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Abstract The aim of this work is the statistical modelling of counts assuming low
values and exhibiting sudden and large bursts that occur randomly in time. It is
well known that bilinear processes capture these kind of phenomena. In this work
the integer-valued bilinear INBL(1,0,1,1) model is discussed and some properties
are reviewed. Classical and Bayesian methodologies are considered and compared
through simulation studies, namely to obtain estimates of model parameters and
to calculate point and interval predictions. Finally, an empirical application to real
epidemiological count data is also presented to attest for its practical applicability
in data analysis.

1 Introduction

In the analysis of stationary integer-valued time series the class of INARMAmodels
plays a central role. However, such models are unlikely to provide a sufficiently
broad class capable of accurately capturing features often exhibited by data sets
such as sudden burst of large values. For that purpose and using the concept of
thinning operator, introduced by [12], conventional bilinear models can be adapted
to the integer case leading to the class of integer-valued bilinear models. Doukhan
et al. [3] proposed the first-order INBL(1,0,1,1) model

Xt = α ◦ Xt−1 + β ◦ (εt−1Xt−1) + εt . (1)
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where the thinning operators “α◦” and “β◦”1 are mutually independents, {εt }t∈Z is a
sequence of i.i.d. non-negative integer-valued random variables with finite mean and
finite variance, independent of the operators. Doukhan et al. [3] derived conditions
guaranteeing strictly and second-order stationarities of INBL(1,0,1,1) model. Drost
et al. [4] also provided sufficient conditions for the existence of higher order
moments of Xt , considering the superdiagonal INBL(p, q,m, n). One step towards
the application of bilinear models to real data sets is the estimation of parameters.
Considering Poisson thinning operators [3] have obtained moments estimators and
derived their asymptotic distribution. In contrast, Bayesian analysis of INBL has not
received much attention in the literature neither diagnostic analysis.

In this paper we consider the INBL(1,0,1,1) given in (1), with the following
assumptions: the operators “α ◦ ” and “β ◦ ” are mutually independents such as
α ◦Xt−1|Xt−1 � Bi(Xt−1, α), β ◦ (εt−1Xt−1)|Xt−1, εt−1 � Bi(εt−1Xt−1, β) and
{εt }t∈Z is a sequence of i.i.d. Poisson random variables with mean λ, independent
of the operators.

The class of stationary models defined in (1) is useful for representing time series
that assume low values with high probability and exhibit sudden bursts of large
values that occur randomly in time, hence can produce heavy-tailed data. As an
illustration of this kind of data we present in Fig. 1 two time series of count data in
epidemiology, originally studied by [3]. Data consist of the weekly number of E. coli
infections and meningitis cases, both starting in January 1990 and corresponding
to 143 observations for each series. Counts are typically small, skewed and both
series contain a large quantity of zeros. Hereafter the weekly number of E.coli
infections and weekly number of meningitis cases are denoted by the E.coli data
and meningitis data, respectively.

In time series analysis we usually are interested in estimating the underlying
model and in predictive capabilities of that model. Thus, the aim of this study is
to establish a comparison between classical and Bayesian approaches in order to

Fig. 1 Time series plots for E. coli data (left) and meningitis data (right)

1Steutel and van Harn operator “φ ◦ ” is defined by φ ◦ X = ∑X
i=1 Yi where {Yi}, i = 1, . . . , X, is

a sequence of independent and identically distributed (i.i.d.) counting random variables with mean
φ and X is a non-negative integer-valued random variable, independent of Y . If Yi is a Bernoulli
random variable, we have the binomial thinning operator.
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conduct inference for model parameters and obtain predictions for future values.
The rest of the paper is organized as follows. Classical and Bayesian methodologies
are presented to obtain estimates of the model parameters in Sect. 2 and forecasting
is addressed in Sect. 3. The performance of the above procedures is illustrated
through a simulation study in Sect. 4. Section 5 provides applications of this model
to real data sets. Finally, Sect. 6 contains some concluding remarks.

2 Parameters Estimation

One step forward the application of INBL models in practice is the estimation
of their corresponding parameters θθθ = (θ1, θ2, θ3) = (α, β, λ). The classical
estimators studied are grouped according to two broad categories: regression-
based and likelihood-based estimators. Furthermore, Bayesian estimation is also
considered. In any estimation procedure, it is required to estimate the r.vs εt since
they are not observable. From (1), the innovations εt can be recursively calculated
through εt = Xt − α ◦ Xt−1 + β ◦ (εt−1Xt−1), t = 1, . . . , n., using an initial value
for ε1.

2.1 Conditional Least Squares Estimators

The CLS-estimators of θθθ are obtained by minimizing

Q(θθθ) =
n∑

t=2

[Xt − E(Xt |Xt−1, εt−1)]
2 =

n∑

t=2

[Xt − αXt−1 − βXt−1εt−1 − λ]2 ,

yielding to the following expressions for the parameters estimators

β̂CLS = St;t−1St−1;(t−1,ε−1)−St−1;t−1St;(t−1,ε−1)

S2
t−1;(t−1,ε−1)−St−1,ε−1St−1;t−1

,

α̂CLS = (n−1)St;t−1−β̂CLSSt−1;(t−1,ε−1)
St−1;t−1

,

and

λ̂CLS =
∑n

t=2 Xt−α̂CLS
∑n

t=2 Xt−1−β̂CLS
∑n

t=2 Xt−1εt−1
n−1 ,

with i, j = 0, 1,

X̄j = 1
n−1

∑n
t=2 Xt−j

St−i,t−j = ∑n
t=2(Xt−i − X̄i)(Xt−j − X̄j )

St−i;(t−1,ε−1) = ∑n
t=2(Xt−i − X̄i)(Xt−1εt−1 − X̄1ε̄1), ε̄1 = 1

n−1

∑n
t=2 εt−1,

St−1,ε−1 = ∑n
t=2(Xt−1εt−1 − X̄1ε̄1)

2.
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2.2 Conditional Maximum Likelihood Estimators

For fixed values of x1 and ε1, the conditional log-likelihood function for the
INBL(1,0,1,1) model is given by

l(θθθ) := lnL(xn;θθθ |x1, ε1) =
n∑

t=2

ln(p(xt |xt−1, εt−1)),

with xn = (x1, . . . , xn) and transition probabilities

p(xt |xt−1, εt−1) =
mt∑

k=0
exp(−λ) λxt−k

(xt−k)!

×
mtk∑

j=Mt

(
xt−1

j

)
αj (1 − α)xt−1−j

(
xt−1εt−1

k−j

)
βk−j (1 − β)xt−1εt−1−k+j ,

mt = min(xt , xt−1 + xt−1εt−1), Mt = max(0, k − xt−1εt−1) and mtk =
min(k, xt−1), since the r.v. Xt |xt−1, εt−1 is the convolution between binomial dis-
tributions with parameters (Xt−1, α) and (εt−1Xt−1, β), respectively, and Poisson
distribution with parameter λ. The CML-estimators are obtained by maximizing
the conditional log-likelihood function. Due to the complexity of log-likelihood
expression it is not possible to give explicit forms to the CML-estimators of α, β,
and λ, thus it is necessary to use numerical procedures. The initial estimates required
by such numerical procedures can be obtained by the method of least squares or
using moment estimates given by [3] procedure.

2.3 Bayesian Approach

To implement the Bayesian version of the INBL(1,0,1,1) model we need to consider
prior distributions for the parameters.Thus, for the parameters 0 < α, β < 1 we
choose Beta priors with hyperparameters (a, b) and (c, d), respectively while for
the positive parameter λ we choose a Gamma prior with hyperparameters (e, f ).

These priors are traditionally used for the PoINAR(1) by [11].
Given the particular sample xn, the updated information about θθθ is expressed

through Bayes theorem by the posterior distribution π(θθθ |xn) given by

π(θθθ |xn) = L(xn;θθθ |x1, ε1)π(θθθ)
∫
ΘΘΘ

L(xn;θθθ |x1, ε1)π(θθθ)dθθθ
∝ L(xn;θθθ |x1, ε1)π(θθθ) ,

with π(θθθ) representing the prior distribution.



Statistical Modelling of Counts with a Simple Integer-Valued Bilinear Process 349

Assuming independence assumptions on the parameters the posterior distribution
is given by

π(θθθ |xn) ∝ λe−1e−fλαa−1(1 − α)b−1βc−1(1 − β)d−1
(

n∏

t=2

mt∑

k=0
exp(−λ)

λxt−k

(xt−k)!
mtk∑

j=Mt

(
xt−1
j

)
αj (1 − α)xt−1−j

(
xt−1εt−1

k−j

)
βj (1 − β)xt−1εt−1−k+j

)

,

with λ > 0, 0 < α, β < 1, mt = min(xt , xt−1 + xt−1εt−1),Mt = max(0, k −
xt−1εt−1), and mtk = min(k, xt−1).

Thus given the complexity of the posterior distribution, Markov Chain Monte
Carlo (MCMC) techniques are required for sampling purposes. For the simulations
we need the full conditional distributions for each parameter θi , denoted by
π(θi|θθθ−i , xn), which is the posterior distribution of θi conditional on all other
parameters and the data xn. The full conditional distributions of α, β, and λ are,
respectively:

π(α|β, λ, xn) ∝ αa−1(1 − α)b−1L(xn;θθθ |x1, ε1),

π(β|α, λ, xn) ∝ βc−1(1 − β)d−1L(xn;θθθ |x1, ε1)

and

π(λ|α, β, xn) ∝ λe−1e−fλL(xn;θθθ |x1, ε1).

From the above expressions it is easy to conclude that the full conditional
distributions will not be standard distributions and therefore a componentwise
Metropolis- Hastings algorithm is used, particularly the Adaptive Rejection
Metropolis Sampling (ARMS), as described in [7]. After having generated samples
θθθ(1), . . . , θθθ(N) sample central tendency measures are used to estimate the model
parameters.

3 Prediction Future Observations

In this section we consider the problem of predicting the values of Xn+h, h ∈ N

for INBL (1,0,1,1) process based on the observed series up to time n. The usual
way of producing forecasts is via the conditional predictive distribution and the
most common procedure for obtaining predictions in time series models is to use
conditional expectations, since we pretend to minimize the mean square error.
Throughout this section we consider Bn = {X1, . . . , Xn; ε1, . . . , εn}.
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3.1 Classical Approach

3.1.1 Point Predictions

For h ≥ 1 the h-step-ahead predictor can be obtained in a recursive way through

X̂n+h = E(Xn+h|Bn) = αX̂n+h−1 + βE(εn+h−1Xn+h−1|Bn) + λ (2)

with

E(εn+h−1Xn+h−1) = E[εn+h−1(α ◦ Xn+h−2 + β ◦ (εn+h−2Xn+h−2) + εn+h−1)|Bn]
= αλX̂n+h−2 + λβE(εn+h−2Xn+h−2) + λ2 + λ.

For the particular cases h = 1 and h = 2 we have, respectively,

X̂n+1 = αXn + β(Xnεn) + λ,

X̂n+2 = α2Xn + αβ(Xnεn) + αλ + αβλXn + β2λ(Xnεn) + β(λ2 + λ) + λ.

We can easily prove that

lim
h−→+∞ X̂n+h = βλ2 + βλ + λ(1 − λβ)

(1 − λβ)(1 − α) − αβλ
. (3)

Since these predictors based on conditional expectation hardly produce integer-
valued forecasts, we can alternatively use the median of h-step-ahead conditional
distribution of Xn+h|Bn, denoted by M̂n+h, to obtain coherent predictions of Xn+h,
as suggested in [5].

3.1.2 Prediction Intervals for One-Step-Ahead Observation

The one-step-ahead prediction error

en+1 = Xn+1 − X̂n+1 = Xn+1 − α̂Xn − β̂(Xnεn) − λ̂

is a discrete variable with probability function

P(en+1 = xn+1 − g) = P(Xn+1 = xn+1|Bn) = f (xn+1|Bn; θ)

=
m1∑

k=0

exp(−λ)
λx−k

(x − k)! ×
m2∑

l=M1

(
xn

l

)

αl(1 − α)xn−l ×
(

xnεn

k − l

)

βk−l (1 − β)xnεn−k+l

where g = α̂Xn + β̂(Xnεn) + λ̂. Hence the γ level confidence interval for Xn+1
is given by: (X̂n+1 + l1, X̂n+1 + l2) where l1 is the largest value of en+1 such as
P(en+1 ≤ l1) ≤ (1− γ )/2 and l2 the smallest value of en+1 such as P(en+1 ≤ l2) ≥
(1 + γ )/2.
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3.2 Bayesian Predictions

The Bayesian predictive probability function is based on the assumption that both
the future observation Xn+h and θθθ are unknown. The conditional distribution of
Xn+h given Bn which can be viewed as containing all the accumulated information
about the future, represents the h-step-ahead Bayesian posterior predictive distribu-
tion. It is defined by

π(xn+h|Bn) = ∫
ΘΘΘ

f (xn+h|Bn;θθθ)π(θθθ |xn)dθθθ,

with θθθ ∈ ΘΘΘ being the vector of unknown parameters, π(θθθ |xn) the posterior density
of θθθ , and f (xn+h|Bn;θθθ) the (classical) predictive distribution.

3.2.1 Point Predictions for the Future Observation

In the particular case of h = 1 the one-step-ahead Bayesian predictive distribution
is given by

π(xn+1|Bn) == ∫
α

∫
β

∫
λ
f (xn+1|Bn;θθθ)π(θθθ |xn)dαdβdλ,

with m1 = min(xn+1, xn + εnxn), m2 = min(xn, k), M1 = max(0, k − xnεn).
The Bayesian predictor of Xn+1 can be obtained by any location measure of the

predictive distribution. Its complexity does not allow work with it directly. However
we can adapt to the integer case the Tanner composition method (as reported in
[13]), to get an estimate of Xn+h using the sample mean or sample median of the
generated values (Xn+h,1, . . . , Xn+h,m). Similarly to the classical case we can use
the recursive expression

E(Xn+h|Bn) = E[E(Xn+h|θθθ,Bn)] = E
[
E

(
α ◦ Xn + β ◦ (εnXn) + εn+1

∣
∣
∣θθθ,Bn

)]

= α̂BX̂n+h−1 + β̂BE(εn+h−1Xn+h−1|Bn) + λ̂B

(4)

where α̂B , β̂B , and λ̂B are the Bayesian estimates of the parameters. It is worth to
mention that there is no need to do any plug-in as happened in classical approach.

3.2.2 HPD Predictive Intervals

We use an adaptive generalization of the method used to obtain Highest Posterior
Density (HPD) intervals of model parameters, considering predictive distribution
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instead of the posterior. Hence the 100 γ% HPD predictive interval for Xn+1 is
defined by R(γ ) = (XL,XU) if

P(XL ≤ Xn+1 ≤ XU) =
XU∑

xn+1=XL

π(xn+1|Bn) ≥ Kγ ,

with Kγ being the largest constant such as P [Xn+1 ∈ R(γ )] ≥ γ .
We can obtain an approximation to the HPD predictive interval for Xn+1 using

the algorithm developed by [1]. After computing the 100 γ% credible intervals

R̂i (γ ) = (
Xn+1,i , Xn+1,i+[mγ ]

)
, 1 ≤ i ≤ m − [mγ ],

where [mγ ] is the integer part of mγ , the 100 γ% HPD interval, denoted by R̂(γ )

is the one with the smallest amplitude.

4 Simulation Study

In this section we study the performance of the above classical and Bayesian
procedures with count time series simulated by choosing various combinations of
the parameters of INBL(1,0,1,1) model under stationarity conditions.

4.1 Inference

Through the simulation study we want to highlight the following issues: (a) how
the results depend on the underlying bilinear parameter β; (b) what is the impact of
sample size on the simulation results, and (c) what is the influence of the variance
of the innovation process.

We simulated samples from INBL(1,0,1,1)model of length n = 50, 100, and 500
with 100 independent replicates.2 In the absence of prior information we consider
non-informative priors letting the hyperparameters equal to 0.0001. The MCMC
algorithm was used with starting values based on the CLS-estimates and was run
with 31,000 iterations in total, the 11,000 initial burn-in iterations were discarded
and only the 20th value of the last iterations is kept to reduce the autocorrelation
within the chain. Nevertheless, the stationarity of the chain and the convergence
of the algorithm were duly analyzed with the usual diagnostic tests, respectively,

2The computation of Bayesian estimates is very demanding in terms of CPU time. Using an Inter
Core i5 @ 1.8 GHz-4 GB RAM, the average computation time for producing the estimates of the
parameters for samples with size n = 100 is approximately 3 days.
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Fig. 2 Boxplots of the biases for θθθ = (α, β, λ) in models A:=(0.2,0.2,1), B:= (0.1,0.6,1),
C:=(0.7,0.2,1) and D:=(0.2,0.2,2), with n = 50, 100, 500

[8] and [6] tests, which are available in package CODA. Figure 2 displays the
boxplots of the biases of CLS-estimates, CML-estimates, and Bayesian estimates
for θθθ , considering each model and the variation of sample size. Concerning the
estimation of α a closer look at the figure reveals that classical estimators tend to
overestimate the autoregressive parameter, in particular for the models A and D.
On the other hand, β is underestimated by any methodology in models A, B, and
D. Nevertheless considering all the parameters β is the one that is estimated more
accurately. A comparison of the dispersion for the classical and Bayesian estimators
shows the similarity for both small and large sample sizes. An important conclusion
is that the value of the underlying bilinear parameter does not seem to interfere
with the quality of the point estimates for this model. However the variance of the
innovation process has large biases, which increases when the theoretical value of
λ parameter rises, showing a significant degree of variability. As expected, both the
bias and the skewness are also reduced when the sample size increases.
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4.2 Prediction

To compare and analyze the different h-step-ahead predictors previously mentioned
in Sect. 3 we simulated samples with sizes n = 50, 100, 200 from model (1). In
order to obtain point or interval forecasts from classical approach the CML estimates
were plugged in in (2) or in the predictive probability functions. To obtain Bayesian
predictions, we used the expression (4) and Tanner algorithm [13]. It is worth to
notice that the forecast performance depends on one hand, on the difference between
xn and xn+h, h ≥ 1, similarly to what happens in INAR(1) model as described by
[11] and on the other hand, on the prediction errors en. This situation is illustrated
as follows: the forecasts of x168 = 8 are x̂168,CML = 12.684, x̂168,B = 13.010,
M̂

(CML)
168 = M̂

(B)
168 = 13 are closer to x167 = 13, when α = 0.7, β = 0.2, λ = 1.

In Fig. 3 the h-step-ahead predictions, considering two particular sets of param-
eters and n = 100, are plotted. These plots indicate that the obtained results for
the predictions using the classical approach with CML-estimates and the Bayesian
methodology are very similar. It must be emphasized that these predictions are
closed to the limit values given by (3), corresponding to 5.33 for θθθ = (0.1, 0.6, 1)
and to 12 when θθθ = (0.7, 0.2, 1). Figures 4 and 5 represent the amplitude means of
the prediction intervals or the HPD predictive intervals for the future value and the
frequencies of the simulated Xn+1 belonging to the prediction interval, respectively.
We observe that in general classical prediction intervals based on CML-estimates
present smaller amplitude means than the Bayesian correspondents. Another

Fig. 3 h-step-ahead predictions for future observations

Fig. 4 Means of the prediction interval amplitudes of Xn+1
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Fig. 5 Frequencies of Xn+1 belonging to the prediction intervals

important feature exhibited is that the percentage of the simulated observation
Xn+1 belonging to the classical interval is greater than 96.

5 Application to Real Data

In this section, we illustrate the modelling procedure with the motivating examples
presented in Fig. 1. It could be pointed out that both data sets are asymmetric with
significant overdispersion in E.coli data, with empirical mean and variance being
2.3 and 13.03, respectively.

We should check the adequacy of the distributional assumptions of the model.
For this purpose we use the nonrandomized version of PIT histogram, proposed
by [2] (see [9], for further models evaluation based in its predictive performance).
The graphical tools represented in Fig. 6 are the PIT histograms and the mean PIT
charts applied to the data sets. From left to right, the PIT histograms are U-shaped
and uniform indicating underdispersed and well-calibrated predictive distributions,
respectively. These plots indicate that the probability structure addressed to the
INBL(1,0,1,1) is misspecified in the E.coli data despite the Pearson residuals exhibit
mean 0.0002, variance 0.9999 and no significant serial correlation. Results of the
parameter estimates for the meningitis data are presented in Table 1. However the
bilinear component β in the model seems to be very small, which may question
its interest in the model. Finally, in order to evaluate and compare the different

Fig. 6 PIT histograms and charts of mean PIT (denoted by F̄ (u)), applied to E.coli data (left) and
meningitis data (right)
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Table 1 Estimated model for the meningitis data

Data α̂CLS β̂CLS λ̂CLS α̂CML β̂CML λ̂CML α̂B β̂B λ̂B

Meningitis data 0.151 0.027 0.296 0.201 0.026 0.288 0.181 0.029 0.290

Table 2 h-step-ahead
predictions using meningitis
data

h 1 2 3

X̂
(CML)
140+h 0.296 0.357 0.369

X̂
(B)
140+h

0.308 0.361 0.368

x140+h 0 0 0

predictions methodologies, h-step-ahead forecasts (h = 1, 2, 3) are produced for
the last 3 observations. From inspection of Table 2 it can be seen that the forecasts
obtained by classical and Bayesian approaches are very similar (and close to the real
values) which is not a surprising result since the correspondent parameter estimates
are very closed. Regarding the predictions one step ahead of x141 and using the
coherent predictions given by the medians M̂

(CML)
141 or M̂

(B)
141 we obtain the value 1.

6 Concluding Remarks

In this work classical and Bayesian approaches to time series analysis and forecast-
ing are applied to INBL (1,0,1,1) model. However much of the work for INBL
processes remains to be done. We can point out some issues that are still open
questions: invertibility conditions and the probabilistic structure of the process. This
class of models, due to the cross term, can generate extreme observations and hence
is suitable for modelling series of counts showing heavy tailed phenomena.However
these features increase the difficulty in obtaining good predictions. Throughout this
work we have seen that statistical modelling of INBL processes leads to likelihood
functions based on convolutions. The difficulty of computing these functions
exactly points towards the development of likelihood estimation by saddlepoint
approximation, as suggested by [10], and the improvement of MCMC algorithms.
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