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Abstract—The purpose of this study is to present necessary
conditions for calculus of variations problems, where the La-
grange function involves a Caputo fractional derivative with
nonconstant order. The fractional operator depends on another
function, and for particular choices of that function, we ob-
tain some well-known fractional derivatives. Several necessary
conditions of optimality are proven, namely the Euler–Lagrange
equation.

Index Terms—Calculus of variations, fractional calculus, vari-
able order derivative, Euler-Lagrange equation.

I. INTRODUCTION

Non-integer order derivatives are an old branch of mathe-
matics, and go back to the birth of differential calculus [29],
[35]. In 1695, Leibniz asked L’Hôpital: ”Can the meaning of
derivatives with integer order be generalized to derivatives with
non-integer orders?” Later, L’Hôpital answered him: ”What if
the order is 1/2?”. Since then, the field of fractional calculus
has been studied extensively, though at the beginning mainly
in pure mathematics. More recently, it has been applied in
several areas such as science, economy, engineering, etc.
To name a few, we mention some applications to control
theory [30], [37], electrical circuits [26], heat conduction [18],
diffusion equations [22], [23], sound wave propagation [15],
etc. In this work, we consider variational problems, replacing
integer order derivatives by fractional order derivatives in the
problem. In [33], it was proven that fractional calculus can deal
better with dissipative problems, where an Euler–Lagrange
equation was obtained. Since then, numerous works have
appeared dealing with different fractional integrals/derivatives.
For example, for derivatives, some of the definitions are the
Riemann–Liouville [1], [11], [16], the Caputo [2], [9], [24],
the symmetric [20], the Riesz fractional derivative [3], [10], the
generalized fractional derivative [27], [28], and with respect
to another function [6]. We also mention the books [8], [25],
where numerical and analytical methods are presented to solve
fractional variational problems.

Let ⌥ 2 L1([a, b],R). The most important operators are:
1) the Gamma function �.
2) Riemann–Liouville integral (⌫ > 0):

I⌫a+⌥(t) :=
1

�(⌫)

Z t

a
(t� �)⌫�1⌥(�) d�.
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3) Riemann–Liouville derivative (⌫ > 0):

D⌫
a+⌥(t) :=

✓

d

dt

◆n

In�⌫
a+ ⌥(t),

where n is the ceiling of ⌫.
4) Caputo derivative [13] (⌫ > 0):

CD⌫
a+⌥(t) := In�⌫

a+ ⌥(n)(t),

where n is the ceiling of ⌫ if ⌫ /2 N and n = ⌫
otherwise.

However, these are not the only existent definitions, and
many others can be found in the literature. It is worth to men-
tion that, when ⌫ is an integer number, let us say ⌫ = m 2 N,
the fractional derivative operator is simply the usual derivative:
CDm

a+⌥(t) = Dm
a+⌥(t) = ⌥(m)(t).

One way to reduce such number of concepts is to define
fractional derivatives/integrals with respect to another function
[35]. For more on the subject, we advice the reader to see [5].
Let ⌫ > 0 be a real, ⌥, k : [a, b] ! R be two functions with
k differentiable and k0(t) > 0, for all t. The operators we are
going to study are defined using another function. They are
the following:

1) the k-fractional integral:

I⌫,ka+⌥(t) :=
1

�(⌫)

Z t

a
k0(�)(k(t)� k(�))⌫�1⌥(�) d�.

2) the k-Riemann–Liouville fractional derivative:

D⌫,k
a+⌥(t) :=

✓

1

k0(t)
d

dt

◆n

In�⌫,k
a+ ⌥(t),

where n = [⌫] + 1.
3) the k-Caputo fractional derivative:

CD⌫,k
a+⌥(t) := In�⌫,k

a+

✓

1

k0(t)
d

dt

◆n

⌥(t),

where n = d⌫e if ⌫ /2 N, and n = ⌫ otherwise.
We mention that, if ⌫ = m is an integer number, then
CDm,k

a+ ⌥(t) =
⇣

1
k0(t)

d
dt

⌘m
⌥(t). If ⌫ is not an integer, then

CD⌫,k
a+⌥(t) =

1

�(n� ⌫)

Z t

a
(k(t)� k(�))n�⌫�1k0(�)

⇥
✓

1

k0(�)
d

d�

◆n

⌥(�) d�.
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For special choices of k, we obtain the Caputo (when we con-
sider k(t) = t), the Caputo–Hadamard (when the kernel is the
function k(t) = ln(t)), the Caputo–Katugampola (k(t) = t⇢)
and the Caputo–Erdelyi–Kober (similar to the previous case)
fractional derivatives. Recently, the purposed general form of
differentiation has found applications (see [4], [7], [17], [39]).

One extension of these works is to consider the order of
the derivative not constant along the process [36]. Since most
problems are dynamic processes, it makes sense that the order
of the operator varies with the process. Recently, it has found
applications in control, physics, etc [14], [19], [32], [38].

The objective is to formulate conditions for variational
problems, where the derivative operator is defined with re-
spect to another function and the order of the derivative is
nonconstant. In this way, we present some generalizations of
known theorems in the calculus of variations, for the fractional
context. For special cases of k and ⌫, we obtain classic
results of this theory. We present and prove several necessary
conditions that allow us to find the possible extremizers of the
functionals. This study started with Riewe [33], [34]. As Riewe
refered, “Traditional Lagrangian and Hamiltonian mechanics
cannot be used with nonconservative forces such as friction”,
and after it numerous works have come up dealing with
different problems. Applications are being found nowadays,
in particular in fractional optimal control problems [12], [21],
[31], [40]

The organization is the following. In Section II we present
the needed definitions and results. Next, in Section III, we
present some results on necessary conditions for minimization
of a functional, and we end with a Conclusion section.

II. SOME DEFINITIONS ON FRACTIONAL CALCULUS

Throughout this paper, ⌫ is a function with domain [a, b]
taking values between zero and one (⌫ is the fractional order).
Also, x and k are two differentiable functions, defined on
[a, b], and k is increasing with k0 > 0. The k-Caputo fractional
derivative (of order ⌫(·)), is given by

CD⌫(t),k
a+ ⌥(t) =

1

�(1� ⌫(t))

Z t

a
(k(t)� k(�))�⌫(t)⌥0(�) d�.

For the power function ⌥(t) = (k(t)� k(a))⇠ (⇠ > 0):

CD⌫(t),k
a+ ⌥(t) =

�(⇠ + 1)

�(⇠ � ⌫(t) + 1)
(k(t)� k(a))⇠�⌫(t).

For example, let ⌥(t) = (k(t) � k(0))2, with t 2 [0, 2]. For
fractional orders, we consider ⌫1(t) = 0.5, ⌫2(t) = (t+1)/4,
and ⌫3(t) = exp(t)/8. In Figures (1)-(2) we present the plots
of CD⌫

i

(t),k
0+ ⌥(t) when considering k(t) = t3/2 and k(t) =

ln(t+ 1), respectively.
Next, we present and prove an integration by parts formula,

needed for the sequel. First, let us present two more defini-
tions:

I⌫(t),kb� ⌥(t) :=

Z b

t

k0(�)
�(⌫(�))

(k(�)� k(t))⌫(�)�1⌥(�) d�,

Fig. 1. Plots of CD
⌫
i

(t),k
0+ ⌥(t) with k(t) = t3/2.

Fig. 2. Plots of CD
⌫
i

(t),k
0+ ⌥(t) with k(t) = ln(t+ 1).

and

D⌫(t),k
b� ⌥(t) :=

1

k0(t)
d

dt

Z b

t

�k0(�)
�(1� ⌫(�))

⇥ (k(�)� k(t))�⌫(�)⌥(�) d�.

Theorem 1. Let ⌥ 2 C[a, b] and � 2 C1[a, b]. Then,

Z b

a
⌥(t)CD⌫(t),k

a+ �(t) dt =



I1�⌫(t),k
b�

✓

⌥(t)

k0(t)

◆

�(t)

�b

a

+

Z b

a
D⌫(t),k

b�

✓

⌥(t)

k0(t)

◆

�(t)k0(t) dt.

Proof. First, observe that

Z b

a
⌥(t)CD⌫(t),k

a+ �(t) dt =

Z b

a

Z t

a

⌥(t)

�(1� ⌫(t))

⇥ (k(t)� k(�))�⌫(t)�0(�) d� dt

=

Z b

a

Z b

t

⌥(�)

�(1� ⌫(�))
(k(�)� k(t))�⌫(�) d� · �0(t) dt.
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Consequently, we obtain

" 

Z b

t

⌥(�)

�(1� ⌫(�))
(k(�)� k(t))�⌫(�) d�

!

�(t)

#b

a

�
Z b

a

d

dt

 

Z b

t

⌥(�)

�(1� ⌫(�))
(k(�)� k(t))�⌫(�) d�

!

�(t) dt,

proving the desired formula.

III. CALCULUS OF VARIATIONS OF FRACTIONAL ORDER

In this section, we intend to present some conditions to
determine the optimal solutions. The Lagrangian depends of
the Caputo derivative, and the order of the derivative is not
constant. The problem is the following:

F : C1[a, b] ! R

x 7!
Z b

a
Z(t, x(t),CD⌫(t),k

a+ x(t)) dt.
(1)

The function Z : [a, b] ⇥ R2 ! R, Z = Z(t, x, v) is
continuously differentiable for x and v, @2Z and @3Z. The
boundary conditions

x(a) = ✓, x(b) = #, ✓,# 2 R (2)

may be imposed to the problem. The next theorem presents a
necessary condition to determine the candidates for minimizers
of the functional. Such type of equations are usually called
Euler–Lagrange equations. Along our work we will assume
that the map t 7! D⌫(t),k

b�
⇣

@3Z(t, x(t),CD⌫(t),k
a+ x(t))/k0(t)

⌘

is continuous in [a, b], where x is a minimizer of the functional.
Also, we will use the following notations. By {x}(t), we
mean the 3-dimensional vector (t, x(t),CD⌫(t),k

a+ x(t)). By
@if(z1, . . . , zm), we mean

@if(z1, . . . , zm) :=
@f

@zi
(z1, . . . , zm).

Theorem 2. Suppose that x is a curve that minimizes F (1),
defined on a set of functions that fulfill the condition (2). Then,
x satisfies the following equation

@2Z{x}(t) +D⌫(t),k
b�

✓

@3Z{x}(t)
k0(t)

◆

k0(t) = 0, (3)

for all t 2 [a, b].

Proof. To prove this result, we start by considering a new
function $ 2 C1[a, b]. Since x is fixed at the endpoints a
and b, we must impose the conditions $(a) = 0 and also
$(b) = 0. Since
Z b

a

h

@2Z{x}(t)$(t) + @3Z{x}(t)CD⌫(t),k
a+ $(t)

i

dt = 0,

applying Theorem 1, we can deduce that

Z b

a



@2Z{x}(t) +D⌫(t),k
b�

✓

@3Z{x}(t)
k0(t)

◆

k0(t)
�

$(t) dt

+



I1�⌫(t),k
b�

✓

@3Z{x}(t)
k0(t)

◆

$(t)

�b

a

= 0.

Since $ is arbitrary in the open interval ]a, b[, we prove
formula (3).

Theorem 3. If F attains a minimum value at x, then x satisfies
Eq. (3) and the two transversality conditions

I1�⌫(t),k
b�

✓

@3Z{x}(t)
k0(t)

◆

= 0,

evaluated at the endpoints of the interval [a, b].

Proof. Observe that $ is arbitrary in the closed interval [a, b],
obtaining the desired formulas.

The case of functionals depending on a vector function x :=
(x1, . . . , xm) is similar to the previous ones. Now, the frac-
tional derivative of the vector x is defined as CD⌫(t),k

a+ x(t) :=

(CD⌫(t),k
a+ x1(t), . . . ,CD

⌫(t),k
a+ xm(t)).

Theorem 4. Let x = (x1, . . . , xm) be a minimizer of

F(x1, . . . , xm) :=

Z b

a
Z{x}(t) dt.

Then, for every t,

@i+1Z{x}(t) +D⌫(t),k
b�

✓

@i+1+mZ{x}(t)
k0(t)

◆

k0(t) = 0,

where the index i = 1, . . . ,m. Moreover, if xi(a) is free, then

I1�⌫(t),k
b�

✓

@i+1+mZ{x}(t)
k0(t)

◆

= 0

at t = a, and if xi(b) is free, then

I1�⌫(t),k
b�

✓

@i+1+mZ{x}(t)
k0(t)

◆

= 0

at t = b.

So far, both the fractional derivative and the cost integral
(1) start at the same point t = a. The next theorem generalizes
Theorem 2, by considering the case when the integral starts
at a point t = A > a.

Theorem 5. Let

F(x) :=

Z b

A
Z{x}(t) dt,

where A > a is a fixed real. If x minimizes F , then,

D⌫(t),k
b�

✓

@3Z{x}(t)
k0(t)

◆

�D⌫(t),k
A�

✓

@3Z{x}(t)
k0(t)

◆

= 0,
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for all t 2 [a,A], and for all t 2 [A, b], we also have the
following:

@2Z{x}(t) +D⌫(t),k
b�

✓

@3Z{x}(t)
k0(t)

◆

k0(t) = 0.

Moreover, we have following transversality conditions hold:

I1�⌫(t),k
b�

✓

@3Z{x}(t)
k0(t)

◆

= 0, at t = b,

I1�⌫(t),k
b�

✓

@3Z{x}(t)
k0(t)

◆

� I1�⌫(t),k
A�

✓

@3Z{x}(t)
k0(t)

◆

= 0, at t = a,

and

I1�⌫(t),k
A�

✓

@3Z{x}(t)
k0(t)

◆

= 0, at t = A.

Proof. Using the following relations

0 =

Z b

A

h

@2Z{x}(t)$(t) + @3Z{x}(t)CD⌫(t),k
a+ $(t)

i

dt

=

Z b

a

h

@2Z{x}(t)$(t) + @3Z{x}(t)CD⌫(t),k
a+ $(t)

i

dt

�
Z A

a

h

@2Z{x}(t)$(t) + @3Z{x}(t)CD⌫(t),k
a+ $(t)

i

dt

=

Z b

a



@2Z{x}(t) +D⌫(t),k
b�

✓

@3Z{x}(t)
k0(t)

◆

k0(t)
�

$(t) dt

�
Z A

a



@2Z{x}(t) +D⌫(t),k
A�

✓

@3Z{x}(t)
k0(t)

◆

k0(t)
�

$(t) dt

+



I1�⌫(t),k
b�

✓

@3Z{x}(t)
k0(t)

◆

$(t)

�b

a

�


I1�⌫(t),k
A�

✓

@3Z{x}(t)
k0(t)

◆

$(t)

�A

a

=

Z A

a



D⌫(t),k
b�

✓

@3Z{x}(t)
k0(t)

◆

�D⌫(t),k
A�

✓

@3Z{x}(t)
k0(t)

◆�

⇥ k0(t)$(t) dt

+

Z b

A



@2Z{x}(t) +D⌫(t),k
b�

✓

@3Z{x}(t)
k0(t)

◆

k0(t)
�

$(t) dt

+



I1�⌫(t),k
b�

✓

@3Z{x}(t)
k0(t)

◆

$(t)

�b

a

�


I1�⌫(t),k
A�

✓

@3Z{x}(t)
k0(t)

◆

$(t)

�A

a

,

and for appropriate choices of $, we obtain the desired result.

For our next result, besides the boundary conditions (2), we
impose an integral constraint of type

P(x) :=

Z b

a
P (t, x(t),CD⌫(t),k

a+ x(t)) dt = K, (4)

for a fixed real K. Again, we assume that P is differentiable
with respect to x and v, and t 7! D⌫(t),k

b� (@3P{x}(t)/k0(t))
is continuous in [a, b].

Theorem 6. Suppose that F (1), subject to the restrictions (2)
and (4), attains a minimum value at x. If x is not a solution
of

@2P{x}(t) +D⌫(t),k
b�

✓

@3P{x}(t)
k0(t)

◆

k0(t) = 0, 8t 2 [a, b],

(5)
then there is � 2 R for which x is a solution of

@2F{x}(t) +D⌫(t),k
b�

✓

@3F{x}(t)
k0(t)

◆

k0(t) = 0, 8t 2 [a, b],

where F := Z + �P .

Proof. Define the two following auxiliary functions

j(✏1, ✏2) := F(x+ ✏1$1 + ✏2$2)

and
p(✏1, ✏2) := P(x+ ✏1$1 + ✏2$2)�K,

where $i 2 C1[a, b] and $i(a) = 0 = $i(b), for i = 1, 2.
Since

@1p(0, 0) =
Z b

a



@2P{x}(t) +D⌫(t),k
b�

✓

@3P{x}(t)
k0(t)

◆

k0(t)
�

$1(t) dt

and x does not satisfies Eq. (5), there is a function $1 2
C1[a, b] with @1p(0, 0) 6= 0. On the other hand, (0, 0) is a
minimizer of j, with the restriction p(·, ·) = 0, Thus, we ensure
the existence of � 2 R with

r(j + �p)(0, 0) = (0, 0).

Computing @2(j + �p)(0, 0), we prove the theorem.

Next, we consider an holonomic constraint of type

g(t, x(t)) = 0, 8t 2 [a, b]. (6)

The function x is a two dimensional vector, that is, we are
dealing with a function x of form x(t) = (x1(t), x2(t)). The
function g : [a, b] ⇥ R2 ! R is differentiable with respect to
x1 and x2. We also consider the conditions

x(a) = ✓ and x(b) = #, ✓,# 2 R2. (7)

Theorem 7. Let

F(x) =

Z b

a
Z(t, x(t),CD⌫(t),k

a+ x(t)) dt,

subject to the constraints (6)-(7). Suppose that x is a minimizer
for F and that, for every t 2 [a, b],

@3g(t, x(t)) 6= 0. (8)

The existence of a continuous function ⌅ : [a, b] ! R is
ensured for which x verifies the equation

@i+1Z{x}(t) +D⌫(t),k
b�

✓

@i+3Z{x}(t)
k0(t)

◆

k0(t)
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+⌅(t)@i+1g(t, x(t)) = 0, (9)

for all t and i = 1, 2.

Proof. Let $ be a differentiable function with domain [a, b],
$ = ($1,$2). By the imposed restrictions on the bounds of
the domain, the conditions $(a) = (0, 0) and $(b) = (0, 0)
are assumed. From Eq. (8),

g(t, x1(t) + ✏$1(t), x2(t) + ✏$2(t)) = 0, 8t 2 [a, b]. (10)

If we differentiate Eq. (10) to the variable ✏, and after replacing
✏ = 0, we get

@3g(t, x(t))$2(t) = �@2g(t, x(t))$1(t). (11)

Let us define ⌅ : [a, b] ! R as

⌅(t) := �
@3Z{x}(t) +D⌫(t),k

b�
⇣

@5Z{x}(t)
k0(t)

⌘

k0(t)

@3g(t, x(t))
. (12)

Observe that Eq. (9) is proven for i = 2. For the case i = 1,
using Eqs. (11)-(12), we get that

✓

@3Z{x}(t) +D⌫(t),k
b�

✓

@5Z{x}(t)
k0(t)

◆

k0(t)
◆

$2(t)

= ⌅(t)@2g(t, x(t))$1(t). (13)

Since the first derivative of J must vanish at x, using
integration by parts and Eq. (13), we prove the remaining
case.

IV. EXAMPLES

Let

F(x) =

Z b

a

⇣

CD⌫(t),k
a+ x(t)

� 8!

�(9� ⌫(t))
(k(t)� k(a))8�⌫(t)

⌘2

dt ! min

with the restrictions

x(a) = 0, x(b) = (k(b)� k(a))8.

Since J (x) � 0, for an arbitrary x, and J (◆) = 0 for ◆ :=
(k(t) � k(a))8, we conclude easily that the solution is the
power function ◆. Let us see that ◆ satisfies the Euler–Lagrange
equation (3). In fact, Eq. (3) becomes

D⌫(t),k
b�

CD⌫(t),k
a+ x(t)� 8!

�(9�⌫(t)) (k(t)� k(a))8�⌫(t)

k0(t)
= 0.

Since
CD⌫(t),k

a+ ◆(t) =
8!

�(9� ⌫(t))
(k(t)� k(a))8�⌫(t),

it is an easy exercise to verify that ◆ is a candidate for solution.
As second example, we will deal with an isoperimetric

question:

F(x) =

Z b

a

⇣

CD⌫(t),k
a+ x(t)

⌘2

+
⇣ 8!

�(9� ⌫(t))
(k(t)� k(a))8�⌫(t)

⌘2

dt ! min

subject to

x(a) = 0, x(b) = (k(b)� k(a))8,

and to the integral constraint
Z b

a

CD⌫(t),k
a+ x(t)

8!

�(9� ⌫(t))
(k(t)� k(a))8�⌫(t) dt = K

where

K =

Z b

a

⇣ 8!

�(9� ⌫(t))
(k(t)� k(a))8�⌫(t)

⌘2

dt.

Again, ◆ := (k(t) � k(a))8 verifies the required conditions
given by Theorem 6 with � = �2.

V. CONCLUSION

We studied some calculus of variations problems. Instead of
considering Lagrangians depending on the first order deriva-
tive, we replace it by a fractional derivative with respect to k.
Also, the order of the derivative is variable in time and takes
any value in the interval (0, 1). An Euler–Lagrange equation
was obtained, as well some other cases, namely the ones when
in presence of an integral and holonomic constraints. The
author wants to thank the reviewers for the positive remarks
that helped to improve this work.
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