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resumo O cancro da mama triplo-negativo (TNBC) é uma heterogénea e 

complexa doença que actualmente ainda não dispõem de terapias 

direcionadas devido à falta de alvos terapêuticos presentes em outros 

tipos de cancro da mama, tais como a presença de receptores hormonais 

(receptores de progesterona (PR) e receptores de estrogénio (ER)) assim 

como de receptores de factores de crescimento humano 2 (HER2). 

Muitos dos pacientes de TNBC respondem muito bem aos tratamentos 

comuns dados aos pacientes que sofrem com cancros, mas infelizmente 

quando esses tratamento não são eficazes e TNBC volta, já se torna um 

tipo de cancro muito difícil de tratar. Neste projecto de investigação 

temos o objectivo de melhorar as terapias direcionadas para TNBC via 

duas abordagens conceptualmente diferentes. A primeira consiste na 

identificação de genes essenciais à sobrevivência de TNBC sob 

condições de hipóxia, onde hipotetizamos que a inactivação de tais genes 

seja “synthetic lethal” com terapias antiangiogénicas (AA). 

                                                    Na segunda parte, olhamos para a senescência das células cancerosas 

como uma vulnerabilidade que pode ser explorada usando um “one-two 

punch model” como abordagem terapêutica. Em primeiro lugar 

induzindo senescência via uma combinação de tratamento com 

Palbociclib com uma diminuição de cinase-dependente de ciclina 2 

(CDK2), seguido de um tratamento com ABT-263, um agente senolítico 

que promove apoptose prefencialmente em células senescentes sobre 

células não-senescenctes. 

                                                    Com este projecto pretendemos contribuir, não apenas para o 

melhoramento de terapias direcionadas para pacientes com TNBC, mas 

também para outros tipos de cancros, uma vez que estes conceitos podem 

ser extendidos a diferentes tipos de cancro. 
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abstract Triple-negative breast cancer (TNBC), a heterogeneous and complex 

disease entity, lacks targeted therapies due to the absence of common 

therapeutic targetable features that exist in other types of breast cancer 

(BC). TNBC patients generally respond very well to standard 

chemotherapy, but when TNBC recurs is often very hard to treat. In this 

project, we aimed at improving TNBC targeted therapy via two 

conceptually different approaches. The first one consisted of the 

identification of essential genes for the survival of TNBC cancer cells 

under hypoxia, where we hypothesized that inactivation of such genes 

would be then synthetic lethal with antiangiogenic therapies. Thus 

contributing to the improvement of this class of drugs to which patients 

often acquire resistance.  

In the second part of this project, we aimed at exploring senescence as a 

vulnerability in cancer cells that can be therapeutically targeted using a 

one-two punch model. In a first step senescence is induced via a 

combination of Palbociclib (CDK4/6 inhibitor) treatment with Cyclin-

dependent kinase 2 (CDK2) impairment; and in a second step, TNBC 

induced senescence cells were treated with ABT-263, a senolytic agent 

that promotes apoptosis preferentially on senescence cells over non-

senescence cells. 

With this project, we contributed not only to the so needed improvement 

of target therapies for TNBC patients but also to other tumors, once these 

different approaches can be extended to other cancer types. 
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1. Introduction  

1.1. Cancer  
 

1.1.1. Cancer overview 

 

Cancer is a collection of related diseases caused when cells in the body grow in an 

uncontrolled and abnormal fashion compromising normal cells’ function in the process.1–3 

Cancer cells, in contrast to normal cells, undergo a process of loss of specialization in which 

gain the ability of continuous proliferation. In a healthy organism, cells’ self- sacrifice —

apoptosis— is the rule that enables survival. This suicide mechanism allows metazoans to 

eliminate cells that put at risk whole body’s survival.4,5 From this perspective, cancer cells 

possess the capability to disrupt the most fundamental rules of cell behavior that underlie the 

basis for the building and maintaining the homeostasis of multicellular organisms.6  

Our understanding of the carcinogenesis process has increased significantly in the 

last two decades. It is now clear that cancer is the result of a multistep mutagenic process.7 

Such process often leads to mutations in genes that control important pathways of the cell 

cycle, cell proliferation, and survival, thus creating a deregulation on these pathways that are 

essential for tumor establishment.5,8 There are many types of genetic alterations accountable 

for the genetic basis of cancer that result in widespread deregulation of gene expression 

profiles, such as, subtle changes like deletions or insertions, as well as alterations in 

chromosome number, chromosome translocations and gene amplifications.6–10 Genetic 

instability has proved to be, in many cases, the motor of tumor progression and 

heterogeneity. Some mutations in certain genes are more prone to lead to cancer than others. 

Usually, they are grouped in two classes, the proto-oncogenes, and the tumor suppressor 

genes. While in the first cancer is driven by the gain of a function mutation, in the second 

the opposite happens, therefore there is a loss of function mutation.6,11 

Cancer represents the leading cause of deaths in developed countries and the second 

in developing countries. The forecasts that in the next years’ cancer diagnose will increase 

have to do mostly with population growth and aging.12,13 

There are many factors which can promote the necessary mutations to tumor 

emergence. For instance,  adoption of cancer-causing behaviors, such as smoking and sun 

exposure (X-rays and ultraviolet radiation), unhealthy diets, obesity and physical inactivity 
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are significant risk factors.14–16 Clearly, age plays a decisive role here, among the elderly 

population cancer incidence is increased. Several factors contribute to this observation, such 

as the decreased immune surveillance, accumulation of genetic mutations, a longer lifetime 

of exposure to carcinogens and age-related hormonal alterations. 

Epigenetics, along with genetic abnormalities also represents a very important 

process in the earliest stages of neoplasia. There are many data showing that almost in every 

type of human cancer there is a hypermethylation of the promoter regions of key regulatory 

genes, which is linked with inappropriate transcription leading to gene silencing.17,18 

Modern cancer biology proposes that tumor progression is the result of a multi-gene, 

multi-step clonal selection within the original clone, following a Darwinian adaptive system. 

This selection can occur from a single cell of origin19 and leads to a ‘refinement’ of cancer 

cells with more and more proliferation and survival advantage, therefore leading to more 

aggressive subpopulations.20–22 This is easily understandable against current knowledge that 

populations of tumor cell are more genetically unstable than of normal cells, so in the 

primary tumor there is a mix of subclonal populations constantly and sequentially being 

selected to an increasing genetically and biological abnormal state (Figure 1).19 

 

Figure 1: Clonal evolution from normal cells to primary tumors and metastases.23  

Each colored area represents a cell colony with a specific set of mutations accumulated in the progeny of a 

single most recent common ancestor (MRCA) cell. Time progresses to the right. The height of each colored 
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area represents the quantity of cells in the colony. New mutations are represented by stars and may originate 

from an established colony. The figure shows that these new mutations can originate in any part of the tumor 

and then competes for space and resources with the others. 

 

Evidence shows that metastatic dissemination is usually the last step in the primary 

tumor progression.24 It can take years until the genetic and epigenetic changes in the primary 

tumor to occur before it becomes mature enough to spread.25 Metastasis only occurs when 

the tumor has grown to a size that has likely allowed a clonal selection of cell mutations that 

give cancer cells that ability,25 and it is the cause of the majority of cancer deaths.26 

 

1.1.2. Hallmarks of cancer 

 

Weinberg et al24, believe that the complexity of cancer can be reduced to a small 

number of underlying principles. These principles are what we call the hallmarks of cancer. 

Currently, they consist of eight common traits to all cancers, complementary to each other, 

that together govern the transformation of normal to cancer cells. Namely, they are self-

sufficiency in growth signals, insensitivity to antigrowth signals, evading apoptosis, limitless 

replicative potential, sustained angiogenesis, tissue invasion and metastasis, reprogramming 

of energy metabolism and evading immune destruction. Alongside with these hallmarks, 

genome instability and tumor-promoting inflammation are described as two enabling 

characteristics for the acquirement of these hallmarks.27,28. In Figure 2 is depicted an 

overview of the hallmarks of cancer.  

A progressive and multistep acquisition of activating mutations in oncogenes or 

inactivating mutations in tumor suppressor genes are largely the drivers of tumor progression 

despite the variability of the genetic and epigenetic landscapes across different cancers.29 In 

fact, studies30,31 have shown that it is often the case that cancer diseases are “addicted” to 

the activation and maintenance of activity of oncogenes in order to keep the malignant 

phenotype.   
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Figure 2: The hallmarks of cancer and its therapeutic targets.28 

Drugs that interfere with each of the acquired capabilities necessary for tumor growth and progression have 

been developed and are in clinical trials or in some cases approved for clinical use in treating certain forms of 

human cancer. Additionally, drugs are being developed to target each of the enabling characteristics and 

emerging hallmarks, which also hold promise as cancer therapeutics. The drugs listed are but illustrative 

examples; there is a deep pipeline of candidate drugs with different molecular targets and modes of action in 

development for most of these hallmarks. 

 

 

1.1.3. Cancer treatment 

 

The most common cancer therapies can be divided into two categories, one being (1) 

treatments targeting general cancer mechanisms, which are not tumor/tissue-specific; and 

(2) treatments targeting tumor/tissue-specific mechanisms/phenotypes, which are referred as 

targeted therapies.32 

Currently, the majority of the treatments fall into the first category, which is 

comprised by surgery, chemotherapy, and radiotherapy, these are the oldest treatments and 

over the decades they have been highly effective in extending the survival of cancer patients 

and even eradicating some sorts of tumors.33 The second category includes targeted therapy 

and hormone therapy which have been greatly developed in recent years. Usually, most of 
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the oncology patients receive a  combination of these treatments, and the type of treatment 

given depends on the type and stage of the disease.34  

When possible, surgery is performed with the intent to remove the entire tumor, but 

sometimes that is not feasible, due to the damage that the complete removal would make in 

an organ, and only a part of the tumor is removed. When performed in early stages surgery 

remains to be the most effective treatment of primary tumors.35 

Radiotherapy was first used in the 20’s and since then it was improved significantly.36 

Not much later, in the 40’s, the principle that the systematical administration of drugs could 

induce tumor regression was established in when Goodman and Gilman tested the first 

chemotherapy treatment by injecting a ‘nitrogen mustard’ compound in patients with 

advanced non-Hodgkin’s lymphoma and observed that the mediastinal and lymphatic 

masses regressed.37 Oftentimes, these two treatments are used together as they complement 

each other. Despite the great advances made in these treatment techniques efficiency, there 

is still a major drawback that cannot be ignored, which is the fact that they are not tumor 

specific, implying that normal cells are also targeted and thus leading to undesirable side 

effects more or less severe.35 Both treatments consist of inducing DNA damage that in 

principle impairs cell division and triggers apoptosis. Furthermore, the treatment for a first 

cancer is associated with an increased risk of developing a second primary cancer when 

compared with the general population.38  

Targeted therapy refers to the more recent anti-cancer drugs (set apart of the common 

chemotherapeutical drugs) that can be separated into two types: small-molecule inhibitors 

and humanized monoclonal antibodies.  

With regard to the small-molecule inhibitors, these drugs are designed to interfere 

with specific molecular targets that play key roles in cancer progression (particular features 

common to cancer cells).39 They do so by taking advantage of the metabolic differences 

between normal and cancer cells, therefore such drugs can interfere with altered cell 

programs, mainly active in cancer cells, limiting the damage to the normal cells.40  

These therapies work in one of four ways: (1), blocking signals/pathways that cancer 

cells use to make new cancer cells, (2) delivering toxic substances that kill or damage cancer 

cells, (3) stimulating immune cells to destroy cancer cell and (4) blocking the growth of new 
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blood vessels around cancer cells, starving the cancer cells from nutrients essential for their 

growth. In sum, we can say that they are developed towards specific molecular targets 

directly involved in the development of the hallmarks of cancer.28 In Figure 2 is possible to 

see some examples of correlations between the drugs and the effects on the hallmarks of 

cancer. Thus, the challenges regarding targeted therapy consist in identifying valid targets 

as well as the subsequent drug development in such a way that the toxicity and off-target 

effects are very limited. Unfortunately, tumors that were initially sensitive to targeted 

therapies often end up developing drug resistance.41 Mutations during treatment and other 

adaptive responses, such as an increase in the expression of the therapeutic target or 

concomitant activation of alternative signaling pathways are one of the reasons for drug 

resistance.42,43 These phenomena have to do with the heterogeneity of the tumor, what 

happens is that upon targeted treatment the tumor is put under a pressure that leads to the 

selection, and later proliferation, of a minor drug-resistance cell subpopulation among the 

numerous tumor cells present in the original tumor.28,43 

With the increasing of genetic tools researchers start to use the concept of synthetic 

lethality in order to tackle this gain of drug resistance to small-molecule inhibitors targeted 

therapy.  Two genes are said to be synthetic lethal if a mutation of either alone is compatible 

with viability but mutation of both leads to death.44 From this concept, one can foresee that 

targeting a gene that is synthetic lethal to a cancer-relevant mutation should lead to a more 

efficient elimination of cancer cells while sparing normal ones.9,45 A great example proving 

this concept was discovered in breast cancer where researchers found toxicity of Poly (ADP-

ribose) polymerase (PARP) 1 and 2 inhibitors specifically in BRCA1 and BRCA2 mutant 

cells. This observation has already been clinically validated with success.46,47 

Immunotherapy is another promising, exciting and ground-breaking therapy field, 

for both advanced and metastatic cancers. For many decades’ researchers had hoped to 

modulate the body natural immune system to efficiently identify and attack cancer cells.48 

Establishing this type of anti-cancer defense is hard because the immune system by itself has 

evolved to recognize and eliminate foreign agents while leaving body’s own tissue 

untouched. The problem is evident, cancer cells are also native to the body, therefore, in 

many ways, indistinguishable from normal cells3 and often coexist in an equilibrium with 

the immune system.49 Furthermore, there are cases during the progression of the disease, in 

which cancer cells are capable of high jacking the immune system converting it into a 



7 
 

support structure for cancer development.50 Howbeit, regardless of the lack of understanding 

on the precise mechanism through which the immune system interacts with cancer, the 

immunotherapy objective is both to boost and to restore the immune system with the ability 

to detect and attack cancer cells.51,52 Recent studies have already allowed a shift on the 

standard of care for patients with advanced melanoma disease (metastatic), considered 

incurable until the date,  that now can be treated with potentially curative instead of palliative 

intent.53 With this promising results, it is expected that immunotherapy will still gain more 

and more relevance in the next years as new results from clinical trials are known, as well as 

the possibility of combining immunotherapy with other types of therapies.48,54 

Despite all the promising results, in general, target therapies suffer from one same 

important aspect that contributes to the lack of durable success of these types of therapy. 

That aspect is the lack of biomarkers that allow a proper stratification of patients to receive 

the most appropriated targeted therapy.55 Hopefully, the foreseen era of stratified and 

personalized therapy will enable tailored therapies to improve the outcomes and to reduce 

toxicity, but that future is still dependent on numerous challenges to be overcome. 
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1.2. Breast Cancer 
 

1.2.1.   Breast cancer overview 

 

Breast cancer (BC) is the type of cancer more commonly diagnosed (30% of the new 

cases)  and the second leading cause of cancer death in women in the United States.56 Breast 

cancer is a collection of diseases with diverse origins, clinical characteristics, responses to 

therapy and outcomes. Over the years BC has been subdivided into different types and sub-

types in an attempt to better classify different patient’s prognosis and consequently to give 

them the better treatment option available that best suits the different BC types. BC can arise 

from different parts of the breast. The majority of them originates in the breast lobules, which 

are composed of glands that produce the milk, and in the milk ducts, the “pipes” that connect 

lobules to the nipple (Figure 3). These distinct origins cause that there is a multitude of 

different histological types of BC.  

Ductal carcinoma is the most common malignancy of BC, as well as the primary 

cause of death among women worldwide57 with an incidence of 50-80%.58 Ductal 

carcinomas can be divided into two types: the Ductal carcinoma in situ (DCIS) and the 

invasive ductal carcinoma (IDC). DCISs are considered to be a noninvasive form of BC. In 

this type of BC, cancer cells replace normal epithelial cells of the ducts, making them and 

the lobules expand, but without ever grow beyond the layer where they originated. IDCs, in 

its turn, are invasive forms of BC, which means that these BC cells manage to expand beyond 

the walls of the glands or ducts in which they originated.  

 The second most prevalent subtype of BC is the invasive lobular carcinoma (ILC) 

representing between 5-15 %.58 In the others BC subtypes are included categories such as 

medullary, neuroendocrine, tubular, apocrine, metaplastic, mucinous, inflammatory, 

adenoid cystic and micropapillary types.59  

Breast cancer can be staged using the TNM (tumor node metastasis) classification 

system accordingly to the stage of disease they are in; the T refers to the primary tumor size, 

the N to the near lymph nodes that are involved and M to the metastasis stage (presence or 

absence).60 With the TNM method patients receive a classification from 0 (in situ tumor, 

cancer is still at a very early stage) to IV (invasive cancer already spread to distant parts of 

the body).  
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Figure 3: Normal breast with invasive ductal carcinoma (IDC) in an enlarged cross-section of the duct.57 

Scheme of the women’s breast anatomy and the location of the IDC. 

 

High-throughput technologies, such as gene expression microarray studies, have led 

to a new taxonomy of breast cancer based on their molecular characteristics. The more 

traditional molecular distinctions take into consideration the status (presence or absence) of 

hormone receptors —estrogen receptor (ER) and progesterone receptor (PR)— and, the 

amplification of the growth-promoting protein, human epidermal growth factor receptor 2 

(HER2).61–63 Studies based on the gene expression revealed five subtypes of breast cancer: 

luminal A (HR+ and/or PR+/HER2-) and B (HR+ and/or PR+/HER2+/-), basal-like/ triple-

negative (HR- and PR-/HER2-), HER2-enriched (HR- and PR-/HER2+) and normal-like 

(similar to luminal A).64 Basal-like BC definition was not yet internationally accepted, 

whereas some groups base their definition recurring to immunohistochemistry (IHC) studies, 

some others opt by microarray profiling.64 

In the last two decades’ mortality rates had suffered reductions, due mainly to the 

development of early detection, prevention and novel treatments. Nevertheless, the statistics 

show that incident rates have been increasing, which is believed to be closely related to the 

increasing and improvement of diagnostic techniques.65 
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1.2.2. Triple-negative breast cancer (TNBC) 

 

TNBC owns its name to the fact that this subtype of BC is negative to all the three 

common markers in breast cancer already described (ER, PR and HER2).64,66,67 Meaning 

that the proliferation and survival of this type of BC are neither dependent on hormones 

(estrogen and progesterone) neither on the amplification of HER2 receptors. A direct 

implication of this phenotype is its resistance to conventional hormonal therapy, such as 

tamoxifen or aromatase inhibitors, as well as to therapies targeting HER2 receptors, the case 

of trastuzumab.68–70 Due to the lack of recognizable molecular targets, chemotherapy, 

radiotherapy and surgery are still the best treatment, both in early or advanced stages of 

TNBC.66,71,72 In the cases which TNBC becomes resistant to these treatments the tumors 

often become more aggressive and unresponsive making of TNBC a type of cancer 

associated with a poor outcome,66 only 30% of metastatic TNBC cancer patients survive 5 

years.72 TNBC tumors account for 10-17% of all BC carcinomas64,67 and represent about 

15% of all invasive breast cancers.67 Unlike others low-grade BC carcinomas, risks of TNBC 

are higher with increasing parity and waist-to-hip circumference ratio, suggesting that 

genetic and social factors come together in an intimate way, observed by the fact that TNBC 

has a higher prevalence among young black and Hispanic women.67  

 An early and correct diagnosis of TNBC is of paramount importance, once it has 

implications in the choice of systemic therapy to give to the patients, so for instance, by 

avoiding false diagnosis, patients with positive expression of one of those receptors could 

have benefits from endocrine therapies or HER2 targeted drugs. The diagnose is done by 

IHC, where the levels of protein expression of PR, ER and HER2 are assessed. Thus, now 

the challenge is to be able to subtype TNBC to better identify molecular-based therapies. 

Due to the great heterogeneous disease that characterizes TNBC this type of BC displays a 

complex genomic landscape that results in a wide spectrum of transcriptional, histological 

and clinical differences.72 From such differences, inevitably, there is the emergence of 

tumors with different grades of aggressiveness; and although TNBCs are, in its majority, 

considered as high-grade tumors, there is also a subset of well-characterized low-grade 

TNBCs that displays a favorable outcome.73 So it is of pivotal importance to improve the 

subtyping of TNBCs.74–76 
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1.3. Hypoxia and angiogenesis 

 

Capillary blood vessels are composed of endothelial cells and pericytes.77,78 In 

embryogenesis blood vessels arise via two different processes, namely, vasculogenesis, in 

which endothelial cells arise from progenitor cell types, and angiogenesis, the process by 

which new capillaries sprout from existing vessels.78,79 In physiological conditions, the 

vasculature is at a quiescent state in adult mammals with the exception of female 

reproductive cycles processes, such as ovulation, menstruation, implantation and pregnancy, 

in which new blood vessels form through angiogenesis.78 It is a complex and highly 

regulated process, but when unregulated it is the cause of diseases such as arthritis and 

diabetes.79  

Like normal cells, in order to survive, tumor cells also need to have access to oxygen 

and nutrients as well as an ability to evacuate metabolic wastes and carbon dioxide.28 Today 

there is no doubt about the importance of angiogenesis in the role of solid tumor 

development. Evidence shows that a tumor that grows to a small size of few millimeters in 

diameter requires the induction of new capillary blood vessels80 and, on the other hand, in 

the absence of an adequate vasculature tumor cells undergo necrosis and/or apoptosis 

resulting in tumor impairment.78 Thus, in order to overcome this growth inhibition, tumor 

cells induce the formation of new blood vessels from pre-existing ones.81 This process is 

known as tumor angiogenesis and is not only essential for primary tumor growth but also for 

the metastatic spread,  since the presence of a new vasculature in the tumors fosters the 

entrance of tumor cells into circulation, increasing metastasis occurrence chances and thus 

is associated with poor prognostic outcomes.80–82 During this process, there is an ‘angiogenic 

switch’. This switch consists in a transition from a small-sized avascular tumor mass to a 

state where blood vessels develop promoted by the release of diffusible activators of 

angiogenesis by the tumor.78,83 This process is initiated when cancer cells experience 

hypoxia conditions, which is characterized by a cellular or tissue level of oxygenation lower 

than normal that triggers a physiological stimulus to which the organism tries to respond 

accordingly to the demands of the respiring tissues.82,84,85 Hypoxic regions are present in 

many tumors types as a result of rapid proliferation and deviating angiogenesis. The O2 

levels in tumors are very heterogeneous with some regions having a partial pressure of 

oxygen (pO2) of less than 5 mmHg, compared to a pO2 of 30-50 mmHg in the same, non-
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cancerous, organs.86 In the case of BC, reported to be one most hypoxic types of cancer, 

nearly 60% of the tumors have a pO2 lower than 2.5 mmHg, whereas in healthy tissue values 

lower than 12.5 mmHg were not found.87 

The response to hypoxia conditions is mainly mediated by the hypoxia-inducible 

factors (HIFs).82,88 HIFs are a family of transcription factors that control important 

pathophysiological pathways and, in particular, emerged as the master regulators of oxygen 

tension homeostasis.89 There are around 1000 genes that have their regulation dependent on 

HIF, most of them involved in the adaptations to hypoxia. These include genes regulating 

metabolism, blood-vessel growth, cell division and inflammation. HIF-1 is a heterodimeric 

protein comprising a constitutively expressed β subunit and a α subunit tightly regulated by 

oxygen availability.84,90 

Under hypoxic condition, HIF is activated and upregulates the expression of a set of 

genes with pro-angiogenic functions. One of those genes is the vascular endothelial growth 

factor (VEGF) family (VEGF-A, VEGF-B, VEGF-C, VEGF-D and PIGF (placental growth 

factor)) which are signal proteins secreted by both tumor and endothelial cells (ECs) in 

response to hypoxia.91 VEGFs bind to the vascular endothelial growth factor receptor 

(VEGFR) family, signal mainly through VEGF receptor 2 (VEGFR-2)92 but also through 

VEGFR-1 and VEGFR-3, three transmembrane cell surface tyrosine kinases, which activate 

the intracellular pathway leading to permeability, proliferation, migration and survival of 

ECs (Figure 4). 
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Figure 4: An overview of the activation of the angiogenic pathway.93 

VEGFR is activated upon binding of VEGF, which results in activation of several downstream pathways, 

leading to angiogenesis. Neuropilin 1 (NRP1) can, when activated by VEGF-A, potentiate VEGFR-2’s 

function. TIE2 activation through binding of Angiopoietin-1/2 (Ang-1/2) promotes angiogenesis. PDGFR 

activation upon PDGF binding has a vessel stabilizing effect by increasing pericyte coverage. Activation of the 

Fibroblast Growth Factor Receptor (FGFR) by the Fibroblast Growth Factor (FGF) promotes angiogenesis and 

EC proliferation. Furthermore, the pro-angiogenic signaling molecules αvβ3 and αvβ5 integrins are activated 

through several components of the extracellular matrix. Notch activation by the Delta4 ligand on the tumor cell 

membrane has a pro-angiogenic effect as well. 
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1.4. Senescence  
 

The word senescence derives from the Latin senex, which means old man or old age. 

At a cellular level senescence refers to a phenomenon that involves deteriorative processes 

culminating in the irreversible cell proliferation arrest, to what we call cellular senescence.94 

It is a cellular response, to endogenous or exogenous stresses, that allows cells to maintain 

alive under the condition of cellular cycle arrest characterized by changes on a 

morphological and physiological level.  

Hayflick and colleagues were the first to describe the cellular senescence 

phenomenon by showing that primary fibroblasts (normal human cells) had a limited ability 

to replicate when kept in culture for long periods of time.95 This work revealed that after 

many cell doublings, the replicative potential of those cells was exhausted resulting in the 

presence of viable cells with no capability to proliferate even though they had an abundance 

of growth factors, nutrients and space.95 Today it is known that this particular type of cellular 

senescence is triggered by the telomere shortening and it is called replicative senescence.96 

The dysfunctional telomeres trigger senescence via the p53 tumor suppressor protein (p53) 

pathway (Figure 5).94  

One other strong, and telomere independent, senescence inducer mechanism is the 

DNA double strands breaks (DSBs) lesions.97 Oxidative stress and other DNA damaging 

agents can cause DNA base damage and single-strand breaks which, on its turn, can be 

converted to DBSs during the replication and repair processes. In the context of cancer 

treatment, the formation of DNA DSBs can arise from ionization radiation, topoisomerases 

inhibitors and other cytotoxic chemotherapeutic drugs,98,99 which are notably effective 

senescence inducers, capable of both inducing it in tumor cells or in the surrounding normal 

cells.100 The precise mechanism behind this type of induction is unknown, but such lesions 

provoke a constant DNA damage response signaling, which is characterized by the long-

term presence of nuclear DNA damage foci that contains activated DNA damage repair 

proteins including p53. 

Mitogenic signals can also be strong inducers of senescence.101 The best examples of 

this type of induction are the senescence responses that are provoked by certain oncogenes. 

This phenomenon has come to be known as oncogene-induced senescence. In some cases, 
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the overexpression of oncogenes induces molecular and morphological changes that cause 

the cells to stop dividing, instead of promoting an increase in proliferation. Earlier studies 

on this type of senescence response were done in mutant HRAS (HRASV12) cells, which 

chronically stimulates the mitogen-activated protein kinase (MAPK) signaling pathway, 

shown that it promotes senescence in normal cells.102 Since then other components of the 

MAPK pathway have been linked to the induction of senescence when overexpressed or 

present in oncogenic forms.103,104 Furthermore, cells can also undergo senescence in 

response to many other mitogenic stimuli such as the overexpression of growth factor 

receptors such as the HER2,105 chronic stimulation by cytokines106 and other forms of intense 

mitogenic stimulation.107 Independently of the initiating event, mitogenic signals end up 

engaging either or both of the two major tumor suppressor pathways: p53/p21 and the cyclin-

dependent kinase inhibitor 2A/Retinoblastoma-associated protein (p16INK4a/p-RB) pathways 

(Figure 5),  known to establish and maintain cellular senescence.108 In fact, the chronic 

activation or overexpression of p53, p-RB, p21 or p16INK4a is commonly sufficient to induce 

senescence.102,109 These are two complex pathways with numerous regulators and effectors 

that, in addition, can cross-regulate each other.110,111 Both p53 and p-RB are master 

transcriptional regulators, thus these pathways control the senescence response mainly 

through widespread changes in gene expression. p21 is a downstream effector and p16INK4a 

is a positive upstream regulator of p-RB, and both are cyclin-dependent kinase inhibitors 

that work as strong negative regulators of the cell cycle. p53, in particular, has a major role 

as a tumor suppressor112 and it is regarded as one of the most important regulators of cell 

fate.113 It acts by restricting proliferation through numerous cell cycle checkpoints leading 

the cell to apoptosis or cellular senescence.  

As we still struggle to fully understand how senescence works, there is evidence 

demonstrating that senescence has both beneficial and detrimental roles. On one hand, 

transient cellular senescence induction followed by tissue remodeling favors the removal of 

damaged cells and acts as a tumor-suppressor mechanism against oncogenic development. 

On the other hand, if this process is persistent and it is not followed by the ability to eliminate 

such cells it will directly influence the renewable of the tissues and becomes a detrimental 

process.114 Broadly, it is possible to say that the role of senescence is to allow the organism 

to remove unwanted cells. 
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Figure 5: Senescence controlled by the p53 and p16–pRB pathways.94  

Senescence-inducing signals usually engage either the p53 or the p16/p-RB tumor suppressor pathways. Some 

signals, such as oncogenic RAS, engage both pathways. p53 is negatively regulated by the E3 ubiquitin-protein 

ligase HDM2 (MDM2 in mice), which facilitates its degradation, and HDM2 is negatively regulated by the 

alternate-reading-frame protein (ARF). Active p53 establishes the senescence growth arrest in part by inducing 

the expression of p21, a cyclin-dependent kinase (CDK) inhibitor that, among other activities, suppresses the 

phosphorylation and, hence, the inactivation of pRB. Senescence signals that engage the p16–pRB pathway 

generally do so by inducing the expression of p16, another CDK inhibitor that prevents pRB phosphorylation 

and inactivation. pRB halts cell proliferation by suppressing the activity of E2F, a transcription factor that 

stimulates the expression of genes that are required for cell-cycle progression. E2F can also curtail proliferation 

by inducing ARF expression, which engages the p53 pathway. So, there is reciprocal regulation between the 

p53 and p16–pRB pathways. 

 

Together with apoptosis —also a cellular response to endogenous or exogenous 

stimuli but which results in a programmed cell death— these two mechanisms are the most 

efficient to remove those damaged cells.114 Both are conceptually identical to each other, it 

is possible to say that senescence is an apoptosis resistance mechanism, and p53 protein is 

the major regulator of both processes. Although it is not still very clear what makes a cell to 

whether undergo a senescence or apoptotic pathway, the cell type seems to be a relevant 

factor, for instance, damaged epithelial cells and fibroblasts are more prone to senescence 

than damaged lymphocytes, which tend to undergo apoptosis.94  

Over the years the characterization of the cellular senescence state has been 

improving. As is expected there is not a single characteristic to be exclusive of the 
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senescence state. Instead to distinguish senescent cells from other non-dividing cell 

processes, such as quiescent or other types of terminally differentiated cells, a set of several 

features comprising both morphological changes and molecular markers are used.  

The absence of proliferation markers is obviously one of those markers. For instance, 

the absence of the proliferative marker 5-bromodeoxyuridine is an essential condition to 

certificate the state of senescence.94 This synthetic nucleoside, analogue to thymidine, is 

incorporated by the cell during the DNA synthesis in the S phase of the cell cycle, thus by 

detecting the incorporated chemical it is possible to measure the rate of proliferation.94  

At a morphological level cellular senescence is clearly visible by the changes in the 

phenotype, cells become larger, often with doubling in volume, flat and in some cases with 

a multinucleated appearance.115 These basic characteristics on their own are a good 

indication for a potentially cellular senescence state, however, they are still insufficient. 

Together with these microscope visible features, the histochemical staining for 

senescence-associated β-galactosidase (SAβ-gal) activity was one of the first and most 

consensual biomarkers to be used to identify cellular senescence.101,116 This activity is based 

on the overexpressed lysosomal content of senescent cells. It reflects the enlargement of the 

lysosomal compartment as a consequence of the increased lysosomal biogenesis in senescent 

cells.117  This activity is linked with an increase in autophagy, which is an effector 

mechanism of senescence.116 For the most of the mammalian cells SA-β-gal activity 

detection is made at pH 4.0 but for senescence, it is only sensed around pH 6.0.117 The 

simplicity of this assay and its apparent specificity for senescent cells have made of this 

biomarker one of the most extensively used. 

Another marker that can be used, is the senescence-associated heterochromatin foci 

(SAHF) which is a characteristic present in some, but not all, senescent cells.118 SAHF 

represents cytologically detectable heterochromatin domains that endorse altered expression 

of proteins that affect the chromatin structure. This heterochromatin main objective is to 

repress and contribute to the silencing of proliferation-promoting genes in the senescent 

cell.119 SAHF appears to be dependent on p16INK4a/p-RB pathway activation and have been 

strongly correlated with the irreversibility of senescence arrest.119 Although SAHFs are not 

present in all senescent cells, it has been proposed that, in cells that do not develop these 

structures, the p16INK4a/p-RB pathway might establish chromatin states that are functionally 
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equivalent to SAHFs due to the ability of pRB to complex in histone modifying enzymes 

that form repressive chromatin.94 Senescent cells can be identified by the cytological markers 

of SAHFs that are detected through favorable binding of DNA dyes, such as 4′,6-diamidino-

2-phenylindole.  

Alongside with these changes in chromatin organization and gene expression 

alterations, it is still necessary to mention yet another important biomarker to the 

identification of senescence, that is, the senescence-associated secretory phenotype (SASP). 

Many senescent cells overexpress genes that encode secreted proteins that can alter the tissue 

microenvironment. These include numerous proinflammatory cytokines, chemokines, 

growth factors and proteases.120,121 The complexity of the SASP proteins reflects the myriad 

of biological activities that it provokes. Some components of SASP can promote cell 

proliferation120,122 as well as stimulate new blood vessel formation.123 SASP secretions of 

the pro-inflammatory cytokines (interleukin-6 and 8), chemokines and macrophage 

inflammatory proteins directly or indirectly promote inflammation.120,124 Some other 

components, particularly transforming growth factor-beta, are known to trigger senescence 

in neighboring cells in a paracrine manner.114 One interesting feature of SASP is that it is 

primarily a property of cells that senesce owing to genomic damage or epigenomic 

perturbation, thus a cell that enters senescence via ectopic overexpression of p21 or p16INK4a 

do not express SASP as senescence feature.125 

Currently, it is hypothesized that SASP might have evolved together with the 

senescence response as a mechanism to both suppress the development of cancer and 

promote tissue repair in young organism126 through the promotion of an inflammatory 

microenvironment that stimulates the clearance of damaged and senescence cells by the 

immune system.114 However, the “dark side” (already mentioned above dual role of the 

senescence response) of the SASP secretome is only revealed later in life; when the age-

dependent accumulation of senescent cell creates sites of chronic inflammation and 

remodeling/healing features, which are permissive for the development, or at least the 

progression, of cancer through SASP factors known to fuel the deleterious effects of 

senescent cells.126 Also with age comes the decline of the adaptive immune system making 

it less likely that senescent cells will be cleared efficiently.127 So, senescent cells increase 

with age and can promote cancer initiation through their prominent feature of SASP 

secretions that, on their turn, can stimulate the infiltration of leukocytes which produce 
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reactive toxic moieties that can cause DNA damage.128,129 It seems that at some point, 

senescent growth arrest starts to lose its evolutive function of preventing cancer development 

and tissue damage, and instead it contributes to the exact opposite. 

An important question then is if the senescent state can be used as a therapeutic target. 

Recent studies have been emerging with promising results in this field.130 Nevertheless, 

cellular senescence remains very ambiguous and still raises a battery of questions remaining 

to be answered. 
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1.5. Objectives 
 

TNBC is a type of BC that is a remarkably heterogeneous and complex disease entity 

that lacks targeted therapies. And though a lot of women respond very well to the 

surgery/chemotherapy/radiotherapy treatment, when TNBC recurs or spreads it is, 

unfortunately, more difficult to treat than some other forms of BC. We very much need to 

find new treatments, both for patients with metastatic or advance TNBC, and for patients 

with an early stage to do a better job in preventing recurrences. 

The objective of this work is the improvement of breast cancer therapy by using two 

conceptually different approaches: (1) investigating the synthetic lethality with hypoxia; (2) 

exploiting senescence as a vulnerability in cancer cells that can be therapeutically targeted.  

(1) Tumor hypoxia is a common feature in cancer diseases and it can have dual roles. 

On one hand it can function as a drug resistance and as a driving oncogenic force, and on 

the other hand, it can prevent the growth of tumor cells. The development of antiangiogenic 

(AA) treatments, at first very promising, revealed to be a clinical failure conferring no 

enduring benefits to oncology patients. Thus, there is the need to improve the efficacy of AA 

therapies. This part of the project aims at doing so and consisted on the validation of a 

functional genetic CRISPR screen aiming to find synthetic lethal interactions with hypoxia. 

(2) A genetic screen aiming to find synthetic lethal partners with Palbociclib 

treatment in TNBC cell lines revealed not a synthetic lethality interaction but instead the 

induction of senescence with the cyclin-dependent kinase 2 protein (CDK2). This second 

part of the project aimed to further expand the validation of this finding to a larger TNBC 

cell line panel using different approaches (genetic and pharmacological) and subsequently 

test the efficiency of a senolytic drug (ABT-263) in specifically killing senescent cancer 

cells. 
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2. Results and discussion  
 

2.1. Finding synthetic lethal interactions with hypoxia in TNBC 
 

Most cancers grow in hypoxic conditions due to the lack of a proper functional 

vasculature able to support the physiological needs of the fast-growing malignant cells. It is 

in these hypoxic tumor areas that we find some of the most malignant cells.131 There are 

currently several targeted therapies to target and inhibit angiogenesis. Yet these anti-

angiogenic therapies have failed to show enduring anti-cancer responses and thus 

contributed marginally to improve overall survival of breast cancer patients in clinical trials. 

Here we aim at contributing to the improvement of anti-angiogenic treatments. To this 

purpose, we use hypoxia culturing conditions (1% O2) to mimic the effect of reduced tumor 

vasculature induced by this treatment in vitro. We choose a TNBC cell model because this 

type of BC lacks targeted therapies, has a bad prognosis and is, usually, more hypoxic than 

the other BC subtypes.132 In this study, we used a CRISPR/Cas9 technology approach to 

perform a genetic screen aiming at finding synthetic lethal interactions with hypoxia/anti-

angiogenic agents. The screen was performed with an epigenetic library since there is little 

knowledge about the regulation of the epigenome in hypoxia. 

The human TNBC line SUM159PT was infected with that library which contained 

5230 single guide RNA (sgRNA) sequences targeting chromatin modifiers and epigenetic 

regulators. The screen was maintained at a complexity of 1000-fold coverage (each sgRNA 

was present in approximately 1000 cells), and with a multiplicity of infection (MOI) of 

approximately 0.3 to avoid multiple integrations and thus confounding results due to 

passenger effect. Cells were seeded in three technical replicates for each arm, normoxia 

(21% O2), and hypoxia (1% O2), and collected also in triplicates in the time-point zero as a 

reference sample (Figure 6A).  

After culturing for 20 days, genomic DNA was isolated and the viral DNA was 

recovered by polymerase chain reaction (PCR), and analyzed by deep sequencing to identify 

the number of sgRNA inserts in the cell population. The results were analyzed using the 

MAGeCK software.133 Overall sgRNAs targeting essential genes were depleted in 

comparison to those targeting nonessential genes in both normoxia and hypoxia arms (Figure 

6B), indicating that technically the screen performed as intended. The M/A plot in Figure 
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6C represents the depletion of sgRNA at 1% O2 versus the mean reads per sgRNA at 21% 

O2. The ten candidate genes identified as top hits are indicated in Table 1. 

 

 

 

Figure 6: Synthetic lethality dropout screen layout and its hits. 

(A.) An epigenomic CRISPR library was used to infect SUM159PT TNBC cell line at a complexity of 1000 

and MOI of 0.3. Cells were collected at time-point zero (control) and cultured in 1% and 21% O2 for 20 days. 

The screen was designed with three biological replicates per arm and collected in three technical replicates. 

Lentiviral DNA was captured, PCR-barcoded for each technical replicate and sequenced using Illumina Hi-

Seq. (B.) In vitro screen controls, M/A plots of hypoxia vs. T0 and normoxia vs T0 in which the depletion 

(relative abundance 1% O2 / T0 and 21% O2 T / T0) of the control genes is plotted versus mean read per sgRNA 

(log 10 scale), non-targeting controls (NTC) are shown in blue and essential genes in orange. The plots show 

the depletion of essential genes while the non-targeting controls remain in the cloud in both oxygen tensions. 

(C.) M/A plot in which the depletion (relative abundance 1% / 21% O2) is plotted versus mean read per sgRNA 

(log 10 scale). The four top hits are shown in different colors (each one with at least 3 different sgRNAs to the 

same gene), the cut-off criteria for a gene to be considered a hit was a false discovery rate of < 0.003. 
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Table 1: Top 10 candidate genes hit list after screen analysis. 

neg | rank Gene ID Nr. of sgRNAs Neg | fdr 

1 RUNX1 18 0.00165 

2 HIF1AN 10 0.00165 

3 ASXL2 10 0.00165 

4 RBBP7 17 0.003713 

5 KAT2A 10 0.008911 

6 EP300 10 0.009076 

7 KDM3B 10 0.170438 

8 ZMYND11 15 0.316213 

9 TDRD7 10 0.833333 

10 SP140 18 0.857921 

 

When I arrived in the Bernards lab, the screen had been already performed and 

analyzed. I started my internship by validating the top four candidate genes: RUNX1, 

HIF1AN, ASXL2 and RBPP7. 

The first step was to assess the effect of hypoxia on the proliferation of the 

SUM159PT cell line on a long-term clonogenic assay. In Figure 7A is not possible to 

appreciate a strong difference in the colony formation assay, but quantification with cell titer 

blue (CBT) showed a statistically significant difference (Figure 7B) with a p-value of 

0,02707 at end stage. This indicated a slight sensitivity of this cell line to hypoxia that we 

aimed to increase further by interfering with the genes identified in the screen. 

 

Figure 7: Hypoxia condition (1% O2) does not significantly impair SUM159PT cell proliferation. 

SUM159PT cells were seeded at low density in a 6-well plate setting and cultured either at 21% or 1% O2 

conditions. (A.) Colony formation assays where cells were fixed and stained in each of the indicated time 

points. (B.) Growth curves from cell counts of the indicated time points (results from two biological replicates 

counted in duplicate). (Time points where p-values show statistical significance are indicated with (*); T=3, (p 

= 2,352E-06), T=9 (p =0,00239) and at T= 11 (p = 0,02707)). 
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2.1.1.  RUNX1 validation 

 

Runt-related transcription factor 1 (RUNX1) also known as acute myeloid leukemia 

1 protein or Core Binding Factor subunit alpha-2 (CFBA2) is a protein that is encoded by 

the RUNX1 gene, which showed up as the strongest hit in the screen. CFBA2 can bind to 

the DNA as a monomer, but its affinity is enhanced 10-fold if it heterodimerizes with the 

Core binding factor subunit beta (CBFB), forming the Core binding factor (CFB) which is a 

transcription factor and it can bind to the core element of several different enhancers and 

promoters. RUNX1 binds DNA and is thought to be involved in the development of normal 

hematopoiesis.134 

For the validation of RUNX1, we individually cloned the six sgRNAs targeting 

RUNX1 that best scored on the screen into the pLentiCRISPR2.1 vector. These were used 

to produce lentivirus particles that transduced SUM159PT cells. In Figure 8A it is shown 

RUNX1 protein levels from SUM159PT cells infected with the six different sgRNAs.   

From all the six sgRNAs, only the cells infected with the sgRNA-RUNX1-11 showed 

a significant reduction in the levels of RUNX1 protein at the time-point zero (lysates 

harvested after puromycin selection). This result seemed to be correlated with the fact that 

this sgRNA was the one that had the strongest score in the screen (Table 6 in materials and 

methods section). However, over a period of 15 days, sgRNA-RUNX1-11 levels did not 

remain diminished and were in fact enriched over time (red boxes in Figure 8A).  

This transient loss of RUNX1 protein knockdown levels over time can be explained 

by the polyclonal population setting in which the experiment was performed. It is known 

that over time, certain knockouts confer cells with a proliferative disadvantage. What might 

be happening is that cells that have less RUNX1 knockdown levels take over the population 

by displaying proliferation advantage over the most efficiently RUNX1 knockdown cells. 

Furthermore, there is also the possibility that there are cells edited with a silent mutation that 

does not have impact on the protein synthesis or functions.135 
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Figure 8: RUNX1 validation.  

(A.) SUM159PT cells were transduced with sgRNA-RUNX1 (six different sgRNAs targeting RUNX1 and one 

non-targeting control gRNA) and seeded at time-point zero (T=0) after puromycin selection. Protein lysates 

were prepared at the same time and blotted for assessment of RUNX1 levels. Single gRNA-RUNX1-11 

displayed the strongest RUNX1 protein level reduction and these cells were followed up for further validation 

(red box) by being cultured in hypoxia or normoxia. At T=8 and T=15 cells were harvested and blotted for 

RUNX1.  RUNX1 protein levels get enriched over time. HSP90 was used as loading control. (B.) Transfected 

SUM159PT cells were isolated into single cell clones by Fluorescent Activated Cell Sorting after puromycin 

selection. Cells were harvested and blotted for RUNX1 protein levels. (C.) SUM159PT cells were transduced 
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with shRNA-RUNX1 (four different short hairpins targeting RUNX1 —shE5, shE6, shE7, shE9— and empty 

vector pLKO as control). Cells were harvested for protein and RNA analyses after puromycin selection. (D.) 

Parental cells were seeded at low-density in 6-well plate setting and allowed to attach overnight both at 21% 

and 1% O2 conditions. Cells were then treated with increasing doses of THZ1 (refreshed every 2 days) for a 

period of 7 days. Cells were fixed, stained and scanned. (E.) Parental cells were seeded at low-density (400 

cells per well in 96-well plate setting) and allowed to attach overnight both at 21% and 1% O2 conditions. Cells 

were then treated with increasing doses of THZ1 (refresh every 2 days) for a period of 5 days after which they 

were fixed, stained and scanned (three technical replicates per condition). (Unt. = untreated, NTC = non-

targeting control). 

 

For these reasons, a logical way to proceed is to validate the hits in monoclonal 

populations. In order to do so, we isolated single cell clones by Fluorescent Activated Cell 

Sorting (FACS) from these polyclonal populations. This experiment was performed right 

after the puromycin selection, in order to start with an enriched population of cells knockout 

for the targeted gene. Despite the technical difficulties in isolating such populations, we were 

able to grow some clones but, unfortunately, the results of the western blots never revealed 

a true RUNX1 knockout level (Figure 8B.). 

The fact that we could not achieve any RUNX1 knockout clones when trying to 

isolate monoclonal populations, nor observe any knockdown levels in the polyclonal setting, 

led us to think that RUNX1 might be an essential gene and thus its depletion display a 

straight lethal phenotype. In fact, RUNX1 knockout mice are embryonic lethal due to defects 

in liver hematopoiesis and central nervous system haemorrhages.136,137 In cancer this could 

still be a context-dependent event in SUM159PT cells. If this holds true, the absence of 

RUNX1 knockout in the western blots could be explained as the result of the outgrowth cells 

that were edited on a silent mutation (mutation in one nucleotide that does not display 

phenotype).135 

In an attempt to rule out or confirm this hypothesis, we next used a short hairpin RNA 

(shRNA) approach. This method leads to a knockdown of the target gene instead of a 

knockout. SUM159PT cells were transduced with lentivirus particles carrying five different 

shRNAs targeting RUNX1. Also with this approach, we did not detect reduced levels of 

RUNX1 RNA nor protein (Figure 8C). In fact, we even observed an upregulation of RUNX1 

transcripts in the shRUNX1 treated cells; this event makes sense if it is the case that this 

gene controls its own expression through a negative feedback loop and once the protein level 

decreases, the gene compensates by increasing its transcription resulting also in the 

upregulation of protein levels. Of relevance to mention that cells transfected with one of the 
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shRNAs (shRNA-E8) did not survive to the viral transduction and subsequent puromycin 

selection, which can also support the notion that RUNX1 is indeed a straight lethal gene in 

this particular cell line. 

RUNX1 has been known for its role in the development of several types of 

leukemia,136 and more recently it has also been found mutated in breast cancer.138,139 One 

study shows a putative correlation between the expression of RUNX1 and poor patient 

prognosis in TNBC patients with primary operable BC, where authors show that when 

RUNX1 protein levels are highly expressed the survival rate decreases compared to the 

low/absent RUNX1 expression.140 For this reason, in parallel to the genetic validation of the 

screen, we also pursued a pharmacologic validation of RUNX1 in the context of hypoxia. 

However, the direct targeting of transcription factors is not something easy to achieve,141 

especially as a cancer therapy due to the many roles that transcription factors have in non-

malignant cells. One way to pharmacologically inhibit general transcriptional machinery is 

through an indirect inhibition, for instance, the targeting of transcription co-factors.  

A recent study shows that THZ1, a selective covalent inhibitor of cyclin-dependent 

kinase 7 (CDK7), negatively impact the transcription activity of RUNX1 in Jurkat T-ALL 

cell.142 The same authors also used THZ1 in a TNBC work, where they show that TNBC, 

but not hormone receptor-positive breast cancer cells, are dependent on CDK7 

transcription.143 For these reasons we decided to use THZ1 to interfere with RUNX1 activity. 

Furthermore, THZ1 was never explored under hypoxia, and so it would still be novel to test 

it in this context. 

In Figures 8D and 8E are shown the results of THZ1 treatment in colony formation 

(CF) assays performed in 6 and 96-well plates settings. The CFs on the 6-well setting (Figure 

8D) did not show differences when cells were grown in hypoxia versus normoxia conditions 

upon increasing concentrations of THZ1 treatment. Even so, this experiment was also 

performed in a 96-well setting (Figure 8E) and here we observed a slight difference in the 

phenotype, cells cultured at 1% O2 showed a stronger cell proliferation impairment compared 

to when cultured at 21% O2. In order to clarify these discrepancies, the experiments must be 

repeated with better controls, for instance, take along cells to grow in hypoxia but without 

THZ1 treatment, because this slight difference in cell proliferation can be the result of 

hypoxia on itself (Figure 7B). Another point to be addressed is RUNX1 protein levels and 
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its target genes upon THZ1 treatment, to verify THZ1 effect on RUNX1 in this cell line in 

the tested oxygen tensions. 

Overall the experiments presented in this thesis suggest that RUNX1 does not 

validate as a screen hit and thus is not synthetic lethal with hypoxia. Using a CRISPR/Cas9 

approach, we only managed to obtain knockdown of RUNX1 with one gRNA (sgRNA-

RUNX1-11), but that phenotype was rapidly lost in the polyclonal population, preventing a 

proper conclusion about the theoretical synthetic lethality of RUNX1 with hypoxia. 

Monoclonal populations of CRISPR-RUNX1 edited cells also failed to produce RUNX1 

deficient cells. Additionally, the shRNA approach and qRT-PCR analyses further suggest 

that, indeed, RUNX1 might be a straight lethal gene in SUM159PT. With regard to the 

pharmacological approach, the results also did not show a synergy which encouraged us to 

pursue further experiments. 

In resume, due to the above presented technical limitations, we were never able to 

create RUNX1KO cells and thus, the synergy between RUNX1KO and hypoxia was never 

truly tested.  

 

2.1.2. HIF1AN validation  

 

HIF1AN gene encodes the hypoxia-inducible protein 1-alpha inhibitor (FIH1), an 

important protein in the cellular hypoxia adaptation that influences the expression of a large 

spectrum of genes dependent on the oxygen pressure variations.144,145 

The significant biological role of HIF1AN associated with the fact that it was the 

second strongest hit in the CRISPR screen giving synthetic lethality with hypoxia made it 

an interesting candidate gene for follow up validation. 

The same approach was taken to validate HIF1AN hit. Lentivirus particles carrying 

three sgRNAs targeting HIF1AN gene were produced and used to transduce SUM159PT 

cells. Efficient knockdown of FIH1 was confirmed by Western blot at different time points 

in a polyclonal cell population (Figure 9A). However, in a long-term colony formation assay, 

we did not observe any phenotype difference when cells were cultured at different oxygen 

tensions (Figure 9B). 
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Figure 9: HIF1AN validation. 

(A.) SUM159PT cells were transduced with sgRNA-HIF1AN (with three different gRNAs targeting HIF1AN 

gene and one non-targeting gRNA control) and seeded at time-point zero (T=0) after puromycin selection (left 

of panel A). Cells were also seeded at the end of CFs experiments, at time-point 11 days after puromycin 

selection (T=11) in both hypoxia and normoxia conditions (right on panel A). Protein lysates were harvested 

and prepared at the same time and blotted for assessment of FIH1 protein levels (red arrow). (B.) Transduced 

cells were seeded at low-density in a 6-well plate setting, and cultured for a period of 10 days (medium refresh 

every 3 days) at 21% and 1% O2 after which they were fixed, stained and scanned. 

 

Our conclusions are that, either even a residual level of FIH1 still present in the 

polyclonal population is enough to maintain its function, or either that the loss of HIF1AN 

is not synthetic lethal with hypoxia. We could also have isolate monoclonal population of 

complete HIF1AN knockout cells and repeat these experiments, but given the complete 

absence of phenotype with a polyclonal setting we did not think it was promising enough to 

move forward with the validation of this gene. 

 

2.1.3. ASXL2 and RBBP7 validation 

 

The same strategy was used in the validation of ASXL2 and RBBP7.  

Putative Polycomb group protein ASXL2 encoded by ASXL2 gene shown decent 

reduced protein levels at time-point zero and thus, those cells were cultured in hypoxia for a 
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period of 8 days (Figure 10A). ASXL2 impairment did not show any phenotype in 

combination with hypoxia conditions (Figure 10B). 

Histone-binding protein RBBP7 encoded by RBBP7 did not show protein reduction, 

at time-point zero, strong enough to justify a further evaluation on the synthetic lethality 

with hypoxia (Figure 10A). 

 

Figure 10: ASXL2 and RBBP7 validation 

(A.) SUM159PT cells were transduced with sgRNA-ASXL2 and with sgRNA-RBBP7 (both with three 

different sgRNAs targeting both genes and one non-targeting sgRNA control) and seeded at time-point zero 

(T=0) after puromycin selection. Protein lysates were harvested and prepared at the same time and blotted for 

assessment of ASXL2 and RBBP7 protein levels. (B.) Transduced cells were seeded at low-density in a 6-well 

plate setting, and were cultured for a period of 8 days (medium refresh every 3 days) at 1% O2 conditions after 

which they were fixed, stained and scanned. 

 

ASXL2 gene did not validate in a polyclonal setting despite some degree of protein 

reduction, and as similarly to HIF1AN, the total absence of phenotype in this setting made 

us not continue any further validation with monoclonal populations. 

Regarding the RBBP7 gene, we cannot properly conclude about its validation. The 

levels of protein were not reduced and, once this was the gene with the weakest score on the 

hits list, we did not further invest in its validation.  
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2.1.4. Discussion and conclusions 

 

From the four hits considered for validation, two of them did not validate, namely 

ASXL2 and HIF1AN. CFs assays where the level of protein was knocked down did not show 

any phenotype when cultured in hypoxic conditions. 

The other two hits, RUNX1 and RBBP7, also did not validate. Although in these two 

cases we cannot really rule out the possibility of a validation because we never managed to 

achieve truly knockouts cell populations, despite the several attempts and different methods 

to create such populations. 

Because RUNX1 was the strongest hit and thus the one that held a more promising 

phenotype, it was the hit in which we dedicated more effort. A pharmacological validation 

using a CDK7 inhibitor (THZ1) with the ability to interfere with the transcription of RUNX1 

was performed but failed in showing convincing results. Furthermore, recent studies report 

that RUNX1 inhibitors shown efficacy in impairing Triple-negative BCs,141 and it would be 

interesting to explore these findings in a context of hypoxia. Even more, recently was the 

discovery that the target genes of RUNX1 strongly overlapped with those of ASXL2,146 so 

the fact that both genes appeared in the top score hits might be related to this common target 

genes role under hypoxia. 

Several attempts in previous genetic screens with the aim to find synthetic lethality 

interactions with hypoxia have been performed. Screens using shRNA, CRISPR, several cell 

models, three targeted libraries (kinome, epigenome, hypoxia library) and yet all failed, 

demonstrating how hard it is to identify such interactions. The validation of this screen also 

falls within the scope of those results. We did not find any hit that has validated. 

Nevertheless, this does not mean that we should stop trying. For example, these screens 

could be performed in cells been treated with anti-angiogenic drugs (e.g. bevacizumab), 

because the response to genetic setting (in this case by culturing the cells in 1% O2) is always 

different when compared to a pharmacological setting, where you have off-target effect 

events promoted by the drugs that do not occur in the same way with the genetic editing. 

Another suggestion would be to perform these screens to find essential genes upon AA 

treatment in an in vivo setting.  A recent paper alerts for caution when interpreting in vitro 

results. The authors report that when comparing the results of in vitro and in vivo screens 
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experiments with the aim to identify essential genes for the survival of a type of brain cancer 

have shown almost no overlap,147 suggesting that the translation from in vitro to in vivo 

settings can be more complex than what we thought. 
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2.2. Cellular senescence as a vulnerability used to kill cancer cells. 

 

Aiming at finding synthetic lethal interactions with the CDK4/6 inhibitor Palbociclib, 

a former Ph.D. in our lab performed a genetic screen in 3 TNBC cell lines (HCC1806, CAL-

51 and CAL-120) using a shRNA kinome library. The results from the screen revealed 

cyclin-dependent kinase 2 (CDK2) as the strongest hit with multiple hairpins in the three 

cell line models. 

Palbociclib is a selective inhibitor of cyclin-dependent kinase 4 and 6 (CDK4/6) 

already used in the clinic for treatment of ER-positive and HER-negative advanced breast 

cancer.148 TNBC are resistant to Palbociclib.149 We confirmed this by treating a panel of 

TNBC cell lines with Palbociclib in a long-term CF assay (Figure 11). Table 3 (Materials 

and Methods section) lists the most important driving mutations in each of the TNBC cell 

lines used in this study. 

 

Figure 11: Palbociclib treatment in a panel of TNBC cell lines. 
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Cell lines were seeded at low-density numbers and allowed to attach overnight before being treated with 

Palbociclib at increasing concentrations (medium and drug refreshed every 3 days). After 10 days of culture, 

cells were fixed and stained. (Unt. = untreated control).  

In general, we can conclude that all the tested cell lines are, to some extent, resistant 

to Palbociclib treatment. HCC1806 cell line showed more sensitivity, and CAL-51, along 

with SUM159PT, displayed milder sensitivity with higher drug concentrations. 

Literature and results from our lab showed that drug resistance (acquired or intrinsic) 

often develops by the reactivation of the inhibited pathway.150–152 So is not so surprising that 

we found a hit that is in the same pathway as CDK4/6 (the targets of Palbociclib). 

Furthermore, the targeting of the cell cycle, through CDKs inhibition, has the advantage of 

being a process in which cancer cells are more dependent than when compared with most of 

the cells in the human body, which are mainly in a quiescent state. 

However, when trying to validate this finding, CDK2KD in combination with 

Palbociclib treatment did not prove to be truly synthetic lethal. Instead, a significant number 

of cells survived upon treatment. Microscopic examination showed a different morphology 

of the remaining cells: increased size, flattened cytoplasm, and polynucleation. These cells 

appear not to be dividing, thus suggesting that they could be in a senescent or quiescent state. 

Further characterization using senescence-associated β-galactosidase (SA-β-gal) staining 

and biochemical markers of cellular senescence, for example, loss of phosphorylated RB and 

up-regulation of cyclin-dependent kinase inhibitor 2A (p16Ink4A), showed that these cells 

were indeed in a senescence state. Altogether, this screen revealed a strategy to induce 

senescence through the combination of Palbociclib treatment and CDK2 knockdown.  

Before I arrived in the lab, all the in vitro validation with shRNA had already been 

performed. The next step then would be to validate this model in vivo, because the ultimate 

goal of all translational cancer research is to bring the lab knowledge closer to the clinic. To 

this aim, we tested the model with CRISPR, since classical shRNA is often not a stable 

system to perform long-term in vivo experiments. 

This strategy to induce senescence could then be explored and used in a one-two 

punch model approach. In a first step, we would induce senescence in cancer cells and in a 

second step, eliminate them with a senolytic agent. 
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2.2.1. CRISPR /Cas9 (re)validation of the senescence inducible model in 

TNBC 

 

In order to generate stable CDK2KO clones to model the senescence phenotype in 

vivo (treatment with Palbociclib of CDK2KO tumors), we did a revalidation of the screen 

using a CRISPR/Cas9 approach in three TNBC cell lines. CAL-51 because it was one of the 

cell lines in which the shRNA screen was performed. SUM159PT because it is a cell line 

that was previously tested in mouse xenografts. Moreover, SUM159PT cells are cultured in 

5% FBS (half of what usually is used for culturing other cell lines), making it a suitable cell 

line for tumor engraftment once CDK2 is genetically inactivated. Finally, SK-BR-7 in order 

to have a better representation of TNBC heterogeneity and thus giving us a more robust 

model in case of validation.  

  

Figure 12: Palbociclib treatment in combination with CRISPR editing of CDK2 induces senescence in 

TNBC. 

(A.) Colony formation assays of three TNBC cell lines (SUM159PT, SK-BR-7 and CAL-51) seeded after 

complete puromycin selection. Cells were treated with Palbociclib in increasing concentrations for 7 days (drug 

refreshed every 2-3 days). (B.) CDK2 protein levels in all the cell lines 10 days after puromycin selection in 

polyclonal populations. (HSP90 as a loading control) (C.) Biochemical profile of CDK2 knockdown cells 

treated with Palbociclib (2 µM). SUM159PT cells were harvested 19 days after puromycin selection and with 

eight days of Palbociclib treatment; CAL-51, SK-BR-7 cells were harvested 26 days after puromycin selection 

and with 14 days of Palbociclib treatment. (Unt.= untreated control, NTC = non-targeting control). 
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CDK2KO and NTC cells were treated with Palbociclib (SUM159PT for eight days; 

CAL-51, SK-BR-7 for 14 days) and blotted for senescence markers (Figure 12C). 

SUM159PT showed the most pronounced reduction in proliferation upon Palbociclib 

treatment in combination with CDK2KO. In the other two cell lines, the differences in 

proliferation were not as pronounced as in SUM159PT. However, the cellular features of 

senescence previously described were observed after microscopic inspection. This 

observation is consistent with the fact that SUM159PT was the TNBC line with the most 

reduced CDK2 levels.  

When using CRISPR editing the goal is to get a complete knockout of the targeted 

protein, but as discussed in the previous section, often cells that are genetically edited have 

a proliferative disadvantage and overtime are less represented in the bulk population. This is 

one of the problems in doing these experiments in polyclonal cell population setting, as it 

was this case. It is notable an enrichment overtime for CDK2 protein level in SK-BR-7 and 

CAL-51 (Figure 12B-C). 

This correlation between the efficiency of CDK2KO levels and a visible phenotype in 

the CFs upon Palbociclib was also observed in SW1463, a colon cancer cell line, and to a 

less extent in two lung cancer cell lines (H1944 and H2122) where the phenotype is only 

observed at higher Palbociclib concentrations (Figure 13). 

  

 

Figure 13: Palbociclib treatment in combination with CRISPR editing of CDK2 induces senescence in 

other cancer types (lung and colon). 
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(A.) Colony formation assays of one CRC cell line (SW1463) and two lung cancer cell lines (H2122 and 

H1944) seeded after complete puromycin selection. Cells were treated with Palbociclib in increasing 

concentrations for 7 days (drug refreshed every 2-3 days). (B.) CDK2 protein levels in all the cell lines 10 days 

after puromycin selection in polyclonal populations. (HSP90 as a loading control). (C.) Biochemical profile of 

SW1463 CDK2 knockdown cells treated with Palbociclib (2 µM). Cells were harvested 26 days after 

puromycin selection and with 14 days of Palbociclib treatment. (Unt.= untreated control, NTC = non-targeting 

control). 

 

Common to the majority of these cell lines is the up-regulation of cyclin-dependent 

kinase inhibitor 1A (p21) (except in SK-BR-7) and the highly-decreased RB phosphorylation 

that occurs only in the combination of CDK2KO with Palbociclib treatment. With these 

expected senescence biomarkers and the observed reduction in proliferation on the CFs 

assays, we can say that Palbociclib treatment upon CDK2KO impairs cell proliferation via 

induction of a senescence state. These findings are not only applicable to TNBC but extended 

to other cancer types as well, as shown here with (one) colorectal and (two) lung cancer cell 

lines. 

Put together, these results suggest that the degree of CDK2 reduction might be 

correlated with the effectiveness of the induction and maintenance of a senescence 

phenotype. 

In the meantime, we had started in vivo pilot experiments to test the engraftment of 

CRISPR/Cas9 CDK2KO edited cells. Surprisingly, mice injected with CAL-51 and A549 

(lung cancer) CDK2KO cells showed a strong tumor growth impairment when compared to 

the growth of control tumors (CDK2 wild-type) (data not shown). These were not the 

circumstances in which we wanted to test our model. To fully recapitulate our in vitro 

phenotype, both arms —CDK2KO and CDK2 wild type-tumors— should have comparable 

tumor volume before Palbociclib administration. 

The observation that CDK2KO alone already provokes a strong tumor growth 

impairment made us consider other approaches for the in vivo experiment: to test an 

inducible shRNA-CDK2 system and the use of a small molecule inhibitor of CDK2. 
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2.2.2. Using doxycycline-inducible shRNA-CDK2 and Palbociclib treatment 

to induce senescence in TNBC 

 

The use of an inducible shRNA system that we could activate at any given moment 

was an option with which we could tackle the problem of using cells edited with 

CRISPR/Cas9 prior engraftment into the mice, as described in the previous section.  

Eight TNBC cell lines were transfected with doxycycline-inducible shRNAs 

targeting CDK2 (three different shRNA-CDK2, sh40/76/77, were used to minimize off-

target effects and to give more confidence to the study). As mentioned previously, CAL-51, 

CAL-120 and HCC1806 were used because the screen was performed on these cell lines and 

so the induction of senescence should, in theory, also validate using a shRNA inducible 

system. 

Firstly, we started by assessing the levels of CDK2KD in that panel of eight TNBC 

lines (Figure 14A) and performed CFs assays to evaluate cell proliferation when this 

CDK2KD inducible system was used in combination with Palbociclib versus CDK2KD alone 

(Figure 14B). 

CDK2KD levels upon doxycycline treatment were not equally reduced across the cell 

panel (Figure 14A). This was also verified observing under the microscope the level of 

expression of a red fluorescent protein (RFP) that functions as a reporter for shRNA 

induction in the used constructs. In other words, doxycycline activates both the shRNA 

system and the expression of RFP, which can be used to visually confirm the level of 

shRNA-CDK2 induction. We observed that not all cells were RPF-positive upon 

doxycycline, and in some cell lines, such as SK-BR-7 and CAL-120, we observed RFP signal 

in only 50% of the cells. This issue could be overcome with cell sorting, to isolate 

monoclonal populations. However, due to time limitations, these experiments were not 

performed and thus will not be discussed in this thesis. 
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Figure 14: CDK2 knockdown levels and its proliferation effect in a panel of TNBC cell lines. 
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A panel of TNBC lines was transfected with a doxycycline-inducible shRNA-CDK2 system (three different 

small hairpins with different sequences were used: shCDK2-40, shCDK2-76, shCDK2-77). (A.) Cells were 

seeded and protein lysates prepared at the same time for western blot assessment of CDK2 levels. The shCDK2 

inducible system does not have the same level of efficiency across the panel of cell lines. In the ‘Over Exp.’ 

image is shown the CDK2 levels with a longer exposure time to confirm that these are knockdowns and not 

knockouts. (B.) Cells were seeded at low densities in 6-well plate setting and treated with increasing 

concentration of Palbociclib up to 2 µM (refreshed every 3 days) for a period of 13-15 days, after which all the 

plates were fixed, stained and scanned. The control wells from SUM159PT are missing because cells detached 

due to overgrowth. (PD = Palbociclib; Unt. = untreated; dox = doxycycline).  

 

In only half of the cell lines (HCC1806, MDA-MB-157, HCC1937, HCC70) this 

system conferred a substantial CDK2 reduction on the protein level. In general, we can say 

that all the cell lines exhibited, within a broad range, sensitivity to Palbociclib treatment 

upon CDK2KD. CAL-120 was an exception since it did not show any visible impairment of 

proliferation, but it was one of the cell lines where CDK2 protein levels were the least 

reduced. In truth, to some extent, in the cases where CDK2KD was more efficient is visible a 

stronger proliferation reduction. For some cell lines (HCC1937, SK-BR-7 and HCC70), 

CDK2KD alone seemed to have a significant impairment in proliferation regardless of 

Palbociclib treatment.  

Another interesting observation was that, in virtually all cell lines, with a microscope 

observation it was possible to see cells with two totally distinct morphologies growing in 

clusters within the same wells. However, we could not find a strong link between these 

different morphologies with the RPF signal status. We would expect that cells with non-

senescence morphology would not show RPF signal, and the other way around for cells with 

a morphology of senescence, but it was not the case. The RPF signal was “randomly” 

distributed across these two morphological distinct phenotypes. 

Based on these experiments we concluded that CDK2KD confers more sensitivity to 

Palbociclib treatment, leading cells to a growth impairment that might be the result of 

entering into a senescence state. Moreover, there is a category of TNBC lines that are 

sensitive to CDK2KD. The results also suggest that the absence of phenotype in proliferation 

might have to do with the insufficient CDK2KD similarly to what we previously observed 

using the CRISPR approach. 
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From the eight cell lines used in the last panel, we selected five of them for further 

senescence characterization: the original cell lines where the screen was performed, CAL-

51, CAL-120 and HCC1806, alongside with SUM159PT and MDA-MB-157. In Figure 15 

are depicted the results of the experiments where we assessed for senescence biochemical 

biomarkers and looked at SA-β-galactosidase activity.  

 

Figure 15: Senescence induction in a panel of TNBC. 

A panel of five TNCB cell lines transduced with shRNA-CDK2 (sh76 and sh77) were treated with 

doxycycline (to induce CDK2 knockdown) in combination with Palbociclib or with Palbociclib alone as WT 

control, for a period of 10 days (Palbociclib was refreshed every 3 days and used at different concentrations 
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indicated below each cell line in (B.); new doxycycline was added daily to the medium to keep a constant 

expression of the shRNA inducible system). (A.) Cells were seeded for Western blot assessment of 

senescence biomarkers (p21, p16, p-RB), and for the levels of CDK2 and two of its binding partners (cyclin 

E and cyclin A). (B.) Cells were seeded for CF assay at low densities in 6-well plate setting and treated with 

Palbociclib (refresh every 3 days) for 6 days after which the shCDK2-76 ABT-263 untreated wells of all the 

plates were fixed and stained for the senescence biomarker SA-β-galactosidase.  

 

The Western blots show CDK2 levels generally reduced after doxycycline treatment 

and variable across the panel (Figure 15A). The phosphorylation levels of RB (p-RB) were 

downregulated in Palbociclib and Palbociclib + CDK2KD conditions, but to a greater extent 

in the former. Unfortunately, the blots for p16 and p21 did not technically work (proteins 

could not be detected, and thus are not included). Together, CDKs and Cyclins carefully 

regulate the cell cycle. CDK2 can bind to multiple cyclins (cyclin types A, B, D and E). We 

blotted for Cyclin E and A because those two are the preferred pairing cyclins of CDK2. 

Cyclin E is most active during G1 to S phase transition, while Cyclin A has its peak of 

activity during S and G2 phase. The results show that upon CDK2KD there is an impairment 

on the expression of both Cyclins, with Cyclin A being more affected than Cyclin E. Indeed, 

Cyclin A is equally downregulated with Palbociclib alone and Palbociclib in combination 

with doxycycline in CAL-51 and MDA-MB-157. Previous studies showed that Palbociclib 

alone can impair the levels of expression of Cyclin A and induce a quiescent state in primary 

liver cancer models.149  

As expected, in general, the untreated cells — no Palbociclib nor doxycycline—  did 

not stain for SA-β-galactosidase activity (Figure 15B) (in CAL-51 we observed background 

staining due to high cellular confluency). As for the cells treated with Palbociclib alone, 

there is some staining (mostly CAL-51 and MDA-MB-157) and the levels of p-RB are 

equally diminished in both conditions indicating that Palbociclib alone already induced some 

degree of senescence in these cell lines. HCC1806 and MDA-MB-157 were the cell lines 

with the most pronounced CDK2KD, which correlates with a more pronounced SA-β-gal 

activity staining. 

To further strengthen the senescence characterization of these cells, we could also 

have looked to the senescence-associated secretory phenotype (SASP)153 which can be 

detected by mRNA analysis. Nevertheless, with the presented senescence biomarkers we 

have shown that CDK2KD in combination with Palbociclib treatment induces senescence in 

these cell lines.  



43 
 

2.2.3. Killing senescence cells with ABT-263 - genetic validation 

 

Naturally, the only good cancer cell is a dead one. At this point the plan was to apply 

the second punch by treating senescent cells with ABT-263, a senolytic compound that has 

already demonstrated efficiency in eliminating senescent cells.154,155 

Using the same panel of TNBC cell lines we tested the effect this drug at two different 

concentrations. 

 

 

Figure 16: ABT-263 treatment of shCDK2 + Palbociclib senescence cells. 

A panel of five shRNA-CDK2 (sh76 and sh77) transduced TNBC cell lines were treated for a period of 10 

days with doxycycline (to induce CDK2 knockdown) in combination with Palbociclib or with Palbociclib alone 

as WT control (Palbociclib was refreshed every 3 days and used at different concentrations indicated in Figure 

15; new doxycycline was added daily to the medium to keep a constant expression of the shRNA inducible 

system), before being seeded for CFs at low densities in 6-well plate setting and treated with Palbociclib and 

ABT-263 (refresh every 2 days) for a period of 6 days after they were fixed, stained with 0.1% Crystal Violet 

solution and scanned. (Unt. = untreated). 

 

It is important, first of all, to alert the reader to the fact that in these CFs assays each 

untreated (no doxycycline) well is the control of the subsequent wells treated with ABT-263 

(Figure 16). It would be a mistake to proportionally compare the different condition arms 

because in each one the original seeding cell numbers were different. The rationale behind 

it has to do with the senescence state induced by the combination of Palbociclib and 

CDK2KD, making logical to seed cells at higher confluency at the beginning of the 

experiment. Cells treated with Palbociclib alone or untreated (still proliferating) were seeded 
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in fewer numbers so that the control wells would reach full confluency at the end of the 

experiment time. 

The cell lines in which ABT-263 treatment killed preferentially senescent cells were 

HCC1806 and SUM159PT. Although, in HCC1806 cells treated with Palbociclib alone, the 

two different shRNAs used (sh76 and sh77) show a different phenotype when treated with 

5 µM of ABT-263. With respect to CAL-120 and MDA-MB-157, this experiment did not 

reveal big differences between the effect of ABT-263 on cells treated with Palbociclib alone 

and cells treated in combination with CDK2KD.  

Also here these experiments should be repeated after an optimization of the ABT-

263 doses. Perhaps with doses lower than 5 µM we can find a better therapeutic window for 

ABT-263.  Most cell lines are already sensitive to 5 µM ABT-263 in the baseline (Figure 

16). We used this dose of ABT-263 based on previous experiments with CAL-51 cells. We 

assumed that 5 µM was a safe concentration to kill only senescent (and not proliferating) 

cells. A titration of ABT-263 should be performed to assess the sensitivity of the TNBC cell 

line panel to this senolytic agent. 

 

2.2.4. Killing pharmacological-induced senescence cells with ABT-263  

 

Obviously at the end of the day what really matters is to translate and recapitulate the 

genetic models to a pharmacological setting. Thus, using the same cell lines, we tested two 

small molecule inhibitors targeting CDK2: CVT-313 and Indisulam.156 The two drugs act 

by two different molecular mechanisms. CVT-313 directly inhibits CDK2 phosphorylation 

(which Western blots failed to show because of the poor quality of the p-CDK2 antibodies) 

inhibiting cell proliferation at the G1 to S phase transition.157 On its turn, Indisulam also 

arrests cells in G1 phase by suppressing the binding of the Cyclin E/CDK2 complex, 

resulting in the decrease of CDK2 levels.158  

In Figure 17A is shown the Western blots of the cells for senescence markers. The 

CDK2 levels are in general decreased, but cell lines respond differently to the two inhibitors. 

For instance, Indisulam is more effective in reducing CDK2 levels in CAL-51 and CAL-120 

whereas CVT-313 is more efficient in SUM159PT and MDA-MB-157. As for the case of 
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HCC1806, at a concentration of 2 µM, Indisulam proved to be lethal whereas with 5 µM 

CVT-313 there was no reduction of CDK2 levels at all. Once that 2 µM of Indisulam in 

combination with 1 µM of Palbociclib efficiently killed all cells without the application of 

the second punch with ABT-263 treatment, in the next experiments a lower dose of 

Indisulam could be tested.  

In fact, HCC1806 was the only cell line in which this small molecule inhibitor (CVT-

313) does not seem to have any effect in promoting senescence in combination with 

Palbociclib. These cells were still proliferating, and did not show any reduction of p-RB 

levels, did not stain for SA-β-galactosidase activity (Figure 17B) neither displayed a typical 

morphology of senescent cells. This absence of phenotype could be a drug dose-related issue 

and thus it would be worthy to repeat the experiment with a higher dose of CVT-313, but in 

general, using doses even higher than this can compromise the use of a drug in vivo. The 

toxicity conferred by this inhibitor has been related to off-target effects159,160 thus, the 

development of better CDK2 inhibitors is still needed. 

When treated with Palbociclib alone all cell lines, with the exception of CAL-51, did 

not stain for SA-β-galactosidase activity. In SUM159PT cells the observed staining was due 

to the background caused by the over confluency; in addition the morphology of those cells 

also did not display a senescence phenotype. On the other hand, when cells were treated with 

the combination of Palbociclib + CDK2 inhibitors the SA-β-galactosidase activity staining 

was positive and the typical senescence morphology was also visible. Nevertheless, it is also 

important to mention that for CAL-51 Palbociclib treatment alone also conferred similar 

morphology and SA-β-galactosidase activity, as already seen in the previous section. 
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Figure 17: ABT-263 treatment upon CDK2/4/6 pharmacological inhibition. 

A panel of 5 TNBC cell lines was treated with two CDK2 inhibitors (Indisulam (2 µM) and CVT-313 (5 µM)) 

and with Palbociclib for a period of 10 days. Cells were treated with different Palbociclib concentrations (note 

that these concentrations are different from the ones used in the genetic approach). (A.) cells were seeded for 

biochemistry analysis of senescence biomarkers (p21, p16, p-RB), CDK2 levels and two of its binding partners 

(cyclin E and cyclin A). HSP90 as a loading control. Simultaneously, cells were seeded at different low 
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densities in 6-well plate setting and continued to be treated with Palbociclib and the CDK2 inhibitors, and with 

ABT-263 (drugs refreshed every 2 days) for 8 days after which the wells without ABT-263 treatment (control 

wells) were fixed and stained for the senescence biomarker SA-β-galactosidase activity (B), and later stained 

with 0.1% Crystal Violet solution and scanned (C). (Unt. = untreated; PD = Palbociclib). 

 

Biochemically, the senescence markers revealed a similar phenotype with the one 

observed with the genetic approach described in the previous section. Excluding HCC1806, 

RB phosphorylation was downregulated both when treated with Palbociclib alone and in 

combination with the CDK2 inhibitors but to a greater extent in the combination. The same 

similarities were observed with the levels of Cyclins. In this pharmacological approach, the 

levels of Cyclin A protein expression were impaired but not the levels of Cyclin E. 

All together we can conclude that it is possible to induce senescence with CDK2/4/6 

inhibitors in TNBC. 

MDA-MB-157 cell line seemed to be the one in which our senescence model better 

validates, despite the lack of the detection for p21 and p16, p-RB is proportionally reduced 

with the levels of CDK2 inhibition when using the two different inhibitors. These results 

were in accordance with the CFs where we could see that when treated with CVT-313 the 

ABT-263 effect was stronger compared to when cells were treated with Indisulam (Figure 

17C). Important to recall that, as in the genetic approach, here each untreated well at different 

conditions works as a control to the other wells. The same proves to be true for SUM159PT, 

the CFs show a greater sensitivity to ABT-263 when cells are in a senescence state induced 

by the combination of CDK2/4/6 inhibitors. In both cases (SUM159PT and MDA-MB-157) 

there is a parallel between CDK2 reduction levels, after the drugs (CDK2 inhibitors and 

Palbociclib), and the senolytic effect of ABT-263. That is, a greater impairment in CDK2 

levels correlates with a stronger effect of ABT-263. 

In general, the induction of senescence state through our proposed model seems to 

work, although some optimization is still needed, namely proliferation assays to determine 

which Palbociclib and CDK2 inhibitors concentrations demonstrate better synergy in 

inducing senescence for each cell line, perform titrations matrices with CellTiter-Blue to 

quantify cell viability upon treatment with ABT-263, as well as to take more controls into 

account, for instance, look into the effect of the CDK2 inhibitors alone and in combination 

with ABT-263 treatment. 
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2.2.5. General discussion and conclusions 

 

TNBC therapy needs improvement. Researchers all over the world are working on 

finding new cancer vulnerabilities that can be exploited to improve the current therapies. 

 Through a genetic screen trying to find synthetic lethal interactions with the CDK4/6 

inhibitor Palbociclib in TNBC cell lines, we ended up uncovering a model of induction of 

senescence. In this model a CDK2 knockdown in combination with Palbociclib treatment 

induces senescence. 

The role of senescence cells has both been linked with tumor suppression as well as 

a promoter of tumorigenesis, but generally it is fair to say that cellular senescence is an anti-

cancer mechanism that is partially subverted by cancer. Interestingly, senescent tumor cells 

exist spontaneously within the heterogeneous population in a tumor and it is now known that 

tumor cells undergo senescence in response to chemo and radiotherapy.161 This is relevant 

because subpopulations of spontaneous senescent cells and therapy-induced senescence cells 

might lead to a compensatory resistance to apoptosis via alternative signaling pathways, and 

although in a senescent state, they remain still to be cancer cells with the ability to promote 

tumorigenesis. 

We validated the induction of senescence both with a genetic and a pharmacological 

approach. While the main focus of this thesis was TNBC, we also have shown that the model 

can be extended to other cancer types as well. This strategy could then be used in 

combination with a second treatment using a senolytic agent able to specifically eliminate 

senescent cells.  

It was challenging to compare the results of the two different approaches experiments 

since they contradict each other in some cases. Looking at CAL-51, for example, we did not 

expect such notorious difference in the CFs phenotype where, with the genetic approach it 

seems that ABT-263 does not have any effect, whereas with the small molecules CDK2 

inhibitors we can appreciate the opposite. Making it even more confusing is the fact that the 

biochemistry and SA-β-galactosidase staining are comparable in both approaches. 

The presence or absence of the senescence phenotype cannot be explained by the 

genetic background of TNBCs. One of those genetic traits that we thought it could give us 

some explanation to the different phenotype responses was the status of the p53 protein. 
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Given the role of p53 in senescence, it is very intuitive to think that the CDK2/4/6 inhibition 

senescence phenotype is p53 dependent. However, because of the several p53 mutant cell 

lines (Table 3, Materials and Methods) that also display senescence features, this doesn't 

seem to be a p53 dependent event. As the mechanistic explanation of the phenotype was not 

in the scope of this thesis, this matter is not going to be discussed further.  

Despite some confounding results concerning the effectiveness of ABT-263 in 

specifically kill senescence cells, we showed that indeed ABT-263 reveals a certain degree 

of selectivity towards senescent cells. In addition, the fact that studies have been reporting 

the existence of therapy-induced senescence cells in patient tumors only reinforces further 

the need for the development of novel senolytic drugs that can eventually be used to target 

senescent cancer cells that have acquired resistance to chemo and radiotherapy.  

The CDK2 inhibitor Indisulam was already been used in the clinic and have shown 

tolerable toxicity,158,162 which can be an advantage over others CDK2 inhibitors. However, 

there was no clear distinction between which of the two CDK2 inhibitors used in this study 

—Indisulam or CVT-313— is the most efficient in promoting senescence in combination 

with Palbociclib. Given the lack of more efficient CDK2 inhibitors and their different and 

complementary mechanisms of action, future experiments could be done to assess if the use 

of these two CDK2 inhibitors together would prove to be more efficient in inhibiting CDK2. 

If so, a triple combination with Palbociclib could at the end be even more beneficial. 
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2.3. Summary and future directions  
 

In the first part of the project, we showed that all the four candidate genes extracted 

from a functional genetic screen aiming to find synthetic lethal interactions with hypoxia 

proved to not validate. With this work we were hoping to find lethal interactions with 

hypoxia that could be then pharmacologically targetable. The goal was to improve the 

already used AA therapies that so far have not shown clinical relevance.  

The failure, up until now, in identifying synthetic lethal interaction with hypoxia 

despite the many attempts, suggests that hypoxia regulation and adaptation are processes 

that we still do not fully understand. Regardless, more work should be done to find the 

weaknesses that hypoxia impose over cancer cells. Perform more in vitro functional genetic 

screens with different libraries and with different cancer types would be interesting 

experiments to do, as well as in vivo screens could reveal new insights in finding essential 

genes with antiangiogenic therapy.  

The second part of this project showed more promising results. We were able to 

validate the finding that CDK2 knockdown/knockout in combination with Palbociclib 

treatment induces senescence in TNBC and that these senescence induced cells can be 

targeted with senolytic agents to be specifically eliminated. Although we only tested ABT-

263 as senolytic there are more drugs that can be tested in the scope of this one-two punch 

strategy. As it was not under the objectives of this thesis, the mechanistic explanation behind 

this induced senescent phenotype was not assessed with more detail. Nevertheless, this 

phenotype does not appear to be p53 dependent. 

 The next step would be to implement this strategy in an in vivo setting. Ideally, first, 

we would engraft CDK2 deficient tumors (and appropriate controls) in mice, treat with 

Palbociclib and evaluate the subsequent effects of ABT-263. If this first experiment shows 

positive results, then a similar protocol would be performed using CDK2 pharmacological 

inhibitors (CVT-313 and Indisulam) instead of the genetic approach. 
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3. Materials and Methods 
 

3.1. Cell culture 
 

A total of 13 cell lines were used during this project. HEK-293T cell line was used 

for lentivirus production. In the validation of the hypoxia screen only SUM159PT was used; 

and for the senescence model validation, to better represent the heterogeneity in TNBC, a 

panel of nine TNBC cell lines was used: SUM159PT, SUM149PT, CAL-51, CAL-120, 

MDA-MB-157, SK-BR-7, HCC1806, HCC70 and HCC1937. As well as SW1463, a 

colorectal cancer cell line, and H2122 and H1944, two lung cancer cell lines. Cells were 

cultured at 37 ºC at 5% CO2. At normoxia conditions the oxygen percentage was 21% and 

in hypoxia around 1%.  

 

Table 2: List of the cell lines used, culture medium composition and cell seeding numbers for colony 

formations assay. 

Cell line Composition of the culture medium  CF 6-well setting seeding 

number 

CAL-51 DMEM 20% FBS; 1% Pen./Strep. 10.000 

CAL-120 DMEM 10% FBS; 1% Pen./Strep. 30.000 

SUM159PT DMEM-F12 5% FBS;  

1% Pen./Strep; 

5µg/ml Insulin;  

1µg/ml 53,5 µl Hydrocortisone 

10.000 

SUM149PT DMEM-F12 5% FBS; 

 1% Pen./Strep; 

5µg/ml Insulin;  

1µg/ml Hydrocortisone 

20.000 

SK-BR-7 DMEM-F12 10% FBS;  

1% Pen./Strep. 

30.000 

MDA-MB-157 RPMI 1640 10% FBS; 

 1% Pen./Strep. 

20.000 

HCC1806 RPMI 1640 10% FBS;  

1% Pen./Strep. 

10.000 

HCC70 RPMI 1640 10% FBS;  

1% Pen./Strep. 

50.000 
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HCC1937 RPMI 1640 10% FBS;  

1% Pen./Strep. 

50.000 

SW1463 RPMI 1640 10% FBS;  

1% Pen./Strep. 

30.000 

HEK293T DMEM 10% FBS; 

1% Pen./Strep. 

 

H2122 DMEM 10% FBS; 

1% Pen./Strep. 

30.000 

H1944 DMEM 10% FBS; 

1% Pen./Strep. 

30.000 

 

Fetal Bovine Serum (FBS) (Thermo Scientific); Penicillin/Streptomycin antibiotics 

(Gibco); Insulin (Sigma Aldrich); Hydrocortisone (ref); DMEM, DMEM-F12 and RPMI 

1640 culture mediums (Gibco). 

 

Table 3: List of cell line mutations. 

Cell line p53 p21 p16 kRas 

CAL-51 WT WT WT WT 

CAL-120 Mut. (homozygous) WT WT WT 

SUM159PT Mut. WT Mut. (homozygous) WT 

SUM149PT Mut. WT null WT 

SK-BR-7 WT WT WT Mut. (heterozygous) 

MDA-MB-157 Mut. (heterozygous) WT WT WT 

HCC1806 Mut. (heterozygous) WT WT WT 

HCC1187 Mut. (heterozygous) WT WT WT 

HCC1395 Mut. (homozygous) WT WT WT 

HCC1937 Mut. (homozygous) WT WT WT 

HCC70 Mut. (homozygous) WT WT WT 

SW1463 (CRC) Mut. (homozygous) WT WT Mut. (homozygous) 

H1944 (Lung) WT WT WT Mut. (heterozygous) 

H2122 (Lung) Mut. (heterozygous) WT WT Mut. (homozygous) 
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3.2. Colony formation assays 

 

Culture medium and drugs were refreshed every 2-3 days. When the control wells, 

containing cells not subjected to treatment, were confluent the experiment ended and cells 

were fixed with a 2% formaldehyde in phosphate buffered saline (PBS) for 1 hour followed 

by a staining step using a 0.1% crystal violet solution (dissolved in water) for about 20 

minutes; then this staining solution was removed and the excess was gently rinsed with 

water, finally the plates were left to dry overnight and scanned the next day. Table 4 shows 

the list of drugs used during this project. 

Table 4: List of drugs used during the project and their targets. 

Drug Target Stock concentration in 

DMSO (mM) 

THZ1 CDK7 5 

Palbociclib CDK4/6 5 

Indisulam Cyclin E/CDK2 complex 10 

CVT-313 CDK2 10 

ABT-263 Bcl-XL, Bcl-2, Bcl-w 10 

 

3.3. Cell growth assay 

 

SUM159PT cells were seeded in 6-well setting (10.000 cells per well) under hypoxia 

and normoxia conditions. Cells were washed with PBS, collected and counted at different 

time points (triplicates counted twice) and, at the same time, fixed and stained. 

 

3.4. Western Blot 

 

Cells were seeded in 6-well plate wells prior to the day of harvest with high-density 

numbers (200.000 – 300.000 cells). First the medium was removed and cells washed with 

cold PBS (plates placed on ice), RIPA buffer (25 mM Tris – HCl pH 7.6, 150 mM NaCl, 1% 

sodium deoxycholate, 0.1% SDS) containing phosphatases inhibitors (phosphatase 

inhibitors cocktail II and III (Sigma)) and complete protease inhibitor (Roche) was then 

added to the wells which were then scratched with a cell lifter; samples were incubated on 
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ice for 30 minutes, vortexed every 10 minutes, and then centrifuged at 14000 rpm at 4º C for 

10 minutes. The concentration of protein was quantified by Bicinchoninic Acid (BCA) assay 

(Pierce BCA, Thermo Scientific) and samples were normalized to the same quantity of 

protein and added with DTT redox agent  for the denaturation step that followed by 5 minutes 

of heating at 95º C; after denatured, samples were loaded into precast 4-12% polyacrylamide 

gel (Invitrogen) where they were separated by sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDA-PAGE) for around 1 hour at 200 volts after which they were then 

transferred to a polyvinylidene fluoride (PVDF) membrane (at 330 or 660 mA for 60-90 

minutes). Next, the membranes were blocked in a 5% milk blocking solution in PBS-0.1% 

Tween-20 (PBS-T) for 60 minutes followed by the incubation with the primary antibody 

diluted 1:1000 in blocking buffer, with constant shaking, at 4º C overnight. Membranes were 

washed 3 times (10 minutes each) in PBS-T, followed by the incubation with the appropriate 

secondary antibody diluted 1:10,000 in blocking buffer at room temperature and constant 

shaking for 1 hour; again, membranes were washed with PBS-T 3 times for 10 minutes. 

Finally, a chemiluminescence substrate (Pierce ECL, Thermo Scientific) was added to the 

membranes (placed between plastic sheets) and were placed in a ChemiDoc machine (Bio-

Rad) that detected the chemiluminescence signals emitted. Table 5 shows the list of 

antibodies used in this project. 

 

Table 5: List of antibodies used for Western blot during this project. 

Target protein Isotype Predicted Molecular 

weight (kDa) 

Brand  

Hypoxia-inducible factor 1-

alpha inhibitor (FIH-1) 

Rabbit 40 Novus 

Runt-related transcription 

factor 1 (RUNX1) 

Mouse 49 Abcam 

Putative Polycomb group 

protein ASXL2 

Rabbit 238 Bethyl 

Histone-binding protein 

RBBP7 

Rabbit 52 Bethyl 

Cyclin-dependent kinase 2 

(CDK2) 

Mouse 34 Santa Cruz 
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Retinoblastoma-associated 

protein (RB) 

(phosphorylated) 

Rabbit 110 Cell signaling 

Cyclin-dependent kinase 

inhibitor 1 (p21) 

Mouse 21 Santa Cruz 

Cyclin-dependent kinase 

inhibitor 2A (p16) 

Mouse 16 Santa Cruz 

Bcl-2-like protein1 (Bcl-Xl) Rabbit 30 Cell signaling 

Cyclin E Rabbit 53 Santa Cruz 

Cyclin A Rabbit 54 Santa Cruz 

Heat shock protein HSP 90-

alpha (HSP90) 

Mouse 90 Santa Cruz 

 

 

3.5. qRT-PCR  
 

To assess RUNX1 knockdown levels, SUM159 cells were collected after 

transduction with lentiviral particles carrying shRNA sequences targeting RUNX1 

(sequences on table Y) and two days of puromycin selection. RNA was isolated using Isolate 

II Genomic RNA kit (Bioline) according to manufacturer instructions. The yield of RNA 

extraction was measured using the Nanodrop ND1000 system. cDNA was obtained by 

reversed transcription using Maxima First Strand cDNA Synthesis Kit (Thermo Scientific) 

for qRT-PCR according to manufacturer’s protocol, using 1 µg of RNA per sample. Gene 

expression was detected by SYBR Green assay using the AB 7500 Fast Real-time PCR 

system, following the manufacturer’s instructions. 

 

3.6. Cloning of the sgRNA’s for the hypoxia screen validation 
 

Table 6 shows all the sgRNA’s oligonucleotide sequences that were cloned to target 

and edit each gene (sequences were chosen from the CRISPR epigenetic library and 

purchased from Invitrogen). 
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Table 6: List of the sgRNA sequences used to target the top four gene hits of the hypoxia screen. 

RUNX1 gene had six sgRNA that come up as a hit followed by HIF1AN, ASXL2 and RBBP7 each one with 

three single guides. 

 

 

Five micrograms of vector pLentiCRISPR2.1 were linearized by digesting with 2 µL 

of BsmBI enzyme, in 5 µl of Buffer 3.1, and mQ water up to 50 µl; this digestion was 

incubated for 4 hours at 55 °C. The product of the digestion was run on a 1x TAE (0.6% 

agarose) gel with SYBR-safe DNA staining, and the DNA (digested) was recovered using a 

DNA purification kit (Isolate II Genomic DNA kit (Bioline). The oligonucleotide sequences 

were cloned into the vector in a reaction mixture with 50 ng of the digested DNA backbone, 

1 µl from 100 µM from oligonucleotide solution, mQ water up to 10 µl and 10 µl of GIBSON 

assembly mix (New England BioLabs), and was allowed to incubate for 1 hour at 50 °C. The 

next step was to electroporate this vector into Endura competent bacteria (Lucigen). In an 

Eppendorf tube (work on ice) 43 µl of mQ water, 2 µl of the GIBSON assembled product 

and 5 µl of bacteria were mixed, transferred into a pre-chilled electroporation cuvette and 

electroporated around 1.8 kV. Immediately after 500 µl of LB (Lysogenic Broth) medium 

(20 g of LB Broth Lennox in 1L of deionized water followed by an autoclave step) was 

added and the electroporated bacteria suspension was transferred to an Eppendorf tube and 

incubated for 1 hour at 37 °C while shaking. Twenty-five microliters of this bacteria 

suspension were then plated on LB agar supplemented with carbenicillin plates (20 g of LB 

Broth Lennox, 15 g of Bacto-Agar in 1L of deionized, autoclaved and 1 mL of carbenicillin 

was added) and let to grow overnight at 37 ºC. Next day, 2-3 colonies from each construct 

were randomly picked and let to grow up in 5 mL LB + carbenicillin (1000x from 100 

mg/mL stock) medium and let grow overnight. Next morning, DNA plasmids were isolated 

using Invitrogen PureLink Genomic DNA mini Kit, according to manufacturer’s protocol, 

screen rank Ordered oligo ID gRNA sequence

1 CTTGTGGAAAGGACGAAACACCGGGTAGGTGGCGACTTGCGGTgt t t aagagct agaaat agcaag RUNX1-11 GGTAGGTGGCGACTTGCGGT

2 CTTGTGGAAAGGACGAAACACCGGCCATCTGGAACATCCCCTAgt t t aagagct agaaat agcaag RUNX1-6 GCCATCTGGAACATCCCCTA

3 CTTGTGGAAAGGACGAAACACCGCACTTACTTCGAGGTTCTCGgt t t aagagct agaaat agcaag RUNX1-2 CACTTACTTCGAGGTTCTCG

4 CTTGTGGAAAGGACGAAACACCGCACTTCGACCGACAAACCTGgt t t aagagct agaaat agcaag RUNX1-3 CACTTCGACCGACAAACCTG

5 CTTGTGGAAAGGACGAAACACCGGCACTTACTTCGAGGTTCTCgt t t aagagct agaaat agcaag RUNX1-5 GCACTTACTTCGAGGTTCTC

6 CTTGTGGAAAGGACGAAACACCGTACCGCAGCCATGAAGAACCgt t t aagagct agaaat agcaag RUNX1-14 TACCGCAGCCATGAAGAACC

7 CTTGTGGAAAGGACGAAACACCGGACGCGGAATGGGCCTAGTCgt t t aagagct agaaat agcaag HIF1AN-6 GACGCGGAATGGGCCTAGTC

8 CTTGTGGAAAGGACGAAACACCGTTCATCCCAGGCGGGGCCGAgt t t aagagct agaaat agcaag HIF1AN-10 TTCATCCCAGGCGGGGCCGA

9 CTTGTGGAAAGGACGAAACACCGGCAGTTATAGCTTCCCGACTgt t t aagagct agaaat agcaag HIF1AN-7 GCAGTTATAGCTTCCCGACT

10 CTTGTGGAAAGGACGAAACACCGCGCACCTGTCGATCTACCTCgt t t aagagct agaaat agcaag ASXL2-4 CGCACCTGTCGATCTACCTC

11 CTTGTGGAAAGGACGAAACACCGGCACCTGTCGATCTACCTCTgt t t aagagct agaaat agcaag ASXL2-7 GCACCTGTCGATCTACCTCT

12 CTTGTGGAAAGGACGAAACACCGCTGCGATGGATGAAACGGCAgt t t aagagct agaaat agcaag ASXL2-6 CTGCGATGGATGAAACGGCA

13 CTTGTGGAAAGGACGAAACACCGACCCTTGTCACTGTCACAATgt t t aagagct agaaat agcaag RBBP7-2 ACCCTTGTCACTGTCACAAT

14 CTTGTGGAAAGGACGAAACACCGTCTGCGGCATGTAACGAGCAgt t t aagagct agaaat agcaag RBBP7-16 TCTGCGGCATGTAACGAGCA

15 CTTGTGGAAAGGACGAAACACCGTGACCTCTTAATCTGAGATCgt t t aagagct agaaat agcaag RBBP7-17 TGACCTCTTAATCTGAGATC
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and its concentration measured using a Nanodrop ND10000 system. To confirm if the oligos 

were successfully cloned, a solution mixture of 500 ng of plasmid DNA in mQ water up to 

15 µl, 1 µl of hU6-343 primer (10 µM) and 4 µl of BigDye Terminator v3.1 Cycle 

Sequencing Kit (Thermo Fisher) was prepared and submitted to PCR (5 minutes at 96 ºC 

followed by 30 cycles of 30 seconds at 96 ºC, 15 seconds at 50 ºC and 4 minutes at 60 ºC, 

ending with “infinite” time at 10 ºC); the PCR samples were sent to sequence and the 

insertions were confirmed using the SnapGene program. 

 

3.7. Lentivirus production 

 

E.coli bacteria (from the whole genome TRC library - stored at -80 °C in glycerol 

stocks), which contain a pLKO vector with an insert of shRNA targeting RUNX1 and an 

antibiotic resistance marker were picked. Bacteria were cultured overnight at 37 °C in 2X 

LB medium (20g of Bacto-Tryptone, 10g of yeast extract, 10g of NaCl in 1L of water) with 

carbenicillin. Plasmid DNA was isolated from the bacteria using a standard DNA isolation 

protocol (from Roche), after which the DNA concentration was measured (using a Nanodrop 

ND1000 system). Lentivirus particles were prepared by transfecting HEK293T cells with 

plasmid DNA from the shRNA library. To do that, we mixed 1 µg of plasmid DNA of our 

library, 1 µg of lentivirus packaging mix (pMD2.G envelope plasmid and pMDLg/pRRE 

packaging plasmid) and 6 µL of polyethylenimine (PEI) in 100 µL DMEM medium 

(quantities used in a 6-well plate setting). The mix was vortexed briefly, incubated for 15 

minutes at room temperature and added to one million HEK293T cells seeded the day before 

in 2 mL of DMEM medium. Cells were incubated overnight; the next day the medium was 

refreshed; after 48 hours of incubation, the medium containing the lentivirus was filtered (by 

20-μm filters), collected and stored at -80°C. 
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3.8. Using shRNA-CDK2 doxycycline-inducible system for the cellular 

senescence induction validation 

 

Eight TNBC cell lines (CAL-51, CAL-120, SUM159PT, MDA-MB-157, 

HCC19937, HCC1806, HCC70 and SK-BR-7) were transduced with three different 

doxycycline-inducible shRNAs targeting CDK2 (sh40/76/77, from Dharmacon).  Twenty-

four hours after the transduction cells were selected with puromycin (1 μL/mL) for 48h. 

When the selection was finished, cells were trypsinized and reseeded for experiments. 

Doxycycline was added daily to the medium to keep a constant expression of the shRNA 

inducible system. Doxycycline activates both the shRNA system and the expression of an 

RFP reporter, which can be used to visually confirm the level of shRNA-CDK2 induction (a 

control without doxycycline addition was used for each cell line). 

 

3.9. Fluorescence-activated cell sorting  

 

Cells were sorted into single cells at the Flow Cytometry Facility of the Institute. A 

cell suspension of 10 million cells/ml were handed out to the FACS facility that performed 

the sorting.  

Isolate single cells using FACS sorting presents some hurdles. Many of the isolated 

single cells end up not surviving since it is hard for cells to divide when they do not have the 

presence of neighboring cells. Another issue is that this technique oftentimes cannot isolate 

exactly just one cell, putting in the same well two or more cells, which is then visible at the 

microscope as the growth multiple colonies in different parts of the well, so when that 

happened those cells were discarded 

 

3.10. β-Galactosidase staining 

 

Cells were washed twice with PBS and then stained for β-Galactosidase using a 

Senescence β-Galactosidase Staining Kit (Sigma) according to manufacturer’s protocol. 

Cells were left to stain overnight until a maximum period of 48h (the time required for the 

staining to be visible varies among cell lines). 
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