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ANALYSIS, SIMULATION AND OPTIMAL CONTROL OF A
SEIR MODEL FOR EBOLA VIRUS WITH DEMOGRAPHIC

EFFECTS

AMIRA RACHAH AND DELFIM F. M. TORRES

Abstract. Ebola virus is one of the most virulent pathogens for humans. We
present a mathematical description of different Susceptible—Exposed—Infectious—
Recovered (SEIR) models. By using mathematical modeling and analysis, the
latest major outbreak of Ebola virus in West Africa is described. Our aim is to
study and discuss the properties of SEIR models with respect to Ebola virus,
the information they provide, and when the models make sense. We added to
the basic SEIR model demographic effects in order to analyze the equilibria
with vital dynamics. Numerical simulations confirm the theoretical analysis.
The control of the propagation of the virus through vaccination is investigated
and the case study of Liberia is discussed in detail.

1. Introduction

Ebola is a deadly virus that attacks healthy cells and replicates itself in a host’s
body. The virus, previously known as Ebola hemorrhagic fever, is the deadliest
pathogen for humans and has recently affected several African countries. Discov-
ered in 1976 in Central Africa, the recent outbreaks affected the more heavily pop-
ulated countries of West Africa [5, 36]. Early symptoms of Ebola include: fever,
headache, joint and muscle aches, sore throat, and weakness. Later symptoms
include diarrhea, vomiting, stomach pain, hiccups, rashes, bleeding, and organ fail-
ure. When Ebola progresses to external and internal bleeding, it is almost always
fatal [1, 22, 31, 37, 39]. Ebola virus is transmitted initially to human by contact
with an infected animal’s body fluid. Ebola is most commonly spread by contact
with blood and secretions, either via direct contact (through broken skin or mucous
membranes in, e.g., the eyes, nose, or mouth) with the infected individual or fluids
on clothing or other surfaces, as well as needles [8, 11, 14, 25, 35].
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Epidemic models date back to the early twentieth century, to the 1927 work by
Kermack and McKendrick, whose models were used to study the plague and cholera
epidemics [19, 20]. Epidemic modeling is nowadays a powerful tool for investigating
human infectious diseases, such as Ebola, contributing to the understanding of the
dynamics of virus, providing useful predictions about the potential transmission
of the virus and the effectiveness of possible control measures, which can provide
valuable information for public health policy makers [12, 16, 21, 23, 33, 34].
The most commonly implemented models in epidemiology are the SIR and SEIR

models. The SIR model consists of three compartments: Susceptible individuals S,
Infectious individuals I, and Recovered individuals R. In many infectious diseases
there is an exposed period after the transmission of the infection from susceptible
to potentially infective members, but before these potential infective can transmit
infection. Then an extra compartment is introduced, the so called exposed class
E, and we use compartments S, E, I and R to give a generalization of the basic
SIR model [10]. When analyzing a new outbreak, researchers usually start with the
basic SIR and SEIR models to fit the available outbreak data, obtaining estimates
for the parameters of the model. Only after that, more complicated models may be
considered [10]. In case of Ebola, the SIR model has already been deeply explored in
the literature [26, 27]. For a case study of the Ebola virus in Guinea, through a SIR
model, we refer to [28]. The results obtained by SIR models are good enough, taking
into account their simplicity. However, the transmission of Ebola virus is better
described by a SEIR model. This is because it takes a certain time for an infected
individual to become infectious. During that period of time, such individuals are
in the exposed/latent compartment. A mathematical description of the spread of
Ebola virus based on the basic SEIR model has been carried out, e.g. in [24, 29].
Discrete SEIR time models to Ebola epidemics are available in [6]. In our work,
we are interested in continuous time models, which are more common with respect
to Ebola modeling [4, 9, 24]. In [4], the homotopy decomposition method is used
to solve a system of equations modeling Ebola hemorrhagic fever involving the so
called beta derivative, which can be considered as the fractional order of the system.
In our case, we deal with classical derivatives and standard integer-order systems.
For fractional modeling of Ebola, see also [2]. Our main control measure for the
propagation of the virus is vaccination. For the use of quarantine as a control
measure to limit the transmission of the Ebola virus using a SEIR model, we refer
the interested reader to [9]. For a comparison study between the basic SIR and
SEIR models to describe an Ebola outbreak, and for the conclusion of superiority
of the SEIR model, we refer the reader to [30]. It turns out that in available Ebola
studies with SEIR models, the population is assumed to be constant: see Remark 1
of [29] and Proposition 2.2 of [30]. This assumption is far from being true in West
African countries. For example, in Liberia, the birth rate is approximately four
times the death rate [18]. Motivated by this fact, here our main aim is to study the
latest major outbreak of Ebola virus occurred in Liberia through an appropriate
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SEIR model with vital dynamics, which takes into account the demographic effects
on the population. This is in contrast with all available results in the literature.
The paper is organized as follows. In Section 2, we recall the basic mathemati-

cal SEIR model to describe the dynamics of the Ebola virus that recently affected
West Africa. After the modeling, we analyze mathematically the SEIR model.
In Section 3, we propose and analyze a new SEIR model with vital dynamics by
adding demographic effects (Section 3.1). The equilibria of the model are studied
in Section 3.2. Then, a numerical simulation is presented, which confirms the theo-
retical analysis (Section 3.3). After numerical resolution of the model, in Section 4
we control the propagation of the virus through vaccination, reducing the number
of infected individuals while taking into account the cost of vaccination. Finally,
in Section 5, we propose and investigate a more general model with demographic
effects, for which there is an increase of the death rates for the exposed and infec-
tious classes. We show that such model describes well the outbreak of Ebola virus
occurred in Liberia in 2014 [41]. We end with Section 6 of conclusions.

2. Formulation of the basic SEIR model

In this section, we briefly recall the analysis of the properties of the basic SEIR
system of equations that has been used to describe the recent outbreak of Ebola
virus in West Africa [29, 30]. The description of the transmission of Ebola virus by
the SEIR model is based on the subdivision of the population into four compart-
ments:

• Susceptible compartment S(t), which denotes individuals who are suscep-
tible to catch the virus, and so might become infectious if exposed.

• Exposed compartment E(t), which denotes the individuals who are infected
but the symptoms of the virus are not yet visible.

• Infectious compartment I(t), which denotes infectious individuals who are
suffering the symptoms of Ebola and are able to spread the virus through
contact with the susceptible class of individuals.

• Recovered compartment R(t), which denotes individuals who have immu-
nity to the infection and, consequently, do not affect the transmission dy-
namics, in any way, when in contact with other individuals.

The SEIR model is an extension of the simpler SIR model [24, 26, 27, 28].
The particularity of the SEIR model is in the exposed compartment, which is
characterized by infected individuals that cannot communicate yet the virus. These
individuals are in the so called latent period [10]. For Ebola virus, this stage makes
all sense since it takes a certain time for a susceptible individual at time t, denoted
by S(t), to enter the Infectious compartment I(t). Because the recovered individuals
R(t) have immunity to the infection, they do not affect the transmission dynamics in
any way when in contact with other individuals. Figure 1 shows the diagrammatic
representation of virus progress in an individual. The transmission of the virus is
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Figure 1. Ebola virus progress in an individual by using the SEIR
model, where infectious occurs at tL, latency to infectious transi-
tion at tlt, symptoms appear at tsy, first transmission to another
susceptible at ttr, and individual is no longer infectious (recovered)
at tR.

then described by the following system of nonlinear ordinary differential equations:

dS(t)

dt
= −βS(t)I(t),

dE(t)

dt
= βS(t)I(t)− γE(t),

dI(t)

dt
= γE(t)− µI(t),

dR(t)

dt
= µI(t),

(1)

where β ≥ 0 is the transmission rate; γ ≥ 0 is the infectious rate; and µ ≥ 0 is the
recovery rate. The initial conditions are given:

S(0) = S0 > 0, E(0) = E0 ≥ 0, I(0) = I0 > 0, R(0) = 0.

From (1), we see that
d

dt
[S(t) + E(t) + I(t) +R(t)] = 0, that is, the population N

is constant along time:

S(t) + E(t) + I(t) +R(t) = N

for any t ≥ 0.

3. SEIR model with demographic effects

In the well-known basic SEIR model of Section 2, one ignores the demographic
effects on the population. In this section, we study a model with vital dynamics
by considering the birth and death rates. Such model is new in the Ebola context
[2, 26, 27, 28, 29, 30, 38].
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3.1. Model formulation. We expand the SEIR model by including demographic
effects: we assume a constant birth rate δ and a natural death rate λ, obtaining

dS(t)

dt
= δN − βS(t)I(t)− λS(t),

dE(t)

dt
= βS(t)I(t)− γE(t)− λE(t),

dI(t)

dt
= γE(t)− µI(t)− λI(t),

dR(t)

dt
= µI(t)− λR(t).

(2)

Figure 2 shows the relationship between the variables of system (2), which describes
the SEIR model with vital dynamics, that is, with demographic effects (birth and
death).

Figure 2. Compartment diagram of the SEIR model (2) with
vital dynamics.

3.2. Analysis of the equilibria. Let us find the equilibria points of the system
of equations (2) that describes the model. By setting the right-hand side of (2) to
zero, we get

δN − βSI − λS = 0, (3)

βSI − γE − λE = 0, (4)

γE − µI − λI = 0, (5)

µI − λR = 0. (6)

By adding (3) and (4), we obtain that δN − λS − (γ + λ)E = 0. Then,

S =
δN − (γ + λ)E

λ
. (7)

From (5) we obtain that

I =
γE

µ+ λ
, (8)
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while from (6) it follows that

R =
µI

λ
. (9)

From (4), (7) and (8), we get

E

(
βγ (δN − (γ + λ)E)

λ (µ+ λ)
− (γ + λ)

)
= 0.

Therefore, or E = 0 or

E =
βγδN − (γ + λ) (µ+ λ)λ

β (γ + λ) γ
. (10)

For E = 0, from (7) we obtain that S =
δN

λ
while from (8) we get I = 0. It follows

from (9) that R = 0. We just proved that there is a virus free equilibrium given by

P0 =

(
δN

λ
, 0, 0, 0

)
. From (10) we know that there is another equilibrium with

E∗ =
δN

γ + λ
− λ (µ+ λ)

βγ
. (11)

By using E given by (11) in (7), we get

S∗ =
(γ + λ) (µ+ λ)

βγ
, (12)

by substituting (11) in (8), we obtain that

I∗ =
γδN

(µ+ λ) (γ + λ)
− λ

β
, (13)

and finally using (11) in (9) we get

R∗ =
µ

λ
I∗ =

µ

λ

[
γδN

(µ+ λ) (γ + λ)
− λ

β

]
. (14)

We just obtained the second equilibrium point P ∗ = (S∗, E∗, I∗, R∗) given by
expressions (11)—(14).

Theorem 1. Let S(t), E(t), I(t), R(t) be a solution of the SEIR model (2). Then
the basic reproduction ratio is given by

R0 :=
βγδN

(µ+ λ) (γ + λ)λ
. (15)

• If R0 > 1, then the equilibrium P ∗ = (S∗, E∗, I∗, R∗) of the virus is ob-
tained, in agreement with expressions (11)—(14), and the virus is able to
invade the population.
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• If R0 < 1, then the disease free equilibrium P0 =

(
δN

λ
, 0, 0, 0

)
of the

virus is obtained, which corresponds to the case when the virus dies out (no
epidemic).

Proof. For computing the basic reproduction ratio R0, we apply the next generation
method [13, 17]. Assume that there are n infective classes in the model and define
the vector x̄ = xi, where xi, i = 1, 2, . . . , n, denotes the number or the proportion
of individuals in the ith infective class. Let Fi(x̄) be the rate of appearance of new
infections in the ith class and let Vi(x̄) = V −i (x̄) − V +i (x̄), where V +i consists of
transfer of individuals into class i and V

−

i consists of transfer of individuals out of
class i. The difference Fi(x̄) − Vi(x̄) gives the rate of change of xi. Notice that
Fi consists of new infections from susceptible, whereas Vi includes the transfer of
infected individuals from one infected class to another [17]. We can then form the
next generation matrix from the partial derivatives of Fi and Vi:

F =

[
∂Fi(x0)

∂xj

]
, V =

[
∂Vi(x0)

∂xj

]
,

where i, j = 1, 2, . . . , n and x0 is the initial condition of the epidemic. The basic
reproduction ratio R0 is given by the dominant eigenvalue of the matrix FV −1 [17].
Applying the next generation method to the SEIR model (2), and since we are only
concerned with individuals that spread the infection, we only need to model the
exposed, E, and infected, I, classes. Let us define the model dynamics using the
equations 

dE(t)

dt
= βS(t)I(t)− (γ + λ)E(t),

dI(t)

dt
= γE(t)− (µ+ λ) I(t).

For this system,

F =

 0
βNδ

λ
0 0

 ,

where δ is the birth rate and λ is the death rate, and

V =

(
γ + λ 0

−γ µ+ λ

)
.

Then,

FV −1 =

 βNδγ

(γ + λ) (µ+ λ)λ

βNδ

(µ+ λ)λ

0 0

 .

The dominant eigenvalue R0 of FV −1 is given by expression (15). �
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The recent status of the Ebola virus corresponds to the case R0 > 1 [40], which
we study numerically in Section 3.3.

3.3. Simulation of the SEIR model with demographic effects. Now we solve
numerically the SEIR model with vital dynamics (2) by using the parameters pre-
sented in the work of Rachah and Torres [26, 29]. The early detection of Ebola
virus in West Africa is characterised by R0 = 1.95. Then the Ebola virus is really
an epidemic, invading the populations of West Africa. The parameters β = 0.2,
γ = 0.1887 and µ = 0.1, studied by Rachah and Torres [26, 29], are based on the
fact that 88% of population is susceptible, 7% of population is exposed (infected
but not infectious), and 5% of population is infectious. In agreement, the initial
susceptible, exposed, infectious and recovered populations, are given respectively
by

S(0) = 0.88, E(0) = 0.07, I(0) = 0.05, R(0) = 0. (16)

In the numerical resolution of the model, we take the birth rate δ = 0.03507 and the
death rate λ = 0.0099 [10, 18], with the other parameters and initial conditions as
introduced by Rachah and Torres [26, 29]. The birth and death rates are obtained
from the data of population of Liberia in 2014 [18].
Figure 3 shows the evolution of individuals over time. We see that the oscillations

in the numbers of compartments S, E and I damp out over time, eventually reaching
an equilibrium, respectively S∗, E∗ and I∗. When we calculate the value of the
theoretical result (12), we find that S∗ = 0.57, which is equal to the S∗ computed
by the numerical resolution of the model: see Figure 3A. Figure 3B shows the
evolution of the exposed individuals E(t) over time. Note that the equilibrium E∗

is given by (11). When we calculate the value of this theoretical result, we find
E∗ = 0.14, which is equal to the E∗ computed by the numerical resolution of the
model. Figure 3C shows the evolution of the infected individuals I(t) over time. In
this case the equilibrium I∗ is computed theoretically by (13), which agrees with
I∗ = 0.25 computed by the numerical resolution of the model. Finally, Figure
3D shows the evolution of the recovered individuals R(t) over time. Similarly as
before, we found that the equilibrium R∗ = 2.51, computed theoretically by (14),
coincides with the numerical resolution of the model. The fact that the reached
equilibrium (S∗, E∗, I∗, R∗), computed theoretically, is equal to the value found by
the numerical simulation, is a validation of our study of the SEIR model with vital
dynamics.

4. Control of the virus with demographic effects through
vaccination

According to recent news, a vaccine against Ebola virus is ongoing mass pro-
duction, to be used in countries like Guinea, Sierra Leone and Liberia [15, 32].
Motivated by this fact, we now present a strategy for the control of the virus by
introducing into the model (2) a control u(t) representing the vaccination rate at
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time t. Precisely, the control u(t) is the fraction of susceptible individuals being
vaccinated at time t taking values between 0 and 90%. Then, the mathematical
model with control is given by the system of nonlinear differential equations

dS(t)

dt
= δN − βS(t)I(t)− λS(t)− u(t)S(t),

dE(t)

dt
= βS(t)I(t)− γE(t)− λE(t),

dI(t)

dt
= γE(t)− µI(t)− λI(t),

dR(t)

dt
= µI(t)− λR(t) + u(t)S(t).

(17)

(A) Evolution of S(t) with S∗= 0.57 (B) Evolution of E(t) with E∗= 0.14

(C) Evolution of I(t) with I∗= 0.25 (D) Evolution of R(t) with R∗= 2.51

Figure 3. Evolution of individuals in compartments S(t), E(t),
I(t), R(t) of the SEIR model (2) with vital dynamics, where
the endemic equilibrium is given by (S∗(t), E∗(t), I∗(t), R∗(t)) =
(0.57, 0.14, 0.25, 2.51).

.
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The goal of the adopted strategy is to reduce the infected individuals and the
cost of vaccination on a fixed time interval. Precisely, the optimal control problem
consists of minimizing the objective functional J ,

J(I, u) =

∫ tend

0

[
I(t) +

τ

2
u2(t)

]
dt −→ min, (18)

where u(t) ∈ [0, 0.9] is the control variable, which represents the vaccination rate at
time t, and the parameters τ and tend denote, respectively, the weight on the cost
of vaccination and the duration, in days, of the vaccination program. In our study
of the control of the virus, we use the parameters of Section 3.3 with τ = 0.02 and
tend = 90.

(A) Susceptible individuals S(t) (B) Exposed individuals E(t)

(C) Infected individuals I(t) (D) Recovered individuals R(t)

Figure 4. Comparison between the curves of individuals S(t),
E(t), I(t), R(t), in case of optimal control of (17)—(18) versus with-
out control (2).

.



A SEIR MODEL FOR EBOLA VIRUS WITH DEMOGRAPHIC EFFECTS 189

For the numerical solution of the optimal control problem, we have used the ACADO
solver [3], which is based on a multiple shooting method, including automatic dif-
ferentiation and based ultimately on the semidirect multiple shooting algorithm of
Bock and Pitt [7]. The ACADO solver comes as a self-contained public domain
software environment, written in C++, for automatic control and dynamic opti-
mization [3]. Figure 4 shows, respectively, the significant difference in the number
of susceptible, exposed, infected and recovered individuals, with and without con-
trol, along time. As expected, the number of susceptible individuals S(t) decrease
rapidly in case of vaccination (see Figure 4A), beginning to increase as we decrease
vaccination: compare Figure 4A of S(t) with Figure 5, which represents the opti-
mal control function u(t) along time. Figure 4B shows that the number of exposed

Figure 5. The optimal control function u(t) for problem (17)—
(18) with initial conditions (16), t ∈ [0, tend], tend = 90 days, and
τ = 0.02.

individuals decreases rapidly in case of control. In the same figure, the curve of
exposed shows that the period of incubation of the virus is 22 days in case of op-
timal control against more than 90 days in the absence of any control. In Figure
4C, the time-dependent curve of infected individuals shows that the peak of the
curve of infected individuals is less important in presence of control. In fact, the
maximum value on the infected curve I under optimal control is 0.06%, against
0.36% without any control (see Figure 4C). Figure 4D shows that the number of
recovered individuals increases rapidly in presence of control. The other important
effect of control, which we can see in Figure 4D, is the period of infection, which is
less important in case of control of the virus. The value of the period of infection
is 50 days in case of optimal control, in contrast with more than 90 days without
vaccination. In conclusion, one can say that Figure 4 shows the effectiveness of
optimal vaccination in controlling Ebola.
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5. Ebola model with vital dynamics and induced death rates

In this section, we study a second Ebola model with demographic effects by
increasing the death rates of the exposed and infectious classes of the model, that
is, by considering induced death rates λE and λI associated to the exposed and
infected individuals, respectively.

5.1. Model formulation. If we change the previous SEIR model (17) by increas-
ing the death rates of the exposed and infectious classes, by adding induced death
rates λE and λI , with λI > λE > 0, then our SEIR system becomes the one of
Figure 6, where we show the relationship between the variables of the new sys-
tem. Mathematically, the SEIR model with induced death rates is described by the

Figure 6. Compartment diagram of the SEIR model (19) with in-
duced death rates λE and λI for the exposed and infectious classes,
respectively.

following system of equations:

dS(t)

dt
= δN − βS(t)I(t)− λS(t),

dE(t)

dt
= βS(t)I(t)− γE(t)− (λ+ λE)E(t),

dI(t)

dt
= γE(t)− µI(t)− (λ+ λI) I(t),

dR(t)

dt
= µI(t)− λR(t).

(19)

Next, we study (19), which we then show to describe in a very accurate way the
recent reality of Ebola in Liberia.

5.2. Analysis of the equilibria. Let us find the equilibria points of the system
of equations (19). By setting the right-hand side of (19) to zero, we find that

δN − βSI − λS = 0, (20)

βSI − γE − (λ+ λE)E = 0, (21)

γE − µI − (λ+ λI) I = 0, (22)
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µI − λR = 0. (23)

By adding (20) and (21), we obtain that

S =
δN − (γ + λ+ λE)E

λ
. (24)

From (22) we obtain that

I =
γE

µ+ λ+ λI
, (25)

while from (23) it follows that

R =
µ

λ
I. (26)

Using (24) and (25) in (21), one gets

E

(
β (δN − (γ + λ+ λE)E) γ

λ (µ+ λ+ λI)
− (γ + λ+ λE)

)
= 0,

that is, or E = 0 or

E =
βγδN − (γ + λ+ λE) (µ+ λ+ λI)λ

β (γ + λ+ λE) γ
. (27)

If E = 0, then from (24) we obtain S = (δN)/λ, while from (25) I = 0, which
implies by (26) that R = 0. Concluding, the virus free equilibrium is

P0 =

(
δN

λ
, 0, 0, 0

)
. (28)

The endemic equilibrium E∗ is given by (27), that is,

E∗ =
δN

γ + λ+ λE
− λ (µ+ λ+ λI)

βγ
. (29)

By using E given by (29) in (24), we get

S∗ =
(γ + λ+ λE) (µ+ λ+ λI)

βγ
, (30)

while substituting E given by (29) into (25), we obtain that

I∗ =
γδN

(µ+ λ+ λI) (γ + λ+ λE)
− λ

β
. (31)

Finally, using (26), one gets

R∗ =
µ

λ
I∗ =

µ

λ

[
γδN

(µ+ λ+ λI) (γ + λ+ λE)
− λ

β

]
. (32)

The equilibrium point is then P ∗ = (S∗, E∗, I∗, R∗) with expressions for S∗, E∗,
I∗ and R∗ given by (29)—(32).
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Theorem 2. Let S(t), E(t), I(t), R(t) be a solution of the SEIR model (19). Then
the basic reproduction ratio is given by

R0 :=
βγδN

(µ+ λ+ λI) (γ + λ+ λE)λ
. (33)

• If R0 > 1, then the equilibrium P ∗ = (S∗, E∗, I∗, R∗) of the virus is ob-
tained, in agreement with expressions (29)—(32). In this case, the virus is
able to invade the population.

• If R0 < 1, then the disease free equilibrium P0 (28) is obtained. It corre-
sponds to the case when the virus dies out (no epidemic).

Proof. We apply the next generation method to the model (19). Here,

F =

 0
βNδ

λ
0 0

 ,

where δ is the birth rate and λ is the death rate of susceptible, and

V =

(
γ + λ+ λE 0

−γ µ+ λ+ λI

)
.

Then, R0 is the dominant eigenvalue of FV −1, which is given by (33). �

Note that if λI = λE = 0, then Theorem 2 reduces to Theorem 1.

5.3. SEIR model with demographic effects and induced death rates, and
Liberia’s 2014 Ebola outbreak. Now, we present a modeling study of the real
outbreak of Ebola virus occurred in Liberia in 2014 by using World Health Orga-
nization (WHO) data. The epidemic data used in this study is available at [41].
Let us start by the analysis of the parameters of the SEIR model with demo-
graphic effects and induced death rates. The birth rate δ = 0.03507 and death
rate λ = 0.0099 of the model are obtained from the specific statistical data of the
demography of Liberia, available at [18]. To estimate the parameters β, γ, µ, λE
and λI , we adapted the initialization of I with the reported data of WHO by fit-
ting the real data of confirmed cases of infectious in Liberia. The result of fitting
is shown in Figure 7. The comparison between the curve of infectious obtained
by our simulation and the reported data of confirmed cases by WHO shows that
the mathematical model (19) fits well the real data by using β = 0.299 as the rate
of transmission, γ = 0.034 as the rate of infectious, µ = 0.0859 as the recovery
rate, and λE = 0.0003366 and λI = 0.0031 as induced death rates. To measure
the goodness of fit, we have used a deterministic approach for the estimation of
the parameters. Precisely, our fitting procedure has used a least squares method
of the nonlinear system of ordinary differential equations that describes the model.
According to the definition of the least squares method, the best-fit curve is the
one that provides a minimal squared sum of deviation from real data. In our case,
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Figure 7. Graph of infected obtained from (19) and (34) ver-
sus the real data of confirmed cases for the 2014 Ebola outbreak
occurred in Liberia [41].

the fitting procedure is associated with the numerical resolution of the nonlinear
system of ordinary differential equations (19) that describes the model. Accurately,
the parameters were estimated by solving the following nonlinear programming
optimization problem:

minimize D =

n∑
j=1

(Ireal,j − Isiml,j)2

subject to equations of the model (19),

where Ireal,j corresponds to real data and Isiml,j to the one obtained from the
resolution of the nonlinear system of ordinary equations (19). The goodness of fit
is measured by computing the value of the objective function D, which is in our
case equal to 0.0002. By comparing the values of λE and λI with the value of the
death rate λ, we remark that λE = 0.0340λ = 3.4%λ and λI = 0.3131λ = 31.31%λ.
By using the value of Liberia’s population, which is estimated at P = 4.4 million
in 2014, and the number of confirmed infectious cases obtained from WHO, which

is given by d = 230000, we fix I(0) =
d

P
, meaning that the confirmed number of

infectious cases represents 5.23% of the total population. The initial susceptible,
exposed, infectious and recovered populations, are given respectively by

S(0) = 0.8977, E(0) = 0.05, I(0) = 0.0523, R(0) = 0. (34)

Figure 7 gives the curve of infectious individuals simulated with (19) subject to
(34) and the one obtained from the WHO real data. Note that the choice of I(0)
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in (34) is in agreement with WHO’s data shown in Figure 7. The evolution of all
groups of individuals, over time, is shown in Figure 8.

(A) Evolution of S(t) with S(0) = 0.8977 (B) Evolution of E(t) with E(0) = 0.05

(C) Evolution of I(t) with I(0) = 0.0523 (D) Evolution of R(t) with R(0) = 0

Figure 8. S(t), E(t), I(t) and R(t) of the SEIR model (19) with
vital dynamics and induced death rates, where the initial numbers
of susceptible, exposed, infectious, and recovered groups and the
parameter values of the model are described in Section 5.3.

.

6. Conclusion

We investigated several SEIR models in the context of the recent Ebola outbreak
in West Africa. Our aim was to study the properties and usefulness of SEIR models
with respect to Ebola. We began by presenting the basic SEIR model and its
mathematical analysis. Then, we added to the model demographic effects in order
to analyze the equilibria with vital dynamics. The system of equations of the model
was solved numerically. The numerical simulations confirm the theoretical analysis
of the equilibria of the model. Moreover, using optimal control, we controlled
the propagation of the virus through vaccination, reducing the number of infected
individuals and taking into account the cost of vaccination. Finally, we considered
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a more complete model with induced death rates and have shown its usefulness
with respect to Liberia’s outbreak of 2014.
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