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It has been recently observed that a scalar field with Robin boundary conditions (RBCs) can trigger both
a superradiant and a bulk instability for a Bañados-Teitelboim-Zanelli (BTZ) black hole (BH) [1]. To
understand the generality and scrutinize the origin of this behavior, we consider here the superradiant
instability of a Kerr BH confined either in a mirrorlike cavity or in anti-de Sitter (AdS) space, triggered also
by a scalar field with RBCs. These boundary conditions are the most general ones that ensure the cavity/
AdS space is an isolated system and include, as a particular case, the commonly considered Dirichlet
boundary conditions (DBCs). Whereas the superradiant modes for some RBCs differ only mildly from the
ones with DBCs, in both cases, we find that as we vary the RBCs the imaginary part of the frequency may
attain arbitrarily large positive values. We interpret this growth as being sourced by a bulk instability of both
confined geometries when certain RBCs are imposed to either the mirrorlike cavity or the AdS boundary,
rather than by energy extraction from the BH, in analogy with the BTZ behavior.
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I. INTRODUCTION

The phenomenon of superradiance in black hole (BH)
physics is a fascinating and intriguing classical process
through which energy can be extracted from the BH. Over
the last few decades, a considerable body of work has been
devoted to understanding the many faces of this phenome-
non (see Ref. [2] for a review). In particular, a thorough
understanding of superradiant instabilities has proved to be
challenging. Such instabilities arise when superradiant
modes are trapped around the BH andmay undergo repeated
amplifications [3]. The instability that ensues can be seen at
the linear level, but probing its full development requires a
nonlinear dynamical analysis (see Refs. [4–8] for fully
nonlinear treatments and their interpretation in various
setups).
There are three commonly used trapping mechanisms to

induce superradiant instabilities of a scalar field around a
Kerr BH: (1) the existence of a mass term, first observed in
Ref. [9] and further developed in Refs. [10–23]; (2) impos-
ing the field is confined in a cavity around the BH, via a
trapping boundary condition, which was the initial BH
bomb proposal [3] and further developed in Refs. [24–26];
(3) imposing anti-de Sitter (AdS) asymptotics [27]. The first
type of mechanism determines the asymptotic scalar field
solution to be an exponentially decaying mode, with
frequency smaller (in modulus) than the field mass. But
for mechanisms 2 and 3, there is freedom in the choice of the
field’s behavior at the mirror/AdS boundary. Commonly,

one chooses Dirichlet boundary conditions (DBCs), which
guarantee that the system is isolated and there is no energy-
momentum flux through the boundary. However, the same is
guaranteed by Robin boundary conditions (RBCs), a more
generic choice which has not yet been thoroughly studied in
the literature. Exceptions include some recent studies within
the (2þ 1)-dimensional Bañados-Teitelboim-Zanelli (BTZ)
BH [1,28] and some studies for spin-1 fields [29,30].
The study of a massive scalar field with RBCs in a

rotating BTZ BH [1] showed that, unlike for DBCs, a
superradiant instability can occur, the signatures of which
are some exponentially growing modes that extract energy
from the BH. However, it was also observed in Ref. [1] that
not all of the modes which grow exponentially in time
extract energy from the BH. This behavior was interpreted
as due to an intrinsic, bulk instability of the AdS space,
which occurs for certain RBCs, as previously noted in
Ref. [31]. There is then an interplay between the super-
radiance instability, which takes place for moderately low
frequencies, and the bulk instability, which happens for the
lowest frequencies.
The occurrence of this bulk instability is associated to the

use of (a subset of) RBCs. A natural question is how
generic it is and, in particular, if it is strictly associated to
the AdS geometry or if it occurs for other spacetimes
mimicking the global AdS geometry, such as a volume of
Minkowski spacetime in which the scalar field is confined
due to a mirrorlike boundary condition imposed at the
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boundary of this volume. Contextualizing, one may recall
that the well-known turbulent instability of AdS [32] also
occurs for a scalar field confined in the Minkowski-mirror
setup [33].
In this paper, we show that an analogous bulk instability

occurs in the case of a massive scalar field in a Kerr-AdS
BH with RBCs at infinity. In order to be able to obtain
analytical results, we consider some approximations, sim-
ilarly to Ref. [27]: a small, slowly rotating Kerr-AdS BH
and scalar modes with wavelengths much larger than the
typical size of the BH. Our results show that, as we vary the
RBCs at infinity such that the real part of the frequency
tends to zero, the imaginary part of the frequency becomes
arbitrarily large and, as a consequence, this bulk instability
becomes dominant.
Performing a similar analysis for the Kerr-mirror system,

on the other hand, in which we impose RBCs at the mirror’s
location, we find that, besides mild modifications to the
superradiance effect studied in Ref. [24] for the Kerr-mirror
system with DBCs, there is also a new unstable mode for
certain choices of RBCs, similarly to the Kerr-AdS case.
This suggests that the new mode instability is caused when
certain RBCs are imposed at either the mirror in the Kerr-
mirror system or the AdS boundary in the Kerr-AdS system
and that it is not fundamentally associated to the asymptotic
structure of these confining geometries.
The content of the present paper is as follows. In Sec. II,

we review the RBCs to be employed at either the mirror or
the AdS infinity of the systems under consideration. In
Sec. III, we obtain the superradiant modes for the Kerr-
mirror system with RBCs imposed at the mirror’s location,
whereas in Sec. IV, we repeat the computation for the Kerr-
AdS BH with RBCs imposed at infinity. We present the
conclusions in Sec. V. Throughout the paper, we employ
natural units in which c ¼ GN ¼ 1 and a metric with
signature ð−þþþÞ.

II. ROBIN BOUNDARY CONDITIONS

In addressing the phenomenon of superradiance, one
must guarantee that the amplification of the field is sourced
by the BH, and not some other energy source. Thus, one
requires that the field-BH system is isolated. As explicitly
shown in the particular case of the (2þ 1)-dimensional
BTZ BH in Refs. [1,28], this is achieved when one
considers generic RBCs, for either a BH-mirror or BH-
AdS system.
Consider for concreteness the case of a scalar field in a

Kerr-AdS BH, as described in detail in Sec. IV. Therein, we
construct two linearly independent mode solutions of the
Klein-Gordon equation,ΦðDÞðt; r; θ;ϕÞ andΦðNÞðt; r; θ;ϕÞ.
ΦðDÞ is chosen to be the principal solution at r → ∞, that
is, the unique solution (up to scalar multiples) such that
limr→∞ΦðDÞðt; r; θ;ϕÞ=Ψðt; r; θ;ϕÞ ¼ 0 for every solution
Ψ that is not a scalar multiple of ΦðDÞ. This is the Dirichlet

solution. The other solution, ΦðNÞ, is a nonprincipal
solution, and it is not unique. We shall call it the
Neumann solution.
A general solution may be written as a linear combina-

tion of these two solutions. In order for the energy flux to be
zero at infinity, we require the scalar field to satisfy RBCs,
in which case the solution is written as

Φ ¼ N ½cosðζÞΦðDÞ þ sinðζÞΦðNÞ�; ð1Þ

where ζ ∈ ½0; πÞ parametrizes the RBCs and N is a
normalization constant. This is the form we shall use in
the following sections. Observe that the DBCs correspond
to ζ ¼ 0, whereas the Neumann boundary conditions
(NBCs) correspond to ζ ¼ π

2
.

Furthermore, a second feature of the RBCs is that the
solution (1) must be square integrable near infinity,

Z
∞
dr

ffiffiffiffiffiffi
−g

p
gttjRðrÞj2 < ∞: ð2Þ

Using the results of Sec. IV, we can show that in the AdS
case this restricts the range of the mass parameter μ2 of the
scalar field such that − 9

4
< μ2 < − 5

4
. We note, however,

that in the case of the BH-mirror system, in which the
RBCs are imposed at the mirror at a finite radial distance,
there is no such restriction in the mass of the scalar field
and, thus, for simplicity, we will consider the massless case
in Sec. III.

III. KERR-MIRROR SYSTEM

In this section, we shall consider a massless scalar field
in the Kerr-mirror system with the RBCs at the mirror’s
location. We follow closely the computation in Ref. [24],
but to keep this paper self-contained, we provide some
details of the computation.
The metric of a Kerr BH is given in Boyer-Lindquist

coordinates by

ds2 ¼ −
Δ − a2sin2θ

ρ2
dt2 −

4Mrasin2θ
ρ2

dtdϕþ ρ2

Δ
dr2

þ ρ2dθ2 þ sin2θ
ðr2 þ a2Þ2 − Δa2sin2θ

ρ2
dϕ2; ð3Þ

where

Δ≡ r2 þ a2 − 2Mr; ρ2 ≡ r2 þ a2cos2θ;

M is the BH mass, and J ≡Ma is its angular momentum.
We consider a massless scalar field Φ that satisfies the

Klein-Gordon equation ∇2Φ ¼ 0 in the background of the
Kerr BH. Taking the ansatz,

Φðt; r; θ;ϕÞ ¼ e−iωtþimϕSml ðθÞRðrÞ; ð4Þ
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where Sml ðθÞ are the spheroidal angular functions, ω ≥ 0 is
the field’s frequency, and m ∈ Z is the azimuthal harmonic
index. The Klein-Gordon equation separates [34] into the
angular equation for Sml ðθÞ,

∂θðsin θ∂θSml Þ
sin θ

þ
�
a2ω2cos2θ −

m2

sin2θ
þ Alm

�
Sml ¼ 0; ð5Þ

and the radial equation for R,

Δ∂rðΔ∂rRÞ þ ½ω2ðr2 þ a2Þ2 − 2Mamωr

þ a2m2 − Δða2ω2 þ AlmÞ�R ¼ 0; ð6Þ

where Alm is the separation constant, which reduces to the
standard lðlþ 1Þ in the Schwarzschild limit. Expansions
for this constant in terms of the spheroidicity parameter can
be found in Ref. [35].

A. Superradiant modes by a matching method

Assuming a small frequency and slow rotation approxi-
mation, M ≪ 1=ω and a ≪ M, the exterior region to the
event horizon is divided into two regions, wherein the radial
equation is solved separately. One then matches the near
region solution, valid for r − rþ ≪ 1=ω, with the far region
solution, valid for r − rþ ≫ M, in an overlapping part of
both regions M ≪ r − rþ ≪ 1=ω, which always exists for
sufficiently small frequencies.

1. Near region r− r+ ≪ 1=ω

In the near region, the radial equation is given by

Δ
d
dr

�
Δ
dR
dr

�
þ r4þðω −mΩHÞ2R − lðlþ 1ÞR ¼ 0: ð7Þ

Introducing a new radial coordinate,

z≡ r − rþ
r − r−

; 0 ≤ z < 1; ð8Þ

and defining

RðzÞ≡ ziϖð1 − zÞlþ1FðzÞ; ð9Þ

with ϖ ≡ r2þ
rþ−r−

ðω −mΩHÞ, the radial equation may be
written as

zð1 − zÞ d
2F
dz2

½c − ðaþ bþ 1Þz� dF
dz

− abF ¼ 0; ð10Þ

with

a≡ lþ1− i2ϖ; b≡ lþ1; c≡1þ i2ϖ: ð11Þ

This is the Gaussian hypergeometric equation [36], and the
most general solution for R may be written as

RðzÞ¼ ð1− zÞlþ1½Az−iϖFða−cþ1;b−cþ1;a−c;zÞ
þBziϖFða;b;c;zÞ�: ð12Þ

A and B are two integration constants. The first term in (12)
represents an ingoing mode at the horizon, while the second
term represents an outgoing mode at the horizon. For the
study of quasinormal modes/quasibound states (they are
equivalent in this context), we set B ¼ 0.
The large r behavior of the near region solution may be

obtained by making the transformation z → 1 − z [36],

RðzÞ ¼ z−iϖ
�

Γð2 − cÞΓðaþ b − cÞ
Γða − cþ 1ÞΓðb − cþ 1Þ ð1 − zÞ−l

× Fð1 − a; 1 − b; c − a − bþ 1; 1 − zÞ

þ Γð2 − cÞΓðc − a − bÞ
Γð1 − aÞΓð1 − bÞ ð1 − zÞlþ1

× Fða − cþ 1; b − cþ 1; aþ bþ 1 − c; 1 − zÞ
�
:

As z → 1 and 1 − z → ðrþ − r−Þ=r,

RðrÞ ≈ AΓð1 − i2ϖÞ
� ðrþ − r−Þ−lΓð2lþ 1Þ
Γðlþ 1ÞΓðlþ 1 − i2ϖÞ r

l

þ ðrþ − r−Þlþ1Γð−2l − 1Þ
Γð−lÞΓð−l − i2ϖÞ r−l−1

�
: ð13Þ

This is Eq. (20) in Ref. [24].

2. Far region r− r + ≫ M

In the far region, the radial equation may be approxi-
mated by the wave equation of a scalar field mode of
frequency ω and angular momentum l in flat spacetime,

d2ðrRÞ
dr2

þ
�
ω2 −

lðlþ 1Þ
r2

�
ðrRÞ ¼ 0: ð14Þ

The most general solution is

RðrÞ ¼ αjlðωrÞ þ βylðωrÞ; ð15Þ

where jl and yl are the spherical Bessel functions of the first
and second kinds [36], respectively, and α and β are two
constants. We place a mirror in the exterior region at r ¼ r0
wherein RBCs are imposed, of the form, cf. (1),

cosðζÞRðr0Þ þ sinðζÞR0ðr0Þ ¼ 0; ζ ∈ ½0; πÞ; ð16Þ

where the prime stands for derivative with respect to the
argument. This fixes the ratio
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β

α
¼ −

cosðζÞjlðωr0Þ þ sinðζÞj0lðωr0Þ
cosðζÞylðωr0Þ þ sinðζÞy0lðωr0Þ

; ð17Þ

which generalizes Eq. (28) in Ref. [24].
The small r behavior of the far region solution is

RðrÞ ≈ α
ωl

ð2lþ 1Þ!! r
l − βð2l − 1Þ!!ω−l−1r−l−1: ð18Þ

3. Matching in overlapping region M ≪ r− r + ≪ 1=ω

In the overlapping region M ≪ r − rþ ≪ 1=ω, one can
match the large r solution in the near region (13) with the
small r solution in the far region (18), giving

β

α
¼ −

ðrþ − r−Þ2lþ1Γðlþ 1ÞΓð−2l − 1Þ
Γð2lþ 1ÞΓð−lÞð2lþ 1Þ!!ð2l − 1Þ!!

×
Γðlþ 1 − i2ϖÞ
Γð−l − i2ϖÞ ω2lþ1: ð19Þ

This expression can be further simplified using the relation
Γðzþ 1Þ ¼ zΓðzÞ, giving

β

α
¼ −i2ϖ

ðrþ − r−Þ2lþ1

ð2lÞ!ð2lþ 1Þð2lþ 1Þ!
�

l!
ð2l − 1Þ!!

�
2

×

�Yl
k¼1

ðk2 þ 4ϖ2Þ
�
ω2lþ1

≡ −iΛϖω2lþ1: ð20Þ

Using this and (17), we can find a relation between the
RBC and the frequency

cotðζÞ ¼ −
R0ðr0Þ
Rðr0Þ

¼ −
j0lðωr0Þ þ β

α y
0
lðωr0Þ

jlðωr0Þ þ β
α ylðωr0Þ

: ð21Þ

In Fig. 1, we plot cotðζÞ as a function of real frequency ω
and purely imaginary iδ for the case β=α ¼ 0, i.e. no BH.
These give the normal modes of the scalar field in a cavity
in Minkowski spacetime, under RBCs.
Note that the purely imaginary frequencymodes only exist

for a subclass of RBCs, whichmoreover does not include the
DBCs and NBCs. This can be heuristically understood as
follows. For purely imaginary frequencies, the solution (15)
has an exponential behavior in r, and as such, both the
solution and its derivative do not vanish at a given r.
However, for certain values of ζ, it is possible that a linear
combination of the solution and its derivative vanishes,
satisfying (16). Analogous results were observed in Ref. [1].

4. Approximation ℑ½ω� ≪ ℜ½ω� ≪ 1

We now consider an approximation appropriate to the
problem at hand, ℑ½ω� ≪ ℜ½ω� ≪ 1. Under this approxi-
mation, we can compute the superradiant modes, which can
also be considered quasinormal modes in this context, as a
small deformation of the real normal modes. In this case,
the rhs of (20) is very small and can be taken to be zero in
first approximation. Then, Eq. (17) yields

cosðζÞjlðωr0Þ þ sinðζÞj0lðωr0Þ ≈ 0: ð22Þ

Denote by aζl;n, with n ∈ N, the real, positive roots of the
above equation for ωr0. Then, in the first approximation,
the real part of the quasinormal frequencies may be given
by ℜ½ωn� ≈ aζl;n=r0.
Now, write the full solution as ωQN ≡ aζl;n=r0 þ iδ̃=r0,

where we assume that δ̃ ≪ aζl;n. One may write

β

α
¼ −iδ̃

cosðζÞj0lðaζl;nÞ þ sinðζÞj00l ðaζl;nÞ
cosðζÞylðaζl;nÞ þ sinðζÞy0lðaζl;nÞ

þOδ̃2:

FIG. 1. Normal modes of a scalar field in a Minkowski-mirror cavity under RBCs. The plots show −R0ðr0Þ=Rðr0Þ ¼ cotðζÞ vs ω (left
panel) and vs δ (right panel) for a cavity in Minkowski spacetime with r0 ¼ 100 and a mode with l ¼ 1. The real zeros of this function
correspond to the Neumann normal frequencies, whereas the singularities correspond to the Dirichlet normal frequencies. The purely
imaginary frequencies never occur for either Dirichlet or Neumann boundary conditions.
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Comparing with (20) gives

δ≡ δ̃

r0
≈ϖ

cosðζÞylðaζl;nÞþsinðζÞy0lðaζl;nÞ
cosðζÞj0lðaζl;nÞþsinðζÞj00l ðaζl;nÞ

ðaζl;nÞ2lþ1

r2lþ2
0

Λ: ð23Þ

Assuming that, for all ζ ∈ ½0; πÞ,

cosðζÞylðaζl;nÞ þ sinðζÞy0lðaζl;nÞ
cosðζÞj0lðaζl;nÞ þ sinðζÞj00l ðaζl;nÞ

< 0; ð24Þ

then, δ > 0 if ϖ < 0, that is, if ℜ½ωn� < mΩH. This is the
standard result for superradiance in asymptotically flat BH
spacetimes, which generalizes the results obtained in
Ref. [24] in the case of DBCs. Note that the sign of δ
does not depend on the position of the mirror in the exterior
region of the BH. In particular, whether the mirror is
beyond the speed of light surface or not is irrelevant for the
existence of superradiant modes.
It remains to show the inequality (24) for all ζ ∈ ½0; πÞ.

For ζ ¼ 0, it is known that ylða0l;nÞ=j0lða0l;nÞ < 0, and we
have numerical evidence that the inequality is satisfied for
other values of ζ.
Illustrative examples of the variation of the real and

imaginary parts of the frequencies of superradiantmodes are
provided in Fig. 2. The figure shows that changing the value
of ζ away from the DBCs value (ζ ¼ 0) changes onlymildly

the values obtained with the DBCs, decreasing it. Note that,
given the approximation being employed, the accuracy of
the numerical results decreases as ω approaches zero.
Also note that as ω → 0 one has that

ζ → arccot

�
1

r0

�
1

2
−
Γðlþ 3

2
Þ

Γðlþ 1
2
Þ
��

: ð25Þ

In particular, for very large r0, as ω goes to zero, ζ tends to
π
2
, corresponding to NBCs.

5. Approximation ℜ½ω� ≪ ℑ½ω�
In the previous section, we computed the quasinormal

frequencies in the Kerr-mirror cavity of which the imagi-
nary part is much smaller than the real part, treating these
frequencies as “perturbations” of the real normal frequen-
cies of the Minkowski-mirror cavity. However, the latter
also has purely imaginary normal frequencies. Therefore,
the BH system must also have quasinormal frequencies of
which the imaginary part is much greater than the real part
and which can be treated as perturbations of purely
imaginary frequencies of the Minkowski-mirror system.
The purely imaginary normal modes in the Minkowski-

cavity system can be numerically computed by using (21)
with β=α ¼ 0. In Fig. 3, we show the frequencies iδ with a
positive imaginary part for a representative example.

FIG. 2. Superradiant modes in a Kerr-mirror cavity. Real part (coinciding with the real normal frequencies) and imaginary part of the
frequencies as a function of ζ=π in the Kerr-mirror system with M ¼ 0.01, a ¼ 0.001, r0 ¼ 100, l ¼ 1, and m ¼ 1.
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First, note that these modes decay exponentially as we
move away from the mirror but also grow exponentially in
time. They are therefore unstable modes, which only exist
when a subset of Robin boundary conditions (which exclude
both the Dirichlet and Neumann ones) are imposed at the
mirror. Second, observe that, as ζ → 0þ, the imaginary part
δ → ∞. That is, the growth rate of these modes can be
arbitrarily large as the parameter ζ characterizing the RBCs
gets arbitrarily small. This type of behavior has also been
recently found in the context of AdS spacetimes (as
developed in Sec. IV), but to the best of our knowledge,
it has not been discussed for flat spacetimeswith boundaries.
The next step in our calculation would be to obtain the

approximate real part of the quasinormal frequencies in
the Kerr-mirror system, which are much smaller than the
corresponding imaginary part, in a way analogous to the
previous case. However, in that case, the full approximation
being employed was ℑ½ω� ≪ ℜ½ω� ≪ 1, which was neces-
sary in order to use (20). However, in the present case, we
cannot assume that ℜ½ω� ≪ ℑ½ω� ≪ 1, since ℑ½ω� will
necessarily be arbitrarily large as ζ → 0þ. Therefore, the
strategy to compute the quasinormal frequencies as per-
turbations of the purely imaginary frequencies of the
Minkowski-mirror system, using the current approximation
scheme, fails for these frequencies. As we will see in
Sec. IV, the same is not true for the Kerr-AdS system, for
which we can obtain the approximate real part of the
quasinormal frequencies.

Nevertheless, the above calculations are sufficient to
draw some conclusions about the Kerr-mirror system. In
the regime ℑ½ω� ≪ ℜ½ω� ≪ 1, the behavior for different
RBCs is qualitatively similar to that for Dirichlet boundary
conditions, and there is superradiance when ℜ½ω� < mΩH.
However, for a certain range of RBCs, which does not
include the usual DBCs and NBCs, there is a mode with
positive imaginary part of the frequency much greater than
the real part. As explained further in the Kerr-AdS case, the
flux of energy across the horizon for a given mode with
frequency ωþ iδ is proportional to δ2 þ ωðω −mΩHÞ,
and, thus, for large enough δ, the flux is toward the BH,
even if ω < mΩH. This means that such a mode, even
though is unstable, is not extracting energy from the BH.
This constitutes a new type of mode instability, caused by
the existence of a mirrorlike boundary with nonstandard
boundary conditions.

IV. KERR-ADS SYSTEM

We now perform the analogous study for a Kerr BH in
asymptotically AdS space. The global structure of AdS is
that of a confining box, with a timelike conformal boundary
and in this sense conceptually similar to the Kerr-mirror
cavity. However, as we shall see, the results appear to differ
substantially. In this section, we follow closely the com-
putation in Ref. [27]. Again, to keep the paper self-
contained, some details of the computation are provided.
The Kerr-AdS metric reads

ds2 ¼ −
Δr

ρ2

�
dt −

a
Σ
sin2θdϕ

�
2

þ ρ2

Δr
dr2 þ ρ2

Δθ
dθ2

þ Δθ

ρ2
sin2θ

�
adt −

r2 þ a2

Σ
dϕ

�
2

; ð26Þ

with

Δr ≡ ðr2 þ a2Þ
�
1þ r2

l2

�
− 2Mr; Σ≡ 1 −

a2

l2
;

Δθ ≡ 1 −
a2

l2
cos2θ; ρ2 ≡ r2 þ a2cos2θ;

where M and J ≡Ma are the BH mass and angular
momentum (with a < l) and l is the AdS radius.
Considering the Klein-Gordon equation for a massive

scalar field ð∇2 − μ2=l2ÞΦ ¼ 0 in this background, with
the ansatz

Φðt; r; θ;ϕÞ ¼ e−iωtþimϕS̃ml ðθÞRðrÞ; ð27Þ

where S̃ml ðθÞ are the AdS spheroidal angular functions, we
obtain the angular equation for S̃ml ðθÞ,

FIG. 3. Purely imaginary normal modes in the Minkowski-
cavity system. The imaginary part of the frequency as a function
of ζ=π in the Minkowski-cavity system with r0 ¼ 100 and l ¼ 1.
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Δθ

sin θ
∂θðΔθ sin θ∂θS̃

m
l Þ

þ
�
a2ω2cos2θ −

m2Σ2

sin2θ
þ AlmΔθ

�
S̃ml ¼ 0; ð28Þ

and the radial equation for R,

Δr∂rðΔr∂rRÞ þ
�
ω2ðr2 þ a2Þ2 − 2Mamωr

þ a2m2 − Δr

�
a2ω2 þ Alm −

μ2

l2ρ2

��
R ¼ 0; ð29Þ

where Alm is the separation constant.

A. Superradiant modes by a matching method

We proceed to compute the superradiant modes in a way
completely parallel to that used in the Kerr-mirror system.

1. Near region r− r+ ≪ 1=ω

In the near region, we can neglect the effects of the
cosmological constant, and the radial equation reduces to
the same equation as in the near region of the Kerr mirror
(7), and thus the same results apply. In particular, the large r
behavior of the ingoing solution in the near region is given
by Eq. (13).

2. Far region r− r+ ≫ M

In the far region, the radial equation may be approxi-
mated by the wave equation for a massive scalar field mode
of frequency ω and angular quantum number l in AdS
spacetime,

ðr2 þ l2Þ d
2R
dr2

þ 2

�
2rþ l2

r

�
dR
dr

þ l2

�
ω2l2

l2 þ r2
−
lðlþ 1Þ

r2
− μ2

�
R ¼ 0: ð30Þ

Introducing a new radial coordinate,

x≡ 1þ r2

l2
; 1 ≤ x < ∞; ð31Þ

and defining

RðxÞ≡ x
ωl
2 ð1 − xÞl2FðxÞ; ð32Þ

the radial equation can be written as

xð1 − xÞ d
2F
dx2

þ ½γ − ðαþ β þ 1Þx� dF
dx

− αβF ¼ 0; ð33Þ

with

α≡ ωl
2

þ l
2
þ 3

4
þ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 4μ2

q
; ð34aÞ

β≡ ωl
2

þ l
2
þ 3

4
−
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 4μ2

q
; ð34bÞ

γ ≡ 1þ ωl: ð34cÞ

This is the Gaussian hypergeometric equation [36], and
the most general solution for R may be written as

RðxÞ ¼ ð1 − xÞl2
�
Cx

ωl
2
−αF

�
α; α − γ þ 1; α − β þ 1;

1

x

�

þDx
ωl
2
−βF

�
β; β − γ þ 1; β − αþ 1;

1

x

��
: ð35Þ

C and D are two integration constants. As x → ∞,

RðxÞ ∼ ð−1Þl2ðCx−3
4
−1
4

ffiffiffiffiffiffiffiffiffiffi
9þ4μ2

p
þDx−

3
4
þ1

4

ffiffiffiffiffiffiffiffiffiffi
9þ4μ2

p
Þ; ð36Þ

and hence imposing DBCs is equivalent to setting D ¼ 0.
Herein, wewish to consider the more generic case of RBCs,
that is,

C sinðζÞ ¼ D cosðζÞ; ζ ∈ ½0; πÞ; ð37Þ

which may be imposed when − 9
4
< μ2 < − 5

4
.

The small ωr behavior of this solution may be obtained
by making the transformation 1

x → 1 − x [36],

RðxÞ ¼ x
ωl
2 ð1 − xÞl2½E1x1−γðx − 1Þγ−α−β

× Fð1 − α; 1 − β; γ − α − β þ 1; 1 − xÞ
þ E2Fðα; β; αþ β − γ þ 1; 1 − xÞ�;

where

E1 ≡ Γðαþ β − γÞ

×

�
C

Γðα − β þ 1Þ
ΓðαÞΓðα − γ þ 1Þ þD

Γðβ − αþ 1Þ
ΓðβÞΓðβ − γ þ 1Þ

�
;

E2 ≡ Γðγ − α − βÞ

×

�
C

Γðα − β þ 1Þ
Γð1 − βÞΓðγ − βÞ þD

Γðβ − αþ 1Þ
Γð1 − αÞΓðγ − αÞ

�

and (37) is satisfied. As x → 1 and x − 1 → r2=l2, one has

RðrÞ ≈ ð−1Þl2½E1llþ1r−l−1 þ E2l−lrl�: ð38Þ

3. Matching in overlapping region M ≪ r− r + ≪ 1=ω

In the overlapping region M ≪ r − rþ ≪ 1=ω, one can
match the large r solution in the near region (13) with the
small r solution in the far region (38), giving
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E2

E1

¼ ðrþ − r−Þ2lþ1Γðlþ 1ÞΓð−2l − 1Þ
Γð2lþ 1ÞΓð−lÞ

Γðlþ 1 − i2ϖÞ
Γð−l − i2ϖÞ ;

ð39Þ

where (37) is satisfied.

B. Computation of the quasinormal frequencies

The strategy to compute the quasinormal frequencies in
the Kerr-AdS BH is, again, to treat them as a small
perturbation to the normal frequencies of pure AdS, which
is justified for Kerr-AdS BHs with rþ ≪ l and a ≪ l.
The normal frequencies are determined by requiring

RBCs at infinity, as in (37), and regularity at the origin,
which implies that E1 ¼ 0, i.e.

D
C

¼ −
Γðα − β þ 1ÞΓðβÞΓðβ − γ þ 1Þ
Γðβ − αþ 1ÞΓðαÞΓðα − γ þ 1Þ : ð40Þ

Plots of C=D as a function of real frequency ω and purely
imaginary frequency iδ are shown in Fig. 4.
Hence, in order for the RBCs (37) to be satisfied, one has

that, for ζ ≠ π
2
,

tanðζÞ ¼ −
Γðα − β þ 1ÞΓðβÞΓðβ − γ þ 1Þ
Γðβ − αþ 1ÞΓðαÞΓðα − γ þ 1Þ : ð41Þ

For fixed l and ζ, this gives a discrete spectrum of normal
frequencies. In the case of DBCs, ζ ¼ 0, they are given by

ωðDÞ
n ¼�1

l

�
lþ3

2
þ1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ4μ2

q
þ2n

�
; n∈N; ð42Þ

and for Neumann boundary conditions, ζ ¼ π
2
, they are

ωðNÞ
n ¼�1

l

�
lþ3

2
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ4μ2

q
þ2n

�
; n∈N: ð43Þ

For other RBCs, the frequencies, including the purely
imaginary ones, need to be computed numerically. Without
loss of generality, we only focus on positive real part and
imaginary part of the frequencies.
We note that the real normal frequency tends to zero as it

approaches a critical value denoted ζAdS, given by

ζAdS ≡ arctan

�
−
Γð1þ μ̃ÞΓðl

2
þ 3

4
− 1

2
μ̃Þ2

Γð1 − μ̃ÞΓðl
2
þ 3

4
þ 1

2
μ̃Þ2

�
; ð44Þ

with μ̃≡ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 4μ2

p
. Then, for ζ ∈ ðζAdS; πÞ, there is a

normal frequency which is purely imaginary and which
diverges as ζ → π−, that is, when C=D → −∞. This is an
intrinsic, unstable mode due to the AdS asymptotics, which
was also analyzed in Ref. [31] in pure AdS in all spacetime
dimensions.

1. Approximation ℑ½ω� ≪ ℜ½ω�
In the case of a small, slowly rotating Kerr-AdS BH,

the quasinormal frequencies will be approximately equal
to those of pure AdS, with a small imaginary part in the
case of the real normal frequencies or a small real part
in the case of the purely imaginary normal frequencies.
In this subsection, we take the real part of the quasi-
normal frequencies to be equal to the corresponding
real AdS normal frequencies and compute their imagi-
nary part assuming that ℑ½ω� ≪ ℜ½ω�, that is, write the
full quasinormal frequencies as ωQN ¼ ωn þ iδ, with
δ ≪ ωn. By replacing it in (39) and solving for δ, one
obtains

FIG. 4. Normal frequencies in pure AdS (with l ¼ 1). The plots show C=D, given by (40), vs ω (left panel) and vs δ (right panel) for a
mode with μ2 ¼ −2 and l ¼ 1. The real zeros of this function correspond to the Neumann normal frequencies, whereas the singularities
correspond to the Dirichlet normal frequencies. The purely imaginary frequencies never occur for either Dirichlet or Neumann boundary
conditions.
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δ ¼ i
22lþ2ðl!Þ2ðrþ − r−Þ2lþ1

l2ðlþ1Þ½ð2lþ 1Þ!!ð2lÞ!�2
Γðl − 2iϖ þ 1Þ
Γð−l − 2iϖÞ

Σ1

Σ2

; ð45Þ

where

Σ1 ≡ ΓðαÞΓðα − γ þ 1Þ
Γð1 − βÞΓðγ − βÞ −

ΓðβÞΓðβ − γ þ 1Þ
Γð1 − αÞΓðγ − αÞ ;

Σ2 ≡ ψðαÞ − ψðα − γ þ 1Þ − ψðβÞ þ ψðβ − γ þ 1Þ;

and ψðzÞ ¼ Γ0ðzÞ=ΓðzÞ is the digamma function.

For DBCs, ωn ¼ ωðDÞ
n ,

δðDÞ ¼ ið−1Þ3lþ1
πl−2ðlþ1Þðrþ − r−Þ2lþ1Γðnþ lþ 3

2
Þ

24ln!Γðlþ 1
2
Þ2Γðlþ 3

2
Þ2

×
Γðnþ lþ 3

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ2 þ 9

p
Þ

Γðnþ 1þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ2 þ 9

p
Þ

Γðl − 2iϖ þ 1Þ
Γð−l − 2iϖÞ ;

and for NBCs, ωn ¼ ωðNÞ
n ,

δðNÞ ¼ ið−1Þ3lþ1
πl−2ðlþ1Þðrþ − r−Þ2lþ1ðnþ 2lþ 1Þ!!
2nþ4ln!ð2lþ 1Þ!!Γðlþ 1

2
Þ2Γðlþ 3

2
Þ

×
Γðnþ lþ 3

2
− 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ2 þ 9

p
Þ

Γðnþ 1 − 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ2 þ 9

p
Þ

Γðl − 2iϖ þ 1Þ
Γð−l − 2iϖÞ :

We can simplify the above expressions using the relation
Γðzþ 1Þ ¼ zΓðzÞ, obtaining

δðDÞ ¼ −
πl−2ðlþ1Þðrþ − r−Þ2lþ1Γðnþ lþ 3

2
Þ

24ln!Γðlþ 1
2
Þ2Γðlþ 3

2
Þ2

×
Γðnþ lþ 3

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ2 þ 9

p
Þ

Γðnþ 1þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ2 þ 9

p
Þ

2ϖ
Yl
k¼1

ðk2 þ 4ϖ2Þ;

ð46Þ
and

δðNÞ ¼ −
πl−2ðlþ1Þðrþ − r−Þ2lþ1ðnþ 2lþ 1Þ!!
2nþ4ln!ð2lþ 1Þ!!Γðlþ 1

2
Þ2Γðlþ 3

2
Þ

×
Γðnþ lþ 3

2
− 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ2 þ 9

p
Þ

Γðnþ 1 − 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ2 þ 9

p
Þ

2ϖ
Yl
k¼1

ðk2 þ 4ϖ2Þ:

ð47Þ

FIG. 5. Quasinormal frequencies in Kerr AdS close to the real normal frequencies. We show the real part (which coincides with the
normal frequencies) and the imaginary part of the frequencies vs ζ=π for the Kerr-AdS system with M ¼ 0.01, a ¼ 0.001, and a mode
with μ2 ¼ −2, l ¼ 1, and m ¼ 1 (mΩH ≈ 2.506), computed in the regime ℑ½ω� ≪ ℜ½ω�. In this case, the Dirichlet frequencies have real
parts 4,6,…, while the Neumann have real parts 1,3,5,….
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For DBCs (the case studied in Ref. [27]) and NBCs,
when ϖ < 0, δðDÞ > 0 and δðNÞ > 0, for all n ∈ N. These
are the expected results when the superradiance condition
0 < ℜ½ωn� < mΩH holds.
For other RBCs, the real and imaginary parts of the

frequencies need to be obtained numerically. In Fig. 5, we
show the real and imaginary parts of the frequencies for a
representative example.
Note that the numerically obtained δ appears to diverge

when ζ → ζAdS. This happens when the corresponding real
part of the frequency, which we took to be equal to the AdS
normal frequency, tends to zero, and the assumption δ ≪ ω is
not valid anymore. Therefore, the numerical results we
obtained are only validwhen the real part is sufficiently large.

2. Approximation ℜ½ω� ≪ ℑ½ω�
In this subsection, we compute the quasinormal frequen-

cies of which the imaginary part is much greater than the
real part, by taking the imaginary part to be the same as the
corresponding purely imaginary AdS normal frequencies
and by computing the respective real part, such that
ωQN ¼ ωþ iδ, with ω ≪ δ. This can be obtained by using
(39). Since the purely imaginary AdS normal frequencies
only exist for ζ ∈ ðζAdS; πÞ, the corresponding BH real
parts have to be obtained numerically, and in Fig. 6, we
show a representative example.

Observe that, as ζ → π−, the real part ω → 0 and the
imaginary part δ → ∞. This behavior is identical to the
one found in the case of the (2þ 1)-dimensional BTZ BH
in Ref. [1]. As explained therein, the flux of energy
across the horizon for modes with such frequencies
is directed toward the BH, since the flux of energy
may be shown to be proportional to1 δ2þωðω−mΩHÞ.
However, angular momentum is still being extracted from
the BH (as its flux across the horizon is proportional to
ω −mΩH), which shows that superradiance is still occur-
ring. This is an intrinsic, mode instability which occurs
when a subset of Robin boundary conditions is imposed
at the AdS boundary, as such a growing mode is also
present in pure AdS4 for a massive scalar field with
certain RBCs at infinity [31]. In this regime, this mode
instability is dominant in comparison with the super-
radiant instability, and, therefore, energy flows into
the BH.
Note that the numerical results show that as ζ → ζAdS the

real part ω appears to diverge while the imaginary part δ
tends to zero, meaning that the assumption ω ≪ δ is not
valid anymore and the results stop being reliable.

FIG. 6. Quasinormal frequencies in Kerr AdS close to the imaginary “normal” frequencies. We show the real part and the imaginary
part (which coincides with the normal frequencies) of the frequencies vs ζ=π for the Kerr-AdS system withM ¼ 0.01, a ¼ 0.001, and a
mode with μ2 ¼ −2, l ¼ 1, and m ¼ 1 (mΩH ≈ 2.506), computed in the regime ℜ½ω� ≪ ℑ½ω�. The numerical results are not valid for
ζ ≲ 0.85π.

1Note that, for δ ≪ ω, the sign of the flux of energy across the
horizon is essentially determined by ω −mΩH, as expected.

FERREIRA and HERDEIRO PHYS. REV. D 97, 084003 (2018)

084003-10



V. CONCLUSIONS

In this paper, we discuss the nature of superradiant
instabilities of the Kerr-mirror and Kerr-AdS BH triggered
by scalar fields when RBCs are imposed at either the
mirror’s location or the AdS infinity. Our results show that
the two systems present the usual superradiant instability
and a new type of mode instability for certain RBCs:

(i) In the case of the Kerr-mirror system, the super-
radiant modes have similar qualitative behaviors for
general RBCs as for the DBCs studied in Ref. [24].
Namely, the superradiant modes have ℑ½ω� > 0
when 0 < ℜ½ω� < mΩH. However, our calculations
show further that, for a certain range of RBCs, there
exists a mode with ℑ½ω� > 0much greater thanℜ½ω�
and of which the flux of energy across the horizon is
directed toward the BH. This is a new type of mode
instability which is caused when certain RBCs are
imposed at the mirror.

(ii) In the case of a Kerr-AdS BH, we also have modes
with ℑ½ω� > 0 when 0 < ℜ½ω� < mΩH. However,
as we consider RBCs for which theℜ½ω� approaches
zero, we have numerical evidence that ℑ½ω� becomes
arbitrarily large and, as a consequence, the flux of
energy of these modes across the horizon is directed
toward the BH. Angular momentum is still being
extracted from the BH, showing that superradiance
is still occurring, but it is subdominant in compari-
son with the mode instability caused when these
RBCs are imposed on the AdS boundary.

It remains to study these superradiant modes in the Kerr-
mirror and the Kerr-AdS systems without the technical
restrictions in place in this paper, namely considering BHs
of arbitrary size and rotation speed, and using numerical
methods to compute frequencies with a arbitrary real to
imaginary part ratio. This would allow us to continuously
connect between the two asymptotic regimes explored in
this paper.
Another interesting question arises from the existence of

the new unstable mode when certain RBCs are imposed at
the boundaries of these confined spacetimes. In the simplest

of these cases, one can consider pure Minkowski spacetime
with a mirrorlike boundary at a finite radial coordinate at
which those RBCs are imposed. Given the new unstable
mode, one may wonder what is the final state of the system,
the determination of which requires going beyond the linear
theory explored in this paper. One possibility is that, after
taking into account the backreaction, the system stabilizes
into a state with negative energy. A second, more drastic
possibility is that the system has no ground state and,
therefore, the field theory is pathological. A third possibility
is that, to study this evolution, one must take into account a
dynamical boundary that is present in the fully nonlinear
problem, in order to impose the Robin boundary condition.
This boundary must have energy, and the growth of the
scalar field is actually powered by the boundary’s energy. In
this case, the process should stop once the boundary is
depleted of its energy, deeming impossible the RBC which
triggered the instability in the first place.2 We hope to return
to this question in the future.
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