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1 Introduction

Equilibrium and out-of-equilibrium dynamics play central roles in cosmology, being crucial

in determining, for instance, the present abundances of light nuclei, dark matter and other

thermal relics or the cosmological baryon asymmetry. From the nearly perfect blackbody

spectrum of the Cosmic Microwave Background (CMB) radiation and the successful pre-

dictions of Big Bang Nucleosynthesis (BBN) for the abundances of Helium and other light

nuclei, we can infer that the Universe achieved a state very close to thermal equilibrium in

the early stages of its evolution. Most of the cosmological dynamics is based on determin-

ing when a given particle species was in equilibrium with the thermal cosmic plasma and

when it decoupled from the latter. This generically involves solving intricate systems of

coupled Boltzmann equations for different particle species, but it typically suffices to use

the well-known “rule of thumb” that a particle is in equilibrium with the cosmic plasma

whenever its interaction rate with the latter exceeds the Hubble expansion rate, Γ & H.

Since in most cosmological eras the Hubble rate varies significantly in a Hubble time, this

implies that the transition from an equilibrium to an out-of-equilibrium (decoupled) state

is very fast on cosmological time scales.

An exception to this rule is naturally the period of inflation [1–5], where the Hubble

rate remains nearly constant for about 50–60 e-folds of expansion required to solve the

flatness and horizon problems of the Big Bang model. In canonical models of inflation the

question of whether or not a particle species is in thermal equilibrium makes little sense,

since the exponentially fast expansion quickly dilutes away all particle species present in the

pre-inflationary epochs. However, in the context of warm inflation [6, 7] this question plays

a prominent role. In this alternative paradigm, dissipative processes continuously transfer

the inflaton’s energy into the cosmic plasma, leading to particle production that sustains a

slowly varying temperature during inflation. There are several reasons to consider such an

alternative paradigm. In such scenarios, dissipative friction damps the inflaton’s evolution

and prolongs inflation, with radiation smoothly taking over as the dominant component

– 1 –



J
H
E
P
0
2
(
2
0
1
8
)
0
6
3

if strong dissipation is attained at the end of the slow-roll evolution regime (see, e.g.,

refs. [8–11]). The greatest appeal of warm inflation lies perhaps in the fact that thermal

inflaton fluctuations are directly sourced by dissipative processes, changing the form of the

primordial spectrum of curvature perturbations and thus providing a unique observational

window into the particle physics behind inflation [11–18]. In addition, we have recently

shown that warm inflation can be consistently realized in a simple quantum field theory

framework requiring very few fields, the Warm Little Inflaton scenario [19], where the re-

quired flatness of the inflaton potential is not spoiled by thermal effects (see also refs. [20–26]

for earlier alternative models), paving the way for developing a complete particle physics

description of inflation that can be fully tested with CMB and Large-Scale Structure (LSS)

observations and possibly have implications for collider and particle physics data.

Independently of the particle physics involved in sustaining a thermal bath during in-

flation, a generic feature of warm inflation is the slow evolution of both the temperature

and the Hubble parameter for the usually required 50–60 e-folds of expansion. Since both

scattering and particle decay rates typically depend on the former, this implies that the ra-

tio Γ/H will generically evolve slowly during inflation. Consequently, as we explicitly show

in this work for the first time, particle species in the warm inflationary plasma can maintain

distributions that are slowly evolving and out-of-equilibrium throughout inflation, whether

or not they are directly involved in the dissipative dynamics. This may have an important

impact not only on the inflationary dynamics and predictions themselves but also on the

present abundance of different components. As an example of application of this novel

observation, we show that this can lead to the production of a baryon asymmetry during

inflation, a possibility that can be tested in the near future with CMB and LSS observations.

This work is organized as follows. In section 2 we analyze the Boltzmann equation for a

particle species interacting with a thermal bath for an adiabatic evolution of the ratio Γ/H,

focusing explicitly on the case of decays and inverse decays for concreteness. We then show

that this leads to slowly varying out-of-equilibrium configurations, obtaining the overall

particle number density and its phase space distribution. We briefly discuss how similar

results can be obtained for scattering processes. In section 3 we use these results to develop

a generic baryogenesis (or leptogenesis) mechanism during inflation. Then, in section 4,

we discuss how this generically leads to baryon isocurvature modes that give a small con-

tribution to the primordial curvature perturbation spectrum. In section 5 we summarize

our results and discuss their potential impact on other aspects of the inflationary and

post-inflationary history. An appendix is included where some technical details are given.

2 Adiabatic out-of-equilibrium dynamics

Let us consider a particle X interacting with a thermal bath at temperature T in an

expanding Universe.1 For concreteness, let us explicitly consider the case where X decays

into particles Y1 and Y2 in the thermal bath, and assume that these maintain a near

1Throughout this work we consider a spatially flat Friedmann-Lemaitre-Robertson-Walker (FLRW)

space-time in which the metric is given by ds2 = dt2 − a(t)2dx2, where t is physical time, x are the

comoving spatial coordinates and a(t) is the cosmological scale factor.
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equilibrium distribution through other processes that do not directly involve X. Let us

also, for simplicity, focus on the case where X is a boson with gX degrees of freedom and

the decaying products Y1 and Y2 are either bosons or fermions (extending our results to

decaying fermions is straightforward). The number density of X particles,

nX = gX

∫
d3p

(2π)3
fX(p) , (2.1)

has an evolution, in an expanding flat FLRW universe, that is described by the Boltzmann

equation [27, 28]

ṅX + 3HnX = C , (2.2)

where the collision term C includes the effects of decays X → Y1 + Y2 and inverse decays

Y1 + Y2 → X and takes the form2

C = −
∫
dΠXdΠ1dΠ2(2π)4δ4(pX − p1 − p2)|M|2 [fX(1± f eq

1 )(1± f eq
2 )− f eq

1 f eq
2 (1 + fX)] ,

(2.3)

where dΠi = gid
3pi/2Ei(2π)3,M is the matrix element associated with both the decay and

inverse decay processes (related by CPT invariance) and fi are the phase-space distribution

functions for each particle. Note also that the plus (minus) sign in 1±fi in eq. (2.3) refers to

bosons (fermions) and it is related to the usual Bose enhancement (Pauli-blocking) effect.

Since we assume Y1,2 are in equilibrium, we have

f eq
i =

1

eβ(Ei−µi) ± 1
, i = 1, 2 (2.4)

where β = 1/T in natural units and the plus (minus) sign is for a Fermi-Dirac (Bose-

Einstein) distribution. Taking into account conservation of energy, EX = E1 + E2, and

assuming chemical equilibrium, µX = µ1 +µ2 (an assumption that we may drop if chemical

potentials can be neglected), then, it is easy to show that

1± f eq
1 ± f

eq
2 =

f eq
1 f eq

2

f eq
X

, (2.5)

where

f eq
X =

1

eβ(EX−µX) − 1
(2.6)

is the distribution of the X particles when they are in equilibrium. This then allows us to

write the collision term in the form

C = −
∫
dΠXdΠ1dΠ2(2π)4δ4(pX − p1 − p2)|M|2 f

eq
1 f eq

2

f eq
X

(
fX − f eq

X

)
= −

∫
d3pX
(2π)3

ΓX(fX − f eq
X ) , (2.7)

2The inclusion of Landau damping effects will not change our conclusions.
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where the equilibrium decay width of the X boson is given by

ΓX =
1

2EXf
eq
X

∫
dΠ1dΠ2(2π)4δ4(pX − p1 − p2)|M|2f eq

1 f eq
2 .

We can simplify further the Boltzmann equation by discarding the momentum-dependence

of the decay width, a common procedure in the literature, by considering its thermal

average [27]:

Γ̄X =
1

neq
X

∫
d3pXΓXf

eq
X . (2.8)

The Boltzmann equation (2.2) can then be cast into the familiar form

ṅX + 3HnX = −Γ̄X(nX − neq
X ) . (2.9)

It is straightforward to obtain an analogous result for an arbitrary number of particles in

the final state.

In a non-expanding Universe, the collision term will then naturally drive the number

density of X particles towards its equilibrium value, while in an expanding Universe this

only occurs for Γ̄X � H, which is the familiar rule of thumb in cosmology. Now, in a

cosmological setting such as warm inflation, since H and T are slowly-varying and Γ̄X will

depend only on T and on the masses of the parent and daughter particles, we can take

the ratio Γ̄X/H to be slowly-evolving. For all cases where γX ≡ Γ̄X/H is slowly-evolving

on the Hubble scale, i.e., γ̇X/γX � H−1, we may take γX to be a constant as a first

approximation and write the Boltzmann equation in terms of the number of e-folds of

expansion, dNe = Hdt, as

n′X + 3nX = −γX(nX − neq
X ) . (2.10)

If the temperature is slowly-varying, we may take neq
X to be constant as well, yielding the

solution

nX(Ne) =
γX

3 + γX
neq
X

(
1− e−(3+γX)Ne

)
+ nX(0)e−(3+γX)Ne . (2.11)

Hence, X is driven exponentially fast to the solution

nX '
γX

3 + γX
neq
X . (2.12)

Note that this is not exactly stationary due to the slow variation of both γX and neq
X , so we

refer to this solution as adiabatic. This solution is attained in less than a e-fold if the initial

number density is not too far from the quasi-stationary value, and even large discrepancies

will be quickly washed away within a few e-folds. This agrees with the statement made

above that nX is driven towards its equilibrium value for γX � 1, but reveals a novel fea-

ture that is absent in general cosmological settings — that even for γX � 1 a small but not

necessarily negligible number density of X particles remains constant despite the fast ex-

pansion of the Universe. This is thus a new type of solution that only arises in cosmological
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settings where the temperature and Hubble rate are varying slowly, such as warm infla-

tion. In an adiabatic approximation, we can include the slow variation of these parameters,

namely γX = γX(Ne) and neq
X = neq

X (Ne) in the quasi-stationary solution in eq. (2.12).

We may also take a step further and compute the phase-space distribution of X-

particles, which follows the momentum-dependent Boltzmann equation in a flat FLRW

universe,
∂fX(p, t)

∂t
−Hp∂fX(p, t)

∂p
= C(p) , (2.13)

where the collision term is given by

C(p) = −ΓX(p)
[
fX(p, t)− f eqX (p)

]
, (2.14)

from the results obtained above. For illustrative purposes, we will consider two distinct

cases where an X scalar boson decays into either fermion or scalar boson pairs, through

Yukawa or scalar trilinear interactions, respectively. We neglect all chemical potentials for

simplicity. The corresponding decay widths are given by [23]

Γ
(B)
X = Γ

(B)
0

mX

ωp

[
1 + 2

T

p
log

(
1− e−ω+/T

1− e−ω−/T

)]

Γ
(F )
X = Γ

(F )
0

mX

ωp

[
1 + 2

T

p
log

(
1 + e−ω+/T

1 + e−ω−/T

)]
(2.15)

where we have neglected the masses of the decay products, with ω± = (ωp ± p)/2,

ωp =
√
p2 +m2

X , p = |p|. The decay widths at zero-temperature and zero-momentum

are, in the two cases, given by

Γ
(B)
0 =

g2
B

32π

M2

mX
, Γ

(F )
0 =

g2
F

8π
mX , (2.16)

where gB,F are dimensionless couplings and M is the mass scale of the trilinear scalar

coupling. We have solved the Boltzmann equation (2.13) numerically in both cases for

different values of the X boson mass and decay width, taking fX(p, 0) = 0 and imposing

fX(p, t)→ 0 in the limit p→∞ (in practice at a sufficiently large momentum value). We

illustrate the resulting time evolution of the phase-space distribution for the bosonic and

fermionic cases in figure 1(a) and figure 1(b) respectively. In both cases the decay is of a

relativistic X boson with mass set at the value mX = 0.001T and with Γ
(B,F )
0 /H = 0.5,

which corresponds to γ
(B)
X = 0.0245 (γ

(F )
X = 10−4 in the case of decay into fermions). It

is clear from the results shown in figure 1 that in both cases the distribution reaches a

stationary configuration after only a couple of Hubble times, a result that we obtained

generically for different values of the mass and decay width, for both fermionic and bosonic

decay. Naturally, for larger values of γX the stationary configuration is attained faster.

These stationary solutions can be obtained by setting ∂fX/∂t = 0 in the Boltzmann

equation (2.13), yielding a first-order inhomogeneous differential equation for f stat
X (p). Fol-

lowing standard methods, we may formally write the stationary solution in the integral form

f stat
X (p) = f

(h)
X (p)

∫ ∞
p

dp′

p′
ΓX(p′)

H

f eq
X (p′)

f
(h)
X (p′)

, (2.17)
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(a) Decay into bosons.
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(b) Decay into fermions.

Figure 1. The phase space distribution at different times (in units of the Hubble parameter), as

a function of the momentum p, for decay into bosons (a) and for decay into fermions (b). The

parameters used are mX = 0.001T , and Γ
(B,F )
0 /H = 0.5, which corresponds to γ

(B)
X = 0.0245

(bosons) and γ
(F )
X = 10−4 (fermions).

where f
(h)
X = e

∫
dp′ΓX(p′)/Hp′ is the homogeneous solution, which takes the form f

(h)
X = pγX

if one replaces the decay width by its thermal average eq. (2.8), as explained above.

For practical purposes, however, this integral form is not very useful, since integrals

involving the Bose-Einstein distribution do not have, in general, a simple analytical form

and have to be computed numerically. In figure 2, we show the obtained stationary distri-

butions for bosonic and fermionic decays for the same values of the X mass and average

decay width considered in figure 1.

For comparison, we also show in figure 2 the distribution obtained when replacing

ΓX(p) by Γ̄X . We can see that for fermionic decay this yields a good approximation to

the full solution, while for bosonic decay there are more prominent differences. In partic-

ular, the latter distribution is peaked at lower momentum values than the one obtained

using Γ̄X , which is related to the Bose enhancement of the decay at low-momentum values

p . mX . For mX � T there is thus a substantial variation of the bosonic decay width with
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(a) Decay into bosons.
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(b) Decay into fermions.

Figure 2. The phase space distribution, as a function of the momentum p, at large asymptotic

times (when the distributions have already reached the stationary state), for decay into bosons (a)

and for decay into fermions (b). The parameters used are mX = 0.001T and Γ
(B,F )
0 /H = 0.5, which

corresponds to γ
(B)
X = 0.0245 (bosons) and γ

(F )
X = 10−4 (fermions). Solid lines yield the solution

when considering the full momentum dependent decay widths, while dashed lines correspond to the

solution obtained using the constant thermally averaged decay widths.

momentum in the relevant range p . T , while for fermionic decay it is a good approxima-

tion to use the thermally averaged decay width in place of the full momentum-dependent

expression. Note that the larger the mass of the X boson the closer the distributions are

to the one obtained using Γ̄X , since thermal corrections to the decay width become less

important in this regime for p . T . mX . All stationary distributions are nevertheless

reasonably well fitted by an expression of the form

f stat
X (p) = A

ΓX(p, Tstat)

3H + ΓX(p, Tstat)

1

e
√
p2+m2

X/Tstat − 1
. (2.18)

We show in figure 3 the results for the fit amplitude A and effective temperature Tstat for

mX = 0.001T and different values of the thermally averaged decay width, for both the

bosonic and fermionic decays.
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(a) The fit amplitude A.
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(b) The effective temperature Tstat.

Figure 3. The fitting amplitude A (a) and effective temperature Tstat (b) for the stationary

distribution with mX = 0.001T . Dashed lines are for the case of decay into bosons, while solid lines

are for the case of decay into fermions.

As we can see in figure 3, for relativistic X bosons the coefficient A ∼ O(1) for

fermionic decays and also bosonic decays, unless the decay width is much smaller than the

Hubble parameter, while the effective temperature Tstat . T . The larger variation of the

fit parameters for bosonic decay is again due to the above mentioned Bose enhancement

effect, a variation that becomes smaller for larger values of the X mass. With the results

shown in figure 3, we also note that, generically, the effective temperature Tstat approaches

(asymptotically) the thermal bath temperature T from below and likewise for the overall

amplitude in front of eq. (2.18). This then means that the stationary solution f stat
X gets

suppressed at large momenta relative to the equilibrium one f eq. This result is similar

to the one obtained recently for an exact solution of the Boltzmann equation in a FLRW

background [29, 30], though it differs fundamentally from the solution found here. In

particular, the result of refs. [29, 30] applies to a massless gas of particles with Maxwell-

Boltzmann distribution in a radiation dominated epoch and it only approaches a stationary
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Figure 4. The momentum integrated distributions for the cases of decay into bosons (dashed line)

and decay into fermions (dotted line). The solid line is the result of the solution given by eq. (2.12).

distribution at asymptotically large times, while the present one applies generically to a

relativistic distribution in an inflationary regime and reaches a stationary state in only a

few e-folds.

Finally, we can obtain explicitly the number density from our results. We have in-

tegrated the numerically obtained distributions over momenta and compared the results

with the adiabatic solution for the number density in eq. (2.12). These results are shown

in figure 4.

We conclude that eq. (2.12) is a good approximation to the numerical value of the

number density, particularly for fermionic decays, while again we observe some discrep-

ancies in the case of bosonic decays for intermediate values of Γ̄X/H. These only occur

for relativistic X bosons and eq. (2.12) becomes a better approximation as mX increases.

We note that, in any case, the observed discrepancies correspond at most to O(1) factors,

so that γX/(3 + γX)neq
X is generically a good approximation to the number density in the

adiabatic evolution regime.

Our generic analysis would not be complete without considering scattering processes,

which may also contribute to the collision term in the Boltzmann equation. Although, for

the same type of interactions, scattering processes are typically suppressed compared to

decays since they involve larger powers of the couplings in the perturbative regime, there

may be cosmological settings where they correspond to different types of interactions and

may dominate the collision term. The analysis of scattering processes is somewhat more

involved than for decays, since in general one cannot easily express the collision term in

terms of the number density, as we detail in appendix A. This is nevertheless possible in

the limit of small occupation numbers, fi � 1, i.e., in the absence of Bose enhancement or

Fermi degeneracy [27]. In this regime, the Boltzmann equation can be written as

ṅX + 3HnX ' −〈σv〉
(
n2
X − n

eq 2
X

)
, (2.19)

where 〈σv〉 is the thermally averaged cross section times velocity defined in appendix A.

In the adiabatic limit, where both the latter and H vary slowly, we obtain the adiabatic
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solution for the number density

nX '
3

2γ
(s)
X

(√
1 +

4

9
γ

(s) 2
X − 1

)
neq
X , (2.20)

where γ
(s)
X = 〈σv〉neq

X /H is the ratio between the thermally averaged scattering rate and the

Hubble parameter. Although this may seem more complicated than the adiabatic solution

for decays, we note that the suppression factor with respect to the equilibrium number

density becomes γ
(s)
X /3 for small values of γ

(s)
X and also tends to 1 in the limit γX � 1, as

in eq. (2.12). The cases where the collision term is dominated by decays or by scattering

processes thus yield quite similar adiabatic solutions for the number density, at least for

small occupation numbers.

3 Adiabatic baryogenesis during warm inflation

The fact that we have obtained new solutions to the Boltzmann equation that are inher-

ently out-of-equilibrium immediately suggests an application: the production of a baryon

asymmetry during inflation. Let us then consider a generic model where the X particles

(bosons or fermions) decay violating B (or L or B − L) and C/CP. In particular, let us

consider a simple case with two possible decay channels (as discussed e.g. in ref. [31]),

X → B , X → Y , (3.1)

where the final state B carries a baryon number b > 0 and Y has no baryonic charge.

In practical applications these will typically correspond to 2-body decays, although the

number of particles in the final state can be arbitrary. B-violation then occurs because

there is no consistent assignment of a baryonic charge to the X particle. We also have the

conjugate decays X̄ → B̄ and X̄ → Ȳ with opposite baryonic charges, and C/CP violation

implies that the partial decay widths satisfy the relations

Γ(X → B) =
1

2
(1 + ε)ΓX , Γ(X → Y ) =

1

2
(1− ε)ΓX ,

Γ(X̄ → B̄) =
1

2
(1 + ε̄)ΓX , Γ(X̄ → Ȳ ) =

1

2
(1− ε̄)ΓX , (3.2)

where ε 6= ε̄ yield the amount of C/CP violation. Note that the total decay widths of the

X particle and of its anti-particle are equal, as required by CPT invariance,

Γ(X → B) + Γ(X → Y ) = Γ(X̄ → B̄) + Γ(X̄ → Ȳ ) . (3.3)

Both X and X̄ will then obey the same Boltzmann equation (2.10) when the particles

in the B, Y final states are in equilibrium (which we assume to be maintained by other

interactions), and evolve towards the adiabatic solution (2.12), which will be the same for

both nX and nX̄ . The full adiabatic solution (2.11) may be different for both nX and nX̄
if the initial values are distinct, but any discrepancies are quickly erased by expansion.
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Now, the baryon number density, i.e., the difference between the number density of

baryons and that of anti-baryons, evolves according to the Boltzmann equation given by

n′B + 3nB = b
[γX

2
(1 + ε)(nX − neq

X )− γX
2

(1 + ε̄)(nX̄ − n
eq
X̄

)
]
. (3.4)

Let us consider the case where nX(0) = nX̄(0), such that

n′B + 3nB = −bγX
2

∆ε(nX − neq
X ) , (3.5)

where ∆ε = ε̄− ε corresponds to the amount of CP violation. Using the solution given by

eq. (2.11), this yields the adiabatic solution for the baryon number density,

nB(Ne) '
b

2
∆ε

[(
1− e−(3+γX)Ne

) γX
3 + γX

neq
X + nX(0)e−3Ne

(
e−γXNe − 1

)]
, (3.6)

which approaches (exponentially fast) the quasi-stationary solution,

nB '
b

2
∆ε

γX
3 + γX

neq
X . (3.7)

Hence, we see that a constant baryon asymmetry is produced during warm inflation (or

in fact during any analogous period of quasi-adiabatic temperature and Hubble rate evo-

lution), for any value of γX = Γ̄X/H. Interestingly, nB → b∆εneq
X /2 for γX → ∞, the

limit for which the X particles are in equilibrium. This may seem to contradict Sakharov’s

conditions for baryogenesis [32], but it is simply associated with the fact that we are taking

decays and inverse decays as the main processes responsible for driving the X particles to-

wards equilibrium. In this case, to get closer to equilibrium, we need to increase γX , which

also increases the rate of production of baryon number, in such a way that we obtain a

finite baryon number density for arbitrarily large γX . Note that, in the large γX limit, from

the solution given by eq. (2.11), we have that nX − neq
X → −3neq

X /γX . Thus, the baryon

source term on the right-hand-side of eq. (3.5) tends to a finite value 3b∆εneq
X /2 in the limit

γX → +∞. However, note that in any physical setting γX is not at the limiting value but

rather is finite, which means the X particles are always out-of-equilibrium. Nevertheless

this analysis demonstrates that this parameter can be arbitrarily large and still produce a

significant baryon asymmetry.

The baryon asymmetry produced during warm inflation can set the final cosmological

asymmetry if the source term in the baryon number density equation becomes suppressed

after the slow-roll regime and throughout the subsequent the cosmic history. This is, of

course, model-dependent, but we can envisage scenarios where some other processes, such

as e.g. scatterings, are more suppressed than decays during warm inflation, but become the

dominant processes once the slow-roll period is over and radiation becomes the dominant

component. In this case X will be driven towards equilibrium after inflation more quickly

than through decays and inverse decays and the baryon source will quickly shut down. If it

remains in equilibrium until it is sufficiently non-relativistic, there should be no significant

sources of baryon number at late times that could substantially modify the asymmetry

produced during inflation.3

3Potentially electroweak sphalerons [33] may convert a lepton asymmetry into a baryon asymmetry in a

leptogenesis scenario [34].
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The smallness of the observed cosmological baryon-to-entropy ratio nB/s can have

different sources in this scenario: (i) CP-violation may be small, ∆ε � 1, (ii) the X

particles may be far from equilibrium, γX � 1 or (iii) X particles may be non-relativistic

during warm inflation, neq
X /s� 1. Any combination of these may thus easily explain why

nB/s ∼ 10−10 (see, e.g., ref. [35] for BBN constraints on this ratio).

Let us consider in more detail the particular case where the X particles are relativistic

during inflation, mX � T , as well as fully out-of-equilibrium, γX � 1. In this case, the

baryon-to-entropy ratio is given by

nB
s
' 45ζ(3)

4π4
b∆ε

gX
g∗

Γ̄X
H

, (3.8)

where gX is the number of degrees of freedom in X, to which each bosonic (fermionic)

degree of freedom contributes by a factor 1 (3/4), and g∗ is the effective total number

of relativistic degrees of freedom in the thermal bath. The smallness of the observed

baryon-to-entropy ratio may in this case be due to a small amount of CP violation in

∆ε and/or large deviations from thermal equilibrium, γX � 1, during inflation, or a

combination of both these factors, with an additional suppression by gX/g∗. This will of

course be a model-dependent issue that is not pursued further here. We note that the

high temperatures typically attained during warm inflation (see, e.g., refs. [17, 19]) suggest

possible implementations of this mechanism within grand unified theories [36].

4 Generation of baryon isocurvature perturbations

The interesting aspect that we would like to discuss in more detail is the fact that nB/s

depends on the ratio Γ̄X/H, which, albeit nearly constant, exhibits a small variation dur-

ing inflation and, moreover, is associated with the inflationary dynamics. As such, this

ratio will necessarily acquire fluctuations on superhorizon scales due to fluctuations in the

inflaton field. This implies that the latter will induce both adiabatic curvature fluctuations

and baryon isocurvature fluctuations, the latter corresponding to relative fluctuations in

the baryon and photon fluids, which would be absent if the baryon asymmetry were not

generated during inflation. This is similar to the warm baryogenesis scenario proposed in

ref. [37], where the baryon asymmetry is directly sourced by the dissipative processes that

sustain the thermal bath in warm inflation, but the spectrum of isocurvature modes may

be different. This yields the interesting possibility of looking for baryon isocurvature modes

with CMB and LSS observations to assess whether the observed baryon asymmetry was

or not produced during inflation, but also whether its generation was directly linked with

dissipative dynamics. Note that other baryogenesis models [38–43], such as Affleck-Dine

baryogenesis, may also lead to baryon isocurvature modes in the primordial spectrum, but

these are in this case uncorrelated with the main adiabatic curvature component, since

they are associated with distinct fields. The degree of correlation between isocurvature

and adiabatic curvature modes may thus be used to test the warm inflation paradigm itself

and isolate a particular mechanism for baryogenesis.

Let us then analyze in more detail the spectrum of baryon isocurvature perturbations

produced in the present model. Since nB/s will always depend on γX in the adiabatic

– 12 –



J
H
E
P
0
2
(
2
0
1
8
)
0
6
3

dynamics under consideration, baryon isocurvature modes will always be generated, in-

dependently of the value of γX or whether X particles are relativistic during inflation,

but let us focus, for concreteness, on the weakly-coupled high-temperature case leading to

eq. (3.8). At high temperature, we typically have that Γ̄X ∝ T , such that nB/s ∝ T/H.

Baryon isocurvature modes are characterized by the quantity [44]

SB =
δρB
ρB
− 3

4

δρR
ρR

=
δ(nB/s)

nB/s
=
δ(T/H)

T/H
(4.1)

evaluated when the relevant CMB scales become superhorizon during inflation. The sub-

script ‘R’ used in eq. (4.1) and in the quantities below refers to radiation. We thus need to

determine how the fluctuations in the ratio T/H are related to inflaton fluctuations. The

dynamics of warm inflation is dictated by the coupled inflaton and radiation equations,

which for the homogeneous background components are given by

φ̈+ (3H + Υ)φ̇+ V ′(φ) = 0 , (4.2)

ρ̇R + 4HρR = Υφ̇2 , (4.3)

where Υ is the dissipation coefficient. In the slow-roll regime, valid when the slow-roll

parameters εφ, |ηφ| � 1 +Q, where Q = Υ/3H, εφ = (M2
P /2)(V ′/V )2 and ηφ = M2

PV
′′/V ,

these become

φ̇ ' − V ′(φ)

3H(1 +Q)
, ρR '

3

4
Qφ̇2 . (4.4)

Combining both equations for ρR = CRT
4, where CR = (π2/30)g∗, we obtain after some

algebra, that (
T

H

)4

' 3

2
C−1
R

(
MP

H

)2 Q

(1 +Q)2
εφ , (4.5)

where one can see that a warm thermal bath, i.e., T & H, can easily be attained for

H �MP in the slow-roll regime even if the dissipative ratio Q is not very large. Considering

perturbations in the above equation, we obtain after a straightforward calculation,

SB =
δ(T/H)

T/H
' 1

4

(
6εφ − 2ηφ

1 +Q
+

1−Q
1 +Q

Q′

Q

)
R , (4.6)

where R ' (H/φ̇)δφ is the gauge-invariant comoving curvature perturbation (written in

the Ψ = 0 gauge [28]) and primes denote derivatives with respect to the number of e-

folds of inflation, dNe = Hdt. The dynamical quantity Q′/Q depends on the form of the

dissipation coefficient Υ, but it is in general a linear combination of the slow-roll parameters

divided by a linear polynomial in Q (see, e.g., refs. [9, 17, 19]). This implies that typically

SB/R ∼ O(ns − 1) ∼ O(N−1
e ).

The Warm Little Inflaton (WLI) scenario of ref. [19], where the inflaton interacts with

relativistic fermion fields and Υ ∝ T , constitutes the simplest and most appealing particle

physics realization of warm inflation. In this case, we have Q′/Q = (6ε − 2ηφ)/(3 + 5Q).
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For thermal inflaton fluctuations and weak dissipation at horizon-crossing, Q∗ � 1, we

have for the scalar spectral index ns − 1 = 2(2ηφ∗ − 6εφ∗)/3, yielding

SWLI
B '

(
1− ns

2

)
R ' 10−2R . (4.7)

Although the exact relation between SB and R is model-dependent, we expect these quan-

tities to be in general proportional with a proportionality constant of this magnitude as

argued above. We note that the effects of baryon and cold dark matter isocurvature modes

(CDI) on the CMB spectrum are indistinguishable, although, e.g., the trispectrum may

in principle distinguish between them [45]. As such, the effective contribution to the cold

dark matter isocurvature spectrum from the baryon modes above is given by

PCDI =

(
ΩB

Ωc

)2(SB
R

)2

PR . (4.8)

The Planck analysis of CDI modes in the CMB spectrum [46] uses the variable

βISO =
PCDI

PR + PCDI
, (4.9)

and for the WLI model this gives βISO ∼ 10−5 when ns ' 0.96–0.97, which, as argued above,

should also give the generic magnitude of the effect. This is still well below the state-of-the-

art constraints set by the Planck collaboration, yielding βISO . 10−2 for generic CDI models

and using different data sets [46]. Particular models of CDI modes can be constrained by

an additional order of magnitude, but the predictions of our baryogenesis mechanism are

still compatible with the Planck results and may be tested in the future with increased

precision measurements.

The proportionality between SB and R shows that these quantities are naturally cor-

related, since both adiabatic and isocurvature modes are generated by thermal inflaton

fluctuations. Their correlation is, however, scale-dependent, since the baryon isocurvature

spectral index differs from the adiabatic spectral index,

1− nI '
d lnPCDI

dNe
=
d lnPR
dNe

− 2n′s
1− ns

' (1− ns)
[
1− 2n′s

(1− ns)2

]
. (4.10)

The correction due to the running of the adiabatic spectral index can be significant, since

in most models n′s ∼ O((1−ns)2). For instance, for thermal inflaton fluctuations and weak

dissipation at horizon-crossing, Q∗ � 1,

n′s '
2

3

(
−2ξ2

φ∗ + 16εφ∗ηφ∗ − 24ε2φ∗
)
, (4.11)

where ξ2
φ = M4

PV
′′′V ′/V 2. If we consider a quartic chaotic inflaton potential, V (φ) = λφ4,

which yields predictions for both ns and the tensor-to-scalar ratio r in excellent agree-

ment with the Planck results within the WLI scenario for warm inflation [19], one finds

n′s = −(1− ns)2/2, such that (1−nI) ' 2(1−ns), yielding nI∼0.92–0.94 for ns=0.96–0.97.

This implies, in particular, that the Planck constraints for CDI modes fully correlated with

the main adiabatic component with nI = ns do not apply in the present scenario.
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Note that for larger values of γX , the baryon-to-entropy ratio becomes less dependent

on the latter, thus suppressing the associated baryon isocurvature modes. Also, when X is

non-relativistic, nB/s exhibits an additional dependence on the ratio mX/T that must be

taken into account. This may potentially enhance SB, depending on the particular model of

warm inflation considered, although relative fluctuations in the ratio above are also typically

proportional to combinations of slow-roll parameters, and hence necessarily O(ns − 1).

5 Summary and future prospects

In this work we have shown that particle number densities during a period of warm inflation

can follow out-of-equilibrium adiabatic solutions to the Boltzmann equation and which are

suppressed relative to the equilibrium value by a factor γX/(3 + γX), where γX = Γ̄X/H

is the ratio between the thermally averaged decay rate of the particle species X of interest

and the inflationary Hubble rate, obtaining a similar result for the case where scattering

processes yield the dominant interactions. We have also shown numerically that the cor-

responding phase space-distributions tend to a stationary configuration with a modified

equilibrium distribution, given by eq. (2.18), with essentially the above amplitude suppres-

sion (up to some distortion due to the momentum-dependence of the decay width) and a

slightly smaller effective temperature. Such adiabatic solutions are achieved after a small

number of e-folds that naturally decreases when γX increases.

This shows that particles can remain out-of-equilibrium throughout warm inflation,

with small but not necessarily negligible number densities. To illustrate the impact of this

result, we have shown that the observed cosmological baryon asymmetry could be produced

by the out-of-equilibrium decay of a generic X particle interacting with the inflationary

thermal bath, violating baryon number and C/CP. The smallness of the resulting baryon

asymmetry can in this case be a consequence of the small value of γX in combination with

a small amount of CP violation, and also of the Boltzmann suppression in the case of

non-relativistic particles. An interesting feature of this generic scenario is the generation

of superhorizon baryon isocurvature modes, correlated with the main adiabatic curvature

perturbations. The spectrum of such modes is model-dependent but we have shown that

generically the predicted amplitude is below the current constraints on (effective) cold dark

matter isocurvature perturbations by the Planck collaboration. Evidence for such modes

could, in the future, constitute a smoking gun for the production of a baryon asymmetry

during inflation and, in fact, for a warm inflation scenario, and the detailed properties of

the spectrum may help to distinguish the present scenario from the warm baryogenesis

mechanism, where a baryon asymmetry is produced directly by the dissipative effects that

sustain the thermal bath during inflation.

As for the warm baryogenesis mechanism, the present scenario may also be general-

ized to an asymmetry in other particles carrying different charges, possibly producing an

asymmetry in the dark matter sector. The resulting CDI power spectrum has an amplitude

larger than the baryonic modes by a factor (Ωc/ΩB)2 ∼ 30 [47], which may thus be more

easily probed.
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Our results may have a significant impact in other aspects of the inflationary dynamics.

For instance, it is often assumed that the particles interacting directly with the inflaton and

dissipating its energy are in equilibrium with the overall thermal bath. This is required for

consistently using equilibrium phase-space distribution functions to compute the associated

dissipation coefficients (see, e.g., refs. [23, 25]). Typically this requires such particles to

decay faster than the Hubble rate, posing constraints on the coupling constants and particle

masses considered that could be relaxed if out-of-equilibrium distribution functions are

known. Our results can thus potentially be employed to this effect, a possibility that we

plan to investigate in detail in future work.

Another important aspect of warm inflation where the results obtained in this work

should be of relevance is the primordial spectrum of curvature perturbations, since the lat-

ter depends on the phase space distribution of inflaton fluctuations. In particular, for weak

dissipation at horizon-crossing, predictions for ns and r differ significantly for the limiting

cases where inflaton fluctuations are in a vacuum or in a thermal state (i.e., in equilibrium

with the overall thermal bath) [17, 19]. Although for strong dissipation this issue becomes

less relevant, since dissipation becomes the dominant source of inflaton fluctuations, agree-

ment with observations in most scenarios considered so far typically favours the Q∗ . 1

regime [17, 19, 48–50]. The dissipative dynamics itself is not sufficient to determine the

state of inflaton fluctuations, since other processes in the thermal bath can be responsible

for a substantial creation and annihilation of inflaton particles. Since the inflaton’s direct

interactions with other particles cannot typically be very strong, it is unlikely that full

thermal equilibrium of inflaton particles is achieved in general. Nevertheless, production

of inflaton particles may play a substantial role. The adiabatic solutions obtained in this

work could then be used to infer the inflaton phase-space distribution at horizon-crossing

in different models, eliminating the uncertainty in observational predictions.

Adiabatic solutions to the Boltzmann equation require both the ratio ΓX/H and the

equilibrium distribution neq
X to vary slowly compared to the expansion rate, thus requiring

both H and T to remain nearly constant. This naturally makes warm inflation the type of

dynamics to which such solutions can be applied.

We may envisage, however, other cosmological scenarios where, in addition to the

early inflationary period in which the observable CMB scales became superhorizon, there

are other (shorter) periods of inflation where particle production can sustain the temper-

ature of the cosmic thermal bath. This may be, for instance, the case of second order or

crossover cosmological phase transitions, where a scalar field rolls to a new minimum once

the temperature drops below a critical value. It has been shown in ref. [51] that dissipative

friction can make the field’s vacuum energy dominate over the radiation energy density, and

in fact prevent the latter from redshifting due to expansion. This may e.g. dilute unwanted

thermal relics produced during or after the first period of warm inflation. Our solutions

may, thus, also describe the evolution of the number density of different particle species

during such periods, which may have a significant impact on their present abundances.

One can consequently also envisage baryogenesis scenarios along the lines proposed above

during these shorter inflationary periods, although these may not easily be tested if the

associated isocurvature perturbations are generated at too small scales.
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We should not exclude other applications of our solutions where both particle produc-

tion and an expanding environment are involved and have analogous adiabatic conditions

as the ones we considered here, e.g., possibly in the quark-gluon plasma formation and

subsequent hadronization process under study with heavy-ion collisions experiments.

In summary, the novel adiabatic solutions to the Boltzmann equation found in this

work can have a significant impact in cosmology and shed a new light on several of its

presently open questions.
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A Boltzmann equation for scattering processes

Let us consider, for concreteness, the case where X bosons can annihilate into Y bosons in

the thermal bath, XX ↔ Y Y , although our analysis can be easily generalized to different

types of particles and processes such as XY ↔ XY . Labeling the X particles as (1, 2) and

the Y particles as (3, 4), the collision term in the Boltzmann equation for the X number

density, eq. (2.2) is given by

C = −
∫
dΠ1dΠ2dΠ3dΠ4(2π)4δ4 (p1 + p2 − p3 − p4) |M|2

× [f1f2(1 + f eq
3 )(1 + f eq

4 )− f eq
3 f eq

4 (1 + f1 + f2)] (A.1)

where M is the scattering matrix element, and we take the Y particles as part of the

thermal bath. Using conservation of energy and the form of the equilibrium distributions,

we can show that:

1 + f eq
3 + f eq

4

f eq
3 f eq

4

=
1 + f eq

1 + f eq
2

f eq
1 f eq

2

, (A.2)

such that we may write the term in square brackets in eq. (A.1), after some algebra, as

f3f4

f eq
1 f eq

2

f1f2 − f eq
1 f eq

2 +
∑

i 6=j=1,2

fif
eq
i (fj − f eq

j )

 , (A.3)

which clearly vanishes in equilibrium. The collision term can then be written in the form

C = −
∫

d3p1

(2π)3

d3p2

(2π)3

f1f2 − f eq
1 f eq

2 +
∑

i 6=j=1,2

fif
eq
i (fj − f eq

j )

σv, (A.4)

– 17 –



J
H
E
P
0
2
(
2
0
1
8
)
0
6
3

where the cross section times velocity factor is given by

σv =
(f eq

1 f eq
2 )−1

4E1E2

∫
dΠ3dΠ4|M|2(2π)4δ4 (p1 + p2 − p3 − p4) f eq

3 f eq
4 . (A.5)

The cubic terms in the phase-space distribution functions fif
eq
i (fj − f eq

j ) prevent writing

the collision term in terms of the number density in a simple form, but may be discarded

when fi � 1, in which case fi ' e−Ei/T (discarding chemical potentials for simplicity). In

this case we can write the collision term as

C ' −〈σv〉(n2
X − n

eq 2
X ) , (A.6)

where we approximated the energy dependent cross section times velocity of the scattering

process by its thermal average [27], as done for the case of decays,

〈σv〉 =
1

neq 2
X

∫
d3p1

(2π)3

d3p2

(2π)3
σvf eq

1 f eq
2 . (A.7)

This then yields eq. (2.19) for the Boltzmann equation when scattering processes dominate

the collision term.
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