a selective tumor-promoting function of oleic 

acid on highly metastatic cancer cells.(78) It was shown that, in highly aggressive breast 

cancer cells, oleic acid enhanced cell proliferation via activation of G protein-coupled 

receptor 40.(79) 
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In conclusion, adult mammalian tissues do the uptake of FFAs and lipoproteins from 

the bloodstream. In addition, de novo lipogenesis is a complex and highly regulated 

metabolic pathway that when it’s stimulated by the excess of carbohydrates contributes to 

the development of obesity. Another important mechanism is lipolysis and in obesity it was 

shown an alteration in the expression of the enzymes involved in this mechanism affecting 

the breakdown of the TAGs. However besides FA, also lipids are involved in cancer and 

obesity and for the study of the lipids alterations and we are able to study them through the 

analysis of the lipidome of breast cells.  

4.1   Lipidome of normal breast vs breast cancer 

The importance of the lipids is that they play essential roles in cellular functions, 

such as survival, proliferation and death, since they are involved in chemical-energy storage, 

cellular signaling, cell membranes, and cell–cell interactions in tissues. These cellular 

processes are strongly related to several carcinogenesis pathways, such as transformation, 

progression, and metastasis.(80,81,82,83) The study of lipids profile in normal cells and lipid 

alterations in cancer cells helps to elucidate metabolic alterations in this disease and discover 

potential biomarkers that can be used later in clinic situations.(80) 

One important lipids group are the PUFAs. They are involved in the inflammatory 

process, which is in turn related to cancer cell survival and motility.(84,85) PUFAs play an 

essential role in normal physiology. Omega-3 PUFAs, are precursors for the production of 

anti-inflammatory eicosanoids and specialized pro-resolving lipid mediators (e.g, resolvins, 

protectins and maresins).(86) In contrast, eicosanoids from the n-6 PUFA–arachidonic acid 

(AA) axis are predominantly linked to pro-inflammatory mediators.(87) In recent years, 

epidemiologic studies have explored the role of n-3 and n-6 PUFAs on cancer risk and shown 

that diets with a low n-3:n-6 ratio are associated with a higher risk of several cancer 

types.(88) Remarkably, in obese woman, an elevated intake of n-3 PUFAs as well as a higher 

dietary intake ratio of n-3:n-6 PUFAs is correlated with reduced breast cancer risk.(89) 

Especially in obesity, increased intake of n-3 PUFAs might be a useful to reduce obesity-

associated inflammation and related tumor risk.(90) A study using WAT from French 

women with either breast cancer or benign breast tumor showed that a decreased risk of 

breast cancer was associated with higher content of n-3 PUFA (18:3, 20:5, 22:6). In contrast, 

a high content of n-6 PUFA was associated with either a trend (20:4, 20:3) or an increased 

risk (18:2, 20:2) risk of developing breast cancer – figure 3.(91) 
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Figure 3 – When comparing benign (control) and malign (disease) mammary gland tissue samples, a decreased risk of 
breast cancer was associated with higher content of n-3 PUFA. In contrast, a high content of n-6 PUFA was associated 
with either a trend or an increased risk. Cis-monounsaturates were all protective, whereas trans-monounsaturates were 
not, or were strongly associated with an increased risk. No association with breast cancer risk was detected for 
saturated fatty acids. (91) 

The previous analysis didn’t take into account the inter-individual differences in the 

WAT content of each FA. For this purpose used the data from 329 patients (cases and 

control) organized according to the age and BMI from lower to higher was used and FAs 

values are represented as different colors for from green (low) to red (elevated). Between the 

two study groups it’s possible to see that the major differences are in the lower right corner 

where in the group of cases the values of n-6 PUFA are more elevated and the ratio of n-6 

to n-3 FA (lower panel) when compared to the controls – figure 4. This study showed that 

lipid profile array provides indication of the combinations of WAT FAs levels associated 

with the risk of breast cancer.(92) 
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Figure 4 - When comparing benign (control) and malign (disease) mammary gland tissue samples. Fatty acid level array 
in patients with benign (controls) or malignant (cases) breast tumors. In this representation, each lane represents a patient 
and each line represents one fatty acid. Fatty acid values are represented as different colors for from green (low) to red 
(elevated). Lower panel represents the ω6(n-6)/ω3(n-3) ratio of polyunsaturated fatty acids. (90) 

The changes in the lipidome of the cancer breast tissue were studied using ESI-MS, 

where it’s possible to observe that in the breast cancer tissue there is a statistical significant 

decreased in the relative abundance of the molecular species of PI (34:4); PE (36:4), (38:5), 

(38:4); PC  (34:2), (36:4). (38:5), (38:4), (38:3); SM (34:2), (36:2), (40:2). In contrast, the 

species of PE (34:1), (36:1); PC (38:6) have a higher relative abundance in breast cancer 

samples when compared to normal tissue samples.(93) Figure 5 shows the significant 

differences between normal breast and breast cancer tissue, which confirms the fact that 

tumor tissue can be easily discriminated from normal cells for all studied cell lines based on 

their lipidomic composition.  
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Figure 5 - Relative abundances [%] of individual molecular species of the phospholipid classes (a) PI, (b) PE, (c) PC, and (d) 
SM in normal and tumor tissues of ten breast cancer patients. Abundances were determined using relative abundances of 
[M-H]− and [M-CH3]− (PE)  ions in negative-ion mass spectra or [M+H]+ ions (PI, PC and SM) in positive-ion mass spectra 
obtained by HILICHPLC/ESI-MS. Statistically significant differences according to T test are indicated by an asterisk * (93) 
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 With the goal to determine the degree of similarity between tumor cell lines and 

tumor tissues and to identify the most dysregulated lipids observed for both models, Cífková 

et al. used breast normal and cancer cell lines and compared the results obtained with a study 

performed previously by them using normal and tumor cell lines (figure 5). The 10 most 

upregulated (A) and 10 most downregulated (B) lipids are represented in the figure 6, 

considering their relative abundance. The most pronounced upregulated lipids are low 

unsaturated PL like PC (32:1), PC (34:1); PI (34:1) as well as highly PUFA like PI (40:6), 

PE (40:6), PC (40:6) and PE (38:4) (figure 6(A)). In contrast, phospholipids containing 

PUFA with the formulas 36:4 and 38:4 (except PE (38:4)) are downregulated (figure 

6(B)).The differences of the relative abundance between the breast tissue and cell lines can 

be related to the fact that there are changes in breast tissues that could be caused by other 

factors in addition to cancer, such as inflammation and immune response. However, we are 

able to see in PI (32:1), PE (32:1), PI (36:4) and PE (36:4) that there are some differences in 

the tendency of the change in the PLs. (94) 

 

Figure 6 - Box plots describing the most important (A) upregulated and (B) downregulated lipids in normal and tumor 
breast cell lines and tissues of breast cancer patients. In case of PI 38:4, y axes values are five times more than shown 
numbers. (94) 
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Doria et al. after a previous study on mouse normal breast cells and breast cancer 

ones, applied TLC ESI-MS on human normal breast cells and breast cancer cell lines, in an 

effort to describe alterations of PL profiles between cancer and normal cell lines driving the 

progression of carcinogenesis. Non-malignant cells showed the highest differences in PE 

content, relative to total amount of PLs, whereas PA presented highest relative abundance in 

metastatic cells. In addition, higher levels of PCs and PI (40:5) were found in migratory 

cells, with metastatic ability.(95) Later a different group, using the GC-MS and direct 

infusion MS for the lipidomic analysis of breast cancer cell lines (MDA-MB-231 and MCF-

7) with different degrees of invasiveness found that PS (38:4), PI (38:4), and PC (38:4) were 

significantly higher in the highly metastatic MDA-MB-231 cells than in slightly metastatic 

MCF-7 cells. In contrast, the levels of PE (36:2) and PI (36:1) were markedly lower in cells 

with high metastatic potential than in slightly metastatic ones.(96) In a study using MALDI-

IMS, 34 pairs of surgical breast tissues (34 breast tumors with 34 adjacent normal samples) 

where analyzed with the aim of differentiating between tumors and normal tissues shown 

that PC (34:1) was overexpressed in breast cancer.(97) In addition, using high resolution 

MALDI-IMS on nine breast tumor samples and one normal breast tissue, it was showed that 

several PIs were specifically localized into cancer cell clusters, with a heterogeneous 

distribution, which identified two different populations of cancer cells: the first 

predominantly expressed PI (36:1), the second PI (38:3), being that the latter population was 

associated with tumor invasion.(98) 

 A MALDI-IMS approach was employed for investigating the effects of hypoxia and 

necrosis on the heterogeneous lipid composition in breast tumor model. The results showed 

that the lipid distributions into the tumor tissue were characterized by spatial heterogeneity: 

in particular PC (36:0), PC (34:1), PC (36:2) and PC (36:1) were localized in accessible 

tumor areas, whereas LPC (16:0) were localized in necrotic tumor regions. In addition, the 

results also revealed that palmitoylcarnitine, stearoylcarnitine, PC (38:1) and SM 

(d18:1/16:0) are mainly localized in the hypoxic tumor regions. (99) 

 In sum, in this pathology PUFAs play a major role, where n-3 PUFAs have a 

protective effect on the development of the breast cancer and a higher content on n-6 PUFAs 

increases the risk for the development of breast cancer. In addition, when comparing normal 

vs. cancer breast tissue we are able to see some alterations in the PLs relative abundance. 

Cancer cells shown the biggest differences in the relative abundance of PE (some are higher 
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and some are lower). In addition, PI is also associated with the invasion power off tumor 

cells. Nevertheless this field of study is not very explored and as consequence there aren´t 

enough studies relating breast cancer to lipidomic alteration. This type of studies can be very 

useful in the clinical field on diagnose and the prognosis of this disease. In addition we are 

also able to see that the lipid profile of breast tissue is similar to the breast cancer cells lines 

however, in the breast tissue we have a small contribution of the other structures composing 

the breast, besides cancer cells. Therefore, this epithelial-stromal communication resorting 

to specific lipid molecules as signaling mediators can influence cancer development and 

progression. 

 Lipid mediators can trigger physiological responses by activating nuclear hormone 

receptors, such as the PPARs (peroxisome proliferator-activated receptors). PPARs, in order, 

control the expression of networks of genes involved in all aspects of lipid metabolism. In 

addition, PPARs are tumor growth modifiers, via the regulation of cancer cell apoptosis, 

proliferation, and differentiation, and through their action on the tumor cell environment, 

namely, angiogenesis, inflammation, and immune cell functions.(100) 

5. Peroxisome proliferator-activated receptor 

PPARs are proteins belonging to the superfamily of phylogenetically related proteins 

termed nuclear hormone factor.(101) They show low natural ligand specificity, being 

activated by many long-chain saturated and unsaturated FAs and some PLs. Lipids act, 

directly or after metabolic processing, as signaling molecules implicated in the regulation of 

lipid and of carbohydrate metabolism. It is now established that PPARs are involved in such 

regulatory processes by acting as lipid sensors. PPAR agonists have different and 

specificities properties (e.g. different distribution profiles, distinctive gene expression 

profiles) for individual PPAR receptors, which lead to different clinical outcomes.(102,103) 

The family of PPARs is represented by the following 3 members: PPAR-α (mostly 

expressed in liver and skeletal muscle), PPAR-δ (most cell types), and PPAR-γ (adipose 

tissue), each of which mediates the physiological actions of a variety of FA and fatty acids 

derived molecules. Whereupon activated, PPARs translocates to the nucleus and 

heterodimerizes with RXR.(104) PPARs bind to the target genes at a PPAR response 

element (PPRE), where they initiate transcription through the recruitment of the 

transcriptional machinery – figure 7.(105) PPARs can also negatively regulates some genes, 

through the blocking the transcription machinery from bonding to the promoter site. Some 
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transcription factors such as NFκB signal activators and transducers of transcription STAT-

1 and AP-1 signaling are able to bind the activated PPARs trough DNA-independent protein-

protein interactions resulting also in the transcriptional repression.(106) 

 

Figure 7 - Mechanism of gene transcription by PPARs. PPARs - Peroxisome proliferator-activated receptors; RXR - Retinoid 
X receptor; PPER - PPAR response element. 

5.1   Role of PPARs in energetic metabolism 

 PPARα plays an essential role in intracellular FAs metabolism and tissues. A high 

expression of this receptor induce an increase of the FA catabolism. PPARα regulates the 

expression of genes coding for enzymes implicated in PPARα ligand metabolism and also 

modulates genes involved in FA uptake, activation to acyl-CoA esters, mitochondrial β-

oxidation and ketone body synthesis.(107,108,109) The Expression of putative FAs 

transporter genes, such as the gene for fatty acid transport protein (FATP), are regulated by 

PPARα. The entrance of FAs through the cell membrane is controlled by the activity of 

FATP and by acyl-CoA synthetase (ACS) which traps FAs inside the cells by their 

conversion to ester derivatives, controlling this way the intracellular FAs 

concentration.(110) Furthermore, PPARα deficient mice fed with a HFD showed a 

substantial accumulation of lipids in liver highlighting the crucial role PPARα plays in lipid 

metabolism.(111,112) 

 The rate of mitochondrial FA uptake is one of the major FA metabolism regulators.  

PPARα has been demonstrated to affect mitochondria uptake of FA by up-regulating the 

expression of muscle and liver-type α-carnitine palmitoyltransferase I genes.(113,114) 

PPARα activators, through their effect on the expression of FA transporter and FA oxidation 

genes, direct the FA flux to the β-oxidation pathway dismissing the FA pool to be 

incorporated to triglyceride TG-rich lipoproteins. Consequently, PPARα maintains lipid 

homeostasis by controlling the FA flux from peripheral tissues, such as adipose tissue to the 
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liver. A study made with PPARα-deficient mice fasted for 24 hours showed that they display 

hypoglycemia, hypoketonemia, and elevated plasma FA levels.(111) Furthermore another 

studies revealed that PPARα might increase energy expenditure by up-regulating the 

expression of uncoupling proteins (UCPs).(115,116) 

 In the adipose tissue, PPARα mediates leptin-induced lipolysis.(117) Indeed, 

hyperleptinemia in rodents depletes adipocyte fat, while it up-regulates enzymes involved in 

FA oxidation, UCPs and PPARα, which are normally in low amounts in adipocytes. In 

addition to PPARα, PPARγ modulates lipid homeostasis and maintaining the mature 

adipocyte phenotype in the adipose tissue. PPARγ regulates gene expression of AP2, 

phosphoenol pyruvate carboxykinase, ACS, FATP and LPL (lipoprotein lipase).(118 

,119,120,121,122) The induction of LPL promotes FA delivery to adipocytes while induction 

of FATP and ACS results in enhanced FA uptake by the adipocyte. These actions contribute 

to enhanced TG synthesis and accumulation in adipose tissue. 

 Another receptor it’s PPARδ that is expressed ubiquitously and is implicated in fatty 

acid oxidation, and in the response of macrophages for very low-density 

lipoprotein.(123,124) It also prevents exhaustion of hematopoietic stem cells by lowering 

oxidative stress and preventing symmetric cell divisions.(125,126) Following ligand 

binding, it undergoes a conformational change and mediates transcription of genes such 

as PPARD itself, ANGPTL4 and antioxidant genes such as CAT (catalase) that serve as 

‘signatures’ for PPARδ activity.(127) 

 In the end, PPARα plays a major role in lipid metabolism, mainly in tissue with a 

high FA metabolism, controlling the intracellular FA concentration and FA flux from such 

as adipose tissue to the liver. In addition, PPARα also mediates leptin-induced lipolysis. 

PPARγ also plays a role in the energetic metabolism by controlling lipid homeostasis and 

regulating the expression of a set of genes related to the TG synthesis and accumulation in 

the adipose tissue. The capability of this receptors to stimulate β-oxidation it’s an important 

mechanism in cancer cells since it helps them to obtain energy and develop.   

5.2   PPAR natural ligands 

PPARs have the capability to accommodate and bind a variety of natural and 

synthetic lipophilic acids, like for example essential fatty acids (EFA) (e.g. fibric acids in 

atherosclerosis). These acids act as PPAR agonists that transcript the genes involved in 

glucose and lipid homeostasis.(128,129,130) In addition, eicosanoids are natural ligands of 
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PPARs – e.g. leukotriene B4 stimulates PPARα,and prostaglandin PGJ2 activates 

PPARγ.(131) The natural ligands of PPARα are highly polyunsaturated n-3 FA, that readily 

undergo oxidation and stimulate PPARs.(132) These FAs reveal an anti-inflammatory effect 

that results from the inhibition of their own oxidation caused by activated NF-κB in a 

PPARα-dependent pathway.(133,134) PPARα also mediates the anti-inflammatory actions 

of palmitoylethanolamide, the naturally occurring amide of palmitic acid and 

ethanolamine.(135) In addition to n-3 FA, the oxidated LDL in endothelial cells are strong 

stimulators of PPARα.(136) 

Particular FAs are considered natural modulators of PPARγ however, their 

association with the receptor does not always lead to PPAR activation and target gene 

transcription. For example, the activation of PPARγ by PUFAs (mainly docosahexaenoic 

acid and eicosapentaenoic acid) promotes a functional response in tumor cells.(137) 

Phytanic acidis also a natural PPARγ agonist that reveals a similar activity to n-3 PUFA and 

increases glucose uptake and insulin sensitivity.(138) In addition, also long-chain MUFAs 

with chain lengths longer than 18 carbons may upgrade obesity-related metabolic 

dysfunction through increased expression of PPARγ and decreased inflammatory marker 

expression in white adipose tissue.(139) 

Table 3–Lipids natural ligands of PPAR 

 PPAR-α PPAR-δ PPAR-γ 

Natural 

ligands 

Unsaturated fatty acids Unsaturated fatty acids Unsaturated fatty acids 

Leukotriene B4 Carbaprostacyclin 
15- hydroxyeicosatetraenoic 

acid 

8-hydroxyeicosatetraenoic 

acid 
LDL 

9- and 13- 

hydroxyoctadecadienoic 

acid 

  
15-deoxy 12,14- 

prostaglandin J2 

  prostaglandin PGJ2 

5.3  PPARs in cancer 

Although acute inflammation is a necessary protective process, unresolved chronic 

inflammation seen in obesity may promote cancer development by providing an appropriate 
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environment for tumor growth.(140,141) Depending on the context, PPAR ligands can 

inhibit the expression of genes encoding proinflammatory molecules like for example tumor 

necrosis factor (TNF), interleukin 1β, interleukin 6 and matrix metalloprotease 9.(142,143) 

PPAR ligands use their anti-inflammatory effects by inhibiting numerous transcription 

factors, such as NF-kB.(144) 

In addition, many tumors are characterized by alterations in lipid homeostasis with 

associated changes in the expression and activity of lipogenic and lipolytic enzymes 

regulated by PPARs.(145,146) PPAR subtypes are linked with tumorigenic processes in 

breast cancer cells through differential effects on cellular proliferation, apoptosis and 

differentiation.(145) 

Peroxisome proliferators increase the peroxisome volume and number, resulting in 

an increase in hydrogen peroxide (H2O2) levels.(147) These effects may be mediated in part 

by the increased expression of peroxisomal enzymes that produce H2O2, such as acyl CoA 

oxidase (ACO) being that PPARα upregulates the expression levels of ACO.(148,149) In 

addition, excessive H2O2 levels are degraded by CAT, the activity of which is decreased in 

obesity.(150) A rise in the intracellular levels of H2O2 may lead to DNA damage.(151) A 

stably transfected African green monkey kidney cells (CV-1) overexpressing rat ACO 

increased H2O2 production, formed transformed foci, and grew efficiently in soft agar when 

the cells were treated with linoleic acid. When these cells were transplanted into nude mice, 

these cells formed solid tumors, suggesting a role of PPARα in tumorigenesis.(152) 

In the other hand, the role of PPARδ in oncogenesis is controversial. Some studies 

show that PPARδ activation upregulated vascular endothelial growth factor (VEGF) 

transcription, expression, and peptide release in intestinal epithelial tumor cells, and 

subsequently activated PI3K-Akt signaling, whose activation it’s connected to the inhibition 

of apoptosis, angiogenesis and insensitivity to antiproliferative signals.(153,154) Similar 

results were obtained in the human endothelial cells.(155) It was also showed that activation 

of PPARδ promotes mouse mammary carcinogenesis.(156) In addition, it was also reported 

that PPARδ selective agonists stimulated the proliferation of human breast cell lines.(157) 

In contrast with those results, Girroir et al. reported that activation of the same receptor 

inhibited the growth of the human breast cancer cell line, MCF7, and human melanoma cell 

line, UACC903.(158) 
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Also PPARγ plays a role in carcinogenesis, and the activation of PPARγ by ligands 

led to either inhibition of cell proliferation or induction of apoptosis.(159,160) PPARγ 

induces apoptosis in HT-29 by inhibiting NFκB activity, which upregulates various 

antiapoptotic genes, and suppressing the expression of BCL-2, which protects cells against 

apoptosis.(161) In addition, they also inhibit the cell growth of several breast cancer cell 

lines (e.g. MCF7, MDA-MB-231, BT474, and T47D) and mammary gland tumor 

development.(162,163) 

In conclusion, PPARs play a major role in the lipid metabolism as well as in 

inflammation and energy balance. These processes are modified in obesity, which is a 

disease associated with the modification of local and systemic lipid metabolism as well as a 

state of low grade inflammation. Since PPAR are lipid sensors, the alterations in the lipid 

environment can lead to abnormal actions of this receptor, promoting this way the 

development and growth of cancer cells in the breast. This way, it’s important to develop 

further studies with the goal to elucidate the role of PPARs for developing new efficiently 

and safety chemotherapeutic agents for cancer treatment. 

 

 

 

 

 

 

 

 

 

 

 

 

 



| Effect of obesity in the mammary gland lipidome and its relation with cancer development | 

23 
 
Universidade de Aveiro 

Ano 2018 

6. Aim of the study 

For years, the dietary intake and increased BMI/obesity have been studied for their 

contribution to breast cancer risk, however the relation between dietary factors (specifically 

dietary fat) and breast cancer risk is not very clear. There are a few studies that make 

associations between breast cancer risk and adult intake of total fat and other types of dietary 

fat. However, there is a need for a better understanding of the contributions of lipids in diet 

to breast cancer risk. 

 The aim of this work was to characterize the lipidome of mammary glands from 

obese and lean mice and compare them to detect changes associated to different obesity 

inducing diets.  

 More specifically the aims of this study are: 

- Detect changes in the lipids profile associated to obesity; 

- Detect the effect of the different diets in the mammary gland lipidome; 

Additionally, with the resource to the literature our main goals are to: 

- Associate FA changes to potential PPAR selective activation; 

- Associate the lipidome changes to risk of cancer development. 
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7. Methods 

7.1   Animal model and diets 

We used a DIO C57bl/6j mouse model, since it offers a more human-like model, where 

the obesity is based on several factors, including an excess intake of calories. The model 

used is specified in figure 8. 

 

Figure 8–Animal model of obesity developed by our collaborators at Karolinska Institutet and used in this master thesis.  

Twelve 6 week-old mice were divided into 3 distinct groups. During 12 weeks each 

of the groups where put on different diets during all the living period respectively as, normal 

diet (ND), high cholesterol diet (HChD) and high fat diet (HFD).After 12 weeks all the 12 

mice got pregnant. They breastfeed for 3 weeks and after additional 5 weeks they were 

sacrificed and the mammary gland collected. The samples were stored at -80˚C. 

All the different diets where purchased from Research Diets (USA). The ND (Product 

Data - D12450H) had 4.3% of energy derived from fat, 19.2% from protein, and 67.3% from 

carbohydrate, the HFD (Product Data - D12451) had 24% of energy derived from fat, 24% 

from protein, and 41% from carbohydrate and the HChD (Product Data - D12108C) had 

20% of energy derived from fat, 23% from protein, and 45% from carbohydrate and a 1.25% 

of cholesterol.  

7.2   Reagents 

Chloroform (CHCl3), methanol (MeOH) and n-hexane were purchased from Fisher 

scientific (Leicestershire, UK). Perchloric acid was purchased from Panreac (Barcelona, 

Spain), Perchloric acid from Chem-Lab NV (Zedelgem, Germany). Ascorbic acid and 

sodium chloride were from VWR chemicals (Levven, Belgium).Purified water 

(Synergy,Millipore Corporation, Billerica, MA, USA) was used whenever necessary. 
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Phospholipid internal standards 1,2-dimyristoyl-sn-glycero-3-phosphocholine (dMPC), 1,2-

dimyristoyl-sn-glycero-3-phosphoethanolamine (dMPE), 1,2-dimyristoyl-sn-glycero-3-

phospho-(10-rac-glycerol) (dMPG), 1,2-dimyristoyl-sn-glycero-3-phospho-L-serine 

(dMPS), 1,2-dipalmitoyl-sn-glycero-3-phosphatidylinositol (dPPI), N-palmitoyl-D-erythro-

sphingosylphosphorylcholine (NPSM), 1-nonadecanoyl-2-hydroxy-sn-glycero-3-

phosphocholine (LPC), as well as standarts used in the GC and Q-TOF were purchased from 

Avanti Polar Lipids, Inc. (Alabaster, AL).The internal standard (C19:0) used in the GC-MS 

was purchased from Merk, Darmstadt, Germany. SPE columns where purchased from 

Sigma–Aldrich, Darmstadt, Germany. 

7.3   Lipid extraction 

To extract total lipids, part of the mammary gland tissue was placed in a glass tube 

and weighted. The samples were homogenize with 1 ml of milliQ-water. Then, the solution 

of 2:1 CHCl3:MeOH mixture (v/v) was added to a final relation of 8:4:3 CHCl3:MeOH:H2O 

and homogenized for 3 min. The glass tubes were placed on ice for 30 min and vortexed a 

few times during this period. After that time, the mixtures where vortexed for 30 sec after 

which they were centrifuge for 5 min at 1500 rpm, in order to separate organic (bottom) and 

aqueous phases. The organic phase was collected to a different glass tube. Re-extraction of 

the aqueous phase by addition of 2,5 ml CHCl3, followed by vortexing for 30 sec and 

centrifugation during 5 min at 1500 rpm, collect the organic phase again and repeat this step 

again in order to assure to collect the biggest amount of lipids of the sample. The lipid extract 

was dried under a nitrogen steam, ressuspended in 0.300 mL, vortexed and transfer to a vial. 

This step was repeated twice in order to transfer total lipid extract for the vial. The lipid 

extract was dried in the vials under a nitrogen steam, weight and stored in -20˚C.  

7.4 Fractionation of the total lipid extracts using Solid-Phase 

Extraction 

The total lipid extracts from the mammary gland were fractionated  by solid phase 

extraction (SPE) to obtain two major fractions, one with the neutral lipid that contain TAG 

and another fraction correspondent to the PLs. The columns were conditioned with 7.5 mL 

of n-hexane and loaded with half of the lipid extract obtain in the lipid extraction diluted in 

n-hexane/chloroform/methanol (95:3:2 v/v/v). The first fraction containing TAG was 

collected with 7.5 ml of CHCl3 in a glass tube and the fraction containing PLs into a glass 
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tube was collected using first 5 ml of methanol/hexane (6:1 v/v) and then 2.5 ml of 

methanol/hexane (1:1 v/v). Both fractions were collected in a glass tube, dried under 

nitrogen, dissolved in CHCl3andtransferredto an amber glass vial. In addition, vials with 1 

mg of TAG were. All the vials where stored at -20 C before analysis by MS.PL were 

analyzed by LC-MS while TG were analyzed by ESI-MS. FA profile through GC-MS. 

7.5   Phospholipid quantification 

Quantification of PL in the total lipid extracts and in the fractions obtained after SPE 

(Solid-phase extraction) was performed according to Bartlett and Lewis method.(164) 

Samples were put on acid-washed glass tubes and 0.125 mL of perchloric acid (70%, m/V) 

and were incubated for 60 min at 180 °C in a heating block. After incubation samples were 

let to cool down and after which 0.825 mL of water were added together with0.125 mL of 

ammonium molybdate (2.5%, m/V) and 0.125 mL of ascorbic acid (10%, m/v). After each 

addition, the mixture was well homogenized in a vortex mixer and incubated during 10 min 

at 100 °C in a water bath. Eight standards with varying concentration from 0.1 to 1.5 μg of 

phosphate (standard solution of 2.5% NaMoO4.H2O) underwent the same treatment as the 

samples. Absorbance of standards and samples were measured at 797 nm, at room 

temperature, in a microplate via spectrophotometer that allowed to estimate the amount of 

phosphorous. The amount of PL of each sample was calculated by the relation of the amount 

of phosphorus in each spot to the phosphorus amount of the standard solutions applied in the 

microplate.  

7.6   LC-MS 

The Phospholipid fractions obtained after SPE of the total lipids extracts from the 

mammary gland were analyzed by using a high-performance LC (HPLC) system (Ultimate 

3000 Dionex, Thermo Fisher Scientific, Bremen, Germany) with an autosampler coupled 

online to the Q-Exactive® hybrid quadrupole Orbitrap® mass spectrometer (Thermo Fisher 

Scientific, Bremen, Germany).  The solvent system consisted of two mobile phases as 

follows: mobile phase A [acetonitrile:methanol:water 50:25:25 (v/v/v) with 1 mM 

ammonium acetate] and mobile phase B [acetonitrile:methanol 60:40 (v/v) with 1 mM 

ammonium acetate]. Initially, 40% of mobile phase A was held isocratically for 8 min, 

followed by a linear increase to 60% of A within 7 min and a maintenance period of 5 min, 

returning to the initial conditions in 5 min, followed by a re-equilibration period of 10 min 
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prior next injection. HPLC-MS was performed with an internal standard. A volume of 5 µL 

of each sample, containing 5 µg of lipid extract, 4 µL of each internal standard: PE (0.02 

µg/100 µL), SM (0.02 µg/100 µL), LPC (0.02 µg/100 µL),PG (0.012 µg/100 µL), and 79 

µL of solvent system (60% of eluent B and 40% of eluent A) was introduced into the 

Ascentis®Si column (15 cm × 1 mm, 3 µm, Sigma-Aldrich) with a flow rate of 40 µL min−1 

and at 30 ºC. The mass spectrometer with Orbitrap® technology was operated in 

simultaneous positive (electrospray voltage 3.0 kV) and negative (electrospray voltage -2.7 

kV) modes with high resolution with 70,000 and AGC target of 1e6, the capillary 

temperature was 250 ºC and the sheath gas flow was 15 U. In MS/MS experiments, a 

resolution of 17,500 and AGC target of 1e5 was used and the cycles consisted in one full 

scan mass spectrum and ten data-dependent MS/MS scans that were repeated continuously 

throughout the experiments with the dynamic exclusion of 60 seconds and intensity 

threshold of 1e4. Normalized collision energy™ ranged between 25, 30 and 35 eV. Data 

acquisition was carried out using the Xcalibur data system (V3.3, Thermo Fisher Scientific, 

USA). The mass spectra were processed and integrated into the MZmine v2.3 program. Each 

PL species was identified by the identification of the ion exact mass, and confirmed by 

MS/MS using Xcalibur data system. 

7.7   TAG analysis by using ESI-MS   

For the identification and structural characterization of TAG molecular species, the 

TAGs fractions were analyzed by ESI-MS and MS/MS in a quadrupole time-of-flight (Q-

ToF) mass spectrometer (Waters, Manchester, UK), operating in positive ion mode. To 

estimate the relative amount of each TAG molecular species in each sample, an internal 

standard of TAG (1,3-ditetradecanoyl-2-(9Z-hexadecenoyl))-glycerol, 

TAG(14:0/16:1/14:0), was add to each. A stock solution of the TAG internal standard was 

prepared in chloroform (0.25 mg/mL) and added to the samples as follows: sample/internal 

standard/solvent (4:1:195, v/v/v). The solvent used was methanol with 5 mmol/L of aqueous 

ammonium acetate. On a syringe pump was placed a final volume of 200 μL and samples 

were then supplied to the electrospray source at a flow rate of 10 μL/min. The source 

temperature was 80˚C and the desolvation temperature was 150˚C.MS/MS spectra were 

acquired with a collision energy of 25 V. 



| Effect of obesity in the mammary gland lipidome and its relation with cancer development | 

28 
 
Universidade de Aveiro 

Ano 2018 

7.8   FA-GC-MS 

Fatty acids (FA) in PLs and in TGs fractions were analyzed by GC–MS after 

transmethylation. FA methyl esters (FAME) were obtained as follows: 10 μg of lipid (TAGs 

andPLs fractions) were transferred to a Pyrex glass tube and dried under nitrogen. Then, was 

added 1 mL of n-hexane containing a C19:0 internal standard (2 μg/mL), followed by 200 

μL of a methanolic solution of potassium hydroxide (2 mol/L) and the mixture was well 

homogenized. Finally, was added 2 mL of a saturated solution of sodium chloride and the 

sample was centrifuged for 5 min at 2000 rpm to separate the phases. The organic (upper) 

phase, with the FAME was transferred to a micro tube and solution was dried under nitrogen. 

7.9   Calculations and Statitical analysis 

The calculations made where for double mass index (DBI) and average chain length 

(ACL). The ACL was calculated as ACL = [(Σ% Total14 x 14) + . . . + (Σ% Totaln x n)] / 100 

(n = carbon atom number). The DBI was calculated as DBI = Σ mol % of unsaturated fatty 

acids x number of double bonds of each unsaturated fatty acid. 

The data from the three different study groups (ND, HFD, HChD) obtained during 

ESI-MS (in an ESI-Q-TOF) and GC-MS where analyzed using one-way ANOVA and 

Tukey´s multiple post-test. Differences were considered significant if p < 0.05. The software 

used for this analyses was GraphPad Prism 6. In the HPLC data, for analyzing the normality 

of the data from the different study groups (ND, HFD, HChD) was used the Shapiro-Wilk 

test. Univariate statistical analysis was performed using ANOVA test following post hoc 

Tukey’s honestly significant difference (HSD) test. After that, multivariate data processing 

and analyses were done using the SPSS software package (IBM SPSS Statistics Version 24). 

Principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) 

and hierarchical clustering were performed on auto scaled-scaled data using the R (R version 

3.4.2) with the packages RFmarker Detector, FactoMineR63, Factoextra64 and Ropls65).  
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8. Results 

In the last few years, there has been an increase of scientific research on the role of 

lipids, including TAG and PLs in the development of cancer. Therefore, in this work we 

evaluated the lipid profile of the mammary gland including the fat pad resulting from three 

diet groups (ND, HChD, HFD). For this, we used complementary lipidomic approaches, 

namely ESI-MS and MS/MS, GC-MS and HILIC-LC-MS and MS/MS approaches to 

analyze the TAG, FA and PL profiles, respectively.  

Prior to the analysis, lipids were extracted using conventional methods and lipid 

extracts obtained were weighted (Table 4). The total lipid extract mass recovered after lipid 

extraction for 100 mg didn’t show significant differences between groups. Total lipid 

extracts were fractionated by solid phase extraction and the fractions corresponding to TAG 

and to PL were recovered (Table 4). The HFD group shown a significant lower amount of 

PLs when compared to the ND group. When it comes to the TAG content, there were no 

significant differences seen between the study groups (Table 4). 

Table 4–Mean of the weight of the total lipid extract from each study group (ND – normal diet, HChD – high cholesterol 
and HFD – high fat diet), as well as the ug of PLs and mg of TAG, recover from the initial lipid extract. (** p<0.01; compare 
to the ND) 

Diet Tissue weight (mg) 
mg lipid extract/100 

mg tissue 
mg TAG / 100 mg 

tissue 
ug PLs/ 100 mg 

tissue 

ND 73.03 ± 28.15 45.72 ± 22.96 7.72 ± 6.29 181.32 ± 115.11 

HChD 139.45 ± 80.74 42.41 ± 15.16 22.00 ± 13.43 140.63 ± 22.57 

HFD 291.05 ± 114.07 55.72 ± 19.43 12.78 ± 4.70 58.11 ± 15.12 ** 

8.1   Triacylglycerol profile 

 TAG profile was analyzed by ESI-MS, that allowed to identify and relatively 

quantify their molecular species, and the profile of their esterified fatty acids was analyzed 

by GC-MS after derivatization. 

The profiling of TAG by ESI-MS allowed to identify 18 ions attributed to the 

[M+NH4]+ ions of  TAG, considering the C:N composition - Table 5 and Figure 9.  
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Figure 9–ESI-MS spectra obtained from TAG fractions representative of each study group. The first one corresponds to the 
A- ND (normal diet); B - HChD (High Cholesterol Diet); C - HFD (High Fat Diet).  

Analysis of MS/MS data allowed to infer the FA composition of TAGs as was 

exemplified in figure 10. In this MS/MS spectrum we can see the product ion at m/z 607.7 

formed by neutral loss of 280 Da. That allowed to identified one FA C18:2, while it was 

possible to see the m/z 605.7 formed by neutral loss of 282 Da that allowed to identified 

another FA C18:1. The third FA composition was inferred by the neutral loss of 284 Da, 

corresponding to the FA C18:0, corresponding to the m/z 603.7. This way we can infer that 

the TAG that has m/z of 904.8 was composed by the FA C18:0, C18:1 and C18:2. 
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Figure 10 – MS/MS Spectra the TAG (54:2). Firstly we have the loss of the ammonium corresponding to the loss of 17 Da. 
Then calculating the neutral loss of the different fatty acids that compose the corresponding TAG. In this case, the TAG 
(54:2) is composed by the FAs C18:0, C18:1 and C18:2. 
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Using this approach for each ion, it was possible to pinpoint in these samples several 

ions that were assigned to more than one molecular species, as for example TAG (54:6) and 

TAG (56:6). These species were assigned as having 8 and 11 different molecular species. 

Thus a total of 18 TAG molecular species were identified in the neutral lipid fraction of the 

three study groups (ND, HChD, HFD) but correspond to a total of 86 different molecular 

species – table 6. 

The most abundant TAG molecular species in all groups were TAG (52:2) identified 

as [M+NH4]
+ at m/z 876.8, TAG (52:3) at m/z 874.8, and TAG (54:3) at  m/z 902.8. These 

TAG molecular species made up about 48% of the TAG present in the neutral lipid fractions. 

Less abundant TAG molecular species were observed as [M+NH4]+ ions at m/z 924.8 for 

TAG (56:6), m/z 896.8 for TAG (54:6) and m/z 844 for TAG (50:4), corresponding to TAG 

bearing minor FA (C18:3 and C20:1), along with more abundant FA - Table 5. These TAG 

represented about 1.5% of the TAG presented in the neutral lipid fractions. Comparing the 

three study groups, significant differences were seen in the relative abundances of seven 

TAG species, among which three TAG showed a decrease in HChD and HFD groups when 

compared to the ND.  Those were TAG (50:2), TAG (50:1) and TAG (52:2). In contrast, the 

TAG (54:5) and TAG (54:4) where significantly higher in the HChD and HFD, when 

compared to the ND. In addition the TAG (52:4) was higher in the HChD, when compared 

to the ND and the TAG (52:3) was higher in the HFD when compared to the ND – Figure 

11. 

Table 5 - TAG identified by ESI-Q-ToF-MS as [M + NH4]+ adducts, their relative amount in percentage with standard 
deviation. (* p < 0.05; ** p<0.01; *** p < 0.001; **** p < 0.0001, compared to ND). 

TAG m/z ND HChD HFD 

48:2 820.8 1.3 ± 0.2 0.8 ± 0.1 0.6 ± 0.2 

48:1 822.8 2.0 ± 0.1 1.0 ± 0.2 0.7 ± 0.2 

50:4 844.8 0.6 ± 0.1 0.6 ± 0.1 0.5 ± 0.1 

50:3 846.8 3.8 ± 0.7 3.2 ± 0.3 2.6 ± 0.6 

50:2 848.8 10.0 ± 0.7 6.7 ±0.5 **** 5.9 ± 1.2 **** 

50:1 850.8 7.1 ± 0.5 4.2 ± 0.5 **** 3.8 ± 0.7 **** 

50:0 852.8 0.9 ± 0.1 0.6 ± 0.1 00.5 ± 0.1 

52:5 870.8 0.8 ± 0.2 1.2 ± 0.1 1.0 ± 0.2 

52:4 872.8 5.3 ± 1.3 7.7 ± 0.6 ** 6.9 ± 1.0 
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52:3 874.8 16.2 ± 0.7 18.0 ± 0.5 18.1 ± 0.4 * 

52:2 876.8 17.2 ± 1.5 14.1 ± 0.5 **** 15.1 ± 1.0 *  

52:1 878.8 3.4 ± 0.6 1.9 ± 0.3 2.1 ± 0.3 

54:6 896.8 0.6 ± 0.1 1.3 ± 0.1 1.1 ± 0.1 

54:5 898.8 2.6 ± 0.5 6.6 ± 0.7 **** 6.3 ± 0.7 **** 

54:4 900.8 9.2 ± 0.4 15.6 ±0.9 **** 16.4 ± 1.6 **** 

54:3 902.8 14.6 ± 2.0 13.5 ± 0.7 14.9 ± 1.5 

54:2 904.8 4.3 ± 1.1 2.6 ± 0.2 3.0 ± 0.6 

56:6 924.8 0.3 ± 0.1 0.5 ± 0.1 0.4 ± 0.1 

 

 

Figure 11–Graph representing the relative abundance of each TAG species with the standard deviation. In blue is the ND 
–Normal Diet, in red HChD- High Cholesterol Diet and in green HFD – High Fat Diet. (* p < 0.05; ** p<0.01; *** p < 0.001; 
**** p < 0.0001).
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Table 6 - Molecular species of triacylglycerols (TAG) and their composition in FA identified by ESI-Q-ToF-MS and MS/MS as [M + NH4]+ adducts. 

TAG COMBINATIONS OF FA        

48:2 18:2/16:0/14:0 18:2/12:0/18:0 12:0/18:1/18:1 16:0/16:1/16:1 18:1/14:0/16:1 18:0/14:1/16:1      

48:1 18:1/14:0/16:0 16:1/16:0/16:0 18:0/14:0/16:1 18:0/14:1/16:0        

50:4 14:0/18:2/18:2 18:2/16:1/16:1 18:3/14:0/18:1 18:3/16:0/16:1 18:1/18:2/14:1       

50:3 18:1/16:1/16:1 18:3/16:0/16:0 18:2/14:0/18:1 18:2/16:0/16:1        

50:2 14:0/18:1/18:1 18:0/16:1/16:1 18:2/16:0/16:0 18:1/16:0/16:1        

50:1 18:1/14:0/18:0 18:1/16:0/16:0 18:0/16:0/16:1 14:1/18:0/18:0        

50:0 18:0/16:0/16:0 14:0/18:0/18:0          

52:5 16:1/18:2/18:2 18:3/16:0/18:2 18:3/18:1/16:1 20:4/16:1/16:0        

52:4 16:0/18:2/18:2 18:3/16:0/18:1 18:3/16:1/18:0 18:2/16:1/18:1        

52:3 16:1/18:1/18:1 18:2/16:0/18:1 18:2/16:1/18:0         

52:2 16:0/18:1/18:1 18:2/16:0/18:0 18:0/18:1/16:1         

52:1 18:1/16:0/18:0           

54:6 18:3/18:1/18:2 18:2/18:2/18:2 22:5/16:1/16:0 22:6/16:0/16:0 20:3/18:3/16:0 20:3/18:2/16:1 20:4/18:2/16:0 20:4/18:1/16:1    

54:5 18:1/18:2/18:2 18:3/18:1/18:1 18:3/18:0/18:2 20:3/18:1/16:1 20:3/18:2/16:0 20:4/18:1/16:0 20:4/18:0/16:1 20:2/18:3/16:0    

54:4 18:0/18:2/18:2 18:2/18:1/18:1 20:2/18:2/16:0 20:2/18:1/16:1 20:3/18:1/16:0 20:3/18:0/16:1      

54:3 18:2/18:0/18:1 18:1/18:1/18:1 20:2/16:0/18:1 20:3/16:0/18:0        

54:2 18:0/18:1/18:1 18:2/18:0/18:0 20:1/16:0/18:1         

56:6 22:4/16:0/18:2 22:5/16:0/18:1 22:6/16:0/18:0 20:2/18:3/18:1 20:2/18:2/18:2 20:3/18:2/18:1 20:3/18:3/18:0 20:4/18:0/18:2 20:4/18:1/18:1 16:0/20:3/20:3 16:0/20:2/20:4 
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The FAs identified in the TAG fraction are represented in the table 7. In all groups 

the FAs identified were C14:0, C16:0, C16:1 (n-7), C16:1 (n-9), C18:0, C18:1 (n-9), 

C18:2(n-6), C18:3(n-3) and C20:1. In HFD there was a statistically significant increase of 

the saturated FA C16:0 when compared with the control group ND. In addition the C18:1 

(n-9) (palmitoleic acid) increased in the HFD when compared to HChD and the level of 

C18:2 (n-6) (linolelaidic acid) was higher in HChD and HFD groups when compared to the 

ND. In addition, there was no difference in the average chain (ACL) length between the 

groups, however the double bound index (DBI) is significant higher in the HChD and HFD 

when compared to the ND group and significant higher in the HFD group when compared 

to the HChD - Figure 12. 

Table 7 - Fatty acid (FA) composition in percentage with standard deviation of TAG from the three study groups:  normal 
diet (ND), high cholesterol diet (HChD) and high fat diet (HFD), and their relative abundance. (* p < 0.05; ** p<0.01; *** p 
< 0.001; **** p < 0.0001, compared to ND); ((*) p < 0.05, compared to the HChD). ACL - average chain length; DBI - double 
bond index; NI – not identified 

 ND HChD HFD 

C14:0 3.5 ± 0.4 2.8 ± 0.8 2.5 ± 0.7 

C16:0 24.1 ± 1.8 21.6 ± 1.2 19.9 ± 1.9 *** 

C16:1 (n-7) 2.1 ± 0.7 1.5 ± 0.3 1.5 ± 0.1 

C16:1 (n-9) 6.5 ± 0.9 5.1 ± 0.7 4.3 ± 0.9 

C18:0 7.0 ± 2.0 7.0 ± 1.6 5.8 ± 0.9 

C18:1(n-9) 41.0 ± 3.6 40.1 ± 1.4 43.7 ± 2.0 (*) 

C18:2(n-6) 13.6 ± 17.0 19.0 ± 0.7 **** 20.2 ± 0.8 **** 

C18:3(n-3) 1.1 ± 0.2 1.3 ± 0.3 1.2 ± 0.2 

C20:1 1.0 ± 0.3 0.8 ± 0.1 NI 

C20:2(n-6)   NI 0.9 ± 0.3 0.9 ± 00.2 

ACL 16.64 ± 0.11 16.84 ± 0.10 16.94 ± 0.08 

DBI 81.20 ± 2.50 91.11 ± 1.63 **** 95.37 ± 3.67 **** (*) 
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Figure 12 – Graph representing the relative abundance in percentage with standard deviation of each FA identified with 
the standard deviation. In green is the ND –Normal Diet, in blue HChD- High Cholesterol Diet and in red  HFD – High Fat 
Diet(* p < 0.05; ** p<0.01; *** p < 0.001; **** p < 0.0001). 

8.2   Phospholipids profile 

In relation to the PLs profile, data from LC-MS and MS/MS analysis of the 

phospholipid fraction obtained after SPE allowed the identification and relative 

quantification of PL species belonging to 6 different classes: PC, PE, LPC, LPE Cer and 

SM. Two-hundred and eight PLs species were identified in all samples. 

The molecular species of PC and LPC classes were identified in the positive mode, 

and identified in the MS spectra as [M+H]+ ions for all classes detected. The most abundant 

PC molecular species were PC (36:2) at m/z 786.601 followed by PC (34:2) at m/z 758.570, 

in all the conditions. In addition, in all the conditions, LPC (18:0) at m/z 524.372 was the 

most abundant followed by LPC (16:0) at m/z 496.340.The molecular species of SM were 

analyzed in the LC-MS spectra in positive ion mode and also identified as [M+H]+ ions. The 

most abundant molecular specie in all conditions was SM (d34:1), corresponding to the ion 

m/z 703.575. The molecular species of PE were analyzed in the LC-MS spectra in the 

positive mode, with formation of the [M+H]+ ions  as well as in the negative mode as [M-

H]- . In the positive mode the most abundant molecular species were PE (38:5), 

corresponding to the ion m/z 766.538 and the PE (38:4), corresponding to the ion m/z 768.55, 

in all species. LPE species were analyzed in the LC-MS spectra in the positive ion mode 

*** **** 

* 

**** 

ND 
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where the most abundant molecular species in all conditions were LPE (18:0) and LPE 

(18:1), corresponding in the positive mode to the ion m/z 482.325 and m/z 480.309 and in 

the negative mode to m/z 480.309 and m/z 378.293, respectably. Additionally, the molecular 

species of Cer were also analyzed in the positive ion mode, where the most abundant 

molecular specie in all the conditions was Cer (d35:1), corresponding to the ion m/z 552.536.  

For the relative quantification of all the lipid species identified, the peak areas of the 

extracted ion chromatograms (XICs) of each PL and Cer species within each class were 

normalized using the peak area of the internal standard (IS) selected for the class.  

After testing the normality of the data using shapiro wilk test, data were subsequently 

autoscaled and then subjected to a principal component analysis (PCA) to display the 

clustering trends of the three experimental groups: ND, HChD and HFD. The PCA shows a 

separation of the HFD and HChD from the control group in a two-dimensional score plot 

which represented the analyses describing 63.8% of the total variance, including principal 

component 1 (50.5%) and principal component 2 (13.5%), where principal component 1 was 

the major discriminating component - Figure 13. 

 From the loading values, the major contributors of the component 1 were Cer (42:1), 

LPC (18:2), PC (34:4) and LPC (20:5), whereas Cer (42:1), Cer (38:1), PC (P-44:6), PC (O-

42:6) and PC (O-42:5) where the main contributors for component 2. 
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Figure 13 - Principal component analysis score plot of phospholipid profiles obtained from the three study groups: 
normal diet (ND), high cholesterol diet (HChD) and high fat diet (HFD). 

A projection to latent structures discriminant analysis (PLS-DA) was performed in 

order to maximize the phenotypic classification of samples, which showed the performance 

statistics of R2X = 0.60413, R2Y = 0.95482 and a prediction parameter Q2 of 0.23334 (X) 

and 0.37711 (Y). The three groups were well separated in the resulting two-dimensional 

score plot - Figure 14. The PLS-DA score plot described 60.4% of the total variance, 

including component 1 (48.5%) and component 2 (11.9%). Along with the component 1 the 

HFD samples were scattered at the central region of the plot, the HChD samples were 

scattered to the bottom part of the plot and lastly the ND was scattered to the top part of the 

plot.  



| Effect of obesity in the mammary gland lipidome and its relation with cancer development | 

38 
 
Universidade de Aveiro 

Ano 2018 

 

Figure 14 - Partial least squares regression score plot of phospholipid profiles obtained from the three study groups: normal 
diet (ND), high cholesterol diet (HChD) and high fat diet (HFD). 

 Some PC species showed significant variations. It was observed statistically 

significant decreased levels of PC (30:0), PC (30:1), PC (32:0), PC (32:1), PC (32:2), PC 

(34:1), PC (34:3), PC (34:4), PC (36:3), PC (36:4), PC (36:5), PC (36:6), PC (40:7), PC 

(38:6) and PC (42:1) in HFD and HChD in comparison with control (ND) (p<0.05). 

Additionally, it was observed a statistically significant decrease of the levels of PC (34:2) in 

HChD in comparison with control (ND) and a statistically significant decrease of the levels 

of PC (42:10) in the HFD in comparison with control (ND) (p<0.05) – Figure 15.  

In relation to LPC it was observed statistically significant decrease of the levels of 

LPC (14:0), LPC (16:0), LPC (16:1), LPC (18:0),LPC (18:1), LPC (18:2), LPC (18:4), LPC 

(20:0), LPC (20:3), LPC (20:4), LPC (20:5), LPC (22:4), LPC (22:5), LPC (22:6) and LPCo 
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(16:1), in HFD and HChD in comparison with control (ND) (p<0.05). In addition, it was 

observed a statistically significant decrease of the levels of LPC (22:1), LPCo (18:0), LPCo 

(18:1) and LPCo (20:0) in HFD in comparison with control (ND) (p<0.05) - Figure 15. 

It was observed statistically significant decrease of SM (d34:1), SM (d38:1), SM 

(d38:3), SM (d40:1), SM (d42:1), SM (d42:2), SM (d44:1) and SM (d44:2) in HFD in 

comparison with control (ND) (p<0.05). Interestingly, in the SM (d44:2) was also 

statistically significant decreased in the HDF when compared to HChD (p<0.05). In addition, 

in the case of Cer, it was observed statistically significant decrease of the levels of Cer 

(d38:1) and Cer (d42:1) in HFD in comparison with control (ND) (p<0.05). The molecular 

species Cer (d34:1), Cer (d36:2), Cer (d40:1) and Cer (d42:2) were decreased in the HChD 

when compared to ND (p<0.05). When comparing the ND with the HFD it was observed 

statistically significant difference in the specie Cer (d34:2) that was decreased and in the 

specie Cer (d36:2) that was increased (p<0.05). Additionally, there were statistically 

significant differences between the HFD and the HChD, where the species Cer (d36:2) and 

Cer (d40:2) were increased and the species Cer (d34:1), Cer (d38:1) and Cer (d42:1) were 

decreased in the HFD in comparison with HChD - Figure 15. 

 For PE, it was observed statistically significant decrease of the levels of PE (34:1), 

PE (34:3), PE (34:4), PE (40:5), PE (40:6), PE (42:9), PE (42:10), PE(P-34:2), PE(P-36:2) 

and PE(P-38:4) in HFD and HChD in comparison with control (ND) (p<0.05). In addition, 

it was observed a statistically significant decrease of the levels of PE (34:2), PE (38:1), PE 

(38:4), PE (38:5), PE (40:4), PE (40:8), PE (40:10), PEo(40:9), PE(P-36:3), PE(P-38:2), 

PE(P-38:5), PE(P-40:1), PE(P-40:3), PE(P-40:4) and PE(P-40:7) in HFD in comparison with 

control (ND) (p<0.05). In the negative mode, the most abundant molecular specie was PE 

(38:4), corresponding to the ion m/z 766.539. It was observed statistically significant 

decreased of the levels of PE (32:0), PE (34:1), PE (38:1), PE (40:4), PE (40:5), PE (40:7) 

and PE (40:8)in HFD and HChD in comparison with control (ND) (p<0.05). In addition, it 

was observed statistically significant decreased of the levels of PE (34:3), PE (38:4), PE 

(38:5), PE (40:3), PE (P-34:1), PE (P-38:4), PE (P-40:3), PE (P-40:4), PE (P-40:6), 

PEo(40:6) and PEo(38:3) in the HFD when compared to ND (p<0.05). Finally, it was 

observed statistically significant decrease of the levels of PE (40:5), PE (P-34:1), PE (P-

38:4), PE (P-40:3), PE (P-40:4), PEo(40:6) and PEo(38:3) in the HChD when compared to 

HFD (p<0.05)- Figure 16. 
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For LPE, it was observed statistically significant decreased in the positive mode of 

the levels of LPE (14:0), LPE (16:1), LPE (18:0), LPE (18:1),LPE (18:2), LPE (20:4), LPE 

(22:4), LPE (22:6), LPE (P-16:0), LPE (P-18:0), LPE (P-20:0), LPE (O-16:0) and LPE (O-

18:0) in HFD and HChD in comparison with control (ND) (p<0.05). In addition, it was 

observed a statistically significant decrease of the levels of LPE (P-20:0) when comparing 

the HFD with the HChD (P<0.05) -Figure 15. In the negative mode, the most abundant 

molecular specie was LPE (22:5), corresponding to the ion m/z 526.293. It was observed 

statistically significant decreased of the levels of LPE (14:0), LPE (16:0), LPE (16:1), LPE 

(18:0), LPE (18:1), LPE (18:2), LPE (20:1), LPE (20:4), LPE (20:5), LPE (22:6) and LPE(P-

18:0) in the HFD and HChD when compared to ND (p<0.05). Additionally, LPE (20:2), LPE 

(22:4) and LPE (P-16:0), where decreased in HFD when compared to ND (p<0.05) - Figure 

16.  

 

Figure 15 - Box plots of 16 phospholipid molecular species that where identified as the most discriminates in the positive 
ion mode from the ND (normal diet), HChD (high cholesterol diet) and HFD (high fat diet). The values are represented as 
mean ± standard deviation. 

 



| Effect of obesity in the mammary gland lipidome and its relation with cancer development | 

41 
 
Universidade de Aveiro 

Ano 2018 

 

Figure 16 - Box plots of 16 phospholipid molecular species that where identified as the most discriminant in the negative 
mode from the ND (normal diet), HChD (high cholesterol diet) and HFD (high fat diet). The values are represented as 
mean ± standard deviation. 

The FAs composition of PLs was analyzed by GC-MS and the results obtained are 

shown in table 8. The FAs identified were C14:0, C16:0, C16:1, C18:0, C18:1 (n-9), 

C18:2(n-6), C18:3(n-6), C20:0, C20:3(n-3), C20:4(n-6), C22:4(n-6), C22:5(n-3) and C22:6. 

Significant variations in the relative abundance of some individual FAs were observed and 

are shown in the figure 17. In PLs, the most abundant FAs were the C16:0 (palmitic acid) 

and the C18:0 (stearic acid). The less abundant FAs were C22:4 (n-6) and C22:5 (n-3) –

Table 8. The C18:0 was statistically lower in the HFD when compared to the ND group. In 

addition, the ACL wasn’t significant different between groups, however the DBI was 

significant higher in the HFD when compared to the ND. 

Table 8- Fatty acid (FA) identification and relative quantitation (%) of PLs from the three study groups:  normal diet (ND), 
high cholesterol diet (HChD) and high fat diet (HFD) and their relative abundance. Results are shown as mean ± SD (*** p 
< 0.001, compared to ND). ACL - average chain length; DBI - double bond index    

FA ND HChD HFD 

C14:0 2.4 ± 0.2 3.4 ± 0.9 3.3 ± 0.4 

C16:0 38.0 ± 1.6 35.0 ± 1.3 35.6 ± 3.7 
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Figure 17 - Graph representing the relative abundance in percentage, with standard deviation of each FA identified. In 
blue is the ND –Normal Diet; HChD- High Cholesterol Diet and HFD – High Fat Diet. (*** p < 0.001). 

C16:1 1.4 ± 0.2 2.3 ± 1.1 2.0 ± 0.1 

C18:0 33.0 ±1.0 30.1 ± 2.5 26.1 ± 2.4 *** 

C18:1 (n-9) 10.5 ± 1.4 10.8 ± 2.7 12.0 ± 1.6  

C18:2 (n-6) 5.6 ± 0.7 8.0 ± 1.1 8.2 ± 2.0 

C18:3 (n-6) 1.3 ± 0.0 1.2 ± 0.0 1.1 ± 0.2 

C20:0 1.4 ± 0.2 1.7 ± 0.4 1.8 ± 0.5 

C20:3 (n-3) 2.4 ± 2.4 5.8 ± 0.0 0.9 ± 0.2 

C20:4 (n-6) 3.7 ± 2.2 3.4 ± 3.2 5.3 ± 1.9 

C22:4 (n-6) 0.7 ± 0.1 1.1 ± 0.3 0.9 ± 0.2 

C22:5 (n-3) 0.7 ± 0.1 1.2 ± 0.3 1.0 ± 0.3 

C22:6 1.7 ± 0.2 2.5 ± 0.9 1.9 ± 1.1 

ACL 17.35 ± 0.03 17.42 ± 0.10 17.43 ± 0.17 

DBI 55.91 ± 4.03 70.37 ± 4.40 77.29 ± 18.75* 

*** 

ND 

ND 
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8.3   Summary  

In conclusion, there were 7 TAGs that shown a significant difference according to 

the different diets. Those TAGs where TAGs the TAG (50:3), TAG (50:1), TAG (52:4), 

TAG (52:3), TAG (52:2), TAG (54:5) and TAG (54:4). When it comes to the FAs the values 

of the FA C16:0, C18:1 (n-9) and C18:2 (n-6) where the most changed in the TAGs factions 

and the FA C18:0 in the PLs faction. The PLs analysis, the species identified where in 

general decreased in the HChD and HFD when compared to the ND. This way we can 

confirm that differences related to the different diets exist in the lipidome of the mammary 

gland.  
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9. Discussion 

The lipidomic approach employed in the present study allowed an unprecedented 

insight on the lipid dynamics in the mammary gland during obesity. MS analysis revealed 

alterations in the lipids environment related to different diets. 

In this present study, results from the tissue extraction didn’t shown differences in 

the amount of lipid extract, as well as no differences in the TAG content between the groups. 

In contrast, when it comes to the content of PLs on the lipid extract it was significant higher 

in the ND when compared to the HFD, which is explained by the fact that histologic studies 

show that there is probably less epithelium in adipose tissue from HFD samples. (165)  

The ND and HFD main source of fat was lard, while in the HChD is cocoa butter. 

The cocoa butter has a higher amount of SFAs, being the C18:0 the main FA while in the 

lard the main FA is C16:0. In contrast, the lard has increased amounts of MUFAs and 

PUFAs, being C18:1 and C18:2 the main FAs in booth of them.(166) This may explain the 

differences saw between HChD and HFD in the TAG FA C18:1. 

Previous published work that evaluated  the  TAG content from subcutaneous adipose 

tissue from ob/ob mice shows a significance increase on the levels of TAG (52:2), which is 

in accordance with our results.(167) In addition, in the analyses of the TAG results, we are 

able to see that the their composition in the mammary gland tissue is influenced by the diet, 

being that the TAG profile from HChD and HFD are associated with higher levels of the 

TAG with more PUFAs. That was the case of the increase of TAG (52:4), (52:3), (54:5) and 

(54:4), assigned respectively as m/z 872.8, m/z 874.8, m/z 898.8 and m/z 900.8. These TAG 

are composed mainly by MUFAs and PUFAs, which goes to the encounter of the higher 

levels seen in the GC-MS analyses of the PUFA C18:2(n-6) and the significant increase in 

the DBI seen in the HFD and HChD when compared to the ND and it has been shown that 

the free radical damage and lipid peroxidation increase as a function of the degree of 

unsaturation of the fatty acid substrates present in the tissues.(168) In the literature it is 

reported that n-6 PUFAs (including C18:2 (n-6)) can facilitate carcinogenesis, since the lipid 

peroxidation of these PUFAS generates α, β – unsaturated aldehydes, such as 

malondialdehyde (MDA) and 4-hydroxy-2-nonenal. These electrophilic lipid oxidation 

products (small aldehydes) can form promutagenic exocyclic adducts with DNA in human 

cells and thus may contribute to human cancers.(169,170) Recent published work suggests 
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that n-6 PUFAs promote colon and mammary tumourigenesis by up-regulating the 

expression of COX-2 and p21 ras.(171) 

There are some studies that suggest that same FAs may influence PPARs receptors 

activity. The FA C20:4 has been pointed as a regulator of PPARγ activity as well, 

downregulating transcription of a PPARγ target gene GLUT4.(172) In addition, C18:2 and 

C22:6 are also reported to activate PPARγ.(173,174) Interestingly, these two FAs have 

shown a tendency to increase in the HChD and HFD but the difference between these two 

study groups and the ND wasn’t statistically different. PPAR𝛾 has a well-established central 

role in differentiation and function of mature adipocytes.(175,176) Thus activation of 

PPARγ can have an impact on the role of  adipose tissue and it is also known that the function 

of adipose tissues is severely altered in obesity.(177) However, this does not stem from a 

reduced expression of PPARγ, which remains unchanged or increased in adipose tissues 

from obese rats, mice, and humans.(178,179) In addition it is reported that PPARγ is up-

regulated in breast cancer cells.(180) PPARγ agonists increase fat mass along with 

improving glucose control supports the notion that WAT mediates some of their effects on 

glucose homeostasis. Besides FAs, WAT produces several adipokines, which affect insulin 

signaling in other tissues, and whose expression is also altered by PPARγ activation. 

Examples are TNF-α, leptin, and resistin, secreted proportionally with WAT mass.(181) 

These molecules activate breast cancer progression.(182,183,184) In addition, the FA C22:6 

is also reported to activate PPARα and the activation of this receptor in human breast cancer 

line promoted proliferation.(185,186) 

In what concern the results obtained about the variation of PLs, profile, the 

multivariate analyses performed (PCA and PLS-DA) showed that the PL profiles of the 

mammary gland was significantly different for the different diets (ND, HChD and HFD). 

The two-dimensional plots of PCA (Figure 13), show differentiation between the two 

conditions (HChD and HFD), but discriminant when it compares to the ND group. This 

suggests that different diets induce particular and specific changes is the PL profile of the 

mammary gland, according to the fat content and the type of fat in the diet. In our study we 

focused in the PC, LPC, PE, LPE, SM and Cer, since the higher content of TAG on the 

extract make it difficult to analyse the PLs. For this reason we decided to study the abundant 

species in this type of tissue.(187)   
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Dianning He and co-authors studied the mammary gland of Female C3 SV40 Tag 

transgenic mice feed with different diets, including a low fat and HFD. They used magnetic 

resonance spectroscopy to evaluate possible effect of the diet composition  in the mammary 

gland fat, were they verified a higher accumulation of lipid in the mammary gland of HFD 

group.(188) It is shown that in obesity, the accumulated adipose tissue induces the synthesis 

of pro-inflammatory cytokines, which promote increased generation of ROS (reactive 

species of oxygen) and nitrogen.(189) In addition, Furukawa et al. found that accumulation 

of excessive fat in WAT, caused by a HFD, triggered an increase in lipid peroxidation in the 

WAT itself. In the animal studies, it was observed that obesity causes an increase of the 

expression of NADPH oxidase in WAT, concomitantly with a decrease in the activities of 

antioxidant enzymes such as CAT and GPx.(190) Lipid peroxidation refers to the oxidative 

degradation of lipids, a process initiated by free radicals/ROS escaping the antioxidant 

system.(191) Oxygen radicals react with PUFAs residues in PLs resulting in the production 

of a plethora of products, many of them reactive toward protein and DNA.(192)  

In what concern PLs and cancer, and adipose tissue we also saw alterations with the 

different diets which are concordant with alterations reported. The FAs content of the PLs 

was evaluated trough GC-MS and it shows a significant decreased in the SFA C18:0 and a 

slight increase in the levels of the PUFAs. In addition, the DBI values shown a significant 

increase HFD. Acyl chain length and saturation determine the fluidity of the membrane; 

phospholipids with longer and more saturated chain lengths tend to aggregate and form less 

fluid membranes. The PCs account for nearly 50% of membrane PLs and are necessary for 

membrane structure and compartmentalization in the cell, as well as interaction with integral 

membrane proteins.(193) For this reason, the saturation of PCs is very important for cell 

membrane saturation that may explain why the PC (40:1), PC (42:2), PC (42:1) and PC 

(44:4) were decreased in the mammary gland of the HChD and HFD groups and the DBI 

was statistically higher in the HFD when compared to ND. More cell fluidity is associated 

with cancer cells, and poor prognosis in lung cancer cells.(194) In a study made by Kirsi H. 

Pietiläine, that compared the PLs profile in adipose tissue from twins with very different 

BMI (one of the twins has a high BMI and the other one lower BMI) it was reported a 

significant decrease in the levels of PC (36:2) (p<0.001), PC (34:2) (p<0.01) and PC (36:3) 

(p<0.05) in the WAT of the twins with higher BMI.(195) Similar pattern of variation in PC 

profile was reported  in adipose tissue of ob/ob mice in comparison with control.(167) Since 
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the levels of PC were decreased in general from the mammary gland of HChD and HFD, it 

only makes sense that the levels of LPC, whose origin is PC are also decreased, in particular 

LPC constituted with longer and more saturated FAs, like LPC (20:0), LPC (22:1)  and LPC 

(24:0). In addition, recently it has been demonstrated that treating cultured adipocytes with 

LPC stimulated glucose uptake in a dose-dependent manner via an insulin-independent 

mechanism involving activation of protein kinase C δ. Furthermore, these authors were also 

able to show that acute LPC treatment improved glycemia in mouse models of 

diabetes.(196) Thus, LPC reduction in obese mice and humans may play some role in 

contributing to the defects in glucose homeostasis observed in obesity. 

When it comes to SM, a study made by Fahumiya S. (197) reported the decreased of 

the levels of SM with more significance in the species SM (d34:1), SM (d38:1), SM (d40:1), 

SM (d42:1) and SM (d42:1) in the adipose tissue of ob/ob mice when compared to lean mice, 

which is in accordance with our results of the lipidome of  the mammary gland tissue.  They 

also reported a decrease in the levels of ceramides in general, with the most significance in 

the levels on species Cer (d42:1), Cer (d36:2) and Cer (42:2) which are also in agreement 

with our results. In addition, our results are also concordant with a study made by A.U. 

Blachnio-Zabielska which shows a general decrease of the ceramide levels in WAT in obese 

mice, and this decrease was accompanied by an increase in S1P values.(198) Ceramides are 

involved in apoptosis and lethal autophagy, all of which decrease cancer cell 

viability.(199,200) When ceramides are added to cells in culture they show to have anti-

proliferative activities.(201,202). S1P is a pro-proliferating agent.(203) These results 

suggest that in obesity the process of apoptosis might be impaired, favoring the inhibition of 

apoptosis of adipocytes and enhancement cell proliferation, which could be favored by cell 

proliferation of possible new tumor cells. 

 PE are the second most abundant phospholipid class in mammalian membranes 

ranging from 20 - 50%.(204) Importantly, PE does not spontaneously assemble in bilayers 

and rather incorporates into curved structures, such as the inverted hexagonal phase, and 

such it is mostly found in the inner leaft of the cell membranes add shape cell curvature. 

(205) In a study made by Xavier Prieur it was reported that the levels of the PE(36:3) and 

PE(P-36:4) where decreased in the adipose tissue of ob/ob mice in comparison with non 

obese mice. Similarly our results showed an overall decrease in the levels of PE in the HChD 

and HFD.(167) This results may suggest an abrormal cells functioning. There is also a 
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decreased in the levels of plasmenyl-PE. This type of PLs has been shown to have an 

antioxidant action by protecting cholesterol from oxidation by free radicals and lowering the 

oxidizability of membranes.(206) It acts as an endogenous antioxidants by scavenging 

radicals at the vinyl–ether linkage.(207) The importance of oxidative membrane damage is 

that can be modified by direct attack of the reactive species on the membrane components 

that are responsible for the functions. In the other hand we can have the consequences of the 

products of the lipid peroxidation, like it was discussed before.(208) Therefore, two different 

ways of oxidative modifications of cellular constituents have to be considered in general: the 

direct modification by reactive oxygen species and the indirect modification via reactive 

products of lipid peroxidation. 
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10. Conclusion 

The aim of this work was to detect changes in the lipidome of the mammary gland 

related to obesity and associate those changes to a higher risk of developing breast cancer. 

In this study, we reported for the first time the changes the lipidome of mammary gland 

related to obesity.  

Herein, we are able to detect changes in the TAG content mainly the augmentation 

in the n-6 PUFAs in the obesity that can be related to the augmentation of the DNA mutation 

in obesity, promoting this way breast carcinogenesis. In addition we can also see an increase 

in several FA responsible for activating the receptors PPARs whose have been reported to 

be activated in several cancers, including breast cancer 

Additionally, we also characterize the PLs content of the mammary gland as well as 

detected changes is it PL and Cer profiles related to obesity. We focused our study in the 

most abundant and most discuss PLs species that are PC, PE, LPC, LPE, SM and Cer. We 

detected an overall decreased in the levels of the PLs species that had a statistically 

difference in the mammary gland of HFD and HChD. Cer and PE decreased may can 

influence the normal cell functioning. Since PC are the major component of cell membrane 

any alterations in them may influence the membrane fluidity.  

Finally, the alterations in the FA content of the TAG as well as in PLs. This 

alterations may promote an abnormal PPAR function, in particular PPARy that it’s the most 

common isoform in the mammary gland and favor breast carcinogenesis. 
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12. Supplementary information  

12.1   Diets  

 

Figure C.1 – Data sheet from the normal diet  
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Figure C.2 – Data sheet for the High Cholesterol Diet 
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Figure C.3 – Data sheet from High Fat Diet 

12.2   Phospholipids identified in LC-MS and LC-MS/MS 

Table C.1 - LC-MS- and MS/MS-based identification of the phospholipid molecular species that were quantified in the present 
study in the positive ion mode. PLs – phospholipids; FA – fatty acids; RT – retention time 

Class nr. PLs FAs composition m/z tab.  m/z obs. RT  

PE 1 PE(30:3)  658.4450 658.4430 4.54 

2 PE(32:0)  692.5230 692.5212 4.31 

3 PE(32:1)  690.5070 690.5069 4.49 

4 PE(32:4)  684.4600 684.4621 4.12 

5 PE(34:1) PE(18:1/16:0) 718.5390 718.5367 4.37 

6 PE(34:2) PE(18:2/16:0) PE(18:1/16:1) 716.5230 716.5203 4.54 

7 PE(34:3) PE(16:1/18:2) 714.5070 714.5084 4.41 

8 PE(34:4)  712.4920 712.4955 4.31 

9 PE(34:6)  708.4600 708.4594 4.48 

10 PE(36:4)  740.5230 740.5230 4.30 
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11 PE(38:1) PE(20:0/18:1) PE(20:1/18:0) 774.6010 774.5976 3.67 

12 PE(38:4) PE(20:4/18:0) 768.5540 768.5541 4.26 

13 PE(38:5) PE(20:4/18:1) 766.5390 766.5376 5.47 

14 PE(38:6)  764.5230 764.5235 4.30 

15 PE(38:8)  760.4920 760.4904 4.68 

16 PE(40:4) PE(18:2/22:2) PE(18:3/22:1) PE(18:0/22:4) 796.5800 796.5839 4.09 

17 PE(40:5) PE(18:1/22:4) 794.5700 794.5687 4.17 

18 PE(40:6) 
 

792.5540 792.5554 4.19 

19 PE(40:8) PE(18:2/22:6) PE(18:3/22:5) 788.5230 788.5212 4.22 

20 PE(40:9)  786.5070 786.5034 4.28 

21 PE(40:10)  784.4920 784.4900 4.88 

22 PE(42:5)  822.6010 822.6021 3.98 

23 PE(42:9)  814.5390 814.5352 4.20 

24 PE(42:10)  812.5230 812.5206 4.22 

25 PE(44:10)  840.5540 840.5513 4.21 

26 PE(P-34:1)  702.5440 702.5454 4.79 

27 PE(P-34:2)  700.5280 700.5287 4.36 

28 PE(P-36:1)  730.5750 730.5721 4.44 

29 PE(P-36:2)  728.5590 728.5593 4.32 

30 PE(P-36:3)  726.5440 726.5404 5.10 

31 PE(P-38:1)  758.6060 758.6043 3.70 

32 PE(P-38:2)  756.5910 756.5887 4.31 

33 PE(P-38:4)  752.5590 752.5622 3.95 

34 PE(P-38:5)  750.5440 750.5429 4.33 

35 PE(P-40:1)  786.6380 786.6396 3.00 

36 PE(P-40:3)  782.6060 782.6027 3.98 

37 PE(P-40:4)  780.5910 780.5900 4.25 

38 PE(P-40:5)  778.5750 778.5752 4.16 

39 PE(P-40:7)  774.5440 774.5423 4.20 

40 PEo(36:5)  724.5280 724.5276 4.30 

41 PEo(38:3)  756.5910 756.5887 4.31 

42 PEo(38:5)  752.5590 752.5622 3.95 

43 PEo(38:8)  746.5130 746.5111 4.32 

44 PEo(40:2)  786.6380 786.6396 3.00 

45 PEo(40:4)  782.6060 782.6027 3.98 

46 PEo(40:6)  778.5750 778.5752 4.16 

47 PEo(40:7)  776.5590 776.5612 2.84 

48 PEo(40:8)  774.5440 774.5423 4.20 

49 PEo(40:9)  772.5280 772.5253 4.20 

50 PEo(40:10)  770.5130 770.5103 4.36 

LPE 51 LPE(14:0) LPE(14:0) 426.2614 426.2620 5.44 
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52 LPE(16:1) LPE(16:1) 452.2777 452.2777 5.37 

53 LPE(18:0) LPE(18:0) 482.3247 482.3246 5.23 

54 LPE(18:1) LPE(18:1) 480.3091 480.3090 5.24 

55 LPE(18:2) LPE(18:2) 478.2929 478.2933 5.18 

56 LPE(20:0) LPE(20:0) 510.3563 510.3559 4.18 

57 LPE(20:1) LPE(20:1) 508.3404 508.3403 3.92 

58 LPE(20:2) LPE(20:2) 506.3252 506.3246 4.84 

59 LPE(20:4) LPE(20:4) 502.2931 502.2933 5.16 

60 LPE(22:1) LPE(22:1) 536.3718 536.3716 5.26 

61 LPE(22:2) LPE(22:2) 534.3564 534.3559 4.36 

62 LPE(22:4) LPE(22:4) 530.3241 530.3246 4.90 

63 LPE(22:6) LPE(22:6) 526.2927 526.2933 5.10 

64 LPE(24:3) LPE(24:3) 560.3728 560.3716 4.51 

65 LPE(O-16:0) LPE(O-16:0) 440.3141 440.3141 5.54 

66 LPE(O-18:0) LPE(O-18:0) 468.3457 466.3304 5.57 

67 LPE(P-16:0) LPE(P-16:0) 438.2979 436.2836 5.21 

68 LPE(P-18:0) LPE(P-18:0) 466.3298 466.3297 5.10 

69 LPE(P-20:0) LPE(P-20:0) 494.3607 494.3611 5.10 

PC 70 PC(30:0) PC(14:0/16:0) 706.5389 706.5390 9.98 

71 PC(30:1) PC(14:0/16:1) 704.5243 704.5230 10.50 

72 PC(32:0) PC(16:0/16:0) 734.5710 734.5700 9.83 

73 PC(32:1) PC(16:0/16:1) 732.5531 732.5540 10.26 

74 PC(32:2) PC(14:0/18:2) PC(16:1/16:1) 730.5382 730.5390 9.71 

75 PC(34:0) 
 

762.5986 762.6010 10.82 

76 PC(34:1) PC(16:0/18:1) 760.5854 760.5860 9.66 

77 PC(34:2) PC(16:0/18:2) 758.5699 758.5700 9.49 

78 PC(34:3) PC(16:1/18:3) 756.5537 756.5540 9.71 

79 PC(34:4) PC(14:0/20:4) 754.5388 754.5390 9.63 

80 PC(36:2) PC(18:0/18:2) 786.6011 786.6010 9.38 

81 PC(36:3) PC(18:1/18:2) PC(16:0/20:3) 784.5854 784.5860 9.38 

82 PC(36:4) PC(16:0/20:4) PC(18:2/18:2) 782.5693 782.5700 9.00 

83 PC(36:5) PC(16:1/20:4) 780.5521 780.5540 9.51 

84 PC(36:6)  778.5383 778.5390 9.31 

85 PC(38:2)  814.6317 814.6330 9.09 

86 PC(38:3)  812.6143 812.6170 9.04 

87 PC(38:4)  810.6024 810.6010 8.97 

88 PC(38:5)  808.5845 808.5860 8.92 

89 PC(38:6) PC(16:0/20:6) PC(18:2/20:4) 806.5699 806.5700 8.92 

90 PC(38:7) PC(16:1/22:6) PC(20:4/18:3) 804.5523 804.5540 9.03 

91 PC(38:8) PC(18:1/20:5) PC(18:2/20:4) 802.5358 802.5390 9.02 

92 PC(40:1)  844.6803 844.6800 8.93 
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93 PC(40:4)  838.6309 838.6330 8.90 

94 PC(40:5)  836.6157 836.6170 8.83 

95 PC(40:6)  834.6019 834.6010 8.72 

96 PC(40:7)  832.5843 832.5860 8.81 

97 PC(40:8)  830.5683 830.5700 8.75 

98 PC(40:9)  828.5524 828.5540 8.77 

99 PC(40:10)  826.5378 826.5390 8.84 

100 PC(42:1) PC(18:1/24:0) 872.7106 872.7110 8.86 

101 PC(42:2)  870.6973 870.6950 8.85 

102 PC(42:5)  864.4692 864.6480 8.70 

103 PC(42:6)  862.6324 862.6330 8.74 

104 PC(42:7)  860.6150 860.6170 8.66 

105 PC(42:8)  858.5979 858.6010 8.67 

106 PC(42:9)  856.5832 856.5860 8.64 

107 PC(42:10)  854.5696 854.5700 8.61 

108 PC(42:11)  852.5516 852.5540 8.63 

109 PC(44:4)  894.6995 894.6950 8.49 

110 PC(44:8)  886.6307 886.6330 8.54 

111 PC(44:10) PC(20:4/22:6) 882.5996 882.6010 8.56 

112 PC(44:11)  880.5833 880.5860 8.51 

113 PC(44:12)  878.5698 878.5700 8.43 

114 PC(O-30:0)  692.5599 692.5590 10.20 

115 PC(P-30:0)  690.5446 690.5440 9.91 

116 PC(O-32:0)  720.5905 720.5910 10.16 

117 PC(P-32:0)  718.5753 718.5750 9.92 

118 PC(P-34:0)  746.6062 746.6060 9.82 

119 PC(P-34:1)  744.5885 744.5910 10.20 

120 PC(P-34:2)  742.5737 742.5750 9.50 

121 PC(P-34:3)  740.5573 740.5590 9.85 

122 PC(P-36:0)  774.6387 774.6380 9.75 

123 PC(P-36:2)  770.6038 770.6060 9.49 

124 PC(P-36:3)  768.5897 768.5910 9.38 

125 PC(P-36:4)  766.5757 766.5750 8.93 

126 PC(P-38:3)  796.6198 796.6220 9.14 

127 PC(P-38:4)  794.6056 794.6060 9.07 

128 PC(P-38:5)  792.5911 792.5910 8.96 

129 PC(P-40:3)  824.6523 824.6530 9.06 

130 PC(P-40:4)  822.6359 822.6380 9.08 

131 PC(P-40:5)  820.6202 820.6220 8.96 

132 PC(P-42:3)  852.6830 852.6850 8.79 

133 PC(P-42:4)  850.6680 850.6700 8.92 
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134 PC(P-42:5)  848.6527 848.6530 8.97 

135 PC(P-32:1)  716.5586 716.5590 9.63 

136 PC(P-36:5)  764.5602 764.5590 9.06 

137 PC(P-38:6)  790.5749 790.5750 8.70 

138 PC(P-40:6)  818.6048 818.6060 8.88 

139 PC(P-44:6)  874.6690 874.6690 8.90 

SM 140 SM(d32:1)  675.5444 675.5441 11.93 

141 SM(d32:2)  673.5288 673.5284 11.90 

142 SM(d34:0)  705.5900 705.5910 11.25 

143 SM(d34:1) SM(d18:1/16:0) 703.5748 703.5754 11.68 

144 SM(d34:2)  701.5591 701.5597 11.69 

145 SM(d36:0)  733.6219 733.6223 11.19 

146 SM(d36:1)  731.6065 731.6067 11.41 

147 SM(d36:2)  729.5916 729.5910 11.75 

148 SM(d36:3)  727.5735 727.5754 11.28 

149 SM(d38:1)  759.6378 759.6380 11.20 

150 SM(d38:2)  757.6219 757.6223 11.17 

151 SM(d38:3)  755.6041 755.6067 11.20 

152 SM(d40:1) SM(d18:1/22:0) 787.6691 787.6693 10.97 

153 SM(d40:2)  785.6535 785.6536 10.93 

154 SM(d40:3)  73.6370 783.6380 11.06 

155 SM(d42:1)  815.6996 815.7006 10.72 

156 SM(d42:2) SM(d18:1/24:1) 813.6850 813.6849 10.81 

157 SM(d42:3)  811.6686 811.6693 10.83 

158 SM(d44:1)  843.7311 843.7319 10.51 

159 SM(d44:2)  841.7157 841.7162 10.62 

Cer 160 Cer(d20:1)  342.3003 342.3008 3.19 

161 Cer(d32:1)  510.4885 510.4886 3.34 

162 Cer(d34:1)  538.5201 538.5199 3.34 

163 Cer(d34:2)  536.5044 536.5043 3.35 

164 Cer(d36:1)  566.5506 566.5512 3.33 

165 Cer(d36:2)  564.5354 564.5356 3.33 

166 Cer(d38:1)  594.5814 594.5825 3.13 

167 Cer(d38:2)  592.5675 592.5669 3.25 

168 Cer(d40:1)  622.6133 622.6138 3.32 

169 Cer(d40:2)  620.5980 620.5982 3.32 

170 Cer(d42:1)  650.6420 650.6451 3.37 

171 Cer(d42:2)  648.6291 648.6295 3.34 

LPC 172 LPC(14:0) LPC(14:0) 468.3088 468.3090 14.83 

173 LPC(16:0) LPC(16:0) 496.3379 496.3403 14.19 

174 LPC(16:1) LPC(16:1) 494.3245 494.3247 14.35 
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175 LPC(18:0) LPC(18:0) 524.3723 524.3716 13.57 

176 LPC(18:1) LPC(18:1) 522.3565 522.3560 13.82 

177 LPC(18:2) LPC(18:2) 520.3405 520.3403 14.48 

178 LPC(18:4) LPC(18:4) 516.3066 516.3090 14.37 

179 LPC(20:0) LPC(20:0) 552.4033 552.4029 13.30 

180 LPC(20:1) LPC(20:1) 550.3880 550.3873 13.32 

181 LPC(20:3) LPC(20:3) 546.3548 546.3560 13.65 

182 LPC(20:4) LPC(20:4) 544.3401 544.3403 13.57 

183 LPC(20:5) LPC(20:5) 542.3227 542.3247 14.09 

184 LPC(22:1) LPC(22:1) 578.4191 578.4186 13.08 

185 LPC(22:4) LPC(22:4) 572.3720 572.3716 13.31 

186 LPC(22:5) LPC(22:5) 570.3568 570.3560 13.38 

187 LPC(22:6) LPC(22:6) 568.3406 568.3403 13.35 

188 LPC(24:0) LPC(24:0) 608.4657 608.4655 12.34 

189 LPC(24:1) LPC(24:1) 606.4506 606.4487 12.76 

190 LPC(O-16:0) LPC(O-16:0) 482.3608 482.3611 15.71 

191 LPC(P-16:0) LPC(P-16:0) 480.3462 480.3454 13.55 

192 LPC(O-18:0) LPC(O-18:0) 510.3930 510.3924 15.03 

193 LPC(O-18:1) LPC(O-18:1) 506.3621 506.3611 13.16 

194 LPC(P-18:0) LPC(P-18:0) 508.3768 508.3767 15.22 

195 LPC(O-20:0) LPC(O-20:0) 538.4231 538.4237 14.42 

 

Table C.2 – LC-MS and MS/MS-based identification of the phospholipid molecular species that were quantified in the 
present study in the negative ion mode. PLs – phospholipids; FA – fatty acids; RT – retention time 

Class nr. PLs Faz composition m/z tab. m/z obs. RT 

PE 

1 PE(32:0)  690.5070 690.5068 4.46 

2 PE(32:2)  686.4760 686.4758 4.10 

3 PE(34:1) PE(18:1/18:0) 716.5230 716.5223 4.41 

4 PE(34:2) PE(18:2/16:0) PE(18:1/16:1) 714.5070 714.5076 4.39 

5 PE(34:3) PE(16:1/18:2) 712.4920 712.4933 4.38 

6 PE(38:1) PE(20:0/18:1) PE(20:1/18:0) 772.5860 772.5848 4.35 

7 PE(38:4) PE(20:4/18:0) 766.5390 766.5394 4.23 

8 PE(38:5) PE(20:4/18:1) 764.5230 764.5239 4.21 

9 PE(38:7)  760.4920 760.4925 4.22 

10 PE(40:3) PE(18:2/22:1) PE(18:1/22:2) 796.5800 796.5784 4.25 

11 PE(40:4) PE(18:2/22:2) PE(18:2/22:1) PE(18:0/22:4) 794.5700 794.5709 4.21 

12 PE(40:5) PE(18:1/22:4) 792.5540 792.5524 4.19 

13 PE(40:7) PE(18:2/22:5) PE(18:1/22:6) 788.5230 788.5235 4.18 

14 PE(40:8) PE(18:2/22:6) PE(18:3/22:5) 786.5070 786.5076 4.18 

15 PE(P-32:1)  672.4970 672.4980 4.43 

16 PE(P-34:1)  700.5280 700.5290 4.39 
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17 PE(P-36:1)  728.5590 728.5596 4.36 

18 PE(P-36:2)  726.5440 726.5458 4.35 

19 PE(P-36:4)  722.5130 722.5135 4.27 

20 PE(P-36:5)  720.4970 720.4975 4.28 

21 PE(P-38:4)  750.5440 750.5449 4.21 

22 PE(P-38:6)  746.5130 746.5134 4.20 

23 PE(P-40:3)  780.5910 780.5871 4.23 

24 PE(P-40:4)  778.5750 778.5749 4.19 

25 PE(P-40:6)  774.5440 774.5445 4.17 

26 PE(P-40:7)  772.5280 772.5289 4.22 

27 PEo(38:3)  754.5750 754.5741 4.32 

28 PEo(40:6)  776.5590 776.5585 4.18 

LPE 

29 LPE(14:0) LPE(14:0) 424.2464 424.2478 5.47 

30 LPE(16:0) LPE(16:0) 452.2777 452.2786 5.33 

31 LPE(16:1) LPE(16:1) 450.2621 450.2629 5.37 

32 LPE(18:0) LPE(18:0) 480.3090 480.3094 5.25 

33 LPE(18:1) LPE(18:1) 478.2934 478.2943 5.22 

34 LPE(18:2) LPE(18:2) 476.2777 476.2786 5.28 

35 LPE(20:1) LPE(20:1) 506.3247 506.3254 5.20 

36 LPE(20:2) LPE(20:2) 504.3090 504.3068 5.48 

37 LPE(20:4) LPE(20:4) 500.2777 500.2788 5.17 

38 LPE(20:5) LPE(20:5) 498.2621 498.2619 5.24 

39 LPE(22:4) LPE(22:4) 528.3090 528.3095 5.10 

40 LPE(22:5) LPE(22:5) 526.2934 526.2951 5.18 

41 LPE(22:6) LPE(22:6) 524.2777 524.2786 5.14 

42 LPE(O-16:0) LPE(O-16:0) 438.2985 438.2995 5.60 

43 LPE(O-18:0) LPE(O-18:0) 466.3298 466.3304 5.52 

44 LPE(P-16:0) LPE(P-16:0) 436.2828 436.2836 5.20 

45 LPE(P-18:0) LPE(P-18:0) 464.3141 464.3153 5.13 
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12.3   Phospholipids MS and MS/MS spectra examples  

 

 

  

Figure C.4 – A – Example LC-MS spectra of PE;  B – LC-MS/MS spectra of PE in the positive mode; C -  LC-MS/MS spectra 
of PE in the negative mode  
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Figure C.5 - Example LC-MS spectra of LPE in negative mode. 

 

 

Figure C.6 - A – Example LC-MS spectra of PC; B – MS/MS spectra of PC in the positive mode; 
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T: FTMS - p ESI Full ms [200.0000-1600.0000]
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Figure C.7 – Example LC- MS spectra of LPC in positive mode. 

 

 

Figure C.8 - A – Example MS spectra of SM resulting from the LC-MS;  B – LC-MS/MS spectra of SM in the positive mode; 
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Figure C.9 - Example MS spectra of Cer resulting from the LC-MS 
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T: FTMS - p ESI Full ms [200.0000-1600.0000]
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