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Abstract

In this note, we introduce a discrete counterpart of the conventional max-autoregressive

moving-average process of Davis & Resnick (1989), based on the binomial thinning oper-

ator and driven by a sequence of i. i. d. nonnegative integer-valued random variables with

a finite range of counts. Basic probabilistic and statistical properties of this new class

of models are discussed in detail, namely the existence of a stationary distribution, and

how observations’ and innovations’ distributions are related to each other. Furthermore,

parameter estimation is also addressed.

Keywords: thinning operator; autoregressive moving-average processes; finite counts.

1. Introduction

Modeling the temporal dependence of integer-valued time series defined on a finite range

of counts, say {0, 1, . . . , n}, is nowadays a topic of research which is gaining importance

in time series analysis. Note that traditional integer-valued ARMA-type models are

useless in this context, since such models are defined over unbounded sets. To tackle this

limitation, McKenzie (1985) introduced the binomial AR(1) model based on the so-called

binomial thinning operator (Steutel & van Harn, 1979), in which Xt takes the form

Xt = α ◦Xt−1 + β ◦ (n−Xt−1), (1.1)

where the binomial thinning operator “φ ◦” is defined as follows: if X is a discrete random

variable with range N0 and if φ ∈ (0; 1), then the random variable φ ◦X is defined by
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the conditional binomial distribution Bin(X,φ), given the value of X ; the boundary

values φ = 0 and φ = 1 are included by setting 0 ◦ X := 0 and 1 ◦ X := X . Note

that by construction, Xt preserves the boundedness of the range. The binomial AR(1)

model was extended to a pth-order AR-like model by Weiß (2009), who combined the

data generating mechanism of the binomial AR(1) model with a random mixture. The

approach by Weiß (2009), however, cannot be extended beyond a purely autoregressive

model, and also a pure moving-average model cannot be constructed in this way.

Our aim in this paper is to construct a full integer-valued time series model with finite

support, in the sense that the model should include both an autoregressive-type and a

moving-average-type component (therefore a “full” counterpart), and it should certainly

contain both a purely autoregressive-type and a purely moving-average-type model as a

special case. To this extent we introduce a discrete counterpart of the conventional max-

autoregressive moving-average process of Davis & Resnick (1989) which will be referred

to as the maximum BARMA (in short max-BARMA(p, q)) model.

The novel max-BARMA(p, q) model proposed in Section 2 includes both an autore-

gressive and a moving-average part, and a stationary solution exists under rather weak

conditions. After having discussed stochastic properties and important special cases, we

present an approach for parameter estimation in Section 3, and we conclude in Section 4.

2. The max-BARMA Model

Motivated by the max-ARMA models (Davis & Resnick, 1989), we define an integer-

valued counterpart of this model for counts having the bounded support {0, . . . , n} with

a fixed upper limit n ∈ N. We refer to these models as the max-BARMA(p, q) models

(“B” like “bounded”), and they are defined by the recursion

Xt = max {α1 ◦Xt−1, . . . , αp ◦Xt−p, ǫt, β1 ◦ ǫt−1, . . . , βq ◦ ǫt−q}, (2.1)

where the i. i. d. innovations are assumed to have the bounded range {0, . . . , n}. Note

that binomial thinning always has a non-increasing effect, i. e., α ◦ x ≤ x holds, so

(2.1) preserves the boundedness of the range {0, . . . , n}. The thinnings in (2.1) are

assumed to be executed each time anew: although we omit this in the sequel for the

sake of readability, it would be more correct to add a time index t to the thinnings,
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i. e., Xt = max {α1 ◦t Xt−1, . . . , βq ◦t ǫt−q}. In addition, all thinnings are assumed to

be executed completely independent of each other, i. e., in particular, we assume that

α1◦t+1Xt, . . . , αp◦t+pXt as well as β1◦s+1ǫs, . . . , βq◦s+qǫs are conditionally independent,

given the values of Xt and ǫs, respectively.

Important special cases (to be discussed in some more detail in the later Sections 2.1

and 2.2) are the purely moving-average max-BMA(q) model (i. e., p = 0) defined by

Xt = max {ǫt, β1 ◦ ǫt−1, . . . , βq ◦ ǫt−q},

and the purely autoregressive max-BAR(p) model (i. e., q = 0) defined by

Xt = max {α1 ◦Xt−1, . . . , αp ◦Xt−p, ǫt}.

The max-BARMA(p, q) process (2.1) can be represented as a (p+q)-dimensional homo-

geneous finite Markov chain,

Zt :=
(
Xt;Xt−1, . . . , Xt−p+1, ǫt, . . . , ǫt−q+1

)⊤
, (2.2)

which is understood to reduce to
(
Xt;Xt−1, . . . , Xt−p+1

)⊤
in the purely autoregressive

case (q = 0), and to
(
Xt; ǫt, . . . , ǫt−q+1

)⊤
in the purely moving-average case (p = 0). Par-

tition the possible outcomes z ∈ {0, . . . , n}p+q of Zt as z = (z1, . . . , zp, z−1, . . . , z−q)
⊤.

For the cases with q ≥ 1, the range Z of Zt is only a subset of {0, . . . , n}p+q, since z1

can never exceed the maximum of the remaining components, since z1 can never fall

below z−1, and since the ǫ’s distribution might have probability 0 for some counts

in {0, . . . , n}. For q = 0, Z = {0, . . . , n}p, i. e., the full range is possible (provided

that P (ǫ = 0), P (ǫ = n) > 0).

Note that the 1-step-ahead transition probabilities pz|y := P (Zt = z |Zt−1 = y) are

pz|y = δz2,y1 · · · δzp,yp−1 · δz−2,y−1 · · · δz−q,y−q+1 · P (ǫt = z−1)·

P (Xt = z1 | Xt−1 = y1, . . . , Xt−p = yp, ǫt = z−1, ǫt−1 = y−1, . . . , ǫt−q = y−q),
(2.3)

with the last factor being equal to

P
(
max

{
α1 ◦ y1, . . . , αp ◦ yp, z−1, β1 ◦ y−1, . . . , βq ◦ y−q

}
= z1

)
=

= FBin(y1,α1)(z1) · · ·FBin(yp,αp)(z1) · 1(z−1 ≤ z1) · FBin(y−1,β1)(z1) · · ·FBin(y−q,βq)(z1)

− FBin(y1,α1)(z1 − 1) · · ·1(z−1 ≤ z1 − 1) · · ·FBin(y−q,βq)(z1 − 1),

(2.4)
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where FBin(n,π)(x) abbreviates the cumulative distribution function (cdf) of the bino-

mial distribution Bin(n, π). This factorization follows immediately from the well-known

equality

P
(
max {Y1, . . . , Ym} ≤ x

)
=

m∏

i=1

P (Yi ≤ x), (2.5)

for independent random variables Y1, . . . , Ym.

The Markov-chain representation (2.2) and (2.3) is used to prove the existence of the

max-BARMA(p, q) process. The main result of this section is given below.

2.1 Theorem If all thinning probabilities satisfy α1, . . . , βq ∈ (0; 1), and if the inno-

vations satisfy P (ǫ = k) > 0 for all k ∈ {0, . . . , n}, then the max-BARMA(p, q) pro-

cess (2.1) is ergodic with a unique stationary solution, which is also φ-mixing with

geometrically decreasing weights. For p = 0 or q = 0, it suffices to require that

P (ǫ = 0), P (ǫ = n) > 0.

Proof: The proof starts by showing that the (p + q + 1)-step-ahead transition probabilities

equal pz|y(p + q + 1) of the Markov chain (Zt)Z are truly positive, thus implying that

(Zt)Z constitutes a primitive finite Markov chain.

Case q = 0:

For Zt =
(
Xt, . . . , Xt−p+1

)⊤
, the (p + 1)-step-ahead transition probabilities equal

pz|y(p + 1) = P
(
Xt = z1, . . . , Xt−p+1 = zp | Xt−p−1 = y1, . . . , Xt−2p = yp

)

=
∑

zp+1
P
(
Xt = z1, . . . , Xt−p+1 = zp, Xt−p = zp+1 | Xt−p−1 = y1, . . . , Xt−2p = yp

)

=
∑

zp+1
P (z1 | z2, . . . , zp+1) · · ·P (zp | zp+1, y1, . . . , yp−1) · P (zp+1 | y1, . . . , yp),

which is truly positive if one of the summands is truly positive, i. e., if one of the summands

consists of only truly positive factors. This happens at least for the summand zp+1 = n:

• If one of the past observations x1, . . . , xp is equal to n, say xi = n, then we

have P (x0 |x1, . . . , xp) > 0, because αi ◦ n has the full support {0, . . . , n} since

all α1, . . . , αp ∈ (0; 1), and because P (ǫ = 0) > 0 is assumed.

• Conditional probabilities of the form P (n |x1, . . . , xp) are truly positive, since P (ǫ =

n) > 0 is assumed.
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Case p = 0:

For Zt =
(
Xt; ǫt, . . . , ǫt−q+1

)⊤
, the (q+1)-step-ahead transition probabilities equals, with

the same arguments as before,

pz|y(q + 1)

= P
(
Xt = z1, ǫt = z−1, . . . , ǫt−q+1 = z−q | Xt−q−1 = y1, ǫt−q−1 = y−1, . . . , ǫt−2q = y−q

)

=
∑

z2,...,zq+1,z−q−1
P (ǫt−q = z−q−1)

∏q−1
j=0 P (ǫt−j = z−j−1)

·P
(
Xt = z1 | ǫt = z−1, . . . , ǫt−q = z−q−1

)

·∏q
i=1 P

(
Xt−i = zi+1 | ǫt−i = z−i−1, . . . , ǫt−i−q = y−i

)
.

In analogy to the case q = 0, if P (ǫ = n) > 0 and if β1, . . . , βq ∈ (0; 1), then every

summand with zq+1 = z−q−1 = n and zi+1 = z−i−1 for i = 1, . . . , q− 1 is truly positive.

Note that z ∈ Z excludes “impossible states” such as z1 < z−1.

Case p, q ≥ 1:

Analogous arguments as before are applied to the (p+ q+ 1)-step-ahead transition prob-

abilities:

pz|y(p + q + 1)

= P
(
Xt = z1, . . . , Xt−p+1 = zp, ǫt = z−1, . . . , ǫt−q+1 = z−q

| Xt−p−q−1 = y1, . . . , Xt−q−2p = yp, ǫt−p−q−1 = y−1, . . . , ǫt−p−2q = y−q

)

=
∑

zp+1,...,zp+q+1,z−q−1,...,z−p−q−1

∏q−1
j=0 P (ǫt−j = z−j−1)

∏q+p
j=q P (ǫt−j = z−j−1)

·∏p+q
i=0 P

(
Xt−i = zi+1 | Xt−i−1 = zi+2, . . . , Xt−i−p = yi−q, ǫt−i = z−i−1, . . . , ǫt−i−q = y−i

)
.

Here, we focus on summands with zi+1 = z−i−1 for i = p, . . . ,p+q and with z−i−1 = zi+1

for i = q, . . . ,p + q; if both zi+1 and z−i−1 can be selected, we consider the summands

with zi+1 = · · · = z−i−1 = n.

Now we follow the proof in Section 2.2 of Weiß (2013) step-by-step to obtain that (Zt)Z

is a primitive finite Markov chain, which, in turn, leads to (Xt)Z being stationary, ergodic

and φ-mixing with geometrically decreasing weights. #

2.1. The max-BMA( q) Models

The purely moving-average max-BMA(q) model,

Xt = max {ǫt, β1 ◦ ǫt−1, . . . , βq ◦ ǫt−q}, (2.6)
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constitutes q-dependent model for bounded counts, i. e., Xt and Xt−k are independent of

each other for lag k > q. In particular, this implies that also the autocorrelation function

(ACF) satisfies ρ(k) = 0 for k > q. Furthermore, since the innovations (ǫt) are i. i. d.,

and since thinnings are executed independently, the components ǫt, β1◦ǫt−1, . . . , βq◦ǫt−q

within the max-operator are independent. Therefore, the marginal cdf satisfies

FX(x) = Fǫ(x)

q∏

i=1

Fβi◦ǫ(x), (2.7)

where the factorization follows again from the equality (2.5). Using the closed-form

formula (2.7), further marginal properties are easily computed, e. g., the marginal mean

as E[X ] =
∑n−1

x=0

(
1−F (x)

)
, or the probability mass function (pmf) pX(x) := P (X = x)

by differencing.

2.2 Example (Binomial Innovations) Let the innovations be binomially distributed, ǫ ∼
Bin(n, π), then β ◦ ǫ ∼ Bin(n, π β). So the marginal distribution according to (2.7) equals

FX(x) = FBin(n,π β1)(x) · · ·FBin(n,π βq)(x) · FBin(n,π)(x),

which is a product of binomial cdfs. Here, FBin(n,π)(x) =
∑x

m=0

(
n
m

)
πm (1 − π)n−m. In

particular, the zero probability pX(0) = FX(0) becomes

pX(0) = (1− π β1)
n · · · (1− π βq)

n · (1− π)n.

2.3 Example (Uniform Innovations) If the marginal distribution of a max-BMA(q) process

with uniform innovations, i. e., with pmf P (ǫ = l) = 1
n+1

, has to be computed according to (2.7),

then the distribution of β ◦ ǫ is required. We compute

Fβ◦ǫ(x) =
∑n

l=0 P (β ◦ l ≤ x)P (ǫ = l) = 1
n+1

∑n
l=0 FBin(l,β)(x),

which is the mean of the binomial cdfs FBin(0,β)(x), . . . , FBin(n,β)(x). In particular, since

Fβ◦ǫ(0) = 1
n+1

∑n
l=0 (1− β)l = 1

n+1
1−(1−β)n+1

β
,

the zero probability becomes

pX(0) = 1
(n+1)q+1

∏q
j=1

1−(1−βj )
n+1

βj
.

2.4 Example (Two-Point Innovations) Next, we consider a max-BMA(q) process with in-

novations stemming from a two-point distribution on {0, . . . , n}, i. e., with P (ǫt = n) = π =
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1 − P (ǫt = 0). If the marginal distribution has to be computed according to (2.7), then the

distribution of β ◦ ǫ is required. We compute

Fβ◦ǫ(x) =
∑x

k=0

∑n
l=0 P (β ◦ l = k)P (ǫ = l) = (1− π) + π Fβ◦n(x),

which is the zero-inflated binomial (ZIB) distribution ZIB(n, β, 1− π). So (2.7) leads to

FX(x) = (1− π)
(
1− π + π FBin(n,β1)(x)

)
· · ·
(
1− π + π FBin(n,βq)(x)

)

for all x < n; certainly, FX(n) = 1. The zero probability becomes

pX(0) = (1− π)
(
1− π + π (1− β1)

n
)
· · ·
(
1− π + π (1− βq)

n
)
.

2.2. The max-BAR(p) Models

The purely autoregressive max-BAR(p) model, defined by

Xt = max {α1 ◦Xt−1, . . . , αp ◦Xt−p, ǫt}, (2.8)

is a p-order Markov model. Its conditional cdf is computed

FXt|xt−1,...,xt−p
(x) = FBin(xt−1,α1)(x) · · ·FBin(xt−p,αp)(x) · Fǫ(x), (2.9)

utilizing again the general equality (2.5). In particular, the conditional zero probability

equals

P (Xt = 0 | xt−1, . . . , xt−p) = pǫ(0)
∏p

i=1(1− αi)
xt−i .

The most simple instance of the max-BAR(p) model is the max-BAR(1) model (with

autoregressive parameter α1 = α) defined by

Xt = max {α ◦Xt−1, ǫt}, (2.10)

which constitutes a Markov chain and serves as an alternative to the binomial AR(1)

model (1.1). Its transition probabilities are computed from its conditional cdf

FXt|Xt−1=l(k) = Fǫ(k)
∑min {k,l}

m=0

(
l
m

)
αm (1 − α)l−m, (2.11)

see (2.9). Conditional factorial moments are computed as

E[(Xt)(r) | Xt−1 = l] = E
[
max {α ◦Xt−1, ǫt}(r) | Xt−1 = l

]
(2.12)

=

l∑

m=0

(
l

m

)
αm (1 − α)l−mE

[
max {m, ǫt}(r)

]
,

7



where

E
[
max {m, ǫt}(r)

]
= m(r) P (ǫt ≤ m) +

∑
k>m k(r) P (ǫt = k)

= m(r) Fǫ(m) + µǫ,(r) −
∑

k≤m k(r) P (ǫt = k).

2.5 Example (Uniform Innovations) Let the ǫt be uniformly distributed on {0, . . . , n}, i. e.,
with cdf Fǫ(k) =

k+1
n+1

. The conditional mean follows from (2.11) as

E[Xt | Xt−1 = l] =
∑n

k=0

(
1− FXt|Xt−1=l(k)

)

= n+ 1−∑n
k=0

k+1
n+1

∑k
m=0

(
l
m

)
αm (1− α)l−m

= n+ 1−∑n
m=0

(
l
m

)
αm (1− α)l−m ∑n

k=m
k+1
n+1

= n+ 1−∑l
m=0

(
l
m

)
αm (1− α)l−m 1

n+1

(
(n+1)(n+2)

2
− m(m+1)

2

)

= n+ 1− n+2
2

+ 1
2(n+1)

∑l
m=0

(
l
m

)
αm (1− α)l−m

(
m(m− 1) + 2m

)

= α2

2(n+1)
l2 + α (2−α)

2(n+1)
l + n

2
,

where in the second last step, we used the formula for the factorial moments of the bino-

mial distribution. So the conditional mean is a quadratic function in the previous observation.

Alternatively, we might have used (2.12) to derive this formula, or to derive expressions for

higher-order factorial moments.

2.6 Example (Two-Point Innovations) Let ǫt follow a two-point distribution on {0, . . . , n}
with P (ǫt = n) = π = 1−P (ǫt = 0). By the definition of the Max-BAR(1) model, the generated

sample paths will show some kind of saw-tooth pattern: at each time when ǫ = n, a shock is

generated and shifts X to the value n, while afterwards, during the period until the next shock

(when ǫ = 0), the thinning α ◦X causes the observations to decay monotonically.

For the two-point distribution, we obtain

Fǫ(k) = 1− π + δk,n π, µǫ,(r) := E[(ǫt)(r)] = n(r) π,
∑m

k=0 k(r) P (ǫt = k) = δm,n n(r) π.

So altogether, see Appendix Appendix A for detailed derivations,

E
[
max {m, ǫt}(r)

]
= m(r) (1− π) + n(r) π.

Hence, using (2.12) together with the formula for the binomial factorial moments,

E[(Xt)(r) | Xt−1 = l] = αr (1− π) l(r) + n(r) π,

8



which is an rth-order polynomial in the last observation with leading coefficient αr (1− π). In

particular, the conditional mean

E[Xt | Xt−1] = α (1− π)Xt−1 + nπ,

is linear in the previous observation, so a max-BAR(1) model with two-point innovations is a

CLAR(1) model (Grunwald et al., 2000). As a result, we obtain the marginal mean as

µ := E[X] = nπ
1−α (1−π)

.

Similarly, the conditional variance

V [Xt | Xt−1] = X2
t−1 α

2 π(1− π) − Xt−1 α (1− π) (2 nπ − 1 + α) + n2 π(1− π),

is a quadratic polynomial in the last observation. So

σ2 := V [Xt] =
α2 π(1− π)µ2 − α (1− π) (2 nπ + α)µ + n2 π(1− π)

1− α2 π(1− π)
.

The transition probabilities pk|l implied by (2.11) take a very simple form. For k = 0, . . . , n− 1,

we have

FXt|Xt−1=l(k) = (1− π)
k∑

m=0

(
l

m

)
αm (1− α)l−m,

so by differencing, we obtain pk|l = (1−π)
(
l
k

)
αk (1−α)l−k, which equals 0 for k > l. Altogether,

we obtain

pk|l = δk,n π + (1− π)P (α ◦ l = k),

where P (α ◦ l = k) = 0 if l < k, i. e., the transition matrix exhibits a triangular-type structure.

So far, we specified the max-BAR(1) model by specifying its innovations’ distribution.

In applications, one sometimes prefers to specify the observations’ marginal distribution

instead and to derive the corresponding distribution of the innovations. The marginal

cdfs of the observations and innovations of a stationary max-BAR(1) process are related

to each other by the equation

FX(x) = Fα◦X(x) · Fǫ(x). (2.13)

According to Theorem 1.A.4 in Shaked & Shanthikumar (2007), α ◦ X ≤st X , i. e.,

we always have that FX(x) ≤ Fα◦X(x). Thus, the quotient FX/Fα◦X always satisfies

0 ≤ FX(x)/Fα◦X(x) ≤ 1 for all x. So the cdf FX(x) is a valid cdf for a max-BAR(1)

9



model iff FX/Fα◦X is monotonically increasing (and this would then be the cdf of the

innovations), which is equivalent to requiring that

pX(x+ 1)

pα◦X(x+ 1)
≥ FX(x)

Fα◦X(x)
for all x = 0, . . . , n− 1, (2.14)

where p·(·) denotes the respective pmf. Obviously, a sufficient condition for (2.14) is

pX(x+ 1)

pα◦X(x+ 1)
≥ pX(j)

pα◦X(j)
for all j ≤ x. (2.15)

The subsequent example demonstrates the application of condition (2.15) to prove that

the binomial distribution is a possible marginal distribution of a max-BAR(1) process.

2.7 Example (Binomial Observations) Let X ∼ Bin(n, π), then α ◦ X ∼ Bin(n, π α).

Therefore,

pX (x+1)
pα◦X(x+1)

pα◦X(j) = (1−π α)x+1−j

αx+1−j (1−π)x+1−j

(
n
j

)
πj (1− π)n−j =

(
1−π α
α−π α

)x+1−j
pX(j) > pX(j),

for all j ≤ x, so condition (2.15) is satisfied. So any binomial distribution is a possible marginal

distribution of a max-BAR(1) process. The innovations’ cdf follows from (2.13) as Fǫ(k) =

FBin(n,π)(k)/FBin(n,π α)(k), in particular, we have

pǫ(0) =
(1− π)n

(1− π α)n
and µǫ =

n−1∑

k=0

(
1− Fǫ(k)

)
= n −

n−1∑

k=0

FBin(n,π)(k)

FBin(n,π α)(k)
.

An example of a bounded distribution, which cannot be used as a marginal for a max-

BAR(1) process, is the two-point distribution.

2.8 Example (Two-Point Distribution) Let us assume that B ∼ Bin(1, π) is a Bernoulli

random variable, and define X := n · B. For π = 0 or π = 1, this implies X to be constant,

either constantly equal to 0 or to n, respectively. In the first case, it follows that also α ◦ X

and ǫ are constantly 0. In the second case, α ◦ X is just binomially distributed according to

Bin(n, α) such that
FX(x)

Fα◦X(x)
=

1{x≥n}(x)

FBin(n,α)(x)
= 1{x≥n}(x).

So again condition (2.14) is satisfied with ǫ being constantly n.

Now, let us look at the case π ∈ (0; 1), where X follows a non-degenerate two-point distri-

bution on {0, n}. If n > 1, α ◦ X follows the zero-inflated binomial distribution with p.g.f.

pgfα◦X(s) = 1− π + π (1− α+ α s)n, and we have

pX(1)

pα◦X(1)
=

0

pα◦X(1)
<

1− π

1− π + π (1− α)n
=

FX(0)

Fα◦X(0)
,
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thus violating (2.14). So a non-degenerate two-point distribution cannot be the marginal distri-

bution of a max-INAR(1) model. In fact, remembering the data generating mechanism (2.10),

if P (ǫ = n) > 0 and P (ǫ < n) > 0 for some n ∈ N, then the thinning α ◦ Xt−1 implies that

P (X = k) > 0 for any k ≤ n (“no gaps in the range of X”).

3. Parameter Estimation

Conditional maximum likelihood (CML) estimation, given the time series x1, . . . , xT ,

can be implemented in analogy to the approach for Hidden-Markov models as described

in Chapter 3 of Zucchini & MacDonald (2009). The idea is to compute the conditional

likelihood function

L(θ) := P (xT , . . . , xp+1 | xp, . . . , x1, θ)

:= P (XT = xT , . . . , Xp+1 = xp+1 | Xp = xp, . . . , X1 = x1, θ)

for the max-BARMA(p, q) model with parameters θ = (α1, . . . , βq, θǫ)
⊤ in a recursive

way, where θǫ abbreviates the parameters of the ǫt’s distribution, and to maximize it

numerically by using a routine for constrained optimization. To describe this recursive

scheme, let us introduce some notations:

• ǫt := (ǫt, . . . , ǫt−q)
⊤ with range E := {0, . . . , n}q+1 having the cardinality d :=

|E| = (n+ 1)q+1.

• The elements of E are arranged in a certain lexicographic ordering: E = {e1, . . . , ed}.

• The vector-valued process (ǫt) constitutes a homogeneous Markov chain with sparse

transition matrix A = (ai|j) given by

ai|j := P (ǫt = ei | ǫt−1 = ej) = δei,1, ej,0 · · · δei,q, ej,q−1 · P (ǫ = ei,0).

Note that A only depends on θǫ.

• For all x ≤ max {x1, . . . , xT }, it will be necessary to compute the d-cumulative

probabilities

ci(x) = 1(ei,0 ≤ x)

q∏

j=1

FBin(ei,j ,βj)(x), i = 1, . . . , d.

Note that ci(x) only depends on the parameters β1, . . . , βq.
11



To compute the conditional likelihood function L(θ) recursively, we consider the proba-

bilities (as functions of θ)

γt,i := P (ǫt = ei, xt, . . . , xp+1 | xp, . . . , x1), t ≥ p + 1, i = 1, . . . , d,

since L(θ) =
∑d

i=1 γT,i. Further, note that γt+1,i can be factorized as follows:

γt+1,i = P (xt+1 | ǫt+1 = ei, xt, . . . , xt−p+1) · P (ǫt+1 = ei, xt, . . . , xp+1 | xp, . . . , x1),

where the latter factor is computed as

P (ǫt+1 = ei, xt, . . . , xp+1 | xp, . . . , x1)

=
∑

ej∈E P (ǫt+1 = ei, ǫt = ej , xt, . . . , xp+1 | xp, . . . , x1) =
∑

ej∈E ai|j · γt,j .

The first factor of γt+1,i, in turn, is computed from the parameters α1, . . . , βq via (2.4),

i. e.,

P (xt+1 | ǫt+1 = ei, xt, . . . , xt−p+1) = FBin(xt,α1)(xt+1) · · ·FBin(xt−p+1,αp)(xt+1) · ci(xt+1)

− FBin(xt,α1)(xt+1 − 1) · · ·FBin(xt−p+1,αp)(xt+1 − 1) · ci(xt+1 − 1).

Overall, we update the vector γt = (γt,1, . . . , γt,d)
⊤ to γt+1 as follows:

γt+1 = diag
((

P (xt+1 | ǫt+1 = ei, xt, . . . , xt−p+1)
)
i=1,...,d

)
A γt.

The procedure is initialized by

γp+1,i = P (ǫp+1 = ei, xp+1 | xp, . . . , x1)

= P (xp+1 | ǫp+1 = ei, xp, . . . , x1) · P (ǫp+1 = ei | xp, . . . , x1)

≈ P (xp+1 | ǫp+1 = ei, xp, . . . , x1) · P (ǫp+1 = ei)

for i = 1, . . . , d. Note that the scheme leads to the exact full likelihood for p = 0 (i. e.,

for a max-BMA(q) model). In the purely autoregressive max-BAR(p) case (q = 0), it

essentially simplifies to the usual way of computing the conditional likelihood function

of a Markov model, see (2.9):

L(θ) =
∏T

t=p+1 P (Xt = xt|Xt−1 = xt−1, . . . , Xt−p = xt−p)

=
∏T

t=p+1

(
FBin(xt−1,α1)(xt) · · ·FBin(xt−p,αp)(xt) · Fǫ(xt)

−FBin(xt−1,α1)(xt − 1) · · ·FBin(xt−p,αp)(xt − 1) · Fǫ(xt − 1)
)
.
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4. Conclusions

We proposed the max-BARMA(p, q) model as an integer-valued counterpart to the con-

ventional max-ARMA(p, q) models, applicable to time series of bounded counts. This

model includes both an autoregressive and a moving-average part. Basic probabilistic

and statistical properties of this new class of models were discussed, namely the exis-

tence of a stationary distribution, and how observations’ and innovations’ distributions

are related to each other. We also presented an approach for parameter estimation.
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Appendix A. Proof of Example 2.6

From

Fǫ(k) = 1− π + δk,n π, µǫ,(r) := E[(ǫt)(r)] = n(r) π,
∑m

k=0 k(r) P (ǫt = k) = δm,n n(r) π,

we obtain

E
[
max {m, ǫt}(r)

]
= m(r) Fǫ(m) + µǫ,(r) −

∑m
k=0 k(r) P (ǫt = k)

= m(r) (1− π + δm,n π) + (1− δm,n)n(r) π

= m(r) (1− π) + n(r) π − δm,n (n(r) −m(r)) π = m(r) (1− π) + n(r) π.

Hence, using (2.12) together with the formula for the binomial factorial moments,

E[(Xt)(r) | Xt−1 = l] =
∑l

m=0

(
l
m

)
αm (1− α)l−m ·

(
m(r) (1− π) + n(r) π

)

= l(r) α
r (1− π) + n(r) π.

The conditional variance becomes

V [Xt | Xt−1] = E[(Xt)(2) | Xt−1] + E[Xt | Xt−1]− E2[Xt | Xt−1]

= (Xt−1)(2) α
2 (1− π) + n(2) π + Xt−1 α (1− π) + n π −

(
Xt−1 α (1− π) + nπ

)2

= X2
t−1 α

2 π(1− π) − Xt−1 α (1− π) (2 nπ − 1 + α) + n2 π(1− π).

So

σ2 := V [Xt] = E
[
V [Xt | Xt−1]

]
+ V

[
E[Xt | Xt−1]

]

= α2 π(1− π) (σ2 + µ2) − α (1− π) (2 nπ + α)µ + n2 π(1− π),

which leads to the formula given in Example 2.6.
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