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Abstract. We show that the two Dirac operators arising in Hermitian Clifford analysis are identical to

standard differential operators arising in several complex variables. We also show that the maximal subgroup

that preserves these operators are generated by translations, dilations and actions of the unitary n-group. So

the operators are not invariant under Kelvin inversion. We also show that the Dirac operators constructed

via two by two matrices in Hermitian Clifford analysis correspond to standard Dirac operators in euclidean

space. In order to develop Hermitian Clifford analysis in a different direction we introduce a sub elliptic

Dirac operator acting on sections of a bundle over odd dimensional spheres. The particular case of the three

sphere is examined in detail. We conclude by indicating how this construction could extend to other CR

manifolds.
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1. Introduction

Clifford analysis started as an attempt to generalize one variable complex analysis to n-dimensional eu-

clidean space. It has since evolved into a study of the analyst, geometry and applications of Dirac operators

over euclidean space, spheres, real projective spaces, conformally flat spin manifolds and spin manifolds with

applications to representation theory arising from mathematical physics, classical harmonic analysis and

many other topics.

In recent years a topic referred to as Hermitian Clifford analysis has attracted some attention. See for

instance [2, 3, 4]. It is developed initially over a complexification of even dimensional Euclidean space. An

almost complex structure is introduced and two associated projection operators are applied to this complex

vector space. This splits this space into two n-dimensional complex spaces. When these operators are applied

to the euclidean Dirac operator it splits into two differential operators. Here we show that these operators

are respectively the d-bar operator and its dual as arising in several complex variables. See for instance [5, 6].

The Euclidean Dirac operator is a conformally invariant operator. In particular it is invariant under Kelvin

inversion. We show that these Hermitian Dirac operators have a narrower range of invariance. We show they

are no longer invariant under Kelvin inversion. Their maximal invariance group is generated by translation,

dilation and a subgroup of SO(2n) isomorphic to U(n).

We also show via lemma given in [1] that the Dirac operator constructed via two by two matrices is in

fact a standard Dirac operator over Euclidean space. In order to try and develop fresh ideas for this topic

we transfer to odd dimensional spheres and make use of their CR structure to introduce a subelliptic Dirac

operator acting on sections of a bundle defined over the sphere. Each fiber is isomorphic to a Clifford algebra

generated from the CR structure of the sphere. The square of this Dirac operator gives the Kohn Laplacian

on the sphere. The Hopf vibration is used to illustrate this scenario in more detail over S3. We conclude by

illustrating how this construction might carry over to other CR manifolds.
1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional da Universidade de Aveiro

https://core.ac.uk/display/231952016?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 P. CEREJEIRAS, U. KÄHLER, AND J. RYAN

2. Preliminaries on Hermitean Clifford Analysis

In Hermitian Clifford analysis one starts with the standard Dirac operator

(2.1) D =

n∑
j=1

ej
∂

∂xj

in the Euclidean space Rm. Here

(2.2) eiej + ejei = −2δij ,

under Clifford algebra multiplication.

So we consider the real 2m dimensional Clifford algebra C̀ m,− with Rm ⊂ C̀ m,− and x2 = −‖x‖2, for all

each x ∈ Rm.

One now introduces an almost complex structure on Rm. This is a matrix J ∈ SO(m) with J2 = −I. As

J ∈ SO(m) this forces m to be even. So m = 2n. For instances, J =

(
0 −I
I 0

)
. This is the choice of J

that we will use here. We now complexify R2n to obtain C2n and we complexify C̀ 2n,− to obtain the complex

Clifford algebra C̀ 2n(C). Following [5, 6] we now have the projection operators 1
2 (I ± iJ). They act on C2n

and split it into two complex spaces W+ ⊕W− each of complex dimension n. So

W± =
1

2
(I ± iJ)C2n.

In particular, 1
2 (I ± iJ)ej = 1

2 (ej ± iej+n), for j = 1, . . . , n, and it equals 1
2 (ej ∓ iej−n), for j = n+ 1, . . . , 2n.

Note 1
2 (ej ∓ iej−n = 1

2 i(ek ± iek+n) for j = n+ 1, · · · , 2n and k = j − n.
We denote 1

2 (ek ± iek+n) by f±k respectively, with k = 1, · · · , n. The elements f±k , k = 1, . . . , n, is known

as a Witt basis for W±, respectively. Note that (f±k )2 = 0,

f±j f
±
k + f±k f

±
j = 0,

and

f+j f
−
k + f−k f

+
j = δj,k.

These relations correspond to the relations of differential forms dzj , dzk, and their duals on the alternating

algebra ∧(Cn). See, for instance [5, 6]. In fact, ej = f+j + f−j for j = 1, . . . , n and ej = −i(f+j − f−j ) for

j = n+ 1, . . . , 2n. So our complex Clifford algebra and the alternating algebra are the same.

Following [2, 4] we now consider
1

2
(I ± iJ)D.

This splits the Dirac operator, D, into a pair of operators D± acting over W± respectively. So D = D−⊕D+.

Explicitly,

D+ =
1

2

(
D −iD
iD D

)
, D− =

1

2

(
D iD

−iD D

)
.

Now consider Cn = {(z1, · · · , zn), z1, · · · , zn ∈ C}.
We have the mappings

P± : Cn → W±, (z1, · · · , zn) 7→ z1f
±
1 + · · ·+ znf

±
n .
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Via these identifications it can be seen that D+ corresponds to the operator ∂ =
∑n

j=1 dzj
∂

∂zj
and D−

corresponds to its dual ∂
∗

from several complex variables. See for instance [5, 6]. In this way the Dirac

operator corresponds to the operator ∂ + ∂
∗
.

3. Hermitean Clifford Analysis and matrix differential operators

In [13] the pair of matrix differential operators(
D+ D−

D− D+

)
,

(
D− D+

D+ D−

)
are introduced. Note that(

D+ D−

D− D+

)(
D− D+

D+ D−

)
=

(
D− D+

D+ D−

)(
D+ D−

D− D+

)
= ∆2n

(
I 0

0 I

)
,

where ∆2n is the Laplacian on R2n. The first matrx operator can be written as(
D+ D−

D− D+

)
= D+

(
I 0

0 I

)
+D−

(
0 I

I 0

)
and the second as (

D− D+

D+ D−

)
= D−

(
I 0

0 I

)
+D+

(
0 I

I 0

)
.

Now, the space R(2) of 2× 2 matrices is a representation of the Clifford algebra C̀ 2,+. See for instances [1].

To see this, consider the basis 1, g1, g2, g1g2 of C̀ 2,+. So g2
i = 1 for i = 1, 2. Now, make the identification

1↔

(
I 0

0 I

)
, g1 ↔

(
I 0

0 −I

)
, g2 ↔

(
0 I

I 0

)
.

So g1g2 is identified with

(
0 −I
I 0

)
. This defines an algebra isomorphism between C̀ 2,+ and R(2).The

matrix differential operators now become

D+ ⊗ 1 +D− ⊗ g2 ∼ D+ +D−g2, D− ⊗ 1 +D+ ⊗ g2 ∼ D− +D+g2,

and

(D+ +D−g2)(D− +D+g2) = (D+D− +D−D+) = ∆2n.

Further C̀ 2n,− ⊗ C̀ 2,+
∼= C̀ 2n+2,+ (see [1] ). So, D+ ⊗ 1 +D− ⊗ g2 and D− ⊗ 1 +D+ ⊗ g2 define a couple

of Dirac operators defined over a copy of R2n lying in C̀ 2n+2,+.

The fundamental solution to D+ +D−g2 ∼ D+ ⊗ 1 +D− ⊗ g2 is, up to a constant,

E1(x) =
x− ⊗ 1 + x+ ⊗ g2

|x|2n

where x = x1e1 + · · ·+ x2ne2n and x± = 1
2 (I ± iJ)x.

In matrix form this corresponds to

1

|x|2n

(
x− x+

x+ x−

)
,

while the fundamental solution to the operator D− ⊗ 1 +D+ ⊗ g2 is, up to a constant,

E2(x) =
x+ ⊗ 1 + x− ⊗ g2

|x|2n
.
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In matrix form this gives

1

|x|2n

(
x+ x−

x− x+

)
.

They correspond to the fundamental solutions to the matrix operator given in [3].

The following Borel-Pompeiu and Cauchy integral formulas correspond to the integral formulas appearing

in [3].

f(y) =
1

ωn

∫
S

E+(x)(n+(x)⊗ 1 + n−(x)⊗ g2)f(x)dσ(x)

+
1

ωn

∫∫
Ω

E+(x)(D+ ⊗ 1 +D− ⊗ g2)f(x)dµ(x)

=
1

ωn

∫
S

E+(x)(n+(x) + n−(x)g2)f(x)dσ(x)

+
1

ωn

∫∫
Ω

E+(x)(D+ +D−g2)f(x)dµ(x),

and if (D+ ⊗ 1 +D− ⊗ g2)f(x) = 0 this integral gives a Cauchy integral formula.

There are similar integral formulas obtained by replacing E+ by E−, n
+(x)⊗ 1 + n−(x)⊗ g2 by n−(x)⊗

1 + n+(x)⊗ g2 and D+ ⊗ 1 +D− ⊗ g2 by D− ⊗ 1 +D+ ⊗ g2.

4. Conformal transformations in the Hermitean case

In [14] and elsewhere it is shown that the Euclidean Dirac operator is invariant under conformal transfor-

mations. A theorem of Liouville tells us that for dimensions 3 and above the only conformal transformations

are Möbius transformations indentified with SO(2n+ 1, 1). These are transformations generated from trans-

lations, dilations, orthogonal transformations and the Kelvin inversion
(
x→ x

|x|2

)
. The question now is what

subgroup of the conformal group preserves D+ or equivalently, ∂ and ∂
∗
? As D± are both homogeneous and

with constant coefficients they are invariant under both translations and dilations.

As for orthogonal transformations, such a transformation must preserve the spaces W±. So we need to

restrict to transformations in SO(2n) that commute with J. It is known that this is a subgroup of SO(2n)

isomorphic to U(n).

To proceed further we need the spin group. First, consider

{a ∈ C̀ 2n,− : a = y1 · · · yp, for y1, · · · , yp ∈ S2n−1}.

This set is a group under Clifford algebra multiplication. It is the pin group and it is denoted by Pin(2n).

If we restrict so that p is even we obtain a subgroup called the spin group. It is denoted by Spin(2n).

For a = y1 · · · y2p ∈ Spin(2n) we denote y2p · · · y1 by ã.

It is well known, [12] for instance, that for x ∈ R2n, axã defines a special orthogonal transformation on

R2n. In fact, [12], there is a surjective group homomorphism

θ : Spin(2n)→ SO(2n), a 7→ θa,

where θax := axã. The kernel of this homomorphism is {±1}, [12].

We have previously noted that the operators D± are invariant under actions of a copy of U(n) ⊂ SO(2n).

It follows that this copy of U(n) has a double covering, U ′(n) ⊂ Spin(2n), also isomorphic to U(n). Further,



FROM HERMITEAN CLIFFORD ANALYSIS TO SUBELLEPITIC DIRAC OPERATORS 5

following [8] then if Ω is a domain in R2n and y = axã ∈ Ω, with a ∈ U ′(n) then if

D±f(y) = 0 then D±ãf(axã) = 0,

where D± now acts with respect to the variable x.

This situation differs from what is considered in several variables for the operators ∂ and ∂
∗

in Cn. There

these operators are considered as acting strictly on (p, q) forms, see for instance [5]. The action of ã on the

function f(axã) is a spherical action that does not preserve (p, q) forms. It preserves the spinor subspaces of

the algebra C̀ 2n,− or C̀ 2n(C), see [12].

We now turn to consider the case of the Kelvin inversion. Given a hypersurface S in R2n then under

Kelvin inversion the surface element n(y)dσ(y) is transformed to G(x)n(x)G(x)dσ(x), where y ∈ S, n(y) is

the outer pointing unit vector perpendicular to the tangent space TSy, and σ is the Lebesgue measure on S.

We want to know if the spaces W± are preserved under the Kelvin inversion and in particular if the operators

D± are also preserved. As G(x) = x
|x|2n , this boils down to determine whether or not J commutes with the

action xn(x)x of x on n(x). Note that xn(x)x describes (up to the sign) a reflection of n(x) in the direction

of x. So xn(x)x is a vector in R2n.

As J is a matrix in SO(2n) and the vector xn(x)x is defined in terms of Clifford multiplication it is better

to make the notation uniform. The action of J on R2n gives a counterclockwise rotation of π/2 in each plane

spanned by ei, ei+n for i = 1, · · ·n. So a lifting of J to Spin(2n) gives

±j = ± 1√
2

(1 + e1e1+n) · · · 1√
2

(1 + ene2n) = ± 1

2n/2
(1 + e1e1+n) · · · (1 + ene2n).

It should be noted that each pair (1 + eiei+n)(1 + eses+n) commutes with each other. It follows that it is

enough to compare the terms

(1 + e1e1+n)xn(x)x(1 + e1+ne1)

and

x(1 + e1e1+n)n(x)(1 + e1+ne1)x.

In fact, it is enough to compare the subterms (1+e1e1+n)xn(x)x and x(1+e1e1+n)n(x)x. As the hypersurface

S is arbitrary we can place x = e1. In this case the terms

(1 + e1e1+n)e1 = (e1 + e1+n) and e1(1 + e1e1+n) = (e1 − e1+n)

differ by a sign. It follows that the operators D± are not invariant under the Kelvin transformation. Conse-

quently the operators ∂ and ∂
∗

are not invariant under the Kelvin transformation.

Summing up we have established:

Theorem 4.1. The operators D± (and consequently, ∂ and ∂
∗
) are only invariant under translations, dila-

tions and actions of the group U ′(n) ⊂ Spin(2n).

5. Kohn Dirac and Laplacian operators in S2n−1

In the previous sections we have shown that with the exception of the action of U ′(n) on D±, (∂, ∂
∗
),

much of the Hermitian Clifford analysis already exists in several complex variables over Cn. This leads to

the question of trying to find ways in which to develop Hermitian Clifford analysis that are more meaningful

and original.

One starting point is to look at its analogue over odd dimensional spheres.
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Consider S2n−1 ⊂ Cn. Consider also x ∈ S2n−1 and TS2n−1
x ⊂ Cn. In several complex variables [5, 6] one

considers the complex subspace Lx of TS2n−1
x where

Lx = {y ∈ TS2n−1
x : iy ∈ TS2n−1

x }.

Here, n ≥ 2. This gives rise to a situation that does not occur in one complex variable. We now have a

complex bundle L ⊂ TS2n−1 where each fiber is the complex space Lx. Consider now the canonical projection

Px : TS2n−1
x → Lx.

This gives rise to the projection

P : TS2n−1
x → L.

Now consider a hypersurface S′ bounding a domain Ω′ in S2n−1. If we consider S′ to be sufficiently smooth we

can consider smooth C̀ 2n(C)−valued functions defined in a neighbourhood of Ω′ within S2n−1 and following

[10] we have the following version of the Stokes’ Theorem.

Theorem 5.1. ∫
S′
f(x)n(x)g(x)dσ(x) =

∫∫
Ω′

((f(x)Ds)g(x) + f(x)(Dsg(x))) dx,

where n(x) is the outward pointing unit vector in TS′x. Further Ds is the spherical Dirac operator x
(
Γx + n

2

)
,

where Γx :=
∑

1≤i<j≤2n−1 eiej
(
xi∂xj

− xj∂xi

)
.

We may also consider the modified integral∫
S′
f(x)Px(n(x))g(x)dσ(x).

Applying the Stokes’ Theorem to this integral gives the integral∫∫
Ω′

((f(x)(DsPx))g(x) + f(x)((PxDs)g(x))) dx.

For each x ∈ S2n−1, we have ix ∈ TS2n−1
x , so ix /∈ Lx. Consequently, Px(ix) = 0. Therefore, Px(Ds) =

Px(xΓx). It follows that this operator is an isomorphic copy of the sub-elliptic Dirac operator ∂b + ∂
∗
b over

S2n−1. This Dirac operator is also known as the Kohn Dirac operator (see [11]). Therefore, (Px(xΓx))
2

= �b,

the Kohn Laplacian. The operators ∂b, ∂
∗
b and �b are all defined in [5, 6] and elsewhere.

The group of conformal transformations that preserves the unit b all B(0, 1) ⊂ R2n, and its boundary, is

SO(2n, 1). However, we have identified R2n with Cn. We need to restrict to the subgroup of SO(2n, 1) that

preserves the Hermitian structure of Cn. At this point we need to reference or show that this group is U(n, 1).

We also need to show that the invariant group for Px(Ds) is the double cover of U(n, 1) within Spin(2n). A

start is the following: note that if (f(x)(DsPx)) = (PxDs)g(x) = 0 then we have the following version of the

Cauchy’s Theorem:

Theorem 5.2. ∫
S′
f(x)Px(n(x))g(x)dσ(x) = 0.

By allowing S′ to vary it follows that the group of diffeomorphisms that preserves the Kohn-Dirac operator

Px(Ds) is a subgroup of Spin(2n, 1) whose projection preserves the bundle L.

This should be U(n, 1), with a double cover in Spin(2n, 1) isomorphic to U(n, 1).
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6. Realization on S3

To make the above points more clear we consider the three-dimensional sphere as a special example.

Furthermore, we will consider for the moment quaternionic valued functions.

Let us introduce the following first-order differential operators

Xi = x0∂x1
− x1∂x0

+ x3∂x2
− x2∂x3

,

Xj = x0∂x2
− x2∂x0

+ x1∂x3
− x3∂x1

,

Xk = x0∂x3
− x3∂x0

+ x1∂x2
− x2∂x1

.

These differential operators are skew-symmetric with respect to the Riemannian surface form dS on S3 given

by

dS =

3∑
j=0

(−1)jxjdx̂j ,

where dx̂j is generated from the oriented volume form dx with dxj being omitted.

The sub-Laplacian �b is given by

�b = −X2
i −X2

k

while the Laplacian is given by

∆ = −X2
i −X2

j −X2
k.

Moreover, we have the sub-Dirac operator

Db := iXi + kXk.

Keep in mind that in general its square is not the sub-Laplacian since Xj = [Xi, Xk].

We can identify R4 ∼ H with C2 in the usual way via z = z1 + iz2, with z1, z2 ∈ Cj := {a+ bj, a, b ∈ R}.
The one-parameter transformation group generated by Xj corresponds to the complex multiplication with

λ = (a + bj) from the right. The resulting orbits on S3 span the complex projective space P 1C and we get

the Hopf bundle

πR : S3 7→ P 1C.

The complex line bundle Ll on P 1C is associated to the character χl(λ) = λl.

As usual we can now consider the space ΠN of homogeneous polynomials of degree N in the variables

x0, x1, x2, x3. We denote by HN the subspace of harmonic polynomials in ΠN . For this subspace we have

the classic Fischer decomposition

ΠN = HN +

(
3∑

i=0

x2
i

)
ΠN−2.

The space HN restricted to the sphere S3 is the eigenspace HN of the Laplacian ∆ with respect to the

eigenvalue λN = N(N + 2) with dimension (N + 1)2.

Let us now consider the subspace Πn,m, n+m = N, of ΠN defined by

Πn,m =
{
p ∈ ΠN : p(z0e

it, z1e
it, z0eit, z1eit) = ei(n−m)tp(z0, z1, z0, z1)

}
and the subspace Hn,m = HN ∩ Πn,m. In this subspace we have Xjp = (n − m)p. This leads to the

decomposition

HN =
∑

n+m=N,n,m≥0

⊕Hn,m
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Furthermore, we have harmonic Fischer decomposition

Πn,m = Hn,m +
(
|w0|2 + |w1|2

)
Πn−1,m−1.

Moreover, each of the eigenspaces Hn,m can be decomposed in terms of eigenspaces of the Dirac operator,

Hn,m = Mn,m + (w0 + w1)Mn−1,m + (w0 + w1)Mn,m−1 + w0w1Mn−1,m−1 + w0w1Mn−1,m−1,

where Mk,s = {p ∈ Πk,s : Dp = 0}.
Furthermore, for any p ∈ Hn,m we have

∆p = −(X2
i +X2

k)p+ (n−m)2p = �bp+ (n−m)2p

as well as

Dbp = (iXi + kXk)p+ j(n−m)p

and we denote the restriction of Hn,m to S3 by Hn,m as well as the restriction of Mn,m to S3 by Mn,m.

This leads to the following lemma.

Lemma 6.1. The space Mn,m is the eigenspace of the sub-Dirac operator Db with respect to the eigenvalue

−N − jl = −(1 + j)n− (1− j)m

with multiplicity N+2. Here, l = n−m,N = n+m,n,m ≥ 0. Furthermore, the space Hn,m is the eigenspace

of the sub-Laplacian �b with respect to the eigenvalue

N(N + 2)− l2 = 4m2 + 4m(1 + |l|) + 2|l|

with multiplicity |l|+ 2m+ 1.

Let us consider now the subspace F l of C∞(S3) of homogeneous sections on the complex line bundle Ll,

i.e. F l ∼ Γ(Ll) and

F l =
{
f ∈ C∞(S3) : f(x(a+ bj)) = (a+ bi)−lf(x), a, b ∈ R, a2 + b2 = 1

}
.

The sub-Laplacian can be identified with the horizontal Laplacian

�b : Γ(Ll) 7→ Γ(Ll)

This identification allows us to decompose F l as

F l ∼ Γ(Ll) =
∑

n−m=l,n,m≥l

⊕Hn,m

into eigenspaces of the horizontal Laplacian.

The sub-Dirac operator can be identified with the horizontal Dirac operator

Db : Γ(Ll) 7→ Γ(Ll)

This identification allows us to decompose F l as

F l ∼ Γ(Ll) =
∑

n−m=l,n,m≥l

⊕Mn,m

into eigenspaces with respect to the horizontal Dirac operator.
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7. Subelliptic Dirac operator

Following [7, 9] it is desirable to ask what manifolds besides S2n−1 admit a subelliptic Dirac operator.

Clearly it should be a CR manifold with some sort of spin structure.

In Cn we saw an invariance under a subgroup of Spin(2n) isomorphic to U(n). This suggests that we are

locking for a CR manifold with principle bundle whose fibers are isomorphic to U(n) and with a global double

cover also with fiber isomorphic to U(n).

8. Irreducible representations in U ′(n)

Within the Clifford algebras C`m the irreducible representation spaces for Spin(m) are the spinor spaces.

Here though we are dealing with the subgroup U ′(n) of Spin(2n).

As point out in [15] the spinor spaces are no longer irreducible subspaces of U ′(n). Furthermore, in several

complex variables one is interested specifically in (p, q) sections. If z = aωã and f(z) is the isomorphic

equivalent of a (p, q) form in the context we consider here then in general ãf(aωã) is not the equivalent of a

(p, q) form.

To overcome this instead of considering ãf(aωã) we consider ãf(aωã)a. Note that first ãf±j a remains in

W±, for j = 1, · · · , n and a ∈ U ′(n). Note further that ãa = 1 for each a ∈ U ′(n), or for that matter Spin(2n).

Consequently given f+
j1
· · · f+

jr
f−k1
· · · f−ks

then

ã(f+
j1
· · · f+

jr
f−k1
· · · f−ks

)a = ãf+
j1
aãf+

j2
a · · · ãf+

jr
aãf−k1

a · · · ãf−ks
a.

It follows that if f(z) is the equivalent of a (p, q) form in the context described here then so is ãf(aωã)a.
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