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resumo 
 

 

O canal aniónico dependente de voltagem (VDAC) é um canal tipo poro 

que atravessa a membrana externa da mitocôndria. O VDAC tem um papel 

essencial no metabolismo mitocondrial, mediando a troca de metabolitos 

essenciais para a respiração, produção de energia e crescimento celular. Em 

mamíferos, a probabilidade de abertura do canal VDAC pode ser regulada por 

modificações pós-traducionais como a fosforilação. Nas leveduras, o papel da 

fosforilação na fisiologia da VDAC1/Por1p e as cinases reguladoras são ainda 

desconhecidos. Deste modo, o objetivo deste estudo incide sobre a 

identificação de cinases reguladoras do Por1p, e a avaliação do seu papel na 

função mitocondrial e na fisiologia celular. 

Para identificar as cinases reguladoras, mutantes deficientes em 15 

cinases (selecionadas de acordo com a função ou localização mitocondrial) 

foram avaliados em relação ao ponto isoelétrico (pI) do Por1p, através  de um 

2D SDS-PAGE seguido da imunodeteção do Por1p. Dois mutantes deficientes 

nas cinases Hog1p e Rim15p, apresentaram uma alteração no pI do Por1p, 

compatível com a falta de fosforilação, sugerindo que estas cinases poderão 

ser potenciais reguladores do Por1p. Para reforçar estes resultados, alguns 

fenótipos foram analisados, tais como o crescimento, consumo de oxigénio, 

indução de autofagia/mitofagia, resistência ao calor ou stress oxidativo, para 

avaliar possíveis interações genéticas entre o POR1 e a cinases identificadas, 

indicativo de uma relação funcional. Foi observado que a ausência de HOG1 

interfere com o crescimento do por1Δ em condições fermentativas,  com a 

indução de mitofagia e  resistência ao stress oxidativo. Na ausência de RIM15, 

o crescimento em condições fermentativas, consumo de oxigénio, o fluxo e a 

indução autofágica e a indução mitofágica são afectados no mutante por1Δ. 

Estes resultados apoiam a hipótese das cinases Hog1p e Rim15p serem 

reguladoras do Por1p, sendo que mais estudos serão necessários para 

confirmar se esta esta regulação é directa. 

A identificação das primeiras cinases reguladoras do Por1p será um 

importante avanço no conhecimento da regulação do Por1p/função 

mitocondrial por vias de sinalização metabólica. 
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abstract 

 

The voltage-dependent anion channel (VDAC) is a conserved porin ion 

channel located on the outer mitochondrial membrane. VDAC plays an 

essential role in mitochondrial metabolism as it mediates the exchange of 

metabolites essential for respiration, energy production and cell growth. In 

mammalian cells VDAC opening probability can be regulated by post-

translational modifications such as phosphorylation. In yeast, the role of 

phosphorylation in VDAC/Por1p physiology and the regulatory kinases are still 

unknown. Therefore, the focus of the present study is to identify Por1p 

regulatory kinases, and evaluate its impact on mitochondrial function and 

cellular physiology.  

To identify Por1p regulatory kinases, 15 kinase-deleted mutants 

(selected based on kinase function or mitochondrial location) were screened for 

alterations in Por1p isoelectric point (pI), by 2D SDS-PAGE followed by 

immunoblot using an antibody against Por1p. Two strains among these, lacking 

Hog1p and Rim15p, exhibited a shift in Por1p pI compatible with lack of 

phosphorylation, suggesting these kinases may be Por1p regulators. To 

reinforce these result, several phenotypes such as growth, oxygen 

consumption, autophagy/mitophagy induction, resistance to heat or oxidative 

stress, were evaluated to assess genetic interactions between POR1 and the 

identified kinases, indicative of a functional relationship. It was observed that 

absence of HOG1 interferes with por1Δ growth in fermentative conditions, 

mitophagy induction and oxidative stress resistance. Absence of RIM15 

interferes with por1Δ growth in fermentative conditions, mitochondrial oxygen 

consumption, autophagy flux and induction and mitophagy induction. These 

results support Hog1p and Rim15p as Por1p regulators, but future work will be 

needed to confirm them are direct regulators of Por1p phosphorylation. 

Identification of the first Por1p regulatory kinases in yeast will be an 

important advance on the understanding of the regulation of 

Por1p/mitochondrial function by metabolic signalling pathways. 
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1. INTRODUCTION 

 

1.1. Mitochondria  

Mitochondria are double-membrane organelles present in nearly all eukaryotes 

(1). It is widely accepted that these organelles are descendants of an endosymbiont 

protobacteria that became settled in a host cell. Consistently with this hypothesis, 

mitochondria exhibit their own genome and have the ability to self-replicate (2), but some 

mitochondrial proteins are encoded by nuclear DNA. Mitochondria are central players in 

several biological processes, including energy production, stress resistance, lipid 

metabolism, apoptosis between others. 

It is at the mitochondria that cell respiration occurs, an important mechanism in 

energy production from food and nutrients. During the glycolysis process, pyruvate is 

converted to acetyl-coA, which in turn participates in the Krebs cycle inside the 

mitochondria, producing NADH and FADH2, which is then used by enzymes located in 

the mitochondrial inner membrane to produce adenosine tri-phosphate (ATP) (4). In 

these reactions, electron transfers occur to promote production of free energy (ATP). 

This free energy it is then used to pump protons that activate ATP synthase for ATP 

synthesis (3). This process is known as oxidative phosphorylation and it happens in the 

matrix of the mitochondria.  

In our model organism, the yeast Saccharomyces cerevisiae, when glucose is 

limiting or lacking, the cell enters the respiratory phase, also known as the post-diauxic 

phase, in which the ethanol produced during fermentation will react with oxygen 

(consumed during this phase), releasing water, CO2 and free radical species such as the 

superoxide radical, O2
- (5).  

Therefore, these activities promote oxidative stress, since the energy production 

affects redox equilibrium, with the activity of electron transport chain, the release of ATP 

and the production of free radical species, especially the reactive oxygen species (ROS) 

(6). Mitochondria shows a variety of factors and proteins that regulate oxidative stress, 

such as cytochrome c or the c-Jun N-kinase (JNK) that promote redox equilibrium and 

also some transcription factors such as Rtg1/Rtg2/Rtg3 system, that recruit protein 

kinases such as Hog1p and regulate the TOR pathway (7) to promote homeostasis.   

Mitochondria are also essential for the synthesis of pyrimidines and purines, 

contribute to the synthesis of heme, regulation of nitrogen balance through the urea 
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cycle, production of ketones and are key regulators of the apoptotic program in mammals 

(8). 

Since mitochondria are fundamental for cell homeostasis, damages to 

mitochondria’s functions will lead to pathological states and even cell death. To avoid 

further damages to the cell, mitochondria can be eliminated by autophagy or mitophagy, 

if the energy cost of maintaining them is superior to their effective metabolism (9,10). 

Autophagy is an important process in which the cell ensures homeostasis by 

eliminating superfluous, damaged or harmful organelles, including mitochondria, and 

cytoplasmic compounds. This process initially involves the engulfment of compounds to 

be discarded in a double membrane vesicle and consequent transport to the lysosome 

or vacuole to be degraded and recycled. Thus, autophagy allows counteracting mostly 

the lack of nutrients, but also internal and external stress conditions (11,12).  

Mitochondria can also be selectively eliminated by mitophagy, when an accumulation of 

dysfunctional mitochondria can lead to a compromised cell growth and even cell death 

(10). Mitophagy has been described to occur when dysfunctional mitochondria show 

signs of high energy cost maintenance to the cell (10,12).  

There is also emerging evidence of the involvement of mitochondria in multiple 

other processes such as cytoskeleton organization and microtubule network remodelling 

(13–15).  

Morphologically, mitochondria are dense and double membrane-enclosed 

organelles, with a mitochondrial outer membrane (MOM) and an inner membrane (MIM), 

each one with distinct composition and proprieties. The inner membrane houses the 

respiratory chain and the ATP synthase held in the cristae, which are prolongations of 

the mitochondrial inner membrane into the matrix. In the MIM there are present the 

translocases of the inner membrane (TIM). The outer membrane shows a balance 

between lipids and protein in its constitution, exhibiting, among others, the translocase 

of the outer membrane (TOM), and the voltage-dependent anion channel (VDAC), as 

important channels for mitochondrial function (14,16). Their permeability is also different, 

the outer membrane presenting a higher permeability to ions and macromolecules than 

the inner membrane (17).  

1.2. Voltage-dependent Anion Channel (VDAC)  

The existence of channels in the MOM has been evidenced by electrophysiology 

and electron microscopy during the 1970s, presenting the MOM as the interface between 
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the cytosol and the mitochondrial spaces. It separates the organelle from its environment 

and act as selective barrier to the entry and exit of metabolites, water and ions (17,18). 

Permeation through the MOM is believed to be based in a MOM protein called 

VDAC (also known as mitochondrial porin), which forms a voltage-dependent, anion-

selective channel (19,20). In mammals, three isoforms of VDAC are described: VDAC1, 

VDAC2 and VDAC 3 (21,22), with VDAC1 being the major form. In the eukaryote model 

used in this study, Saccharomyces cerevisiae, two isoforms of VDAC are expressed, 

named Por1p and Por2p. Por1p is the major porin in yeast MOM while Por2p is less 

expressed and is not essential for the permeability of the mitochondria (23). 

VDAC exhibits an essential role in mitochondrial metabolism, participating in the 

regulation of oxidative phosphorylation, flux of metabolites, intracellular redox status, 

energy generation and cell growth and survival (Fig. 1).  

 

 

Figure 1: Schematic representation of VDAC1 as a crucial channel for a variety of cell 

signals. This scheme was reproduced from Shoshan-Barmatz and Mizrachi, 2012 (25).  

 

The prototypal VDAC exhibits one α-helix and 19 β strands that result in a pore 

with an estimated internal diameter of 2.5 nm (26,27). VDAC depends on the 

mitochondrial membrane potential to define its conformational state. When the VDAC-

pore is at a zero-transmembrane potential, it remains in the open state, enabling the flux 

of anions, such as ATP/ADP, between the mitochondria and the cytosol. When the 
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membrane voltage increases beyond 30 mV, the inversion of ion selectivity in VDAC 

occurs on one side of the channel, by translocation of a region of the VDAC channel, 

designated as voltage sensor region that encompasses part of the α-helix, towards the 

outside of the channel, resulting in a reduction of VDAC diameter, compromising the flux 

of some metabolites, especially ATP and ADP (Fig. 2) (26,28,29).   

Although ATP presents 0.48 nm of diameter, compared to the 0.9 nm of VDAC 

closed state, the altered charge inside VDAC inhibits its flow. In addition to ATP, the flux 

of several molecules crucial for the oxidative phosphorylation pathway (NADH, NADPH, 

succinate, pyruvate, phosphate, etc.) is also inhibited when the VDACs pore is closed, 

leading to destabilization of the mitochondria, endangering the cell survival (30). VDAC, 

besides controlling the influx of oxidative phosphorylation substrates, controls the efflux 

of the ATP produced in mitochondria, avoiding its accumulation in the mitochondrial 

matrix that could block the oxidative phosphorylation (31).  

 

 

Figure 2: Suggested model of voltage-induced VDAC open/close conformations. The 

dynamic changes in VDAC, influenced by the variation of the mitochondrial membrane potential, 

affect the selectivity and conductance of anions and of cations. This scheme was reproduced 

from Shoshan-Barmatz et al, 2003 (32). 

 

VDAC has also been shown to allow the release of mitochondrially-produced 

superoxide radicals (O2
.) to the cytosol, controlling intramitochondrial O2

.  levels. Reactive 

oxygen species can induce cell damage, but some species have been found to have an 

important role as intracellular signals (33–35). Hence, VDAC closure provides a simple 

and flexible mechanism of decreasing release of O2
- that, although promoting 

intramitochondrial oxidative stress, spares this stress in the cytosol (36,37). 

VDAC also takes part in the redox regulation of expression and activity of several 

proteins such as those involved in protein import into mitochondria and antioxidant 
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enzymes. Absence of VDAC in yeast has been shown to affect levels of nuclear 

transcripts sensitive to changes in the intracellular redox state, including nuclear 

transcription factors related to stress (e.g., Msn2, Msn4) as well as transcription factors 

involved in communication between mitochondria and the nucleus (Rtg1, Rtg2) 

(35,38,39). Thus, in addition to regulating the metabolic and energetic functions in 

mitochondria, VDAC is involved in the communication between mitochondria and the 

rest of the cell. 

In mammals, VDAC also appears to play an important role in apoptosis induction, 

with at least three major hypothesis described (Fig. 3): i) the permeability transition pore 

(PTP) model establishes that opening of the PTP, which contains VDAC and the adenine 

nucleotide translocator (ANT), increases permeation of the MOM, increasing flux of water 

and metabolites towards the mitochondria and leading to swelling and rupture; ii) another 

model focus on VDACs defective closure, which inhibits normal exchange of ATP/ADP 

leading to swelling and rupture of the mitochondria and later to cell death; iii) the third 

model proposes VDAC as an anchor for pro-apoptotic proteins such as Bax (40). In 

yeast, it was shown that cells lacking Por1p are sensitive to apoptotic stimuli, suggesting 

that Por1p acts as a negative regulator of cell death (41).  

 

 

Figure 3: Models for the release of cytochrome c from mitochondria. During the process of 
apoptosis, cytochrome c is released from mitochondria into the cytosol. These models represent 
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some theories that might lead to cell death involving VDAC. This scheme was reproduced from 
Martinou et al. 2000 (40).  

 

Because of VDAC vital roles, a dysfunction in VDAC regulation has been 

associated to the development of some cancers and neurodegenerative diseases, such 

as Alzheimer’s disease (24). Thus, understanding VDAC regulation will help to define 

strategies to prevent or attenuate the development of such diseases (25,42,43). 

 

1.3. VDAC regulation by post-translational modifications  

Various types of post-translational modifications (PTMs) of VDACs have been 

reported, although their impact on channel function and consequently on mitochondrial 

function is not well understood. PTMs increase the functional diversity of the proteome 

by the covalent addition of functional groups to proteins. These modifications include 

phosphorylation, glycosylation, ubiquitination, nitrosylation, methylation, acetylation, 

lipidation and proteolysis and influence almost all aspects of normal cell biology and 

pathogenesis (44).  

Reversible protein phosphorylation is regulated by kinases and phosphatases 

and is one of the most common mechanisms of metabolic modulation (44). Protein 

phosphorylation occurs mainly on serine, threonine and tyrosine residues, and is one of 

the most important and well-studied post-translational modifications, being commonly 

known as an on/off mechanism for various cellular processes (45). Phosphorylation can 

affect protein catalytic activity (it can be activated or deactivated), turnover, subcellular 

localization or interaction with proteins that have structurally conserved domains that 

recognize and bind to phosphomotifs. Phosphorylation plays a vital role on the regulation 

of cell growth, transcription of genes, protein synthesis, metabolism and signaling (46–

48) by affecting proteins in several ways (Fig. 4).  
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Figure 4: Protein regulation by phosphorylation. Phosphorylation can affect protein activity, 

subcellular localization, protein turnover and protein interactions, induce conformational changes, 

and regulate other post-translational modifications. This scheme was reproduced from Humphrey 

et al. 2015 (49). 

 

According to some reports, phosphorylation of VDAC by cytosolic kinases may 

be involved in its regulation. To date, a few mammalian kinases have been described as 

regulating VDAC. Never-in-mitosis A related kinase 1 (Nek1), cAMP-dependent protein 

kinase A (PKA), protein kinase C (PKC) and glycogen synthase kinase 3 (GSK3β), p38 

and c-Jun N-terminal kinase 3 (JNK3) have been reported to regulate VDAC gating (50–

52) and binding to other proteins such as hexokinases I and II (HKI and HKII) and tubulin 

(53–55). 

Through co-immunoprecipitation tests and mutagenesis assays, it was 

demonstrated that these regulatory kinases interact with VDAC, having some of its 

effects been already described. GSK3β, PKA, Nek1 and PKCs have been reported to 

phosphorylate VDAC Ser12, Ser103 and Ser193 residues, which are located at crucial 

sites on VDAC. The phosphorylation of these sites have an impact on VDAC 

configuration, modulating VDAC conformation state leading to a closed state, therefore,  

preventing apoptosis (56). Some of these regulatory kinases also promote the binding of 

tubulin and HK to VDAC (57,58). However, GSK3β also been reported to increase 

opening of VDAC via Thr51 phosphorylation, leading to sensitization to cell death (58). 
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GSK3-β showed effects on VDAC binding to both tubulin and HK, being activated when 

there is mitochondrial dysfunctions, promoting apoptotic activity with the detachment of 

HK from VDAC, since HK bound to VDAC maintain this channel closed to prevent further 

apoptotic activity, leading to VDAC open state (59). The phosphorylation of VDAC-

Ser193 is known to be affected by Nek1, altering VDAC conformation to a closed state, 

preventing the leakage of cytochrome c, thus, preventing cell death (56). 

Other studies pointed out p38 kinase and JNK3 as potential VDAC1 regulatory 

kinases. Still not well defined, it is known that p38 affects indirectly VDAC 

phosphorylation on a tyrosine residue, in response to stress (60). JNK3 is thought to 

phosphorylate two VDAC1 residues, Ser104 and Ser137, possibly affecting VDAC 

conformational state, but no regulatory function was attributed yet (61). Other VDAC1 

phosphorylated residues and their possible regulatory protein kinases have been 

reported but their physiological effect have not been determined (62–65) . 

Some of the kinases that may regulate mammalian VDAC1 have homologs in 

yeast, such as GSK3 (Mck1p homologue) (66,67), p38 and JNK3 (Hog1p homologues) 

(68) and PKA (Tpk1/2/3p homologues) (69). However, although yeast VDAC/Por1p is 

phosphorylated (Table 1), the role of these modifications and the regulatory kinases are 

unknown. 

 

Table 1: Por1p residues known to be phosphorylated. Location of the aminoacid in 

the Por1 protein is indicated. Adapted from Phosphogrid registry (84) 

 

 

1.4. Hog1p and Rim15p kinases – an overview 

1.4.1. Hog1p 

Protein kinases mediate signal transduction in eukaryotic cells, being involved in 

the control of several cellular processes. The yeast Hog1p is a mitogen-activated protein 

kinase (MAPK) (homolog of mammalian p38 and JNK3) (70) with a central role in the 

osmorregulatory signal transduction cascade (HOG pathway), which regulates G1 and 
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G2 cell cycle progression, and cellular ion levels in response to hyperosmotic stress (71–

73) (Fig. 5). Loss of Hog1p activity results in reduced growth on high osmolarity media 

and abnormal cell and budding morphology (71,74), but the constitutive activation of 

Hog1p has been shown to be lethal (70). 

The Hog1p MAPK also controls a rapid transcriptional response that involves a 

large number of genes required for cellular adaptation (75). It regulates transcriptional 

induction by phosphorylating transcriptional factors such as Sko1p, Smp1 Msn2/4 and 

Hot1p (76–78) and other factors involved in chromatin remodelling and Pol II recruitment 

(79–81). 

 Hog1p is also involved in the oxidative stress response, modulating arrest in cell 

cycle progression and promoting progression of cell cycle when exiting from quiescence 

(Fig. 5). Most importantly and still not well studied, Hog1p has been described to control 

the respiratory metabolism (82) since absence of Hog1p resulted in an increase of 

oxygen consumption, suggesting Hog1p plays a role in the suppression of the respiratory 

metabolism. Reports have shown that Hog1p is also a specific regulator of mitophagy, 

participating indirectly in Atg32p phosphorylation and, in a later stage of mitophagy, in 

the assembly of the mitophagosome (83) and other unknown cytoplasmic substrates 

(84). 
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Figure 5: Role of Hog1p in osmostress response in yeast cells. As a response to an 

increased extracellular osmolarity, Hog1p is activated, stimulating the induction of cytoplasmic 

and nuclear responses. This scheme was reproduced from Haruo Saito et al. 2012 (85). 

 

1.4.2. Rim15p 

Identified as a stimulator of meiotic gene expression, Rim15p is also proposed to 

integrate signals from various nutrient signalling networks, being one of the most relevant 

protein kinases in cell proliferation. Regulation of Rim15p activity and localization is 

dependent of nutrient sensing pathways, such as TOR, Sch9p, PKA and the Pho80-85p 

kinase pathway. This sensing pathways exhibit sensitivity to nitrogen, sugar and 

phosphorus status in the cell, promoting cell quiescence when there is lack of these 

nutrients, showing also sensitivity to various external stresses (86–88), inducing Rim15p 

activity in both scenarios (Fig. 6). Rim15p is inhibited by TOR1, Sch9p and PKA when 

nutrients are sensed in the environment. Under nutrient limitation conditions, Rim15p is 

dephosphorylated and transported to the nucleus, where it regulates Gis1p, a 

transcription factor that is activated inducing post-diauxic shift (PDS) phase genes, and 

Msn2/4p that regulate the expression of genes containing stress response elements 

(STRE) in response to nutrient limitation and stress (oxidative, heat and osmotic) 

conditions (89). This activity will promote cell quiescence and survival upon lack of 

nutrients. 

 A model for Rim15p function has been proposed in which Rim15p coordinates 

also cell growth (is important for budding index) and the exit of cell cycle to quiescence 

in response to various sensing pathways (90). Rim15p appears to be relevant for survival 

and robustness during the stationary phase, in which cells are subjected to prolonged 

glucose starvation (87,91), promoting non-selective autophagy for ATP recovery and 

ensuring cell homeostasis (92). Rim15p also regulates oxidative stress responses (90). 

In stationary-phase cultures, deletion of RIM15 causes a strongly decreased 

accumulation of storage carbohydrates and trehalose (89), and reduced thermotolerance 

and life span (91,93). 
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Figure 6: Rim15p activity regulated by nutrient sensitive proteins. Rim15p integrates 

signals from various nutrient sensing pathways to different effectors. This scheme was 

reproduced from Swinnen et al. 2006 (87). 
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2. AIMS 

 

The voltage-dependent anion channel (VDAC) is an outer mitochondrial 

membrane protein at the interface between mitochondrial and cellular metabolisms. 

VDAC display two states: an open state that allows the passage of anions (e.g. ATP and 

NADH); and a closed state, associated with an exchange in channel selectivity allowing 

the passage of cations. In mammals, VDAC activity and interaction with other proteins 

can be regulated by post-translational modifications such as phosphorylation. In yeast, 

the physiological relevance of VDAC1/ Por1p phosphorylation and regulatory kinases 

have not been characterized.  

This project aimed to identify VDAC1/Por1p regulatory kinases, using S. 

cerevisiae as a model organism. The evaluation of VDAC1 phosphorylation was 

assessed by a 2D-immunoblotting procedure, using mitochondria enriched samples from 

a pre-selected collection of kinase deleted yeast strains.  

The impact of the absence of potential regulatory kinases on VDAC1 physiology 

was characterized by assessing mitochondrial respiratory activity, directly related with 

VDAC1 activity in vivo, monitored by measuring oxygen consumption and growth in a 

respiratory substrate. Additionally, fermentative growth, stress resistance (oxidative and 

thermotolerance) and induction of autophagy and mitophagy, was evaluated.  
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3. Yeast strains and plasmids 

S. cerevisiae strains used in this study are listed in Table 2.   

 

Table 2: Yeast strains used in this work. 

 

3.1. Mutant construction 

To generate por1Δ::HIS3 cells, the KanMX4 cassette in por1Δ::KanMX4 was 

replaced by HIS3, using a deletion fragment containing the heterologous HIS3 and the 

flanking regions of KanMX4, amplified by polymerase chain reaction (PCR). To delete 

POR1 in hog1Δ and rim15Δ cells, the cassette HIS3MX6 with the flanking regions of 

POR1 was amplified from the BY4741 por1Δ::HIS3MX6 strain using the primers, 

POR1_Amp_Fw (AGTTTAATGGTCAGAATGGGCG) and POR1_Amp_Rv 

(GGAGTTTATCACAATGTTCGAAACC) by colony PCR. The reaction mix contained 1x 

Reaction Buffer (Thermo Scientific), 1.5 mM MgCl2 (Thermo Scientific), 0.2 mM sense 

3. MATERIALS AND METHODS 

Strain Genotype Source 

BY4741 Mata, his3Δ1, leu2Δ0, met15Δ0, ura3Δ0 EUROSCARF 

tpk1Δ BY4741 tpk1::KanMx4 EUROSCARF 

tpk2Δ BY4741 tpk2::KanMx4 EUROSCARF 

tpk3Δ BY4741 tpk3::KanMx4 EUROSCARF 

yck1Δ BY4741 yck1::KanMx4 EUROSCARF 

yck2Δ BY4741 yck2::KanMx4 EUROSCARF 

cka1Δ BY4741 cka1::KanMx4 EUROSCARF 

cka2Δ BY4741 cka2::KanMx4 EUROSCARF 

kkq8Δ BY4741 kkq8::KanMx4 EUROSCARF 

slt2Δ BY4741 slt2::KanMx4 EUROSCARF 

rim15Δ BY4741 rim15::KanMx4 EUROSCARF 

hog1Δ BY4741 hog1::KanMx4 EUROSCARF 

mck1Δ BY4741 mck1::KanMx4 EUROSCARF 

ypk1Δ BY4741 ypk1::KanMx4 EUROSCARF 

sak1Δ BY4741 sak1::KanMx4 EUROSCARF 

sch9Δ BY4741 sch9::KanMx4 EUROSCARF 

por1Δ BY4741 por1::HIS3 This study 

por1Δrim15Δ BY4741 por1::HIS3 rim15::KanMx4 This study 

por1Δhog1Δ BY4741 por1::HIS3 hog1::KanMx4 This study 
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primer, 0.2 mM antisense primer, 0.2 µM dNTPs (Thermo Scientific), 1 U Taq 

Polymerase (Thermo Scientific) and the PCR was performed at an annealing 

temperature of 47ºC. All the PCR products were analysed by nucleic acid electrophoresis 

(using TAE agarose gel). PCR products were purified with Gel Pure (NZYTech) and used 

to transform yeast. 

The correct replacement of POR1 by the HIS3 cassette was confirmed by PCR 

using a primer for HIS3 (GAATGCTGGTCGCTATAC) and one upstream POR1 

(CGTCATCTTCTAACACCGTATATG), following the already described procedures, at 

an annealing temperature of 51ºC. Absence of Por1p was also confirmed by Western-

blotting. 

For the analysis of autophagy and mitophagy induction in different strains, yeast 

cells were transformed with plasmids expressing GFP-Atg8 (pRS416, kindly provided by 

T. Yorimitsu (94)) and OM45-GFP (pKC2, kindly provided by D. Klionsky (95)), 

respectively, and selected in minimal medium lacking uracil and leucine, respectively. 

3.2. Yeast Transformation 

For yeast transformation, the polyethylene glycol (PEG)/lithium acetate method 

was used (96). Cells were grown in 20 mL of YPD medium to an OD600=0.8, harvested, 

washed and incubated with the transformation mix, containing 240 µL of PEG 3350 50% 

(w/v), 36 µL lithium acetate 1.0 M, 25 µL single stranded DNA (2.0 mg/ml), 300ng DNA 

and sterile water to a final volume of 360 µL. The cells were incubated at 26ºC for 30 min 

followed by incubation at 42ºC for 30 min. Lastly, the cells were centrifuged, washed with 

H2O and plated on selective medium without histidine. A negative control containing the 

cells and transformation mix without DNA was used. 

3.3. Growth Conditions 

Yeast cells were grown at 26ºC in a gyratory shaker at 140 rpm, with a ratio of 

flask volume/medium of 5:1, to logarithmic phase (log) (OD600=1) or to PDS phase 

(OD600=6-10). The growth media used were yeast peptone dextrose [YPD, 1% (wt/vol) 

yeast extract (Conda Pronadisa), 2% (wt/vol) bacteropeptone (LabM) and 2% (wt/vol) D-

glucose (Fisher Scientific), yeast peptone glycerol [YPG, containing 2% (wt/vol) glycerol 

(NZYtech) instead of glucose] and synthetic complete [SC medium; containing drop-out, 

2% (wt/vol) glucose and 0.67% (wt/vol) yeast nitrogen base without amino acids (BD 

Biosciences)], being supplemented with appropriate amino acids or nucleotides (0.04% 

(wt/vol) leucine, 0.008% (wt/vol) histidine, 0.008% (wt/vol) tryptophan and 0.008% 

(wt/vol) uracil). For solid medium 2% (wt/vol) agar (Conda Pronadisa) was added. 
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3.4. Mitochondrial Isolation 

Mitochondrial extracts were prepared based on a previous method (97). Briefly, 

yeast cells grown to the PDS phase in YPD medium were harvested at 4700 rpm for 10 

min and washed with dH2O before suspension in digestion buffer [2 M sorbitol, 1 M 

sodium-potassium phosphate pH 7.5, 0.5 M EDTA, 1% (vol/vol) 2-mercaptoethanol] at a 

concentration of 10 g cells (wet weight) to 30 mL digestion buffer to 50 mg of zymolyase. 

Cells were then incubated at 37ºC until most of cells have been converted to 

spheroplasts. The spheroplasts were washed with 1.2M sorbitol and suspended in 

suspension buffer (0,5 M Tris, pH 7.5, 1 mM EDTA) and lysed using a Douce 

homogenizer. Afterwards the suspensions were transferred to 2 ml microtubes and 

subjected to 3 cycles of low-speed/high speed centrifugation (30 min at 2700 rpm; 2 

cycles of 15 min at 13300 rpm). The mitochondrial pellet was stored at -80ºC. Protein 

quantification of the mitochondrial extracts was performed using the Lowry method. 

 

3.5. 2D-gel electrophoresis and immunoblot analysis 

3.5.1. Isoelectric focusing 

To separate proteins by isoelectric point (pI), 35 µg of mitochondrial proteins were 

suspended in a rehydration buffer [2M Urea, 2M thiourea, 1% Triton X-100 (vol/vol), 1% 

CHAPS (vol/vol), 0.4% DTT (wt/vol), 0.5% Pharmalyte (vol/vol), 2% ASB (wt/vol), 

Bromophenol Blue), incubated for 30 min at room temperature with shacking and used 

to rehydrate an immobiline drystrip (Immobiline™ DryStrip pH6-11, 7cm, GE Healthcare) 

overnight. Focusing (IEF BioRad Protean) of the strips, covered with mineral oil (Sigma), 

was performed, following the described settings: 1. Step and Hold, 300V, 30 min, 0.2 

kVh; 2. Gradient, 1000V, 30 min, 0.3 kVh; 3. Gradient, 5000 V, 1h20min, 4.0 kVh; 4. 

Step and Hold, 5000 V, 25 min, 2.0 kVh. 

 

3.5.2. Immunoblotting 

After focusing, the strips were washed with dH2O, reduced with 100 mM DTT in 

equilibrium buffer (6 M urea, 2 % sodium dodecyl sulphate (SDS), 0.1 mM EDTA, 0.01 

% bromophenol blue, 50 mM Tris pH 6.8, 30 % glycerol, 100 ml H2O final vol) for 30 min 
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at room temperature, and alkylated with 260 mM iodoacetamide in equilibrium buffer for 

30 min at room temperature. 

Then, the strips were washed with ddH2O, and proteins were separated in a 

12.5% SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to a 

nitrocellulose membrane. After blocking with 5% low fat dry milk in TTBS (20 mM Tris, 

140 mM NaCl, 0.05% (v/v) Tween-20 pH 7.6), membranes were probed overnight with 

the primary antibodies anti-por1 (1:6000, Invitrogen A6449) or anti-cytC (1:6000), 

washed and then incubated for 2h with the correspondent secondary antibody 

conjugated to horseradish peroxidase, anti-mouse (1:6000, Santa Cruz sc-2005) or anti-

rabbit IgG light chain (1:7000, Sigma 9169). 

To probe for phosphorylated proteins, membrane stripping was performed as 

described in the Abcam protocol. The membrane was washed with TTBS and incubated 

in a stripping buffer [62.5 mM Tris-HCl pH 6.8, 2% (wt/vol) SDS, 100 mM 2-

mercaptoethanol] for 30 min at 50ºC. After that, the membrane was thoroughly washed, 

blocked with 5% bovine serum albumin in TTBS, and probed overnight with the primary 

antibody anti-phospho S/T/Y (1:3000, Abcam), followed by a 2h incubation with the 

correspondent secondary anti-mouse (1:3000, Invitrogen G21040). Immunodetection 

was performed by chemiluminescence, using a kit from GE Healthcare (RPN2109). 

 

 

3.6. Hydrogen peroxide and heat sensitivity  

For the analysis of hydrogen peroxide (H2O2) resistance, yeast cells were grown 

in YPD to PDS phase and treated with 100 mM H2O2 (Merck) for 1h. Cells viability was 

determined by standard dilution plate counts on YPD medium containing 2% (wt/vol) 

agar. Colonies were counted after growth at 26ºC for 3 days, and viability expressed as 

the percentage of the colony-forming units (CFUs) of treated cells versus non-treated 

with H2O2. 

For the analysis of heat sensitivity, the same number of cells of each strain was 

plated in ten-fold serial dilutions into YPD medium containing 2% (wt/vol) agar 2%), and 

the plates were incubated at either 26ºC or 37ºC. 

3.7. Oxygen consumption rate and growth in respiratory substrates 

For the analysis of growth in respiratory substrate, the same number of cells of 

each strain was plated in ten-fold serial dilutions into two solid agar and glycerol plates. 
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The plates were composed of YPD or YPG medium containing 2% (wt/vol) agar, and the 

plates were incubated at 26ºC. 

Oxygen consumption rate (OCR) was measured in whole cells (1 x 108 in PBS 

buffer) grown to an OD600=1 and OD600=11, using a Clark oxygen electrode. Cells were 

collected, ressuspended in 1 ml PBS buffer (137 mM NaCl pH 7.4, 2.7 mM KCl, 8 mM 

Na2HPO4 and 1.46 mM KH2PO4) and transferred to the water-jacketed microcell, 

magnetically stirred, at 26ºC. The OCR was measured for 2 min using an Oxygraph 

system (Hansatech) and data analysed with Oxyg32 V2.25 software (Hansatech). 

 

3.8. Analysis of autophagy and mitophagy induction 

 

Yeast cells were harvested by centrifugation for 3 min at 4,000 r.p.m. (4ºC), and 

ressuspended in 50 mM sodium potassium phosphate buffer (pH 7.4) containing 

protease inhibitors (Complete, Mini, EDTA free Protease Cocktail Inhibitor Tablets; 

Boehringer Mannhein) and 1% Triton X-100 (Sigma). Total protein extracts were 

obtained by mechanical disruption through vigorous shaking of the cell suspension in the 

presence of zirconium beads for 5 min. Short pulses of 1 min were applied followed by 

1 min incubation on ice. Cell debris was removed by centrifugation at 13,000 r.p.m. for 

12 min and protein content was determined by the Lowry method, using bovine serum 

albumin as a standard. 

For the immunoblot analysis, 80 µg of the proteins were mixed with Laemmli 

buffer containing 1% 2-mercaptoethanol and heated at 95ºC for 5 min. The 

electrophoresis was performed on a 15% and 12.5% polyacrylamide gel, for GFP-ATG8 

and OM45-GFP respectively. Immunoblotting was performed as described above, using 

mouse anti-green fluorescent protein (GFP) (1:4000, Roche) as primary antibody and 

anti-mouse (1:5000, Invitrogen G21040) as secondary antibody.  
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4. RESULTS AND DISCUSSION 

 

4.1. Identification of phosphorylated forms of Por1p 

Since the aim of this project was to determine which kinases regulate the yeast 

Por1p by phosphorylation, it was first necessary to implement a screening assay. It was 

previously reported that phosphorylation leads to Por1p isoforms with distinct 

isoelectrical points (pI) (98).To confirm this result, mitochondria were isolated from cells 

grown to post-diauxic shift (PDS) phase – to induce respiratory phase conditions – and 

proteins were separated by 2D-gel electrophoresis followed by immunoblotting (2D-

immunobloting) using an antibody against Por1p or cytochrome c (as a control). We 

observed Por1p exhibits three major forms at pI of approximately 8.5 (spot 1), 7.9 (spot 

2) and 7.3 (spot 3) and one minor form with a pI of approximately 9 (Fig. 7). To determine 

if the growth phase affects Por1p pI forms, similar studies were performed using cells 

grown to log, PDS and stationary phase. Since the results showed no variation of the 

spots (Supplemental Figure S1), the next studies were performed at PDS phase as 

Por1p function is more relevant during this growth phase. 

Proteins may be subjected to modifications that change the pI both to the acidic 

pole (e.g., ubiquitination, phosphorylation, acetylation) or to the basic pole (ex 

sumoylation). To identify Por1p phosphorylated forms, the membrane was reprobed with 

an anti-phospho-serine, -tyrosine and -threonine (anti-phospho S/T/Y) antibody. It was 

observed (Fig. 7) that the three main forms of Por1p (1-3) are phosphorylated. As such, 

alterations in the pI of Por1p were assessed by 2D-immunoblotting to screen for potential 

Por1p regulatory kinases. 
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Figure 7: Analysis of Por1p phosphorylation: WT (BY4741) cells were grown to PDS phase 

in YPD medium. Protein phosphorylation was analysed by 2D-immunoblotting, using antibodies 

raised against Por1p, Cytochrome C (Cyt C; internal control for the first dimension). or anti-

phospho S/T/Y. The 3 main Por1p forms were detected as phosphorylated and numbered 1-3 

from the highest to the lowest pI. 

 

4.2. Screening for kinases with a potential role in Por1p phosphorylation 

Kinases evaluated as potential Por1p regulators were selected based on their 

mitochondrial localization (70,99,100) and their role in the regulation of mitochondrial 

function. This screening was based on the premise that, in the absence of a potential 

Por1p regulatory kinase, Por1p pI is altered (shift to the basic pole) due to the 

disappearance of the kinase-mediated phosphorylation. As such, 15 kinase-deleted 

mutants were tested and mitochondria isolated from cells grown to PDS phase 

(OD600~14) samples analysed by 2D-immunobloting (Table 3).  

Some kinases selected to this work, namely the catalytic subunits (Tpk1/2/3) of 

protein kinase A, Mck1p (homolog of mammalian GSK3β) and Yck1/Yck2 (homologues 

to CKI), have homologues that were previously implicated in mammalian VDAC 

regulation (62). Yet, in this work, no alteration in Por1p pI was observed in the absence 

of this kinases/catalytic subunits. Yet, for PKA and for CKI, because the tested mutants 

may have redundant functions it would be needed to assess Por1p phosphorylation in 

triple and double mutants, respectively, to exclude this kinases as Por1p regulators. Also, 

since we performed these studies in PDS phase, PKA might have not intervened, since 

it is mostly active during exponential phase (88). From the tested kinase-deleted 
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mutants, only hog1 and rim15 cells showed a shift in Por1p pI compatible with a lack 

of phosphorylation (shift to the acidic pole) (Table 3; Fig 8). Comparing with wild type 

cells, hog1Δ cells showed a shift in Por1p pI of spots 1 and 2, and rim15Δ cells showed 

a shift in Por1p pI of spot 1 (Fig. 8). For the remaining kinase-deleted strains, there were 

no differences in Por1p pI (Supplemental Fig. S2). 

 

 

Table 3: Evaluation of Por1p pI shift by 2D-immunoblotting in indicated kinase-deleted 

strains. 

 
 

 

 

 

 

Kinase Name  Mutant pI shift 

cAMP-dependent protein kinase type 1 

 

tpk1Δ No 
cAMP-dependent protein kinase type 2 tpk2Δ No 
cAMP-dependent protein kinase type 3 tpk3Δ No 

Casein kinase I homolog 1 yck1Δ No 
Casein kinase I homolog 2 yck2Δ No 

Casein kinase II subunit alpha 1 cka1Δ No 
Casein kinase II subunit alpha 2 cka1Δ No 

Probable serine/threonine-protein kinase KKQ8 kkq8Δ No 
Mitogen-activated protein kinase SLT2/MPK1 slt2Δ No 

Serine/threonine-protein kinase RIM15 rim15Δ Yes 
High osmolarity glycerol response protein 1 hog1Δ Yes 
Meiosis and centromere regulatory kinase 1 mck1Δ No 

Yeast protein kinase 1 ypk1Δ No 
Sucrose nonfermentating protein-activating kinase 1 sak1Δ No 

Serine/threonine-protein kinase SCH9  sch9Δ No 
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Figure 8: Modification of Por1p pI in isolated mitochondria from rim15Δ and hog1Δ 

mutants: wt, rim15Δ and hog1Δ mutants were grown to PDS phase, in YPD medium. Evaluation 

of Por1p pI was performed by 2D-immunoblotting.  

 

To confirm that the Por1p pI alteration in rim15Δ and hog1Δ yeast cells was due 

to absence of phosphorylation and to identify the Por1p phosphorylated residues, 

mitochondrial fractions from wt and rim15Δ and hog1Δ cells were analysed by mass 

spectrometry LC-MS analysis, at the Proteomics Facility CBM-SO (Madrid). In wt cells, 

it was found that Por1p was phosphorylated in two aminoacid residues, T91 and T103, 

which were already described as phosphorylated sites (101). However, these 

phosphosites were also found in both rim15Δ and hog1Δ yeast cells, indicating that these 

residues are not regulated by these kinases. Additional mass spectrometry LC-MS 

analysis should be performed for the identification of additional residues that are 

phosphorylated in wt but not in the kinase-deleted mutants, which will indicate the 

possible regulated sites by these kinases.  

 

4.3. Por1p and kinases Rim15p and Hog1p: Genetic interaction 

4.3.1 Growth curve analysis 

Some mutations in two genes produce a phenotype that is unexpected in 

comparison with the mutation’s individual effect. These are divided in two types of 

interactions: negative interactions refer to a more severe fitness defect than expected 

and positive interactions refer to double mutants with a less severe fitness defect than 

expected (102). Because a genetic interaction, defined as a deviation from the expected 

phenotype when combining genetic mutations, can reveal functional relationships 

between genes, double mutant strains were constructed, namely por1Δrim15Δ and 

por1Δhog1Δ mutants, and several phenotypes (related with Por1p or Rim15/Hog1p 

function) were tested. 

One of the phenotypes evaluated was cell growth in liquid glucose-medium. No 

significant growth defects were observed for por1Δ, hog1Δ and rim15Δ single mutants 

compared with wt, while the double mutant strains exhibited a significant growth defect 

(Fig. 9A). The growth defect was more evident at log phase (Fig. 9B). In the log phase, 

a significant growth defect was also observed for por1Δ mutant strain, which reflects the 

importance of Por1p for cellular growth, since its deletion has been shown to delay 

growth (23,103). These results show that absence of Hog1p and Rim15p worsen the 
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growth defects of por1Δ at the respiratory phase indicating a negative interaction 

regarding this phenotype. 

 

Figure 9: Analysis of cell growth. Growth of wt, por1Δ, hog1Δ, rim15Δ, por1Δhog1Δ and 

por1Δrim15Δ strains was monitored by OD600 measurements over time: (A) total growth untill 

early stationary phase; (B) log phase; Values are the mean ± SD (n=3). (A) p < 0.001 (wt 

vs por1hog1), p < 0.01 (wt vs por1rim15) (B) p < 0.0001 (wt vs por1) p < 0.0001 (wt 

vs por1rim15), p < 0.0001 (wt vs por1hog1), two-way ANOVA. 

 

4.3.2 Mitochondrial function: mitochondrial respiration and growth in a 

respiratory substrate 

Regulation of Por1p opening can affect mitochondrial respiration, since Por1p is 

the major mediator of the flux of metabolites between the cytosol and the mitochondrial 

space, such as NADH and ADP essential for mitochondrial respiration (104,105). To 

evaluate if potential alterations in Por1p phosphorylation due to deletion of RIM15 or 

HOG1 affects mitochondrial function, mitochondrial respiratory capacity was evaluated 

both by analysing the growth of the strains in respiratory media and by measuring the 

mitochondria respiration. To evaluate the growth of the strains in respiratory media, the 

same number of cells was plated in serial dilutions in solid plates containing either 

glucose as a carbon source (control) or glycerol, a strictly respiratory medium.  
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Figure 10: Growth assessment in strictly respiratory (glycerol) media. wt yeast (BY4741), 

the mutant strains hog1Δ, rim15Δ and por1Δ), or double mutants (por1Δrim15Δ, por1Δhog1Δ) 

were spotted in a ten-fold dilution series, on glycerol (Gly) and glucose (Glu)-based solid medium 

as control. 

 

In glucose conditions, por1, hog1Δ and rim15Δ mutant strains showed similar 

growth in comparison with wild type (Fig. 10). However, both por1Δhog1Δ and 

por1Δrim15Δ double mutants showed a decrease in growth, indicating a possible 

relationship between Hog1p and Rim15p and Por1p.  

In respiratory conditions, it was observed that both hog1Δ and rim15Δ mutants 

showed an improved growth (Fig. 10). Since these kinases are described to have 

inhibitory activity towards respiration (70,106), it was expected to observe such 

increased growth. The por1Δ mutant strain showed a decreased growth in comparison 

with wt, as expected, since lack of Por1p reduces mitochondrial outer membrane (MOM) 

permeability to respiratory substrates (107). In the absence of Por1p, both hog1Δ and 

rim15Δ mutants exhibit comparable growth to wt in glycerol, indicating this effect is 

independent of Por1p.  

Because respiratory activity correlates with VDAC1 opening in vivo, oxygen 

consumption rate (OCR) in whole cells grown to log and PDS phases was assessed. 

The OCR during log phase of single and double mutants was not significantly different 

from wt (Fig. 11A). OCR was evaluated at this early growth phase, in which cells are still 
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fermenting because we were expecting a catabolite de-repression and thus an increase 

in OCR for the HOG1-deleted mutant, as described (108), but that was not verified in our 

working conditions. Though there is a tendency for a higher OCR, it was not statistically 

significant.  

 

Figure 11: Determination of oxygen consumption rate: Oxygen consumption rate was 

measured in BY4741(wt), por1Δ, rim15Δ, hog1Δ, por1Δrim15Δ and por1Δhog1Δ strains grown 

to (A) at mid-log and (B) post-diauxic phase. Values are mean ± SD (n=3); **p < 0.01 (wt vs por1) 

*p < 0.1 (wt vs hog1), *p < 0.1 (wt vs por1hog1), *p < 0.1 (wt vs rim15 ****p < 0.001 (Wt 

vs por1rim15). 

 

In PDS phase, OCR increased comparing to log phase for the wt strain, but not 

for por1Δ cells, as expected, due to the role of Por1p in mitochondrial respiration (109). 

We observed a similar increase of OCR in hog1Δ mutant, indicating Hog1p does not play 

a significant role on mitochondrial respiration. Because Por1p is important for OCR, it 

also suggests Hog1p does not play a significant role in possible Por1p opening. For 

rim15Δ, there was a significant increase in OCR at PDS phase, comparing to the wt, as 

expected, since Rim15p is reported to play an important role in the suppression of 
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mitochondrial respiration (110). However, OCR in por1Δrim15Δ cells was similar to 

por1Δ single mutants, indicating that the increase of OCR in RIM15 deleted cells is 

Por1p-dependent and, therefore, Rim15p may play a role in regulating Por1p channel 

activity (Fig. 11B). 

 

4.3.3 Autophagy and mitophagy induction 

Because mitochondrial function and both Rim15p and Hog1p play a role in 

autophagy and mitophagy regulation (84,11,12,111), autophagy induction during 

stationary phase was also analysed since autophagy regulation is crucial for maintaining 

normal cell functions and also promoting cell survivability (112,113). 

ATG8 has been identified as one of the autophagic genes at the base of the 

autophagosome assembly, from the pre-autophagosome formation until its delivery to 

the vacuole (114). Atg8p is an ubiquitin-like protein that is part of the autophagosomal 

structure, being cleaved by Atg4p, essential for the biogenesis of the autophagosome. 

Atg8p is also present during the course of the whole autophagic process, designated for 

autophagy flux, or the process that leads from the autophagosome formation and 

maturation, the autolysome formation and later degradation (115). Thus, autophagy can 

be assessed in cells expressing a fusion of GFP-Atg8. This autophagosome, that 

contains the cargo, is transported to the vacuole (yeast lysosome), where it suffers 

degradation by vacuolar hydrolases. In the end, the resulting products of degradation 

are released back to the cytosol for recycling. GFP is fused in the N-terminal of Atg8p 

and is resistant to the vacuolar degradation, unlike Atg8p, as such, when the 

autophagosome is delivered to the vacuole it will result in free GFP in the vacuolar lumen 

and detection of free GFP can be used as a measure of autophagy flux (115,116). It is 

known that autophagy can be regulated at the transcriptional level through ATG8 

induction, which can be monitored by quantifying total GFP (GFP-Atg8 + free GFP), and 

at the flux level, assessed by monitoring Atg8p degradation levels (ratio of free GFP over 

total GFP).  

Using this assay, we observed an induction of autophagy in wt cells grown to 

stationary phase (Fig. 12A; quantification in 12B-C), as expected. In the por1Δ mutant, 

it was observed a strong suppression of autophagy induction (but not flux) (Fig 12). 

According to literature (117), impaired mitochondrial function may result in low autophagy 

induction and flux, which might explain the results in por1Δ strain (Fig. 12B-C). The 

rim15Δ mutant strain also showed low levels (suppression) of autophagy induction 

(Fig.12B). This result is consistent with reports stating that Rim15p upregulates 
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autophagy in starvation conditions (92,11), which in turn promotes degradation and 

recycling of cytoplasmic components for ATP recovery and cell survival. The autophagic 

flux also decreased in rim15Δ mutants, although not leading to suppression (Fig. 12C). 

This might be due to the regulation exerted by Rim15p in the process of autophagy flux, 

where its role is still not well defined (94,11). The double mutant strain por1Δrim15Δ 

showed a recovery in both autophagy induction and flux (Fig. 12B-C), suggesting that 

the presence of both Por1p and Rim15p is important for normal regulation of autophagy 

and there might be a compensatory mechanism in the absence of these two proteins. 

The hog1Δ mutant strain showed low levels of Atg8p, indicating defects in autophagy 

induction. Hog1p has been described as participating in the phosphorylation and 

stabilization of Atg8p, collaborating in the formation of autophagosomes (118,119), 

hence, being a crucial protein kinase in the regulation of autophagy. Our results 

corroborate this fact (Fig. 12B). In contrast, the autophagic flux was not affected in the 

hog1Δ mutant strain, suggesting that Hog1p is not relevant for the degradation process 

(Fig. 12C). The por1Δhog1Δ mutant strain showed a severe reduction in autophagic 

induction, accumulating the negative interaction of the absence of both Por1p and 

Hog1p. In contrast, the autophagic flux was similar to that of both por1Δ and hog1Δ 

mutant strains, indicating that both mutants may be reducing the autophagyc flucx by 

affecting the same process. 
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Fig.12: Analysis of autophagy induction and flux: (A) GFP-Atg8 immunoblots of cells grown 

in YPD, harvested 3 days after PDS phase. (B) The autophagy induction was calculated by the 

ratio between the sum of free GFP and GFP-Atg8p signals and Pgk1 (loading control). Values 

are mean ± SD (n=3); *p < 0.1 (wt vs por1Δ) *p < 0.1 (wt vs rim15Δ) *p < 0.1 (wt vs hog1Δ), one-

way ANOVA. (C) The autophagic flux was calculated as the ratio between the free GFP signal 

and the sum of free GFP and GFP-Atg8p signals. Values are mean ± SD (n=3) *p < 0.1 (wt vs 

rim15Δ) ****p < 0.001 (wt vs hog1Δ), one-way ANOVA. 

 

Accumulation of dysfunctional mitochondria can lead to a compromised cell 

growth and even cell death (10). An effective way to control this accumulation and ensure 

quality control over mitochondria is mitophagy, a type of selective autophagy, where 

severely damaged mitochondria are eliminated.  
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 Mitophagy was analysed using an assay similar to the used for autophagy, 

except that a mitochondrial outer membrane protein (OM45) (12) fused to GFP was used 

as a reporter of mitochondrial degradation, and mitophagy induction was estimated by 

measuring the ratio of free GFP (reflecting degraded OM45) over total GFP.  

It was observed an induction of mitophagy in wt cells grown to stationary phase 

(Fig. 13), as expected. In the por1Δ mutant strain, though not significantly, an increased 

induction of mitophagy was observed (Fig. 13). This increase may suggest that the lack 

of Por1p compromises the normal mitochondrial function, since ATP/ADP flow is 

affected, although there may be compensatory proteins that promote cell survival (Fig. 

13). The rim15Δ mutant strain showed similar level of mitophagy induction when 

compared to wt (Fig. 13). Rim15p is indeed important for non-selective autophagy 

regulation but there are no reports implicating Rim15p role in mitophagy, although it is 

known that, indirectly, it may promote mitophagy induction factors (120). The 

por1Δrim15Δ double mutant showed a major decrease in mitophagy induction (Fig.13), 

compared both to wt and por1Δ mutant strain, indicating Rim15p is involved in por1Δ 

mitophagy induction. In hog1 mutants, it was expected a low level of mitophagy 

induction, since some reports state that Hog1p is an important mitophagy regulator. The 

absence of Hog1p leads to a suppression of CK2-dependent Atg32p phosphorylation, 

which is required for mitophagy induction (84,12). The double mutant por1Δhog1Δ also 

showed a low level of mitophagy induction, compared to both wt and por1Δ mutant cells, 

which might indicate, as with por1Δrim15Δ mutant strain, a negative interaction for this 

phenotype (Fig. 13). These results suggest that por1Δ-induced mitophagy is dependent 

of the presence of Rim15p and Hog1p, though this effect may be direct or not. 
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Fig.13: Analysis of mitophagy induction: (A) OM45-GFP immunoblots of cells grown 

in YPD, harvested 3 days post-PDS phase. (B) The mitophagy induction was calculated by the 

ratio between the free GFP and the sum of free GFP and OM45-GFP signals (Free GFP/total 

GFP), using a Ponceau stained membrane as a loading control. Values are the mean ± SD (n=3)), 

p < 0.1 (por1Δ vs por1Δrim15Δ), one-way ANOVA. 

 

4.3.4 Stress resistance 

Because Por1p affects heat sensitivity (121), the response of the mutants under 

study to elevated temperatures was evaluated by growing the cells in YPD solid media 

at 37ºC. It was observed that cells lacking Por1p showed a strong growth defect at 37ºC 

(Fig. 14), corroborating the described role of Por1p as an important protein in 

thermoresistance. Since loss of Por1p leads to a decrease of MOM permeability, the low 

exchange of metabolites compromise mitochondrial functions leading to an increased 
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stress sensitivity. Though Rim15p and Hog1p are important regulators of cellular 

responses to osmotic stress, oxidative stress or others (110), our results suggest that 

these kinases do not exert an important role at 37ºC, since both hog1Δ and rim15Δ 

mutants showed no differences in growth. The double mutants por1Δhog1Δ and 

por1Δrim15Δ exhibited a phenotype similar to por1Δ single mutants, indicating no 

interaction between these proteins regarding growth at 37ºC.  

 

 

Figure 14: Growth assessment with heat shock: wt yeast (BY4741), the kinase-deleted strains 

(hog1Δ, rim15Δ) and por1Δ mutant strain, and both double mutants (por1Δrim15Δ, por1Δhog1Δ) 

were spotted in a ten-fold dilution series, on glucose-based medium and incubated at the 

indicated temperatures: room temperature (26ºC) and 37ºC. 

 

The strains were also assayed regarding their resistance to H2O2, an oxidative 

stress inducer. The mutant por1Δ was sensitive to H2O2 comparing with wt (Fig. 15), as 

reported before (41). The hog1Δ mutant also exhibited a decreased resistance to H2O2, 

(Fig. 15) that was not increased by the deletion of POR1, suggesting these proteins may 

be in the same pathway concerning stress resistance. RIM15-deleted mutant also 

showed high sensitivity to H2O2, indicating an important role for this kinase in stress 

resistance (Fig.15). This sensitivity was increased by the additional deletion of POR1 

suggesting Rim15p and Por1p may be in parallel pathways concerning stress resistance.  
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Figure 15: Survival of wt and mutant strains to H2O2 treatment: Cells were grown to PDS 

phase and treated with H2O2 (100 mM, 1h) and viability assessed by CFU count. Values are mean 

± SD (n=3). * p < 0.05 (wt vs hog1Δ; wt vs rim15Δ; wt vs por1Δhog1Δ), ** p < 0.01 (wt 

vs por1Δrim15Δ), one-way ANOVA. 
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5. CONCLUSIONS AND FUTURE PERSPECTIVES 

 

The voltage-dependent anion channel (VDAC) is a mitochondrial protein with an 

essential role in the mitochondrial metabolism. In mammalian cells, it is known that 

VDAC can be regulated by post-translational modifications such as phosphorylation and 

some regulatory kinases have been identified. Yet, in yeast though VDAC/Por1p is 

reported as phosphorylated, the role of these modifications and its regulatory kinases 

are unknown. As such, this dissertation aimed to identify Por1p regulatory kinases. For 

that, 15 kinase-deleted mutants (selected based on kinase function or mitochondrial 

location) were screened for alterations in Por1p pI by 2D immunoblot. Two Ser/Thr 

protein kinases, Rim15p and Hog1p, were identified to cause alterations in Por1p pI 

when deleted. The assessment of genetic interactions between these kinases and Por1p 

support that a functional relationship may exist between these proteins. It was observed 

that deletion of HOG1 interferes with por1Δ growth in fermentative conditions, mitophagy 

induction and oxidative stress resistance, whereas deletion of RIM15 interferes with 

por1Δ growth in fermentative conditions, mitochondrial oxygen consumption, autophagy 

flux and induction and mitophagy induction. 

Taking in account that both kinases affect Por1p pI and they exhibit genetic 

interaction with Por1p, our data suggests that these kinases may be Por1p regulators. If 

the identified kinase directly regulates Por1p, they likely phosphorylate different Por1p 

residues because some of the phenotypes affected are different. While in mammals 

VDAC phosphorylation has been associated mainly to apoptosis induction, the distinct 

phenotypes affected by lack of VDAC1/Por1p in yeast suggest regulation of this channel 

may impact additional cellular processes, such as autophagy and mitophagy induction, 

also critical for cell survival. Rim15p has no close homologue in mammals, but Hog1p 

has two homologues in mammals (p38/JNK) that have been implicated in VDAC1 

regulation, suggesting VDAC1 regulation by Hog1p may be conserved. 

To confirm that Hog1p and Rim15p directly interact and phosphorylate Por1p, co-

immunoprecipitation and in vitro kinase assays should be performed. In future work, 

Por1p MS/MS analysis should be repeated, to identify the Por1p phosphorylated 

residues by the kinases Hog1p and Rim15p. With that knowledge, it will be possible to 

study the physiological role of Por1p phosphorylation by mutating the individual residues 

into nonphosphorylatable (alanine) or phosphomimetic (aspartic acid) versions. Through 

the evaluation of mitochondrial function, membrane potential, communication cell-

mitochondria and even apoptotic activity will also be crucial to better understand the level 

of Por1p regulation possibly promoted by these potential regulatory kinases.  
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Por1p plays a central role in mitochondrial metabolism affecting crucial processes 

as proliferation, and oxidative stress resistance. Because VDAC is conserved, identifying 

its regulatory kinases can provide new pharmaceutical targets for treatment of human 

diseases such as cancer and Alzheimer’s disease in which VDAC1 activity has been 

implicated (43,52,53). 
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7. SUPPLEMENTARY MATERIAL  

 

Analysis of Por1p pI in cells at different growth phases 

 

Figure S1: Analysis of Por1p pI in cells at different growth phases. Mitochondria were 

isolated from wt cultures grown until log, PDS and stationary phase (OD600= 0.2; OD600= 9.83; 

OD600= 16.41). Analysis of Por1p pI was performed by 2D-imunoblotting, with antibodies anti-

Por1p and anti-cyt C, as internal control of the 1st dimension. 
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Analysis of Por1p pI in different kinase-deleted strains 
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Figure S2: Mitochondria from PDS grown cells were isolated from wt and selected kinase-

deleted strains. Analysis of Por1p pI was performed by 2D-imunoblotting, with antibodies anti-

Por1p and anti-cyt C, as internal control, in selected kinase-deleted strains: (A) sch9Δ, sak1Δ and 

cka2Δ mutant strains (B) slt2Δ and kkq8Δ mutant strains (C) yck1Δ, yck2Δ and cka1Δ mutant 

strains (D) ypk1Δ and mck1Δ mutant strains (E) tpk1Δ, tpk2Δ and tpk3Δ mutant strains compared 

with wt harvested simultaneously.  

 


