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Abstract

We consider a stochastic single item production-inventory-routing problem with
a single producer and multiple clients. At the clients, demand is allowed to be
backlogged incurring a penalty cost. Demands are considered uncertain.

A recourse model is presented where the production and routing decisions are
taken before the scenario is known, and the quantities to deliver to the clients and
the inventory levels are adjustable to the scenario. Valid inequalities are introduced
and a hybrid heuristic that combines ideas from the sample average approximation
method and from relax-and-fix approaches is proposed.

Preliminary tests based on randomly generated instances are reported showing
that the hybrid heuristic performs better than the classical sample approximation
algorithm for hard instances.
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1 Introduction

We consider a single item stochastic production-inventory-routing problem
(SPIRP) with a single supplier/producer and multiple retailers/clients. A
vendor managed inventory approach is followed where the supplier monitors
the inventory at the retailers and decides on the replenishment policy for each
retailer. Inventory aspects are considered both at the supplier and at the
retailers. Demand is allowed to be backlogged at the retailers and in that case
a penalty cost is incurred. Backlog is not allowed at the supplier. Demands are
considered uncertain, following a uniform distribution. A constant production
capacity at the supplier is assumed. The decision maker has to decide the
production and the distribution plans for a finite time horizon. The production
plan consists in defining the production periods and the amount to produce
in each one of those periods. The distribution plan defines the retailers that
should be visited in each time period, the quantities to deliver to each visited
retailer, and the corresponding route in each time period. For the distribution
plan a single vehicle is considered. The goal is to minimize the production and
routing cost plus the expected inventory and penalty for backlogged demand
costs. We assume the production plan and the choice of which clients to visit in
each time period (and consequently the routing) are first stage decisions, that
is, such decisions must be taken before the scenario is revealed. The quantities
to deliver to each client at each time period, and the inventory levels, can be
adjusted to the scenario (known as second stage decisions). Such assumptions
may hold for short planning horizons.

Complex problems combining production, inventory and routing decisions
have been receiving a great attention in recent years. For a recent survey
see [?]. Stochastic approaches for related inventory routing problems have
been also considered, e.g. [?,?,?,?,?]. Among these [?,?,?] present heuris-
tic approaches. A classical approach for handling stochastic problems is the
sample average approximation (SAA) method, see [?]. In this method the ex-
pected inventory and penalty for backlogged demand costs are approximated
by a sample average estimate obtained from a random sample. The resulting
sample average approximating problem (SAAP) is solved for different samples
in order to obtain a set of candidate solutions. Then these candidate solutions
are tested on a larger sample and the best solution for that larger sample is
chosen.

However, most of the deterministic production-inventory-routing problems
reported in the literature are not solved to optimality. Therefore, solving each
SAAP to optimality, within reasonable running time, may be impractical for



many instances. In [?] it is noticed that when the SAAP is not solved to
optimality for each sample, then the use of a commercial solver based on a
branch and cut algorithm with a running time limit acts as a heuristic which
may lead to lack of stability, since one can obtain solutions whose objective
function can significantly vary from sample to sample. Here we propose a
hybrid heuristic (HH) that combines different approaches, namely the SAA
method and relax-and-fix heuristics. First, following the SAA method, several
small size samples are considered. For each sample, a relaxation is used to
obtain a partial feasible solution. Then, the obtained partial solutions are
explored in order to identify variables that are frequently fixed to zero or to
one. Those variables are fixed and the restricted model is solved for a larger
sample keeping all the remaining variables free. To improve the efficiency
of both methods (SAA and HH), valid inequalities are added to the initial
formulation.

To the best of our knowledge, the use of the information from several solu-
tions obtained with the SAA method combined with relax-and-fix heuristics is
new. The proposed heuristic has several advantages in relation to the classical
SAA method. It does not require solving each sample set to optimality, it does
not require the use of large sample sets, and it allows one to adjust the final
solution to a larger sample set since many variables are kept free. Further,
the number of variables that are fixed can be easily controlled.

The mathematical model is presented in Section 2 as well as the valid
inequalities included. The SAA method and the proposed HH are introduced
in Section 3. Computational tests that compare the SAA method and the
HH and show the advantages of the HH are presented in Section 4. Final
conclusions are given in Section 5.

2 Mathematical formulation and improvements

In this section we introduce the mathematical model for the SPIRP. We as-
sume the production plan (production periods and quantities to produce) and
the routing (which clients to visit in each period) are first stage decisions,
that is, decisions taken before the demands are known, while the quantities
to deliver, the amount backlogged at each time period as well as the inven-
tory levels are adjusted to the scenario. The goal of the stochastic approach
is to find the solution that minimizes the production and routing cost plus
the expected value of the inventory cost plus the penalty value for backlogged
demand. Following the SAA method, the true expected cost value is replaced
by the mean value of a large random sample Ω = {ξ1, . . . , ξs} of scenarios, ob-



tained by the Monte Carlo method. This larger set of s scenarios is regarded
as a benchmark scenario set representing the true distribution [?].

Consider a graph G = (N,A) where N = {0, 1, . . . , n} represents the set
of nodes and A represents the set of possible links, set A is a subset of set
N ×N . Node 0 denotes the producer and Nc = {1, . . . , n} is the set of clients.
T = {1, . . . , nt} is the set of periods.

Consider the following parameters: dit(ξ) is the demand of client i ∈ Nc in
period t ∈ T in scenario ξ ∈ Ω, I0/Ii is the initial stock at producer/client i,
S0/Si is the inventory limit at producer/client i, P is the production limit at
each time period, Q

it
and Qit are the lower and upper limits to the delivery

quantity in period t ∈ T at client i. For the objective function parameters
define: S is the set up cost for producing in a period, P is the production cost
of a unit of product, V is the vehicle usage cost, Cij is the travel cost from
node i to node j, (i, j) ∈ A, Hi is the holding cost of the product at node
i ∈ N , Bi is the backlog cost of the product at node i ∈ N .

Consider the following non-adjustable variables: binary variables yt in-
dicate whether there is production in period t ∈ T , variables pt give the
production level in period t ∈ T , binary variables zit indicate whether there
is a visit to node i ∈ Nc in period t ∈ T, the routing variables xijt indicate
whether a vehicle travels from node i to node j, (i, j) ∈ A, in period t ∈ T, vt
is a binary variable that is one if the vehicle is used in period t ∈ T and zero
otherwise; for (i, j) ∈ A, t ∈ T , fijt is the artificial flow of a single commodity
variable used to prevent cycles in the routing problem. Notice this is not the
amount transported from node i to node j in period t ∈ T since that quantity
depends on the scenario. Such adjustable variables could be used but would
imply the use of an unnecessarily large model.

For each scenario ξ ∈ Ω, we define the adjustable variables qit(ξ) indicating
the quantity delivered at node i ∈ Nc in period t ∈ T ; sit(ξ) indicating the
stock level of a node i ∈ N at the end of period t ∈ T ; and rit(ξ) is the
quantity backlogged at node i ∈ Nc in period t ∈ T.

The SPIRP is modeled by the following formulation.

min
∑
t∈T

(Syt + Ppt + V vt +
∑

(i,j)∈A

Cijxijt ) +
1

| Ω |
∑
ξ∈Ω

∑
t∈T

∑
i∈N

(Hisit(ξ) +Birit(ξ))

(1)

s.t. s0,t−1(ξ) + pt =
∑
i∈Nc

qit(ξ) + s0t(ξ) ∀t ∈ T, ξ ∈ Ω (2)

si,t−1(ξ) + rit(ξ) + qit(ξ) = dit(ξ) + sit(ξ)+ri,t−1(ξ) (3)

∀i ∈ Nc, t ∈ T, ξ ∈ Ω



si0(ξ) = Ii ∀i ∈ N, ξ ∈ Ω (4)

sit(ξ) ≤ Si ∀i ∈ N, t ∈ T, ξ ∈ Ω (5)

pt ≤ P yt ∀t ∈ T (6)

Q
it
zit ≤ qit(ξ) ≤ Qit zit ∀i ∈ Nc, t ∈ T, ξ ∈ Ω (7)∑

j∈N

xijt = zit ∀i ∈ Nc, t ∈ T (8)∑
j∈N

xjit −
∑
j∈N

xijt = 0 ∀i ∈ N, t ∈ T (9)∑
j∈N

x0jt = vt ∀t ∈ T (10)∑
i∈N

fijt −
∑
i∈Nc

fjit = zjt ∀j ∈ Nc, t ∈ T (11)

fijt ≤ n xijt ∀i, j ∈ N, t ∈ T (12)

yt, vt ∈ {0, 1} t ∈ T (13)

zit ∈ {0, 1} ∀i ∈ N, t ∈ T (14)

xijt ∈ {0, 1} ∀i, j ∈ N, t ∈ T (15)

pt ≥ 0 t ∈ T (16)

fijt ≥ 0 ∀i, j ∈ N, t ∈ T (17)

rit(ξ), sit(ξ), qit(ξ) ≥ 0 ∀i ∈ N, t ∈ T, ξ ∈ Ω (18)

For brevity we omit the explanation of the model. This model can be
tightened through the inclusion of valid inequalities. From the underlying
network flow structure of the SIRP one can derive several families of valid
inequalities. Next we introduce three such families.

rit(ξ) ≥

(
t∑

`=1

di`(ξ)− Ii

)+

(1−
t∑

`=1

zi`),∀i ∈ Nc, t ∈ T, ξ ∈ Ω (19)

∑
i∈N

si,k−1(ξ) +
∑
i∈Nc

rit(ξ) ≥
∑
i∈Nc

t∑
`=k

di`(ξ)

(
1−

t∑
`=k

y`

)
, ∀k, t ∈ T, k ≤ t, ξ ∈ Ω

(20)∑
i∈Nc

rit(ξ) ≥ r

(⌈
d

P

⌉
−

t∑
`=1

y`

)
,∀t ∈ T, ξ ∈ Ω (21)

where d =
(∑

i∈Nc

∑t
`=1 di`(ξ)−

∑
i∈N Ii

)+
, r = d− (d d

P
e − 1)P , and (x)+ =

max{x, 0}. Inequalities (19) are adapted from the uncapacitated lotsizing



problem with backlogging [?], and are derived for each client and force the
net demand (demand that cannot be satisfied by the initial stock) at client
i until period t to be satisfied with backlog in case there is no delivery until
period t, that is, if

∑t
`=1 zi` = 0. Inequalities (20) ensure that the total de-

mand from period k to period t must be satisfied either from stock (at the
producer or at the clients) or from backlog at the clients if there is no produc-
tion in that period. For the particular case of k = 1, inequalities (20) can be

written in the stronger format
∑
i∈Nc

rit(ξ) ≥ d

(
1−

t∑
`=1

y`

)
. Inequalities (21)

are mixed integer rounding inequalities (see [?]) derived from the constraint
P
∑t

`=1 y` +
∑

i∈Nc
rit(ξ) ≥ d which is a relaxation of the feasible set that

imposes the total set up capacity plus the backlogged demand to cover the
net demand of all clients until period t.

These inequalities can be further strengthened and/or extended. We present
only the ones used in the computational tests, reported in Section 4, and omit
further discussion. The formulation (1)-(18), (19), (21) is denoted by SPIRF.

3 Solution approaches

In this section we discuss two approaches to solve the SPIRF that will be tested
in Section 4. A first approach is a classical SAA method described in [?]. In the
SAA method m separate sample sets Ωk, k ∈M = {1, . . . ,m}, are considered,
each one containing `� s scenarios. The model is solved for each one of the
scenarios set, Ωk, (replacing Ω by Ωk in model SPIRF) with a time limit of α
seconds, giving m candidate solutions. For each candidate solution, the first
stage solution is fixed, and the value of the objective function for a very large
sample with s scenarios is computed by solving a pure linear programming
problem on the recourse variables. The solution with the minimum average
cost is chosen.

Next we describe the hybrid heuristic HH in four stages.
First stage: obtain m solutions. Generate m samples of small dimension
`1. For each sample a partial solution is obtained by solving the SPIRF assum-
ing the routing variables xijt are continuous (relaxing constraints (15)) with a
time limit of α1 seconds. Variables zit are kept binary.
Second stage: fix a set of zit variables. First assign a different weight
wk to each one of the m partial solutions obtained in the first stage. Those
weights are computed according to the objective function value, denoted by ck,
computed on a larger sample of dimension `2 ≥ `1. Those weights are normal-



ized as follows: let c̄ = maxk∈M{ck} and d̄ = mink∈M{c̄− ck|ck 6= c̄}. Then for

each solution k define its weight wk = c̄+d̄−ck∑
i∈M (c̄+d̄−ci) . So

∑m
k=1 w

k = 1. Let zkit
be the value of variable zit in solution k. Then, for each pair (i, t), i ∈ N, t ∈ T,
compute the weighted average of the values of zit obtained in the first stage:
W (i, t) =

∑m
k=1w

kzkit. The values W (i, t) are between 0 and 1. Define two
threshold values γ1 and γ2 and set zit = 0 if W (i, t) ≤ γ1, and zit = 1 if
W (i, t) ≥ γ2. In order to define the percentage of variables to be fixed a pri-
ori, values γ1 and γ2 can be obtained from the empirical distribution of the
W (i, t) values.
Third stage: solve the simplified model for a larger sample. With
the variables zit fixed in the previous stage and without the integrality con-
straints (15), solve the resulting model SPIRF for a new and larger sample
with `3 ≥ `2 scenarios. Then, with all the variables zit fixed to their optimal
value, the routing variables are determined by solving a TSP problem for each
time period.
Fourth stage: compute objective function value. Fix the first stage
decision variables. Then, compute the objective function value for the very
large sample, by computing the value of the recourse variables for each one
of the s scenarios. This can be done by solving a pure linear programming
model again.

4 Computational Results

In this section we report preliminary computational experience performed to
assess the quality of the proposed HH, and compare it with the SAA method.
All tests were run using a computer with an Intel Core i7-4750HQ 2.00GHz
processor and 8GB of RAM, and were conducted using the Xpress-Optimizer
28.01.04 solver with the default options.

We present computational results for 7 sets of instances to the SPIRP,
A20,. . . ,A80. For each set An with n clients, 5 instances are generated from
different samples of demand values. The coordinates of the n clients are
randomly generated in a 100 by 100 square grid, and the producer is located
in the center of the grid. For each value of n, a complete graph is obtained
and symmetric traveling costs are associated to the set of arcs. The traveling
costs Cij are the Euclidean distance between nodes i and j in the grid. The
number of periods nt considered is 5. For each client and each period, the
nominal demand value dit is randomly generate between 40 and 80 units, and
we consider uncertain demands varying in [0.7dit, 1.3dit]. The initial stock at
producer I0 is zero, and the initial stock Ii at client i is randomly generated



between 0 and three times the average demand of client i. The maximum
inventory level Si is 500 for all i ∈ N . The production capacity P is 50% of
the average demand. For all i ∈ N , the holding cost Hi is 2 and the backlog
cost Bi is 3. The production set up cost, the unit production cost and the
vehicle usage cost are given by S = 100, P = 1 and V = 50, respectively.

Preliminary tests (not reported here) have shown that inequalities (19)-
(21) reduce the integrality gap by more than forty percent, on average. In
general, when a given inequality (19) - (21), derived for a scenario ξ, cuts off
the linear relaxation solution, then the same happens for most of the inequal-
ities derived for the remaining scenarios in Ω. Hence, the number of cuts can
be quite large when the number of scenarios is large. For the SPIRF we opted
to omit constraints (20) as the number of inequalities added was too large for
some instances.

The obtained computational results are displayed in Table 1. For each
problem instance s = 1000 scenarios were generated. The number of candidate
solutions used is m = 10.

When using the SAA method, each candidate solution is obtained by using
a sample of ` = 5 and 25 scenarios and a time limit of α = 300 seconds.
However, when no integer solution is found within α = 300 seconds the model
is solved until the first integer solution is obtained. For each strategy, the
obtained results, average computational time in seconds (in columns “T̄”)
and average solution cost (in columns “C̄”), are displayed in columns SAA1

and SAA2 in Table 1. Columns SAA1 and SAA2 display the results for ` = 25
and ` = 5, respectively.

For the HH, in the first stage, each candidate solution is obtained by using
a sample of `1 = 5 scenarios and a time limit of α1 = 300 seconds. In
the second stage a sample of `2 = 15 scenarios is used. In the third stage,
when solving the simplified model, a sample of `3 = 50 scenarios is used.
In the second stage, several strategies for fixing variables zit were compared
corresponding to different values of parameters γ1 and γ2. The results for two
of these strategies are reported in Table 1. Columns HH1 and HH2 display
the results for γ1 = 0.05 and γ1 = 0.15, respectively. The value of γ2 is set to
1− γ1.

Now we compare strategies SAA1 and SAA2. For instances with a small
number of clients (n = 20, 30), the problems used to obtain the candidate
solutions can be solved to optimality. Therefore, using the larger sample sets
with 25 scenarios (thus more representative samples), better solution values
are obtained. For instances with a higher number of clients the problems to
obtain the candidate solutions could not be solved to optimality. In these



Table 1
Computational results for the SAA method and the HH. For each instance set, the
lowest average cost solution is displayed in bold and, in parenthesis, we show the
number of instances for which the corresponding solution method produces the

best solution.

SAA1 SAA2 HH1 HH2

n T̄ C̄ T̄ C̄ T̄ C̄ T̄ C̄

A20 406 9145 (2) 431 9175 (0) 49 9153 (2) 49 9166 (2)

A30 804 13749 (5) 576 13772 (0) 108 13783 (0) 108 13783 (0)

A40 3716 19326 (0) 4143 19261 (0) 513 19210 (3) 510 19206 (4)

A50 4194 21268 (0) 4220 20678 (0) 672 20514 (4) 704 20510 (1)

A60 7182 25139 (0) 5968 24037 (0) 950 23468 (2) 964 23434 (3)

A70 13499 30627 (0) 9576 31782 (0) 1310 27680 (1) 1314 27881 (4)

A80 17396 36162 (0) 16879 35736 (0) 2027 32190 (2) 2032 32224 (3)

cases, better solutions are obtained when a smaller number of scenarios is
used (strategy SAA2).

Results not reported here for the HH with different threshold values, γ1

and γ2, and solving, in the third stage, the model SPIRF with and without
the integrality constraints (15), show that the best results occur when the
integrality constraints (15) are not used.

Reported results for the SAA method and the proposed HH allow us to
conclude that for instances with a small number of clients the SAA method
solves problems until optimality and lower cost solutions are obtained. How-
ever, for harder instances, with a higher number of clients, the proposed HH
performs better than the classical SAA method, since it provides lower cost
solutions with smaller computational times. Although the variance values for
each set of instances are not reported in Table 1, they reveal that lower com-
putational time variance values are always obtained by the HH and the same
happens, in general, for the solution cost variance values, where the variance
of the HH are in average lower than half of the variance costs of the SAA.
Furthermore, the HH allows to obtain a large number of different low costs
solutions in short time by varying the value of parameters γ1 and γ2.

5 Conclusion

We consider a stochastic production-inventory-routing problem for which a
recourse model is introduced and valid inequalities are presented. A heuristic
that combines the sample average approximation method (SAA) with relax-
and-fix approaches is proposed. This heuristic uses the statistical information



obtained from several solutions derived for small scenario samples in order to
determine which variables to fix. The heuristic is fast and quite flexible, and
can be easily extended to other complex stochastic problems.
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