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resumo 
 

 

A caquexia cardíaca (CC) é uma complicação da insuficiência cardíaca (IC), 
caracterizada pela perda de peso involuntária, independente do consumo 
alimentar e associada a um mau prognóstico. Devido à falta de estratégias 
terapêuticas, é necessária mais investigação sobre a complexa fisiopatologia 
da CC, de forma a testar novas abordagens preventivas e terapêuticas. O 
paradoxo do colesterol baseia-se em estudos que associam baixos níveis 
séricos de colesterol total e de lipoproteína de baixa densidade a um pior 
prognóstico na IC. Considerando a hipótese da endotoxina-lipoproteína, que 
sugere que elevados níveis de colesterol e lipoproteínas possam atenuar a 
ativação imunológica associada à CC, admitimos a hipótese de que o aumento 
do consumo de colesterol na dieta poderia melhorar a IC e a CC na 
hipertensão arterial pulmonar (HAP) experimental. Este estudo teve como 
objetivo testar a hipótese da endotoxina-lipoproteína in vivo, pela avaliação dos 
efeitos funcionais e moleculares de uma dieta suplementada com colesterol no 
modelo animal de HAP induzido pela administração de monocrotalina (MCT). 
Ratos Wistar Han foram injetados com MCT (60 mg/kg) ou com um volume 
igual de veículo e, após cinco dias, os ratos injetados com MCT foram 
aleatoriamente repartidos para consumirem uma dieta normal ou uma dieta 
suplementada com colesterol (2 % de colesterol e 0.25 % de ácido cólico). 
Entre o 25º e 30º dia, os animais foram submetidos a uma avaliação 
ecocardiográfica e hemodinâmica. Foram determinadas a evolução do peso 
corporal, o pico de consumo de oxigénio, a área de secção transversal dos 
cardiomiócitos e o espessamento da parede de arteríolas pulmonares. A 
concentração plasmática de colesterol total, lipoproteína de alta densidade 
(HDL-C), colesterol não-HDL, triglicerídeos, fator de necrose tumoral alfa 
(TNF-α) e endotoxina LPS foram também determinadas. Os resultados 
demonstraram que a MCT induziu efetivamente o desenvolvimento de HAP, 
hipertrofia e insuficiência do ventrículo direito, acompanhado pela redução 
significativa do peso corporal, associado com a CC. A suplementação da dieta 
com colesterol induziu um aumento significativo da concentração plasmática 
de colesterol, HDL-C e colesterol não-HDL, um aumento da massa do fígado e 
da área de secção transversal dos cardiomiócitos do ventrículo esquerdo. 
Verificámos uma tendência para a redução dos níveis de TNF-α e endotoxina 
LPS, o que sugere que um aumento dos níveis circulantes de lipoproteínas 
pode reduzir a ativação inflamatória induzida pela endotoxina LPS. Assim, é 
necessária mais investigação acerca da suplementação com colesterol na CC, 
de forma a clarificar estes efeitos.   
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abstract 

 
Cardiac cachexia (CC) is a serious complication of heart failure (HF), 
characterized by involuntary weight loss, independent of food intake and 
associated with poor prognosis. Given the lack of therapeutic strategies for CC, 
further research is needed to explore its complex pathophysiology and to test 
new preventive and therapeutic approaches. The cholesterol paradox is based 
on reports that low total cholesterol and low-density lipoprotein serum levels 
worsen prognosis in HF. Considering the endotoxin-lipoprotein hypothesis, 
which states that higher circulating levels of cholesterol and lipoproteins can 
attenuate the CC-related immune activation, we hypothesized that enhancing 
cholesterol intake would ameliorate HF and CC in experimental pulmonary 
arterial hypertension (PAH). This study aimed to test the endotoxin-lipoprotein 
hypothesis in vivo by evaluating functional and molecular effects of a 
cholesterol supplemented diet in monocrotaline (MCT)-induced rat PAH. Wistar 
Han rats were injected with MCT (60 mg/kg) or an equal volume of vehicle and, 
five days after, MCT-injected rats were randomly allocated to consume either 
normal diet or a cholesterol supplemented diet (cholesterol 2 % and cholic acid 
0.25 %). Between the 25th and 30th day, animals underwent echocardiographic 
and haemodynamic evaluation. We assessed body weight (BW) evolution, 
peak of oxygen consumption, cardiomyocyte cross-sectional area and 
pulmonary arterioles wall-thickness. Plasma concentration of total cholesterol, 
high density lipoprotein-cholesterol (HDL-C), non-HDL cholesterol, 
triglycerides, tumour necrosis factor alpha (TNF-α) and endotoxin LPS was also 
determined. The results showed that MCT effectively induced the development 
of PAH and right ventricle hypertrophy and failure, accompanied by a 
significant reduction of BW, which is related with CC. Cholesterol 
supplemented diet induced a significant increase of plasma total cholesterol, 
HDL-C and non-HDL cholesterol concentration, liver weight and left ventricle 
cardiomyocyte cross-sectional area. We found also a trend towards lower 
plasma levels of TNF-α and endotoxin LPS, suggesting that the higher 
lipoprotein content might reduce the inflammatory activation induced by 
endotoxin LPS. Further research is needed regarding cholesterol 
supplementation in CC, in order to clarify these effects.    
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1. Introduction 

 Cachexia, a syndrome characterized by involuntary weight loss independent of food 

intake, accompanies several acute and chronic diseases and entails a poor prognosis [1–3]. 

It is mostly associated with cancer, but also with end-stage chronic heart failure (HF), 

which is a major public health problem and one of the most common causes of death in 

Western countries [4,5]. HF-associated cachexia, one of HF’s most dreaded complications, 

is termed cardiac cachexia (CC). It associates with decreased exercise capacity, impaired 

wellbeing and survival [6]. It is characterized by an imbalance in the activation of anabolic 

and/or catabolic pathways, that results from alterations in immunological, metabolic and 

neurohormonal processes [5,7]. However, the molecular mechanisms underlying CC are 

still poorly understood [8]. Recent studies have tackled the development of animal models, 

in order to understand the molecular mechanisms of this condition and also to find targets 

for efficient therapies [9]. Nevertheless, currently the mainstay of CC treatment is simple 

management of the underlying disease and associated comorbidities. Further studies are 

needed to track new preventive and therapeutic approaches in order to counteract CC-

related weight loss and to increase muscle strength and exercise capacity in HF patients 

[10]. 

 Hypercholesterolemia is an established risk factor for the development of HF. 

Paradoxically, low serum levels of total cholesterol and low density lipoprotein cholesterol 

(LDL-C) have been reported as an adverse prognostic marker in patients with HF [11,12]. 

This “reverse epidemiology” phenomenon, an unexpected association between improved 

survival and classical cardiovascular risk factors, including higher total cholesterol plasma 

levels, body weight, or systolic blood pressure, remains unexplained [13]. Several 

epidemiological and biological hypotheses have been raised. One of the most acclaimed 

biological hypothesis is the endotoxin-lipoprotein hypothesis [14]. As an introductory note 

we briefly review the main features of CC, including its definition, pathophysiology and 

treatment, the cholesterol paradox in HF and the hypotheses raised to explain it. 

 

 

 





3 

 

2. Cardiac cachexia 

 Cachexia is one of the most visible and devastating consequences of human 

disease, severe enough to constitute a public health problem [1]. It was first described by 

Hippocrates (about 460-377 BC) [15] ‘the flesh is consumed and becomes water (…), the 

abdomen fills with water, the feet and legs swell, the shoulders, clavicles, chest and thighs 

melt away (…). This illness is fatal’. Hippocrates recognized the severely impaired 

prognosis of this syndrome, as he describes a patient who is just ‘skin and bones’ [16]. The 

term cachexia is of Greek origin, derived from kakós (ie, bad) and hexis (ie, condition), 

literally meaning bad condition. It is characterized by a state of involuntary weight loss 

with pathologic wasting of muscle, with or without loss of bone mineral density and fat 

tissue, which is independent of food intake [2,3]. One of the most common misconceptions 

related to cachexia is that one of the underlying causes of cachexia is anorexia, i.e. loss of 

appetite. Although anorexia is certainly a feature of the diseases leading to the 

development of cachexia, the condition of anorexia alone cannot explain the metabolic 

changes observed on a cachectic patient [3]. Additionally, terms as “cachexia”, “anorexia”, 

“malnutrition” and “sarcopenia” are frequently used as synonyms although they relate to 

different conditions [3,17]. In contrast to cachexia, the weight loss presented in 

malnutrition and anorexia results from the decrease of fat mass for energy yield to balance 

the low caloric and food intake, while muscle mass is mostly spared, and all the symptoms 

and signs can be reversed by food supply [18]. Furthermore, sarcopenia is described as the 

age associated process of muscle wasting, which may not lead to a significant body weight 

loss, since loss of muscle and increase in fat mass are frequently balanced [3].   

 Several acute and chronic diseases, particularly in advanced stages, are associated 

with cachexia, including infectious diseases, such as HIV/AIDS, malaria, tuberculosis, 

cancer, HF, chronic obstructive pulmonary disease (COPD), chronic kidney disease, 

rheumatoid arthritis, and cystic fibrosis [2,17]. Cachexia is not only related with poor 

prognosis, but also associated with an unfavourable response to drug treatment and poor 

quality of life [3,19]. It is mostly concomitant with cancer, where the prevalence can reach 

50-80% in advanced malignant cancer, but also with end-stage HF, where its prevalence 

ranges 5-15% and rises nearly exponentially with age [4,19]. 
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2.1 Definition of cardiac cachexia 

 The earliest written documentation of the term CC comes from a French physician, 

Charles Mauriac [21], in 1860, as he wrote ‘commonly observed secondary phenomenon in 

patients affected with diseases of the heart (…) a peculiar state of cachexia which is (…) 

conventionally designated cardiac cachexia’. Apart from this report, CC as a syndrome has 

not been studied in much detail by clinical scientists for many years, since most patients 

with HF would not reach the state of chronicity for cachexia to develop. In comparison to 

cachexia related tuberculosis, malignancies or uncontrolled metabolic diseases, CC was 

considered as a rather rare condition [16,19].  

 A few decades ago, CC has been recognized as a serious complication of HF, 

associated with a decrease in exercise capacity, clinical wellbeing and survival [6]. 

However, the underlying mechanisms of CC are not well understood and there is no 

universal agreement upon a definition [8,19]. In 1999, Anker and Coats reported that CC 

should be considered when weight loss was superior to 7.5% of the previous normal 

weight, observed in patients with HF with, at least, 6 months duration and without signs of 

other primary cachectic states (such as cancer, thyroid disease or severe liver disease) [1]. 

In 2003, this definition was adjusted from the Studies of Left Ventricular Dysfunction 

database and CC was considered as a weight loss superior to 6%, over a period of at least 6 

months [22]. The most recent consensus for the definition of cachexia is from the Cachexia 

Consensus Working Group [8], proposed in 2008. This definition for the diagnosis of 

cachexia in adults required that patients should have an underlying disease and body 

weight loss ≥ 5% in ≤ 12 months, or body mass index (BMI) < 20 kg/m2, and at least three 

of the following five criteria should be observed: decreased muscle strength, fatigue, 

anorexia, low fat-free mass index or abnormal biochemistry (increased inflammatory 

markers, anaemia and low serum albumin levels) [8]. However, the precise criteria to 

define cachexia still vary among research groups, mostly in terms of the body weight loss 

cut-off point [4,19]. A recent study used an old definition, namely unintentional non-

oedematous weight loss of > 5%, over at least 6 months. By applying this definition, 

cachexia was found in 10.5% of HF patients [23]. In contrast, another study used the most 

recent definition and reported that 16% of HF patients were considered as cachectic [24]. 

Therefore, the use of the new cachexia definition and, more precisely, the addition of 
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criteria on top of obligatory weight loss has major implications on cachexia prevalence 

report and diagnosis [7,19].   

 

2.2 Pathophysiology of cardiac cachexia  

 The HF-related mechanisms that result in CC are still poorly comprehended. In 

1964, Pittman and Cohen [25] pointed cellular hypoxia as a leading pathogenic factor, 

inducing catabolism and reducing anabolism. The overall net catabolic dominance in HF 

accounts for a continuous peripheral loss of skeletal muscle, termed as muscle wasting, 

with or without loss of fat tissue later in the disease. This pathological condition of HF is 

often associated with CC, contributing to exercise intolerance and poor prognosis [26]. 

However, cachexia and muscle wasting terms must not be used interchangeably. The 

hallmark symptom of cachexia is weight loss, highly predictive of morbidity and mortality, 

whereas muscle wasting per se means loss of muscle mass without weight loss, because of 

the replacement of functional muscle by adipocytes and fat or other inactive tissue [27,28]. 

 The catabolic/anabolic imbalance in CC results from alterations in several 

mediators involved in immunological, metabolic and neurohormonal processes [5,7]. 

These include pro-inflammatory cytokines such as tumour necrosis factor alpha (TNF-α), 

interleukin (IL)-1 and IL-6, epinephrine and norepinephrine, angiotensin II (Ang II), 

aldosterone and myostatin, which promote protein degradation and stimulate energy 

production, and anabolic factors such as growth hormone (GH), ghrelin, insulin-like 

growth factor 1 (IGF-1), insulin, leptin and adiponectin, that regulate protein synthesis 

(Table 1) [29].   
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Table 1. Variation of the circulating (plasma and serum) levels of catabolic and anabolic factors in chronic heart failure 

(HF) patients, with and without cardiac cachexia (CC). 

 
Mediator HF  HF with CC References 

Catabolic factors TNF-α ↔/↑ ↔/↑ [30–35] 

IL-1β ↔ ↔ [32] 

IL-6 ↑ ↔/↑ [32,33,35] 

Epinephrine ↔/↑ ↔/↑ [30,32–34,36] 

Norepinephrine ↔/↑ ↔/↑ [30,32–34,36] 

Angiotensin II ↔ ↑ [33] 

Aldosterone  ↔ ↑ [30,33] 

ANP ↑ ↔/↑ [33,34,36] 

BNP ↑ ↔/↑ [33–36] 

Anabolic factors GH ↔ ↑ [30,33,37] 

Ghrelin ↔ ↑ [33,38] 

IGF-1 ↔ ↔/↓ [30,33,37] 

Insulin ↔/↑ ↔ [30,32,33,39] 

Leptin ↔/↑ ↔/↓ [35,39,40] 

Adiponectin ↔/↑ ↑ [24,35,41] 

Legend: ↑ increase, ↓ decrease, ↔ no variation. HF: heart failure; CC: cardiac cachexia; TNF-α: tumour necrosis factor-

α; IL-1β: interleukin-1β; IL-6: interleukin-6; ANP: A-type natriuretic peptide; BNP: B-type natriuretic peptide; GH: 

growth hormone; IGF-1: insulin-like growth factor-1 

 

2.2.1 Immune activation 

 Activation of inflammatory and immune pathways plays an important role in all 

forms of cachexia. Since the initial observation by Levine et al. [42], in 1990, several 

studies have demonstrated elevated circulating pro-inflammatory cytokines levels in HF 

patients, such as TNF-α, IL-1 and IL-6, as well as several chemokines, e.g., monocyte 

chemoattractant peptide-1, IL-8, and macrophage inflammatory protein-1α [7,43,44]. 

When pro-inflammatory cytokines are overproduced, within the myocardium or in 

extramyocardial tissue, they can spread through peripheral circulation and activate the 

immune system [45]. Furthermore, the rise of these inflammatory mediators seems to be 

combined with inadequately raised or even decreased levels of anti-inflammatory 

mediators, namely IL-10 and transforming growth factor beta-1 [7,46,47].  
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 Since the cause of immune activation is still uncertain, some hypothesis have been 

raised to explain it [5,7]. The first hypothesis assumes that the myocardium itself is the 

main source of pro-inflammatory cytokines, since the failing myocardium, due to ischemia 

or mechanical stress, is capable of producing TNF-α [48,49]. Indeed, TNF-α levels in the 

coronary sinus are increased compared with the aortic root, supporting that elevated 

plasma TNF-α is partly derived from the failing heart. However, the myocardial production 

of cytokines is rather a localized phenomenon [50]. The majority of pro-inflammatory 

mediators present in the systemic circulation are presumed to be secreted by circulating 

immune cells and the direct stimuli triggering their activation are still unknown [47,51]. 

The second hypothesis, known as endotoxin hypothesis, proposes that tissue hypoxia may 

be the primary stimulus for increased TNF-α production in patients with HF [52]. It is 

assumed that bowel wall oedema and ischemia, resulting from venous congestion, are 

responsible for an augmented intestinal translocation of bacterial endotoxin 

(lipopolysaccharide, LPS) into the systemic circulation, and subsequent activation of the 

circulating immune cells [53]. In the circulation, LPS is bound to a serum protein, termed 

lipopolysaccharide-binding protein (LBP). The LPS-LBP complex can interact with cluster 

of differentiation 14 (CD14) membrane protein and Toll-like signalling receptors 

activating a signalling cascade that leads to increased cytokine production [54]. Supporting 

this hypothesis, it has been reported that monocytes, one of the most important source for 

circulating TNF-α and IL-1β, from HF patients, showed an increased TNF-α release, when 

stimulated with LPS, when compared to monocytes from patients without HF [53,55,56]. 

Additionally, another proposed theory assumes that the immune activation seen in HF 

patients is a consequence of the long-term neurohormonal overactivation and exaggerated 

stimulation of the sympathetic nervous system and that the mechanism triggering 

inflammatory processes is secondary to the central suppression of parasympathetic nervous 

system [5,51].   

 The pro-inflammatory cytokine TNF-α is suggested as a common mediator in all 

forms of cachexia. It activates the ubiquitin-proteasome system (UPS), autophagy 

mechanisms and apoptosis pathways, in skeletal muscle and other tissues, thus maintaining 

the wasting process in CC (Figure 1) [18,19]. The UPS involves cytokine-induced 

activation of Nuclear Factor-kappa B (NF-κB) signalling in skeletal muscle. Depending on 

the upstream triggers, this pathway activation may modulate apoptosis, inflammation and 
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differentiation. Since TNF-α is a classical activator of NF-κB signalling, it is responsible 

for the induction of muscle atrophy in CC, as it up-regulates the transcription of members 

of UPS. This up-regulation can be mediated as well by forkhead box O (FOXO) 

transcription factors which regulate the expression of vital components of UPS [57]. 

Proteins to be degraded by this mechanism are first conjugated to multiple molecules of 

ubiquitin (ubiquitin activating enzyme E1, ubiquitin conjugating enzyme E2 and ubiquitin 

ligase E3) and then degraded in the 26S proteasome complex in an ATP-dependent process 

[58]. Since the proteasome is not able to degrade intact myofibrils [3], actin and myosin 

are first released by the action of proteolytic pathways, such as calcium/calpain-dependent 

proteolytic pathways [57,58].  

 TNF-α induces the cytosolic release of NF-κB from its inhibitory proteins IκB, 

allowing the translocation of NF-κB into the nucleus and subsequent transcription of 

proteolytic pathway UPS components, such as F-box only protein 32 (FBXO32, also 

known as MAFBX or atrogin 1) and tripartite motif containing 63 (TRIM63, also known 

as MURF1) (Figure 1) [59]. These are E3 ubiquitin ligases specifically required for muscle 

atrophy, since FBXO32 inhibits factors associated with protein synthesis, such as the 

eukaryotic translation initiation factor eIF3-f [60], and TRIM63 targets myofibrillar 

proteins [61]. Nevertheless, TNF-α signalling through the mitogen-activated protein kinase 

(MAPK) p38 might also increase FBXO32 [62].  
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Fig. 1. Overview of signalling pathways involved in muscle wasting in heart failure. A) Anabolic pathways embrace the 

stimulation of growth hormone (GH) by ghrelin. GH induces secretion of insulin-like growth factor 1 (IGF-1), which 

binds, like insulin, to the IGF-1 receptor (IGF1R) and the insulin receptor (IR). The Akt-pathway is activated via insulin 

receptor substrate 1 (IRS1) and phosphoinositide 3-kinase (PI3K). Akt activates the serine/threonine protein kinase 

mammalian target of rapamycin (mTOR), which stimulates protein synthesis. Testosterone binds to cytoplasmic 

androgen receptors (AR) and stimulates protein transcription via mitogen-activated protein kinases (MAPK). B) 

Catabolic pathways activate three main protein degradation systems: the ubiquitin-proteasome system (UPS) by FBXO32 

(also known as MAFBX) and TRIM63 (also known as MURF1) expression; apoptosis, initiated by caspases; and the 

autophagy-lysosome system, mediated by forkhead box protein O (FOXO) transcription factors. Myostatin binds to 

activin receptor type 2B (ActRIIB) activating transcription factors of the Smad family. Smad2 and Smad3 inhibit protein 

transcription and stimulate protein degradation via UPS. Pro-inflammatory cytokines, namely tumour necrosis factor-α 

(TNF-α), interleukins 1 and 6 activate not only their respective receptors, but also nuclear factor κB (NF-κB) and FOXO. 

Angiotensin II binds to angiotensin II receptor type 1 (AT1) and activates FOXO as well. Anabolic mediators are 

presented in orange and catabolic ones in grey. The dashed lines indicate an indirect action. Adapted from [19].  

 

 The high circulating levels of TNF-α promote a rearrangement of the cytoskeleton 

of endothelial cells and an increase of albumin and water permeability, resulting in the 

development of endothelial dysfunction. The binding of TNF-α to its receptor induces 

caspases activation and, consequently, apoptosis signalling [63]. A long-term effect of 

increased TNF-α concentrations is thought to be the reduction of peripheral blood flow in 

HF patients, by its effect on the decrease of the vasodilator endothelial nitric oxide (NO) 

synthase mRNA in vascular endothelial cells [64,65].  

 The pro-inflammatory cytokines IL-1 and IL-6 also play an important role in CC. 

IL-1 induces the uncoupling of the β-adrenergic receptor (β-AR) from the adenylyl cyclase 

and from the L-type calcium channels, without affecting the β-AR density or the affinity 

for its ligands. Thus, it can inhibit cardiac myocyte β-adrenergic responsiveness, leading to 

a negative effect on myocardial contractility [66,67]. Increased circulating levels of IL-6 in 

HF patients are associated with a higher severity of the disease and poorer left ventricular 

contractility, through NO production [68]. 

 Another mediator of CC-related muscle wasting is myostatin, also known as growth 

differentiation factor-8 and expressed almost exclusively in skeletal muscle. Circulating 

levels of myostatin are increased in HF patients [69]. Myostatin binds to the activin 

receptor type 2B (ActRIIB) on muscle membranes, resulting in the activation of type-1 

activin receptor serine kinases (ALK4 or ALK5), consequent phosphorylation of Smads 

2/3 and the recruitment of Smad4 into a Smad complex. This complex translocates into the 

nucleus to exert changes in gene transcription, leading to muscle wasting. In addition, 
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myostatin binding to the receptor also reduces the kinase Akt activity and consequently 

diminishes FOXO phosphorylation. Dephosphorylated FOXO enters the nucleus to 

activate the transcription of  FBXO32 and TRIM63 [70]. In contrast, insulin and IGF-1 act 

as suppressors of these E3 ubiquitin ligases and, therefore, have an anabolic action [71]. 

 

2.2.2 Metabolic abnormalities 

 The concept of metabolic failure in HF includes both impaired myocardial energy 

utilization and metabolic inefficiency at the systemic level. In HF patients, the global 

anabolic blunting and insulin resistance, together with catabolic overactivity, induce loss of 

skeletal muscle mass and function. The major anabolic hormones modulating protein 

metabolism in skeletal muscle include ghrelin, GH, insulin, IGF-1 and testosterone [7,19].  

 GH stimulates lipolysis, amino acids absorption, protein synthesis and  

glycogenolysis in the liver directly, via activation of tyrosine kinases, or indirectly, through 

induction of IGF-1 [72]. GH secretion is stimulated by increased ghrelin circulating levels, 

through an independent mechanism from that of hypothalamic GH-releasing hormone 

[33,73]. Ghrelin, the “hunger hormone”, also stimulates appetite and food intake through 

GH-independent mechanisms, possibly by inducing the release of neuropeptide Y (NPY) 

and agouti-related protein in the hypothalamus. Plus, it acts as an inhibitor of insulin and 

leptin signalling, as they decrease food and energy intake [74]. Despite of elevated plasma 

ghrelin levels in cachectic patients with HF [33], studies report that there is no appetite 

stimulation or weight gain in these patients, which suggest a ghrelin resistance state. The 

mechanism for elevated ghrelin levels in HF is still not clear, although it may be a 

physiological compensation for reduced weight to increase appetite and caloric intake 

[75,76].  

 Since ghrelin is responsible for GH secretion, the elevated plasma levels of ghrelin 

might be a direct response to GH resistance seen in HF patients. GH plasma levels are 

increased in CC patients when compared to non-cachectic patients and healthy control ones 

[30]. Changes in GH/IGF-1 axis in catabolic conditions suggest a state of GH resistance 

and these hormonal alterations might, in particular the low levels of IGF-1, lead to the 

wasting process [73]. IGF-1 mediates the effect of GH on developmental growth, 

stimulates cell growth and differentiation, and is a major regulator of overall metabolism. 

More specifically, it has been shown that IGF-1 is responsible for the stimulation of 
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protein synthesis and reduction of proteolysis [77]. Cachectic patients present decreased 

plasma levels of IGF-1 when compared to non-cachectic patients and healthy control 

subjects [37]. In addition, impaired glucose regulation and hyperinsulinemia are present in 

HF, even in the absence of diabetes mellitus, reflecting an insulin resistance state and 

likely contributing to disease progression. However, with the increase of HF severity and 

with the development of CC, circulating fasting insulin levels tend as well to decrease, for 

reasons that still remain unknown [78].  

 The steroid hormone testosterone is also another mediator involved in protein 

metabolism of skeletal muscle. Testosterone acts via intracellular androgen receptor, 

increasing protein synthesis by the expression of IGF-1 mRNA and downregulating 

IGFBP4 mRNA expression in muscle [79]. Testosterone serum levels decline during 

aging, and since many HF patients are elderly men with reduced exercise capacity, 

testosterone administration may increase skeletal muscle protein synthesis and strength, as 

well as improve exercise capacity in these patients [80].  

 Recently, there has been a growing interest in adipokines, such as leptin and 

adiponectin, thought to play an important role in energy metabolism and in lean/fat body 

mass and appetite regulation. Leptin is responsible for lipid synthesis reduction and 

increase of energy expenditure, inducing weight loss [81]. Circulating leptin levels are 

increased in HF patients when compared to healthy controls subjects. In addition, leptin 

levels seem to decrease in cachectic patients when compared with healthy control subjects 

[35,39,40]. The production of leptin may be inappropriately low in cachectic patients, 

which may also suggest that leptin does not contribute to the progressive worsening of CC 

[40,81]. Although unproven, an hypothesis that could reconcile these apparently 

contradictory results states that serum leptin levels increase in HF, possibly contributing to 

the initial catabolic process, but then decrease when CC is reached, because of the 

reduction in adipose tissue mass [81].  

 Adiponectin exerts insulin-sensitizing effects and reduces gluconeogenesis in the 

liver, whereas in skeletal muscle it stimulates β-oxidation [24,82]. Beyond metabolic 

control, adiponectin effects have been studied in the cardiovascular system: low levels are 

predictive of insulin resistance, atherosclerosis and inflammation, which is related to 

increased risk for coronary artery disease (CAD); in contrast, high adiponectin levels in 

healthy subjects have a protective cardiovascular effect, reducing blood pressure, total 
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cholesterol and LDL-C, as well as increasing insulin sensitivity [24]. Adiponectin 

circulating levels are increased in cachectic HF patients compared with non-cachectic ones 

and are also inversely correlated with BMI [24,35,41]. In addition, a study reported that 

patients with HF who died during a follow-up period of 51 ± 27 months, had significantly 

higher adiponectin levels compared to survivors [24]. Thus, increased adiponectin levels 

seem to be an independent predictor of mortality in patients with HF [24,41].   

 

2.2.3 Neurohormonal abnormalities 

 The chronic autonomic sympathetic/parasympathetic imbalance is a crucial element 

of HF pathophysiology and results from general neurohormonal activation, via sympathetic 

nervous system, renin-angiotensin-aldosterone axis and natriuretic peptide system [83]. 

Both epinephrine and norepinephrine have been shown to cause a catabolic metabolic shift, 

leading to an increase in energy expenditure in cachectic HF patients [84]. Both 

epinephrine and norepinephrine plasma levels are increased in cachectic HF patients 

compared with non-cachectic ones, which suggests a specific association between cachexia 

and sympathetic activation in HF [30]. The consistently elevated epinephrine and 

norepinephrine levels lead to a sustained overstimulation of the β-adrenergic receptors 

signalling pathways, which ultimately diminishes β-adrenergic receptor function and 

impairs contractility [85]. 

 Sustained sympathetic stimulation in HF activates the renin-angiotensin-

aldosterone system and other neurohormones with subsequent salt and water retention, 

vasoconstriction and oedema, and is closely associated with reduced contractility and 

higher risk of evolving HF [86]. Increased aldosterone plasma levels and plasma renin 

activity, a stimulator of the production of Ang II and norepinephrine, reflect also a specific 

association between cachexia and neuroendocrine activation in HF [86]. Ang II induces 

muscle wasting through multiple mechanisms: increased oxidative stress via activation of 

NADPH oxidase; increased protein breakdown via reduced IGF-1 and increased cytokine 

signalling such as IL-6; reduced appetite via alteration in orexigenic/anorexigenic 

neuropeptide expression in the hypothalamus; impaired energy balance via inhibition of 

adenosine monophosphate-activated protein kinase; and inhibition of satellite cell function 

and muscle regeneration [87]. In the myocardium, Ang II leads to myocyte hypertrophy, 
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necrosis/apoptosis and increased collagen turnover. Also, aldosterone stimulates collagen 

synthesis by myocardial fibroblasts [86].   

 In HF, volume and/or pressure overload produces abnormal ventricular wall stress, 

which results on natriuretic peptide (NP) system activation, in order to restore sodium and 

fluid balance by natriuresis and vasodilatation. However, as the disease progresses, the 

functional effectiveness of the NP system becomes blunted, which contributes to 

worsening sodium retention and vasoconstriction, leading to further detrimental effects of 

the heart, with subsequent NP production [88].  In fact, both A-type NP (ANP) and B-type 

NP (BNP) plasma levels are increased in cachectic HF patients, in comparison with non-

cachectic patients and healthy volunteers [36]. These peptides not only inhibit renin and 

Ang II release but also promote an increase of energy utilization and thermogenesis, by 

their lipolytic activities. In human fat, natriuretic peptide receptor A (NPR-A) is 

responsible for the activation of cGMP molecules that, subsequently, leads to protein 

kinase G (PKG) activation. PKG phosphorylates the hormone sensitive lipase which leads 

to hydrolysis of triglycerides and release of fatty acids. Thus, NP-induced lipolysis may 

contribute to weight loss in HF patients [89,90].  

 Although the molecular mechanisms underlying CC are still poorly comprehended, 

they are certainly multifarious involving several mediators, immunological, metabolic and 

neurohormonal processes [5,7]. The better understanding of these molecular pathways has 

been possible thanks to the development and use of animal models of CC [9].  

 

2.3 Experimental models 

Animal models represent important tools to better understand the pathogenic 

pathways associated with several diseases and are also crucial to find efficient therapies for 

these diseases [9,91]. Nevertheless, no animal model mimics exactly all features of human 

disease [91]. Several studies on cachexia use animal models of cancer cachexia. Since 

some of the underlying mechanisms of cachexia are independent of aetiology, the therapies 

identified for cancer cachexia might also be potentially used in CC patients but tailored 

therapies will surely be more effective. The development of a specific animal model for 

CC is essential to comprehend the molecular mechanisms at the onset of cachexia, possibly 

allowing an early therapeutic intervention in HF patients [9].  
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Recent studies have tackled the development of animal models of CC, leading to 

the proposal of three general groups of models: genetic, surgical and toxic models [92]. On 

the genetic models group, the most used animal models are the calsequestrin (CSQ)-

overexpressing mice model and the Dahl salt-sensitive (DS) rats model. The first is based 

on the use of transgenic mice overexpressing CSQ, a calcium-binding protein of the 

sarcoplasmic reticulum, that develop severe cardiac hypertrophy with a significant increase 

in cardiomyocyte size, leading to HF [93,94]. This animal model allows to investigate not 

only the molecular determinants of HF but also the early skeletal muscle changes induced 

by HF [95]. The genetic DS rats model is based on two separated rat strains with different 

genetic susceptibility to develop hypertension following excessive salt ingestion [9]. The 

DS rats fed a high-salt diet develop hypertension and congestive HF, while DS rats fed 

only a low-diet salt are used as controls. This animal model presents the underlying cardiac 

metabolic changes on the transition of compensated left ventricle (LV) hypertrophy to 

congestive HF, which indicates that a metabolic remodelling of the heart might represent a 

therapeutic target [96]. Regarding the surgical models of CC, the most reliable ones are 

based on surgical methods inducing either myocardial infarction, obtained by left anterior 

descending (LAD) coronary artery ligation, or reduced LV output obtained through 

transverse aortic constriction (TAC) and ascending aortic banding [9]. Although LAD 

ligation technique is considered the most used animal surgical model of CC, TAC provides 

a more reproducible model of cardiac hypertrophy characterized by a more gradual 

development of HF [97]. All surgical models of CC can be used in both mice and rats; 

however, they are also very costly since a high mortality rate is observed [9]. One of the 

most commonly used and best described models of CC is the toxic model of HF and 

pulmonary hypertension (PH) induced by monocrotaline (MCT) [98]. 

 

2.3.1 Monocrotaline model  

 The MCT model is essentially a model of PH, in particular pulmonary arterial 

hypertension (PAH), that leads to progressive and reproducible HF and CC [9]. MCT is a 

macrocyclic pyrrolizidine alkaloid present in the stems, leaves and seeds of the plant 

Crotalaria spectabilis. After absorption and hepatic bioactivation, MCT cause lesions in 

several organs, mainly on the hepatic and cardiopulmonary system [91]. Monocrotaline 

pyrrole (MCTP), also named dehydromonocrotaline, is a toxic metabolite of MCT 
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produced in the liver by the action of the enzyme cytochrome P-450 3A and it is 

responsible for vascular injury and inflammation. Although the underlying mechanisms of 

toxicity are still unclear, it has been reported that it could result from pulmonary arterial 

endothelial cell damage [91,99].  

 The MCT animal model is based on a single MCT injection, usually of 60 mg/kg, 

applied intraperitoneally or subcutaneously. Although the active compound, MCTP, is 

degraded rapidly in aqueous solutions, such as plasma, its accumulation in erythrocytes 

partially explains MCT exposure effects over a time space of weeks [99,100]. Regarding 

the time-course of MCT effects, several studies reported signs of pulmonary vascular 

endothelial damage within hours after the injection. In one week, endothelial damage was 

reported, along with inflammatory infiltration and oedema. Two weeks after MCT 

injection, injected rats present an increase in pulmonary arterial pressure, leading to right 

ventricle (RV) hypertrophy by the third week after the injection. From this third week, rats 

gradually start losing weight, becoming severely cachectic and anorexic. By 5-6 weeks, 

half of the injected rats eventually die [9,91,98,101].  

 The preferred species for the study of MCT-induced CC is currently the rat. Rats 

are 10 times more sensitive to MCT than mice and, in addition to the difficulty associated 

with the image caption and catheterization, mice present less RV hypertrophy and 

pulmonary arterial remodelling. The response to MCT is variable among species, strains 

and animals because of the differences in the pharmacokinetics of MCT involving the 

hepatic metabolism of degradation, formation, conjugation and excretion of MCTP [9,91]. 

Despite this limitation, this model has been continuously used given its low cost, technical 

simplicity and acceptable reproducibility in comparison with other models [9]. 

 

2.4 Preventive and therapeutic approaches to cardiac cachexia 

 In CC-related weight loss, body wasting usually starts with the primary loss of 

functional muscle; therefore, early treatment approaches to increase muscle strength and 

exercise capacity in patients with HF are potentially more effective than strategies aimed at 

treating weight loss [10]. However, the results obtained so far are scarce. In addition, 

specific treatments towards the immune and inflammatory activation in CC have been 

attempted, but clinical benefits were not demonstrated [102]. Preventive and therapeutic 
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approaches that may potentially counteract muscle wasting or treat weight loss will be 

further discussed.  

 

2.4.1 Preventive strategies for weight loss  

 The administration of angiotensin-converting enzyme (ACE) inhibitors and β-

blockers, which are widely used in hypertension management, may potentially delay and 

prevent the onset of CC at early stages of HF; however, neither of them can reverse CC in 

HF patients [5,7]. ACE inhibitor administration can improve endothelial dysfunction, a 

feature of HF pathophysiology, probably through the blockade of bradykinin degradation, 

which stimulates the release of NO and prostaglandins [103]. ACE inhibitors are also 

associated with a reduction of the circulating levels of ANP, BNP, TNF-α and IL-6, as well 

as with a restoration of the decreased levels of IGF-1, in HF patients [5]. Moreover, 

treatment with the ACE inhibitor enalapril reduced the risk of weight loss in 6% or more 

[22]. Although therapy with high-doses of enalapril were shown to significantly decrease 

IL-6 activity in patients with HF, ACE inhibitors seem to have only minor influence on 

inflammation, since resilient immune activation is still present [104].  

β-blocker administration has been included in HF treatment guidelines [5]. The 

sympathetic activation associated with CC can be reduced by the administration of β-

blockers, which may inhibit epinephrine and norepinephrine induced lipolysis, decrease 

resting energy expenditure and insulin sensitivity, thus preventing weight loss and cachexia 

[5,105]. A study using β-blockers carvedilol and metoprolol, in HF patients with or 

without cachexia, showed that after 6 months of β-blocker administration, cachectic 

patients had an increase in body weight compared with non-cachectic ones [106]. 

Additionally, a study regarding the administration of the β-blocker carvedilol in HF 

patients, reported that the risk of death decreased in 35% when carvedilol was added to 

conventional therapy [107].  

 

2.4.2 Pharmacotherapy of cardiac cachexia 

 As CC is a multifactorial disorder, it is unlikely that any single agent will be 

completely effective in treating this condition; thus, it is necessary to target different 

pathways [5,7]. Recent clinical trials mostly carried out in cancer patients have 
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investigated different approaches to regain skeletal muscle mass and strength in cachectic 

patients and improve survival rates [108]. There are just a few studies on drugs that 

counteract body wasting in HF, and CC has not specifically been targeted. Some drugs 

have been reported by their effects on the inhibition of particular molecules and/or 

proteolytic systems involved in protein catabolic pathway [109]. Potential treatments for 

CC and muscle wasting in HF included in the current European Society of Cardiology 

(ESC) guidelines are: anti-inflammatory substances, appetite stimulants, anabolic agents 

and exercise training, in combination with the application of nutritional supplements. 

However, the guidelines also warn that the safety of these treatments in HF patients is still 

unknown [110]. 

 Several substances from different drug classes have been shown to suppress the 

production or the action of pro-inflammatory cytokines [3]. These include i) neutralizing 

antibodies, such as anti-TNF-α, anti-IL-1 and anti-IL-6; ii) statins, for their beneficial 

pleiotropic effects, namely in the reduction of pro-inflammatory cytokines and, 

consequently, preservation of muscle mass; and iii) other anti-inflammatory substances, 

such as thalidomide and pentoxifylline, which potently reduces TNF-α [3,7,109]. 

Preclinical studies in rats reported that etanercept, a recombinant soluble TNF receptor, 

may be able to reverse the deleterious negative inotropic effects of TNF-α [111]. Also, 

phase I clinical studies regarding etanercept treatment showed an improvement of quality 

of life, exercise capacity and LV ejection performance in a small number of patients with 

advanced HF [112,113]. Given the positive results of this clinical studies, two large clinical 

trials using etanercept were performed in HF patients [114]. In addition, a phase II study 

with infliximab, a monoclonal antibody anti-TNF, was also performed in patients with 

moderate to advanced HF [115]. However, in both etanercept trials and infliximab phase II 

study, it was observed a dose and time-dependent worsening of HF and/or worsening 

outcomes. Possible explanations for these results involve the intrinsic toxicity of the 

biological agents used in the trials, such as infliximab, which is directly cytotoxic to cells 

expressing TNF on the membrane, or the deleterious effects of TNF antagonism in the 

setting of HF, since several experimental studies suggest that physiological levels of TNF 

may confer cytoprotective responses in the heart during acute ischemic injury [116]. 

Despite the discouraging results when chronically used, a recent MCT-induced animal 

model of CC study showed positive results when using an anti-TNF-α treatment with 
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soluble TNF receptor 1 and pentoxifylline. This treatment led to an attenuation of anorexia, 

reduction of skeletal muscle wasting and preservation of body mass. Therefore, there is a 

need for more studies in animal models of CC that target inflammatory pathways [98]. 

Appetite stimulants have been reported to improve skeletal muscle mass and 

strength, appetite, caloric intake and nutritional status of cachectic patients. These include 

megestrol acetate, cannabinoids, ghrelin, ghrelin receptor agonists, anabolic steroids and β2 

adrenergic receptor agonists [3,5]. In these therapies, the precise mechanism by which 

weight gain is mediated is still unknown. Some studies suggest an increased release of 

NPY in healthy control rats and a modulation of calcium channels, via G-protein 

signalling, in the ventromedial nucleus of the hypothalamus of rats, commonly associated 

with satiety [117,118]. Also, appetite stimulants are responsible for in vitro reduction of 

pro-inflammatory cytokine production by peripheral blood mononuclear cells in cancer 

patients [119].  

Among appetite stimulants, megestrol acetate is the most frequently used and best-

studied agent, although not in patients with HF [5]. Given the many side effects associated 

with megestrol acetate, including thrombotic effects or even Cushing syndrome, it appears 

doubtful that this drug will ever be used in low-risk, stable patients with HF without 

extreme wasting [119]. In addition, cannabinoids are also known to stimulate appetite and 

increase food intake in cancer patients, but the mechanism underlying this effect is still 

unknown [120]. Studies in vitro in human cell lines suggest that they may act via 

endorphin receptors, by inhibiting prostaglandin synthesis, or may suppress cytokine 

production and/or secretion [121,122].  

Ghrelin is not only responsible for appetite stimulation and food intake, via GH-

independent mechanisms, but also for alterations in the cardiovascular system through 

inhibition of cardiomyocyte and endothelial cell apoptosis and improvement of ventricular 

function [6]. Nevertheless, as previously reported, plasma ghrelin levels are increased in 

cachectic patients with HF, regardless of BMI, despite the absence of appetite stimulation 

or weight gain [33,75]. One single study reported that the administration of ghrelin for 3 

weeks in cachectic HF patients improved left ventricular function, exercise capacity and 

muscle wasting [123]. These effects may be mediated, at least in part, by GH/IGF-1 axis, 

which is considered to be essential for skeletal muscle metabolic homeostasis; via 

activation of NPY neurons in the hypothalamus, stimulating food intake; and by GH-
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independent effects, such as vasodilation and cell apoptosis inhibition [124]. Although the 

precise mechanisms of these effects have not been fully identified and comprehended yet, 

based on these results, ghrelin or ghrelin-receptor agonists deserve further study as a 

therapeutic option in the CC context [6,123,124].    

Anabolic steroids, including testosterone, constitute another possible therapeutic 

approach to treat CC since they promote protein synthesis, leading to an increase of muscle 

mass. The use of small doses of these substances in elderly male and female HF patients 

showed an improvement in cardiac function and exercise capacity, without changes in 

body weight [125–127]. However, the adverse side effects of the anabolic steroid 

administration may overweigh their potential benefits [5,7]. 

β2-adrenergic receptor agonists are known to induce skeletal muscle growth, 

associated with an increase in protein synthesis, a decrease in protein degradation or a 

combination of both. These anabolic properties make this receptor signalling pathway a 

novel therapeutic target for skeletal muscle wasting disorders [7,128]. However, as 

previously stated, the overstimulation of the β-adrenergic receptors signalling pathways 

seen in HF patients diminishes β-adrenergic receptor function [85]. Chronic β-adrenergic 

receptor stimulation can have either beneficial or detrimental effects on cardiac function 

depending on the pre-treatment condition of the heart [128]. A study in HF patients 

reported that the administration, for 12 weeks, of the β2-adrenergic receptor agonist 

clenbuterol, led to an increase in lean mass and strength, without improvement in exercise 

capacity. This study showed no effect on cardiac function or LV mass [129]. Newer 

generation of β2-adrenergic receptor agonists, such as formoterol, may elicit an anabolic 

response in skeletal muscle even at very low doses, with reduced effects on the heart and 

cardiovascular system [130]. Nevertheless, a better understanding of the potentially 

harmful cardiovascular side effects of these drugs is crucial for their application as a 

therapeutic approach in HF [128].   

 

2.4.3 Nutrition  

 Advanced stages of HF are frequently associated with anorexia and, although CC 

cannot be reserved by restored nutrition alone, increases in calorie intake and protein or 

amino acid intake might be beneficial to regain energy reserves and consequently to 

increase skeletal muscle tissue, which may result in an improvement of exercise capacity 



20 

 

[19,46]. Some recommendations from ESC and American College of 

Cardiology/American Heart Association guidelines advise to limit sodium intake to 6 

g/day, avoiding trigger HF decompensation by fluid retention, and to replace only 

detectable deficiencies of trace elements, particularly potassium, magnesium and calcium 

[110,131] . 

 Nutritional interventions in patients with muscle wasting or CC have been 

performed using fish oils, namely omega-3 polyunsaturated fatty acid (PUFA), protein-

rich, high-calorific nutritional supplements and essential amino acids [19]. A higher intake 

of PUFAs is correlated with a low incidence of cardiovascular disease by their anabolic 

and anti-inflammatory effects. For instance, dietary supplementation with PUFA 

significantly inhibits synthesis of TNF-α and IL-1 in severe HF patients [132]. In 

agreement, a study in human acute monocytic leukemia THP-1 cells reported that TNF-α 

production and expression induced by endotoxin LPS were significantly decreased in cells 

pre-incubated with PUFA [133]. 

 Protein or amino acids supplementation might also be associated with some 

beneficial anabolic effects. A trial on a high-calorific protein-rich supplementation in 

cachectic HF patients showed an effect on the enhancement of body weight and 

improvement of quality of life. Additionally, it leads to a decrease in the plasma levels of 

TNF-α, within 6 weeks of treatment [134]. Regarding amino acid supplementation, it is 

known that the oral administration of essential amino acids has anabolic effects, by 

enhancing protein synthesis and inhibiting proteolysis. Leucine, for instance, is thought to 

mediate insulin signalling and glucose uptake, in skeletal muscle cells, through PI3K-

AKT-mTOR pathway modulation [135]. Studies reported an improvement of peak oxygen 

consumption in HF and elderly HF patients by oral amino acid supplementation [136,137]. 

However, a recent study combining resistance exercise training and branched chain amino 

acid supplementation could not confirm these results. In this study, essential amino acid 

supplementation alone did not provide benefit to HF patients [138].  

 

2.4.4 Exercise training and rehabilitation 

According to ESC guidelines, exercise training is an established treatment for HF. 

Exercise training is reported to improve exercise tolerance and health-related quality of life 

and reduce hospitalization rates in patients with HF [19,110]. However, despite being 
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considered a hallmark of HF, systematic exercise intolerance studies assessing skeletal 

muscle function are relatively scarce [6]. 

Aerobic exercise training (AET), regular aerobic exercise characterized by high 

repetition and low resistance demands during skeletal muscle contraction, is the therapeutic 

strategy most verified to counteract skeletal muscle wasting in HF patients [139]. One 

study reported that AET significantly reduced the levels of TNF-α, IL-1β, IL-6 and 

inducible nitric oxide synthase in skeletal muscle of HF patients, which suggests a 

reduction of local inflammation. This may represent a potential anti-catabolic intervention 

in HF, and therefore, an attenuation of muscle wasting [140]. More recently, a study in rats 

with HF induced by surgery reported that 8 weeks of AET lead to a reduction of plasma 

levels of TNF-α and IL-6 and an increase in the anti-inflammatory cytokine IL-10. These 

results suggest that AET has also an important systemic anti-inflammatory effect [141]. In 

addition to these effects, AET is responsible for the reduction of TRIM63 expression and 

myostatin mRNA levels in skeletal muscle of HF patients, not only suggesting that 

exercise training is effective in blocking the UPS activation related to CC but also 

highlighting the powerful effect of exercise in counteracting muscle wasting [142,143]. 

Despite the mentioned benefits of exercise training, some limitations need to be 

considered. Since it is common to observe fatigue in many cachectic patients, it is not 

expected that they would execute and conclude a AET protocol [139]. Also, the majority of 

elderly patients with HF are frail with multiple comorbidities, which limits the application 

of these protocols [144]. 

Currently, since none of these potential treatments is of proven benefit and their 

safety is unknown, further studies focused on the molecular pathways underlying CC are 

needed [110]. For instance, the cause of inflammatory and immune activation in HF, which 

plays an important role in all forms of cachexia, is still uncertain [5,7]. This lack of 

information makes the search for efficient therapies even more difficult. In addition, it is 

crucial a better comprehension of some other features of HF that may have a role on CC, 

clinical outcomes and survival, such as cholesterol and lipoproteins [11]. Future studies in 

basic and clinical science should be done in order to clarify the underlying mechanisms 

and to develop new strategies able to stop or even reverse the state of cachexia in HF 

patients and to improve quality of life and clinical outcomes [2]. 
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3. The cholesterol paradox in heart failure 

 Hypercholesterolemia is an established risk factor for the development of HF, 

strongly associated with the presence of CAD. Cholesterol reduction therapy with statins, 

3-hydroxy-3-methylgluratil coenzyme A (HMG-CoA) reductase inhibitors, is effective on 

the reduction of morbidity and mortality in patients with CAD [12]. HMG-CoA reductase 

is responsible for converting HMG into mevalonate which, through several reactions, is 

converted to cholesterol. A significant percentage of the total cholesterol in human body is 

endogenously produced, by this pathway in hepatic cells, rather than up-taken by diet 

[145]. Blockage of cholesterol synthesis by statins is followed by an up-regulation of low 

density lipoprotein (LDL) receptors in the liver and by an increased uptake of LDL 

particles from blood [146]. However, cholesterol is a crucial molecule for the biosynthesis 

of steroid hormones, namely testosterone, estradiol, cortisol and aldosterone; thus, concern 

has been expressed regarding the potential adverse effects of long-term statin therapy 

[147,148]. The beneficial effects of statins are probably due not only to their LDL 

cholesterol-lowering effects but also to cholesterol-independent effects, including 

improvement in endothelial function, inhibition of neurohormonal stimulation, decrease in 

pro-inflammatory pathways activation and prevention of ventricular remodelling. Since 

CAD and HF often coexist, this therapy has become widespread use in chronic HF [149]. 

Paradoxically, however, low serum levels of total cholesterol and LDL-C have been 

reported as an adverse prognostic marker in patients with HF [11,12,14,150]. The 

counterintuitive phenomenon of “reverse epidemiology” is consistently reported in the 

catabolic stages of chronic diseases as cancer, COPD or HF [13].  

The levels of circulating LDL-C can be influenced by several concomitant 

disorders and lifestyle interventions, such as dietary changes, reduction of excessive body 

weight or an increase of physical activity, as well as by the use of statins [151]. Studies 

have tackled the association between low levels of cholesterol/lipoproteins with worse 

prognosis in HF. Low LDL-C levels are associated with worse long-term outcomes and 

survival in patients with advanced, clinically controlled HF, particularly those on statin 

therapy [152,153]. High density lipoprotein cholesterol (HDL-C) levels are also a strong, 

independent inverse predictor of cardiovascular disease. Studies report low plasma levels 

of HDL-C in patients with PAH, which were associated with worse clinical outcomes 

[154,155]. In addition, lower levels of apolipoprotein A-I, the major component of HDL-C, 
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have been reported in patients with PH and are correlated with increased endothelial 

dysfunction [156].  

 Since epidemiological studies strongly support that hypercholesterolemia 

paradoxically improves survival in HF, a hypercaloric and cardiovascular risk-associated 

Western-type diet (WD) could present some benefits [157,158]. Therefore, a study tested 

the effect of a WD rich in saturated animal fat and simple carbohydrates, with a high salt 

content, on survival, PH, myocardial function, remodelling, neuroendocrine and 

inflammatory activity and CC in severe MCT-induced PH. This study reported that the 

WD ameliorated survival, PH, inflammation and CC in experimental PH [158]. The WD 

provides additional energy content, which is fundamental in critical illness; however, as 

previously reported, nutritional supplementation cannot reverse anorexia, malabsorption or 

catabolism [46]. Nevertheless, in this study, total cholesterol concentrations were lower in 

cachectic MCT-control rats and higher in MCT-WD. Moreover, NF-κB activity and pro-

inflammatory activation were reduced in the MCT-WD group. These results are 

concordant with the association between hypercholesterolemia and the improved survival 

in HF, as considered in cholesterol paradox, probably by an attenuation of immune and 

inflammatory activation [158]. 

 Several hypotheses have been proposed to explain the mechanisms underlying the 

“reverse epidemiology” in HF, including the malnutrition-inflammation complex 

syndrome, or theories focusing on ubiquinone, selenoproteins or the endotoxin-lipoprotein 

hypothesis [14]. The malnutrition-inflammation complex syndrome hypothesis considers 

that low serum levels of total cholesterol are associated with low grade inflammation and 

protein-caloric malnutrition that leads to HF progression towards the development of CC 

[159]. Low cholesterol levels in patients with HF are related to both reduced BMI and 

serum albumin levels, the latter considered as a marker of undernutrition in patients with 

chronic diseases [159,160]. The ubiquinone theory states that a decrease in cholesterol is 

associated with a decrease in the ubiquinone production [149]. Ubiquinone, also known as 

coenzyme Q10 (CoQ10), uses lipoprotein-mediated transport for plasma circulation; thus, 

plasma levels of CoQ10 correlate with plasma total cholesterol and LDL-C levels. Along 

with dietary intake from meat products, CoQ10 is also synthesised endogenously by the 

mevalonate pathway. CoQ10, abundant in the myocardium, is not only a key component of 

the mitochondrial electron transport chain for ATP production, but also prevents 
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membrane oxidation, lipid peroxidation and promotes the recycling of α-tocopherol (also 

known as vitamin E) that neutralizes ROS, inducing a cardioprotective role against 

oxidative damage [161,162]. Therefore, myocardial CoQ10 reduction associated with low 

levels of cholesterol promoted by statin therapy leads to a consequent decrease of its 

antioxidant effects and mitochondrial ATP production, which has been postulated as a 

mechanism in the development and progression of HF [149,161]. The proposed theory 

focusing on selenoproteins also links the decreased levels of cholesterol with a decrease in 

antioxidant pathways [149]. Several selenoproteins are involved in protection of cells and 

macromolecules against oxidative stress, such as the well-known redox-active 

selenoenzymes: glutathione peroxidases, which represent a major class of functionally 

important selenoproteins, thioredoxin reductases and peptide methionine-R-sulfoxide 

reductase [163]. Glutathione peroxidase 4 (GPx4) catalyses the reduction of the lipid 

hydroperoxide to harmless alcohol and is also capable of metabolising cholesterol and 

cholesterol ester hydroperoxides in oxidised LDL. Lower plasma levels of cholesterol are 

associated with a decrease in GPx4 activity, which in turn leads to impaired prevention of 

LDL oxidation and subsequent uptake by endothelial cells and macrophages in arterial 

blood cells [164]. Ultimately, the most studied hypothesis regarding the cholesterol 

paradox in HF is the endotoxin-lipoprotein hypothesis [165].  

 

3.1 The endotoxin-lipoprotein hypothesis 

 The endotoxin-lipoprotein hypothesis states that circulating cholesterol-rich 

lipoproteins and triglyceride-rich lipoproteins have the capacity to bind and detoxify 

bacterial LPS, by the formation of micelles. Thus, by attenuating the immune activation 

related to HF, cholesterol and lipoproteins may exert a protective role in HF [158,165,166]. 

Little is known about the physical aspects of LPS-lipoprotein interaction, although it is 

clearly of low affinity [167]. Lipoprotein classes, such as LDLs, very low density 

lipoproteins (VLDL), high density lipoproteins (HDL) and chylomicrons, have been shown 

to bind LPS in direct proportion to their cholesterol content [166]. In addition, for LPS 

concentrations relevant to human physiology, lipoproteins are an effective mechanism for 

LPS inactivation due to the abundance of lipoprotein particles in plasma. An in vitro model 

of endotoxaemia (i.e., presence of endotoxins in the blood) using human monocytes from 

healthy volunteers showed an effective inhibition of LPS bioactivity by LDL [167]. A 
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study ex vivo in chronic HF patients showed an inverse relationship between whole blood 

TNF-α release and serum cholesterol levels [168]. Also, incubation of macrophages with 

cholesterol in vitro led to a decrease in LPS-induced TNF-α release and mRNA expression 

[169].   

 As previously reported, immune activation seen in HF may be triggered by 

hypoxia, which leads to an augmented intestinal translocation of LPS into the systemic 

circulation, and subsequent activation of immune cells [53]. Higher plasma concentrations 

of LPS in HF patients are also correlated with immune activation [54]. Moreover, a study 

reported higher plasma LPS levels in CC. Using an ex vivo whole blood stimulation model, 

this study also showed that very small amounts of LPS are capable of inducing TNF-α 

secretion and soluble CD14 expression even in non-cachectic patients [170]. The cachectic 

ones demonstrated a reduced response after LPS stimulation, which can be explained by 

LPS desensitization and that may reflect previous LPS exposure in vivo [166,170]. The 

regulation of serum factors like cholesterol could be a possible explanation [166]. 

  If the endotoxin-lipoprotein hypothesis holds true, reduction of serum lipoproteins, 

for instance by statin therapy, serves the wrong purpose, at least in patients with HF and 

possibly those with other chronic illnesses [165]. This hypothesis needs to be a matter of 

debate and investigation to identify suitable therapies for patients with CAD without HF 

and those with HF. The definition of an optimum range for serum lipoproteins and 

cholesterol, below which a pharmacological treatment would not be advisable in patients 

with CAD and HF, might be also necessary [166].  
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4. Aims 

 Given the severity of CC and the lack of therapeutic strategies, it is important to 

investigate its complex pathophysiology and to test new preventive and therapeutic 

approaches. The aim of the present work was to test the endotoxin-lipoprotein hypothesis 

in vivo, by the analysis of functional and molecular effects of dietary supplementation with 

cholesterol using the MCT-induced PAH, HF and CC model. We evaluated body weight 

evolution, effort tolerance and peak oxygen consumption, as well as cardiac function by 

echocardiography and haemodynamic analysis in vehicle and MCT-treated animals fed 

with a normal or a cholesterol supplemented diet. Plasma, cardiac and lung tissue samples 

were collected for molecular studies seeking to evaluate the endotoxin-lipoprotein 

hypothesis and to unveil the molecular and cellular mechanisms underlying the effect of 

cholesterol supplementation in MCT animals. 
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5. Material and methods 

5.1 Experimental design 

 The experimental design is summarized in figure 2. 

 

Fig. 2. Experimental protocol design. βi, chamber stiffness constant for indexed volumes; BSA, body surface area; BW, 

body weight; C, control; CD, cholesterol diet; CI, cardiac index; DP, diastolic pressure; Eai, arterial elastance for indexed 

volumes; EDP, end-diastolic pressure; EDVi, indexed end-diastolic volume; Eesi, end-systolic elastance for indexed 

volumes; EF, ejection fraction; ELISA, enzyme-linked immunosorbent assay; ESP, end-systolic pressure; GW, 

gastrocnemius muscle weight; H&E, haematoxylin and eosin staining; HDL-C, high-density lipoprotein – cholesterol; 

HR, heart rate; LPS, lipopolysaccharide; LV, left ventricle; LV+IVSW, left ventricle plus interventricular septum weight; 

MCT and M, monocrotaline; MP, mean pressure; ND, normal diet; PAAT/CL, pulmonary artery acceleration time 

normalized to cycle length; PGFW, perigonadal fat weight; PP, pulse pressure; PRFW, perirenal fat weight; RAAi, right 

atrial area indexed for body surface area; RV, right ventricle; RVW, right ventricle weight; S’, peak myocardial systolic 

velocity near the tricuspid annulus; sc, subcutaneous; SP, systolic pressure; τ, time-constant of isovolumic relaxation by 
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Weiss formula; TAPSE, tricuspid annular plane systolic excursion; TL, tibial length; TNF-α, tumour necrosis factor 

alpha; VO2, oxygen consumption; VVC, ventricular-vascular coupling.  

 

5.2 Animals and experimental protocol 

 Housing and experimental procedures were approved and complied with the 

Faculty of Medicine of Porto guidelines and performed in accordance with the Portuguese 

law on animal welfare, EU Directive 2010/63/EU, and the National Institutes of Health 

Guide for the Care and Use of Laboratory Animals (NIH publication no. 85-23, revised 

2011). Adult male Wistar Han rats (Charles River Laboratories; Barcelona, Spain) 

weighing 180-200 g were housed in groups of 2 per cage, in a controlled environment 

under 12h light/dark inverted cycle, at a room temperature of 22ºC, with a free supply of 

food and water. After one week of acclimatization, rats were randomly divided in two 

groups, one of which received a single subcutaneous injection of MCT (60 mg/kg body 

weight; Sigma, Barcelona, Spain) (monocrotaline group, M) and the other an equal volume 

of vehicle (NaCl 0.9 %; 2 ml/kg body weight) (control group, C). Animals were fed ad 

libitum with a normal diet (ND) (4RF21A, Mucedola s.r.l.). Five days after MCT 

administration, rats from the monocrotaline group were randomly allocated to consume ad 

libitum either normal diet or a cholesterol supplemented diet (CD) (4RF21 based with 

cholesterol 2 % and cholic acid 0.25 %, Mucedola s.r.l.). Cholic acid was added to enhance 

cholesterol absorption [171]. Body weight (BW) was recorded daily. Twenty-one days 

after MCT or vehicle administration, effort testing with peak oxygen consumption (VO2) 

determination was performed on a close-chamber treadmill coupled to a gas analyser at a 

treadmill inclination of 10º. After an initial adaption period at 15 cm/s, testing velocity was 

changed to 30 cm/s and then stepped up by 5 cm/s every 60 s.   

 

5.3 Echocardiographic and haemodynamic evaluation 

Since the RV hypertrophy progresses to failure around the 28th day after MCT injection 

[172], between the 25th and 30th day rats were anaesthetized (inhalation of 8 % 

sevofluorane for induction, and 2-3.5 % for maintenance) and endotracheally intubated 

(14G) for mechanical ventilation (150 min-1, 100 % O2, 14-16 cm H2O inspiratory 

pressure, with tidal volume adjusted to animal weight, and 5 cm H2O end-expiratory 
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pressure; TOPO Small Animal Ventilator - Kent Scientific, Dual Mode), and placed over a 

heating pad. Echocardiographic evaluation (Acuson Sequoia C512; Siemens) was 

performed using a 15 MHz probe (GE Healthcare) to assess tricuspid annular plane 

systolic excursion (TAPSE) and peak myocardial systolic velocity near the tricuspid 

annulus (S’), as surrogates of RV function. Right atrial area (RAAi) was also assessed. 

Pulmonary artery acceleration time (PAAT) was obtained from pulmonary artery flow 

tracings. Following echocardiographic evaluation, animals underwent haemodynamic 

evaluation. Under binocular surgical microscopy (Leica, Wild 384000), the right femoral 

vein was cannulated (24G) for fluid replacement (prewarmed 0.9 % NaCl solution, at 32 

ml·kg-1·h-1) to compensate for perioperative losses. The heart was exposed through a 

median sternotomy and the pericardium was widely opened. Pressure-volume (PV) 

catheters were inserted through the apex in RV and LV (SPR-869 and SPR-847, 

respectively; Millar Instruments, Houston, TX). Another catheter (PVR-1045; Millar 

Instruments, Houston, TX) was inserted into the main pulmonary artery through the RV 

outflow tract. An ascending aorta flow probe was placed (2.5PS; Transonic, NY, USA) to 

allow real-time cardiac output (CO) measurement. Haemodynamic recordings were made 

under basal conditions with respiration suspended at end-expiration after a stabilization 

period of 30 minutes, and transient inferior vena cava occlusions were also obtained to 

derive load-independent indexes of contractility and compliance (end-systolic and end-

diastolic PV relationships, respectively). Volume signal was corrected according to 

determination of parallel conductance by 40 µl of 10 % hypertonic saline injection, and 

slope factor α derived from CO measurement from the aortic flow probe. Data was 

continuously acquired (MPVS 300; Millar Instruments, Houston, TX), recorded at 1000 Hz 

(ML880 PowerLab 16/30; AD Instruments, Oxford, UK). All volumes were indexed to 

body surface area (BSA) as defined by 9.1 x body weight (BW, in g)2/3 to account for 

differences in weights. 

 

5.4 Morphometric evaluation 

 After haemodynamic assessment, animals were euthanized by exsanguination under 

anaesthesia. Heart, lungs, liver, gastrocnemius muscle, perigonadal fat and perirenal fat 

were excised and weighed. The RV free wall was dissected from the LV + interventricular 
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septum (IVS), under binocular magnification (3.5x), and weighed separately. The right 

tibia was also excised and its length was measured with a millimetric ruler. RV and LV + 

IVS, lungs, liver, gastrocnemius, perigonadal fat and perirenal fat weight were normalized 

to tibial length. 

 

5.5 Histological analysis 

 For histological analysis, RV, LV and lung samples were immersion fixed in 10 % 

(v/v) buffered formalin by diffusion during 24 h and subsequently dehydrated with graded 

ethanol and included in paraffin blocks. Xylene was used in the transition between 

dehydration and impregnation. Serial sections (3 µm of thickness) of paraffin blocks were 

cut by a microtome and mounted on adhesion slides (Superfrost™ Plus, ThermoFisher 

Scientific, Massachusetts, USA). Deparaffinized sections were stained for haematoxylin 

and eosin (H&E). RV free wall specimens were obtained from each heart at midway 

between the apex and base. Studied samples were observed at microscope, photographed 

with a digital camera and measured directly at 250x magnification with a digital image 

analyser (cell^B life science basic imaging software, Olympus). Only round to ovoid 

nucleated myocytes were considered for analysis. Both in RV and LV samples, the 

cardiomyocyte cross-sectional area of sixty cardiomyocytes per sample was measured and 

averaged. On the pulmonary specimens, external diameter and medial wall thickness of 

pulmonary arterioles (diameter of 50 - 100 µm, 12 arterioles/lung) were analysed. 

Orthogonal intercepts were used to generate eight random measurements of external 

diameter (distance between the external lamina) and sixteen random measurements of 

medial thickness (distance between the internal and external lamina). For each artery, 

medial hypertrophy was expressed as follows: % wall thickness = [(medial thickness x 

2)/(external diameter)] x 100. All analyses were carried out blindly.  

 

5.6 Blood tests 

 Plasma samples of vehicle or MCT-injected Wistar Han rats fed with a normal diet 

or with a cholesterol supplemented diet were analysed in duplicate to determine total 

cholesterol, HDL-C and triglycerides levels by enzymatic and colorimetric methods using 

the commercially available kits Liquick Cor-CHOL 60 2-204, PZ Cormay S.A. Lublin, 
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Poland; Cormay HDL 2-053, PZ Cormay S.A. Lublin, Poland and Liquick Cor-TG 60 2-

253, PZ Cormay S.A. Lublin, Poland, respectively and according to the manufacturer’s 

instructions. Non-HDL values were obtained by the difference between total cholesterol 

and HDL-C levels. Endotoxin LPS plasma concentration was determined in duplicate by a 

chromogenic method with Limulus amebocyte lysate (LAL), using a commercial kit 

(ToxinSensor™ Chromogenic LAL Endotoxin Assay Kit L00350, GenScript, NJ, USA) 

according to the manufacturer’s instructions. Plasma levels of TNF-α were detected in 

duplicate using a commercially available enzyme-linked immunosorbent assay (ELISA) 

(Rat TNF-α ELISA Kit CSB-E11987r, CUSABIO, Wuhan, China) kit according to the 

manufacturer’s instructions.    

 

5.7 Statistical analysis 

 Values are given as mean ± standard error of mean (SEM) for all variables. The 

Shapiro-Wilk test was performed to check normality of data. When variables were 

normally distributed, the statistical significance of the differences between the 

experimental groups was determined using one-way ANOVA, followed by the Tukey’s 

multiple comparisons post hoc test. When the normality test failed, we performed the 

Kruskal-Wallis test, followed by the Dunn’s multiple comparisons post hoc test. Body 

weight evolution was evaluated by repeated-measures one-way ANOVA. Results were 

considered significantly different when p < 0.05. Statistical analysis was performed with 

GraphPad Prism software (version 7.00).  
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6. Results  

6.1 Evaluation of body weight evolution and effort tolerance with cholesterol 

supplemented diet in MCT-treated animals 

Throughout the study, MCT-injected rats gradually developed lethargy, 

tachypnoea, reduced activity and signs of respiratory distress. MCT-injected animals fed 

with a normal diet had significantly lower body weight gain than the vehicle-injected ones 

(p < 0.01 vs. C-ND) and no significant differences were observed between M-ND and M-

CD groups (Figure 3). 

 

 

Fig. 3. Weight evolution in vehicle-injected (C-ND, n=5) and monocrotaline (MCT)-injected Wistar Han rats fed with a 

normal diet (M-ND, n=37) or with a cholesterol supplemented diet (M-CD, n=32). Data plotted as mean ± SEM. Body 

weight was recorded from rats still surviving at each time point. ** p < 0.01 vs. C-ND. 

 

  Effort testing showed no significant differences between groups on peak VO2 or 

total workload achieved (Figure 4).  
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Fig. 4. Peak VO2 (A) and total workload (B) evaluation of vehicle-injected (C-ND, n=5) and monocrotaline (MCT)-

injected Wistar Han rats fed with a normal diet (M-ND, n=33) or with a cholesterol supplemented diet (M-CD, n=27). 

Bars represent mean ± SEM. VO2, oxygen consumption; TWL, total workload. 

  

6.2 Analysis of echocardiographic and haemodynamic alterations associated with 

cholesterol supplemented diet in MCT-treated animals 

RV echocardiography results are summarized in table 2.  

 

Table 2. Echocardiographic parameters of C- or M-injected rats fed with a ND or a CD. 

 C-ND M-ND M-CD 

PAAT/CL 0.15 ± 0.01 0.09 ± 0.01** 0.11 ± 0.01* 

TAPSE, cm 0.27 ± 0.01 0.21 ± 0.01* 0.19 ± 0.01** 

RAAi, cm2.m-2 3.5 ± 0.1 9.0 ± 1.1* 7.8 ± 1.1* 

RV S’, m.s-1 0.08 ± 0.01 0.05 ± 0.00** 0.04 ± 0.01** 

Legend: Echocardiographic data recorded between the 25th and 30th day after vehicle injection (C-ND, n=5) and 

monocrotaline (MCT) injection of Wistar Han rats, fed with a normal diet (ND) (M-ND, n=10) or with a cholesterol 

supplemented diet (CD) (M-CD, n=11). Values are presented as mean ± SEM. PAAT/CL, pulmonary artery acceleration 

time normalized to cycle length; TAPSE, tricuspid annular plane systolic excursion; RAAi, right atrial area indexed for 

body surface area; RV, right ventricle; S’, peak myocardial systolic velocity near the tricuspid annulus. * p < 0.05 vs. C-

ND; ** p < 0.01 vs. C-ND. 

 

 MCT-treated groups showed decreased pulmonary artery acceleration time, 

normalized to cycle length (p < 0.01 M-ND vs. C-ND; p < 0.05 M-CD vs. C-ND), 
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decreased tricuspid annular plane systolic excursion (p < 0.05 M-ND vs. C-ND; p < 0.01 

M-CD vs. C-ND) and S’ (p < 0.01 vs. C-ND) compared with C-ND group. Right atrial 

area, indexed for BSA, was significantly higher in both MCT-treated groups (p < 0.05 vs. 

C-ND). No differences were found between M-ND and M-CD.  

 Haemodynamic studies are summarized in table 3.  

 

Table 3. Haemodynamic parameters of C- or M-injected rats fed with a ND or a CD. 

 C-ND M-ND M-CD 

Baseline    

BSA, cm2  431 ± 7 371 ± 3**** 378 ± 6**** 

HR, min-1 342 ± 8 329 ± 11 322 ± 14 

CI, µL.min-1.cm-2 133.1 ± 2.8 88.4 ± 12.1* 88.0 ± 7.6* 

RV    

ESP, mmHg 29 ± 0 61 ± 4*** 57 ± 4*** 

EDP, mmHg 6.4 ± 0.6 7.4 ± 0.6 6.7 ± 0.7 

EDVi, µL.cm-2 0.54 ± 0.01 0.70 ± 0.19 0.58 ± 0.09 

EF, % 70 ± 2 50 ± 6* 55 ± 4 

τ, ms 14 ± 1 13 ± 1 12 ± 1 

Eai, mmHg.µL-1.cm-2 74 ± 3 371 ± 3**** 378 ± 6**** 

IVC occlusion    

Eesi, mmHg.µL-1.cm-2 75 ± 6 108 ± 26 128 ± 21 

i, mmHg.µL-1.cm-2 1.2 ± 0.2 4.8 ± 0.8* 5.4 ± 0.7** 

RV VVC 1.0 ± 0.1 0.3 ± 0.1** 0.3 ± 0.0* 
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Legend: Haemodynamic data of vehicle-injected (C-ND, n=5) and monocrotaline (MCT)-injected Wistar Han rats, fed 

with a normal diet (M-ND, n=6) or with a cholesterol supplemented diet (M-CD, n=9). Values are presented as mean ± 

SEM. BSA, body surface area; HR, heart rate; CI, cardiac index; RV, right ventricle; ESP, end-systolic pressure; EDP, 

end-diastolic pressure; EDVi, indexed end-diastolic volume; EF, ejection fraction; τ, time-constant of isovolumic 

relaxation by Weiss formula; Eai, arterial elastance for indexed volumes; IVC, inferior vena cava; Ees i, end-systolic 

elastance for indexed volumes; i, chamber stiffness constant for indexed volumes; VVC, ventricular-vascular coupling. * 

p < 0.05 vs. C-ND; ** p < 0.01 vs. C-ND; *** p < 0.001 vs. C-ND; **** p < 0.0001 vs. C-ND. BSA was estimated as 

9.1.(BW in g)2/3. 

 

 Both MCT-treated groups showed decreased BSA (p < 0.0001 vs. C-ND) and 

cardiac index (p < 0.05 vs. C-ND). A significant increase of right ventricular end-systolic 

pressure (p < 0.001 vs. C-ND) and pulmonary arterial elastance for indexed volumes (p < 

0.0001 vs. C-ND) was also observed compared with C-ND. Ejection fraction was 

significantly lower in M-ND group (p < 0.05 vs. C-ND) but not in M-CD. No significant 

differences were observed among groups in heart rate, right ventricular end-diastolic 

pressure and indexed end-diastolic volume or time-constant of isovolumic relaxation. 

Considering the parameters evaluated from inferior vena cava occlusion, chamber stiffness 

constant for indexed volumes, was higher in MCT-treated groups compared with C-ND (p 

< 0.05 M-ND vs. C-ND; p < 0.01 M-CD vs. C-ND). No significant differences were 

observed among groups in end-systolic elastance for indexed volumes; however, 

ventricular-vascular coupling, reflected by the end-systolic elastance/pulmonary arterial 

elastance ratio, was significantly lower in MCT-treated animals (p < 0.01 M-ND vs. C-ND; 

p < 0.05 M-CD vs. C-ND).   

 Both M-ND and M-CD groups presented significantly lower systolic (p < 0.01 vs. 

C-ND), diastolic (p < 0.05 M-ND vs. C-ND; p < 0.01 M-CD vs. C-ND) and mean systemic 

arterial pressure (p < 0.01 vs. C-ND) compared with C-ND (Table 4). Considering 

pulmonary arterial pressure, MCT-treated animals presented significantly higher values of 

systolic (p < 0.001 M-ND vs. C-ND; p < 0.0001 M-CD vs. C-ND), diastolic (p < 0.01 M-

ND vs. C-ND; p < 0.05 M-CD vs. C-ND) and mean pressure (p < 0.0001 M-ND vs. C-ND; 

p < 0.001 M-CD vs. C-ND). Additionally, MCT-injected animals also had an increased 

pulmonary arterial pulse pressure when compared to vehicle-injected ones (p < 0.05 M-ND 

vs. C-ND; p < 0.001 M-CD vs. C-ND). 
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Table 4. Systemic and pulmonary arterial pressure of C- or M-injected rats fed with a ND or a CD. 

Legend: Systemic and pulmonary arterial pressure data of vehicle-injected (C-ND, n=5) and monocrotaline (MCT)-

injected Wistar Han rats, fed with a normal diet (M-ND, n=6) or with a cholesterol supplemented diet (M-CD, n=9). 

Values are presented as mean ± SEM. SP, systolic pressure; DP, diastolic pressure; MP, mean pressure; PP, pulse 

pressure. * p < 0.05 vs. C-ND; ** p < 0.01 vs. C-ND; *** p < 0.001 vs. C-ND; **** p < 0.0001 vs. C-ND.  

  

6.3 Morphometric alterations associated with cholesterol supplemented diet in 

MCT-treated animals 

 Results of morphometric evaluation are shown in table 5.   

 

 

 

 

 

 

 C-ND M-ND M-CD 

Systemic arterial pressure    

SP, mmHg 122 ± 4 95 ± 7** 95 ± 4** 

DP, mmHg 90 ± 2 57 ± 8* 53 ± 7** 

MP, mmHg 107 ± 2 75 ± 9** 76 ± 5** 

PP, mmHg 31 ± 2 37 ± 3 47 ± 10 

Pulmonary arterial pressure    

SP, mmHg 32 ± 0 63 ± 5*** 62 ± 3**** 

DP, mmHg 16 ± 1 31 ± 3** 25 ± 2* 

MP, mmHg 24 ± 1 44 ± 3**** 41 ± 2*** 

PP, mmHg 16 ± 1 32 ± 3* 37 ± 3*** 
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Table 5. Morphometric parameters of C- or M-injected rats fed with a ND or a CD. 

Legend: Morphometric data of vehicle-injected (C-ND, n=5) and monocrotaline (MCT)-injected Wistar Han rats, fed 

with a normal diet (M-ND, n=11) or with a cholesterol supplemented diet (M-CD, n=11). Values are presented as mean ± 

SEM. TL, tibial length; RVW, right ventricle weight; LV+IVSW, left ventricle plus interventricular septum weight; GW, 

gastrocnemius muscle weight; PGF, perigonadal fat weight; PRF, perirenal fat weight. * p < 0.05 vs. C-ND; ** p < 0.01 

vs. C-ND; *** p < 0.001 vs. C-ND; **** p < 0.0001 vs. C-ND; †† p < 0.01 vs. M-ND.  

  

 Body weight decrease in MCT-injected animals occurred simultaneously with a 

significant decrease in gastrocnemius muscle weight/tibial length ratio only in M-ND 

group (p < 0.01 vs. C-ND group) but not in M-CD. The development of cardiac 

hypertrophy was also present in M-ND and M-CD groups, as evidenced by the significant 

increase in right ventricle weight/tibial length ratio (p < 0.01 M-ND vs. C-ND group; p < 

0.0001 M-CD vs. C-ND group) and Fulton index (p < 0.05 M-ND vs. C-ND group; p < 

0.001 M-CD vs. C-ND group). MCT-treated animals also presented a significantly increase 

in lung weight/tibial length ratio (p < 0.05 M-ND vs. C-ND group; p < 0.01 M-CD vs. C-

ND group). Cholesterol supplemented diet induced a significant increase in liver 

weight/tibial length ratio in MCT-treated animals (p < 0.01 vs. M-ND group). Furthermore, 

 C-ND M-ND M-CD 

Body weight, g 326 ± 8  255 ± 6**** 265 ± 6**** 

TL, mm 39 ± 0 38 ± 0 38 ± 0 

RVW/TL, mg.mm-1 4.3 ± 0.1 8.1 ± 0.5** 9.5 ± 0.6**** 

(LV+IVSW)/TL, mg.mm-1 16 ± 0 15 ± 0 16 ± 1 

Fulton index, g.g-1 0.27 ± 0.01 0.53 ± 0.04* 0.59 ± 0.04*** 

Liver weight/TL, mg.mm-1 265 ± 9 254 ± 17 327 ± 14†† 

Lungs weight/TL, mg.mm-1 37 ± 1 65 ± 5*  74 ± 6** 

GW/TL, mg.mm-1 54 ± 1 44 ± 2** 48 ± 1 

PGFW/TL, mg.mm-1 65 ± 3 55 ± 4 47 ± 4* 

PRFW/TL, mg.mm-1 56 ± 2 53 ± 6 39 ± 3 
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M-CD group showed a significantly lower perigonadal fat weight/tibial length ratio when 

compared with C-ND (p < 0.05 vs. C-ND group). No significant differences were observed 

between groups in tibial length, left ventricle plus interventricular septum weight/tibial 

length ratio or perirenal fat weight/tibial length ratio.  

 

6.4 Evaluation of histological alterations associated with cholesterol supplemented 

diet in MCT-treated animals 

Illustrative histological sections of RV and LV cardiomyocyte cross-sectional area 

are presented in figure 5.   
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Fig. 5. Representative H&E staining of RV (Panels A, B and C) and LV (Panels D, E and F) cardiomyocyte cross-

sectional area of vehicle-injected (C-ND, n=5) and monocrotaline (MCT)-injected Wistar Han rats, fed with a normal 

diet (M-ND, n=11) or with a cholesterol supplemented diet (M-CD, n=10). Bars represent mean ± SEM. RV, right 

ventricle; LV, left ventricle. **** p < 0.0001 vs. C-ND; † p < 0.05 vs. M-ND. 

 

MCT-treated animals had higher RV and LV cardiomyocyte cross-sectional area (p < 

0.0001 vs. C-ND group). Cholesterol supplemented diet increased LV cardiomyocyte 

cross-sectional area (p < 0.05 vs. M-ND group).  

Illustrative histological sections of lung arterioles are presented in figure 6.   
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Fig. 6. Representative H&E staining of lung arterioles in vehicle-injected (C-ND, n=5) (Panel A) and monocrotaline 

(MCT)-injected Wistar Han rats, fed with a normal diet (M-ND, n=6) (Panel B) or with a cholesterol supplemented diet 

(M-CD, n=7) (Panel C). Bars represent mean ± SEM. **** p < 0.0001 vs. C-ND. 

 

 Significant increase of pulmonary arteriole wall-thickness was observed in MCT-

treated animals compared with C-ND (p < 0.0001 vs. C-ND group). 

 

6.5 Determination of total cholesterol, HDL-C, non-HDL cholesterol and 

triglycerides plasma concentration in MCT-treated animals fed with a 

cholesterol supplemented diet  

Plasma total cholesterol, HDL-C, non-HDL cholesterol and triglycerides levels are 

reported in table 6.  
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Table 6. Plasma concentration of total cholesterol, HDL-cholesterol, non-HDL cholesterol and triglycerides from C- or 

M-injected rats fed with a ND or a CD.  

 C-ND M-ND M-CD 

Total cholesterol, mg.dl-1  20.68 ± 1.34 23.24 ± 4.26 74.43 ± 14.42**†† 

HDL-C, mg.dl-1 20.23 ± 1.69 18.64 ± 3.52 39.96 ± 7.83*† 

Non-HDL cholesterol, mg.dl-1 0.45 ± 0.40 4.60 ± 1.27 34.47 ± 6.82** 

TG, mg.dl-1 124.44 ± 20.16 34.41 ± 6.99** 50.44 ± 13.39** 

Legend: Plasma concentration of total cholesterol, HDL-cholesterol, non-HDL cholesterol and triglycerides of vehicle-

injected (C-ND, n=5) and monocrotaline (MCT)-injected Wistar Han rats, fed with a normal diet (M-ND, n=5) or with a 

cholesterol supplemented diet (M-CD, n=5). Values are presented as mean ± SEM. HDL-C, high density lipoprotein – 

cholesterol; TG, triglycerides. * p < 0.05 vs. C-ND; ** p < 0.01 vs. C-ND; † p < 0.05 vs. M-ND; †† p < 0.01 vs. M-ND. 

 

 No significant differences were observed between M-ND and C-ND groups in total 

cholesterol, HDL-C or non-HDL cholesterol plasma concentration. Triglyceride plasma 

concentration was lower in MCT-treated animals when compared to vehicle-injected ones 

(p < 0.01 vs. C-ND group). Cholesterol supplemented diet induced a significant increase in 

total cholesterol (p < 0.01 vs. M-ND group) and HDL-C plasma concentration (p < 0.05 vs. 

M-ND group) in MCT-treated animals. M-CD group showed significantly higher non-

HDL cholesterol plasma concentration compared with C-ND (p < 0.01 vs. C-ND group). 

 

6.6 Evaluation of endotoxin LPS plasma levels in MCT-treated animals fed with a 

cholesterol supplemented diet  

 In order to evaluate the endotoxin-lipoprotein hypothesis, we determined endotoxin 

LPS plasma concentration. Results are shown in figure 7.   
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Fig. 7. Plasma concentration of LPS in vehicle-injected (C-ND, n=5) and monocrotaline (MCT)-injected Wistar Han rats, 

fed with a normal diet (M-ND, n=10) or with a cholesterol supplemented diet (M-CD, n=10). Bars represent mean ± 

SEM. LPS, lipopolysaccharide.  

 

 The results obtained in the quantification of LPS plasma concentration show no 

significant differences between groups.  

 

6.7 Determination of TNF-α plasma levels in MCT-treated animals fed with a 

cholesterol supplemented diet  

 Plasma TNF-α levels are reported in figure 8. 

 

Fig. 8. Plasma concentration of TNF-α in vehicle-injected (C-ND, n=5) and monocrotaline (MCT)-injected Wistar Han 

rats, fed with a normal diet (M-ND, n=9) or with a cholesterol supplemented diet (M-CD, n=8). Bars represent mean ± 

SEM. TNF-α, tumour necrosis factor alpha. 

 

 The results obtained in the quantification of TNF-α plasma levels show no 

significant differences between groups. 
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7. Discussion 

Since none of the various explored therapeutic approaches targeting CC so far 

proved to have beneficial effects and their safety remains an issue, clinicians are currently 

only endorsed to manage underlying disease and comorbidities of CC, which is notoriously 

inefficient [102,110]. Therefore, further studies are warranted to unravel CC 

pathophysiology and new therapeutic strategies [10]. Following up on cholesterol paradox, 

the puzzling finding that low cholesterol and LDL levels worsen prognosis in HF [11], and 

taking into account the endotoxin-lipoprotein hypothesis as a likely explanation [166], we 

hypothesized that enhancing cholesterol intake would protect animals with HF and CC. In 

this work, we newly put to test the endotoxin-lipoprotein hypothesis in experimental CC 

associated with HF and PAH in vivo, by evaluating functional and molecular effects of a 

diet rich in cholesterol in MCT-induced rat PAH. This is a widely used animal model for 

the study of the pathogenesis of PAH, associated with progressive HF and CC. MCT-

induced PAH animal model is characterized by remodelling and occlusion of the 

pulmonary arterial vessels, leading to progressively higher vascular resistance and RV 

afterload, development of RV dysfunction and failure [99,173]. Although there are some 

differences described between this animal model and human PAH, such as the absence of 

plexiform lesions in the experimental model, it has identical haemodynamic and 

morphological features and high mortality [91,174]. Indeed, as expected, we observed a 

high mortality rate in MCT-treated rats. The PAH model was successfully established, as 

mean pulmonary arterial pressure was above 25 mmHg and significantly increased in the 

MCT-treated rats, which is in accordance with the observed in human PAH [175]. 

Pulmonary vascular remodelling was evident on histological evaluation and by the increase 

in pulmonary arteriole wall-thickness. In addition, pulmonary oedema and vascular 

engorgement was also present in MCT-treated animals, as quantified by the lung 

weight/tibial length ratio. In MCT-injected rats, the RV was submitted to an increased 

afterload, as shown by the higher pulmonary arterial elastance. To counteract the pressure 

overload, RV underwent a process of remodelling with an initial adaptive response of 

compensatory hypertrophy (concentric remodelling). Hypertrophic response was evident 

by the significant increase of RV weight, Fulton index, cardiomyocyte hypertrophy, right 

ventricular end-systolic pressure and higher intrinsic myocardial contractility, observed by 

the increase of the load-independent contractility index end-systolic elastance. In addition, 
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ventricular-vascular coupling efficiency was decreased in MCT animals, which probably 

resulted of an insufficient increase in contractility to counteract the increased afterload 

[176,177]. This abnormal ventricular-vascular coupling, along with decreased right 

ventricular ejection fraction, is a relevant feature of RV failure [178,179]. Indeed, 

decreased cardiac index in MCT-injected rats, mostly due to impaired stroke volume in 

MCT-injected rats corroborates the HF state [180]. Other signs of RV failure were present, 

such as an upward shift in the end-diastolic pressure volume relationship (βi) related to an 

increased chamber stiffness which can possibly be explained by fibrosis deposition, as 

reported in previous reports [158,181]. The low cardiac output state and ventricular 

interdependence also explain systemic hypotension, as assessed by systolic, diastolic and 

mean systemic arterial pressures [180]. Despite this, in our evaluation there was no evident 

RV dilatation suggesting that in most animals there was still no evolution to overt RV 

failure. In fact, it is expected that with sustained pressure overload animals progress to 

maladaptive RV hypertrophy (eccentric remodelling) with RV dilatation [158,182–184]. 

Although we found lower BW in MCT-treated animals, accompanied by decreased 

gastrocnemius muscle weight, which is suggestive of muscle wasting related to CC and 

consistent with previous reports [177,181,185], we must underscore that previous works 

from ours and other groups have shown that further BW loss and muscle wasting would be 

expected at a later stage of disease. The lack of progression to full-blown RV failure and 

CC may explain the absence of differences in effort tolerance, either peak VO2 or total 

workload achieved. Most likely our evaluation was carried out at an early stage of disease 

evolution where most animals were still not in severe HF, indeed, when MCT-injected 

animals are evaluated at latter stages of disease impaired exercise capacity and decreased 

peak VO2 are expected [176]. 

 In this animal model of PAH, MCT is responsible for endothelial cell injury and 

subsequent massive mononuclear infiltration into the perivascular regions of arterioles and 

muscular arteries, thus leading to vascular remodelling [175,186]. This inflammatory 

activation is a central player in PAH development, leading to a systemic inflammatory 

state [181]. In fact, several pro-inflammatory cytokines, such as TNF-α and IL-6, are 

highly expressed both in human PAH [187–189] and animal models of PAH [177,181]. 

We found a trend towards increased TNF-α plasma levels in MCT-treated animals, 
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suggesting that sampling at more advanced stages of disease would probably reveal higher 

TNF-α levels in MCT-injected animals. 

 Even though hypercholesterolemia is an established cardiovascular risk factor for 

the development of CAD, which often coexists with HF, low total cholesterol and LDL-C 

levels are associated with poor prognosis in patients with severe HF [12]. In order to 

explain the paradoxical relationship between cholesterol levels and survival in HF, the 

endotoxin-lipoprotein hypothesis states that circulating lipoproteins have the capacity to 

bind and detoxify bacterial LPS [165,166]. If this hypothesis holds true, higher levels of 

cholesterol and lipoproteins would be expected to attenuate the immune activation related 

to HF [190]. We evaluated the effects of a cholesterol rich diet in the MCT-induced PAH, 

HF and CC model. Based on previous reports, we used a diet supplemented with 

cholesterol 2 % and cholic acid 0.25 % in order to induce a hypercholesteraemic state 

[191]. In fact, our results showed a significant increase of total cholesterol, HDL-C, non-

HDL cholesterol and triglycerides plasma concentration in MCT-treated animals fed with 

this cholesterol rich diet. Although non-significantly, cholesterol supplemented diet 

induced an increase in BW and gastrocnemius muscle weight of the MCT-treated animals, 

which is suggestive of an amelioration of the muscle wasting related to CC. These results 

were also observed on a previous study regarding the effects of a WD rich in saturated 

animal fat and simple carbohydrates, with a high salt content, on MCT-induced PH with 

CC [158]. Cholesterol supplemented diet in MCT-injected rats also showed a trend 

towards decreased TNF-α plasma levels, which suggests the potential to ameliorate 

systemic inflammation in CC. This result is consistent with the reduction of NF-κB activity 

and consequent decrease of cytokine activation observed in the previous report [158]. 

Nevertheless, no major changes were found in pulmonary hypertension, cardiac 

remodelling and function between MCT-injected rats regardless of diet type, except for 

trends towards lesser RV dilatation and improved ejection fraction. Of note, despite the 

short course of hypercholesterolemic diet, animals already showed LV cardiomyocyte 

hypertrophy previously related to renin-angiotensin-aldosterone system activation [192] 

and increased liver weight typical of steatosis [193]. Regarding the endotoxin-lipoprotein 

hypothesis, to put this hypothesis to test we were expecting total cholesterol reduction in 

MCT-injected rats fed with a normal diet compared to healthy rats [158]. Nevertheless, 

possibly due to the fact that animals were evaluated at an earlier time-point when CC was 
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not that pronounced in most of the animals, we did not reproduce these findings. We found 

higher plasmatic concentration of total cholesterol and non-HDL cholesterol in MCT-

treated animals fed with a cholesterol diet as well as trend towards lower plasma levels of 

endotoxin LPS, suggesting that the higher lipoprotein content might have a beneficial role 

in lowering LPS induced pro-inflammatory effects, as proposed in previous reports 

[134,158]. 

 We must underscore that although many similarities remain, rats and humans have 

important differences in cholesterol metabolism, such as the absence of cholesterol ester 

transfer protein in rats, which restricts the transport and clearance of cholesterol esters to 

the HDL compartment, along with rapid clearance of VLDL and chylomicrons by the liver, 

which substantially reduces circulating LDL levels [194,195]. 
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8. Conclusions 

In the present work, we aimed to test the endotoxin-lipoprotein hypothesis in vivo 

in the MCT-induced rat PAH, HF and CC model and evaluated the functional and 

molecular effects of a standard cholesterol-rich diet. Our results suggest that there may be 

a role for cholesterol supplementation in attenuating the systemic inflammation associated 

with CC in PAH and HF, although no definitive conclusions can be taken. Unfortunately, 

our timing of evaluation did not allow us to observe severe inflammatory activation, HF 

and CC in MCT-injected animals and we found large variability within groups; therefore, 

the role of cholesterol supplementation could not be fully appraised. Another concern was 

the dose selected for cholesterol supplementation. We based our intervention in previous 

studies carried out to induce hypercholesterolemia [191] but, in our particular case, it is 

likely that lower doses might have been more effective. Indeed, hypercholesterolemia has 

unwanted effects such as inflammation itself and neurohumoral changes in renin-

angiotensin-aldosterone system [192] that may have taken place according to our data on 

LV hypertrophy. 

Since the results obtained were showed to be promising and revelling that 

cholesterol supplementation might have some beneficial effects in attenuating the 

inflammatory response induced by endotoxin LPS, future studies are needed in order to 

explore this issue. As future perspective, our work encourages more research in cholesterol 

supplementation in MCT-induced CC using lower doses of cholesterol, at more severe 

stages of disease or in other models of CC. Moreover, we know that due to its complex 

pathophysiology, a therapeutic strategy targeting CC should combine different agents [5]. 

Our study supports the addition of other interventions such as appetite stimulants or other 

nutritional supplements to dietary cholesterol supplementation [19,119]. 
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