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Abstract: This study investigates the structural composition and major sources of water-

soluble organic matter (WSOM) from PM2.5 collected, in parallel, during summer and winter, in 

two contrasting suburban sites at Iberian Peninsula Coast: Aveiro (Portugal) and Coruña 

(Spain). PM10 samples were also collected at Coruña for comparison. Ambient concentrations of 

PM2.5, total nitrogen (TN), and WSOM were higher in Aveiro than in Coruña, with the highest 

levels found in winter at both locations. In Coruña, concentrations of PM10, TN, and WSOM 

were higher than those from PM2.5. Regardless of the season, stable isotopic δ
13

C and δ
15

N in 

PM2.5 suggested important contributions of anthropogenic fresh organic aerosols (OAs) at 

Aveiro. In Coruña, δ
13
C and δ

15
N of PM2.5 and PM10 suggests decreased anthropogenic input 

during summer. Although excitation-emission fluorescence profiles were similar for all WSOM 

samples, multi-dimensional nuclear magnetic resonance (NMR) spectroscopy confirmed 

differences in their structural composition, reflecting differences in aging processes and/or local 

sources between the two locations. In PM2.5 WSOM in Aveiro, the relative distribution of non-

exchangeable proton functional groups was in the order: H-C (40-43%) > H-C-C= (31-39%) > H-
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C-O (12-15%) > Ar-H (5.0-13%). However, in PM2.5 and PM10 WSOM in Coruña, the relative 

contribution of H-C-O groups (24-30% and 23-29%, respectively) equals and/or surpasses that 

of H-C-C= (25-26% and 25-29%, respectively), being also higher than those of Aveiro. In both 

locations, the highest aromatic contents were observed during winter due to biomass burning 

emissions. The structural composition of PM2.5 and PM10 WSOM in Coruña is dominated by 

oxygenated aliphatic compounds, reflecting the contribution of secondary OAs from biogenic, 

soil dust, and minor influence of anthropogenic emissions. In contrast, the composition of PM2.5 

WSOM in Aveiro appears to be significantly impacted by fresh and secondary anthropogenic 

OAs. Marine and biomass burning OAs are important contributors, common to both sites. 

 

 

Keywords: Water-soluble organic aerosols; Suburban environments; Chemical and source 

signatures; NMR spectroscopy; Stable isotopic (δ
13

C, δ
15

N) composition; Water-soluble trace 

metals 

 

 

1. Introduction 

The study of the water-soluble fraction of organic aerosols (OAs) has been in the spotlight of 

atmospheric research community due to its effects on aerosol optical depth (Andreae and 

Gelencsér, 2006; Mladenov et al., 2010; Moise et al., 2015), cloud formation and properties 

(Martin et al., 2013; Padró et al., 2010; Sun and Ariya, 2006; Wonaschütz et al., 2013), radiation 

balance (Bond et al., 2013; Laskin et al., 2015; Moise et al., 2015), and atmospheric chemistry 

(George et al., 2015; Laskin et al., 2015; Mellouki et al., 2015). Atmospheric deposition (wet and 

dry) is the major pathway for removal of organic carbon (OC) from the atmosphere, thus 

affecting both atmospheric and land processes, particularly in sensitive ecosystems [e.g., 

(Witkowska et al., 2016; Witkowska and Lewandowska, 2016; Xie et al., 2016)]. Exposure to 

OAs has been also linked to a wide range of adverse health effects (e.g., cardiovascular 

diseases and respiratory problems) (Pöschl, 2005), with many of these toxic effects being 

attributed to the oxidative or oxidant generating properties of water-soluble organic constituents 

(Saffari et al., 2014; Verma et al., 2014). Yet, the ability to address the fundamental issues 
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associated with atmospheric chemistry dynamics, climate, and health impact of the water-

soluble OAs is limited, mostly because the molecular complexity of aerosol water-soluble 

organic matter (WSOM) has hindered routine identification of its constituents. Moreover, a 

myriad of emission sources (natural and anthropogenic) and formation/aging mechanisms 

(secondary OAs) contribute significantly to the aerosol WSOM burden (Pöschl, 2005), further 

complicating the molecular characterization of this OAs component. 

In Northern Hemisphere midlatitudes, the organic matter may account for 18-70% of 

tropospheric submicron particulate matter (Zhang et al., 2007), whereas lower percentage 

values have been reported for Southern Hemisphere locations [e.g., (Duarte et al., 2017b)]. In 

Europe, the organic matter is also the major single component (15-26%) of both fine and coarse 

particulate matter (PM2.5 and PM10, respectively), with the highest loads being recorded at urban 

and traffic sites (Putaud et al., 2010). In Southern European regional background and suburban 

sites, the total carbonaceous fraction [organic matter plus elemental carbon (EC)] is also an 

important aerosol component, contributing to 28-41% of PM2.5 (Duarte et al., 2017a; Pio et al., 

2007; Querol et al., 2013, 2009). Notwithstanding these relatively high proportions in ambient 

PM, the molecular features and source contributions of OAs, including their water-soluble 

organic component, are still not fully understood. Furthermore, it is also important to note that 

the water-solubility of OAs from different sources is different [e.g., (Xu et al., 2017)]. Therefore, 

assessing the water-solubility of ambient OAs and their major structural features would provide 

not only a better constrain on the types of compounds emitted and/or formed in the atmosphere, 

but also an in-depth understanding of the contribution from different sources to ambient OAs. 

Within Southern Europe, the atmosphere at the Western European Coast supports multiple 

man-made (e.g., urban, industrial, shipping, and agricultural activities) and climatic (e.g., 

atmospheric circulation from North Atlantic) stressors with clear socio-economic impacts 

(Ramos et al., 2016; Russo et al., 2018). As such, the source contributions of OAs at this region 

are likely to include both primary (sea spray, mineral dust, fossil fuel combustion, wood burning) 

and secondary (e.g., atmospheric aging and photooxidation) sources (Duarte et al., 2017a, 

2015; García-Santiago et al., 2017; Gómez-Carracedo et al., 2015; Lopes et al., 2015; Matos et 

al., 2017; Moreda-Piñeiro et al., 2015; Viana et al., 2008). However, important questions still 

remain: (i) how the levels of ambient OAs, in particular of the water-soluble organic fraction, 
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distribute along this region located at the land-sea interface, (ii) how they compare in terms of 

their structural composition and sources, and (iii) whether would be possible to potentially 

complement existing OAs source profiles within this region. Hence, this study aims at 

addressing these three questions, using a multidimensional non-targeted analytical approach 

(Matos et al., 2017, 2015a), based on one-dimensional (1D) and two-dimensional (2D) solution-

state nuclear magnetic resonance (NMR) and excitation-emission matrix (EEM) fluorescence 

spectroscopies, to investigate the structural composition and major sources of the WSOM from 

PM2.5 samples collected, simultaneously, during summer and winter, in two different suburban 

sites at the Iberian Peninsula Coast: Aveiro (Portugal) and A Coruña (Spain). PM10 samples 

were also collected concomitantly at A Coruña for comparing and complement the dataset on 

the main structural features and sources of aerosol WSOM in this suburban location. Stable 

isotopic (δ
13
C and δ

15
N) and water-soluble trace metals compositions of the bulk PM2.5 and 

PM10 samples were also assessed to better understand the contribution of various sources to 

OAs at the studied locations. 

 

 

2. Materials and methods 

2.1. Aerosol samples collection 

In Aveiro, with approximately 60,000 inhabitants, the aerosol sampling occurred at the Campus 

(Santiago) of the University of Aveiro, on a rooftop approximately 20 m above the ground. The 

sampling site is located on the west coast of Portugal, 10 km from the Atlantic Ocean, and very 

close to the city center [Figure S1, section S1, in Supporting Information (SI)]. An industrial 

complex, which includes the production of nitric acid, aniline, nitrobenzene and chlorinate 

compounds, is located 15 km to the North of Aveiro. A Coruña is a coastal city in the northwest 

of Spain with a quarter of a million inhabitants. The aerosol measurements were carried out at 

the urban background site (Oleiros) located near the sea (∼0.8 km), and near the neighboring 

city of A Coruña (located at 8 km) [Figure S1, section S1, in SI]. The sampling site is close to a 

residential area, and in immediate vicinity is agricultural lands, forests and the sea. The main 

anthropogenic sources are the emissions from traffic and domestic activities, but also industrial 

emissions can influence air quality in the study area. Because of its proximity to the sea, the 
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local wind pattern is mainly driven by the land-sea breeze. North-westerly synoptic winds are 

dominant and generally carry relatively clean air from the sea, but other wind directions are also 

recorded, with a significant contribution to air pollution levels at this site. 

In both sampling locations, a total of eight high-volume PM2.5 samples (particles with 

aerodynamic diameter less than 2.5 µm) were simultaneously collected on quartz fibre filters, on 

a weekly basis (7 days in continuum), during September-October 2016 [n = 4, Summer 

(SU2016)] and January–February 2017 [n = 4, Winter (WI2017)] in order to collect enough 

material for subsequent WSOM characterization. In A Coruña, eight high-volume PM10 samples 

(particles with aerodynamic diameter less than 10 µm) were concomitantly collected in both 

seasons, following the same sampling procedure. One field blank was collected in each 

sampling period in order to correct for ambient background PM2.5 and PM10 mass, total carbon 

(TC), water-soluble organic carbon (WSOC), total nitrogen (TN), isotopic (δ
13
C and δ

15
N), and 

water-soluble trace metals levels. This sampling procedure is similar to those adopted in 

previous studies of advanced structural characterization of aerosol WSOM from low sample size 

groups (Duarte at al., 2015; Duarte et al., 2017b; Duarte et al. 2005; Duarte et al., 2007; Duarte 

et al., 2008; Lopes et al., 2015; Matos et al., 2017; Matos et al., 2015b). Additional details on 

aerosol sampling procedure in Aveiro and A Coruña are available in section S1, in SI. After 

sampling, filter samples were folded in two, with the exposed side face to face, wrapped in 

aluminum foil and immediately transported to the laboratory in charge of the sampling site, 

where they were weighted and stored frozen (up to 6 months) until further analysis (section S1, 

SI). The sampled filters and filter blanks were divided into two fractions, enclosed into heated 

treated aluminum foil, and one of the fractions were sent by express mail to the laboratories 

participating in this study. 

 

2.2. Extraction and determination of WSOC in aerosol samples 

Depending on the available filter area, the volume of ultra-pure water used for the extraction of 

WSOC had to be adjusted in order to comply with a “filter area-to-water volume ratio” of  

1.2 cm
2
 mL

-1
. This ratio was set based on the work of Salma et al. (2007), being a well-

established value for the quantitative extraction of the WSOC from atmospheric particles 

deposited onto quartz filters. For the aerosol samples collected in Aveiro, each quartz filter was 
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extracted with 150 mL of ultra-pure water (18.2 MΩ cm) by mechanical stirring for 2 min 

followed by ultrasonic bath for 15 min. This same extraction methodology was applied to the 

aerosol samples collected in A Coruña using a volume of ultra-pure water of 75 mL. Each final 

aqueous slurry was filtered through a hydrophilic polyvinylidene fluoride (PVDF) membrane filter 

(Durapore
®
, Millipore, Ireland) of 0.22 µm pore size. At the end of this filtration step, the slurry 

residue was washed twice with 5 mL of ultrapure water in order to remove any WSOC still 

loosely bound to the filter residues. At least two different blanks were performed for each of 

extractions. Concentrations of blanks were below the detection limits. Also, to avoid metal 

contamination during filters pretreatment and analysis, all plastic ware and glassware were 

washed with ultrapure water of 18 MΩ cm resistance and kept for 48 h in 10% (v/v) nitric acid 

(ultraclean nitric acid 69–70 %), and then rinsed several times with ultrapure water before use. 

After collection, sample manipulation and analysis were carried out in a class-100 clean room. 

The dissolved organic carbon (DOC) content of each aqueous aerosol extract was measured 

with a Skalar (Breda, Netherlands) San++ Automated Wet Chemistry Analyzer, based on a UV-

persulfate oxidation method. The WSOC concentrations are expressed in µg C m
-3

. 

After WSOC extraction, small aliquots of each PM2.5 and PM10 aqueous extract was withdrawn 

for EEM fluorescence (section 2.3) and water-soluble trace metals (section 2.4) analyses. 

Afterwards, and to ensure enough mass for the structural characterization, the aqueous extracts 

were batched together into four WSOM samples, representative of each suburban location and 

season (Aveiro – SU2016; Aveiro – WI2017; A Coruña – SU2016; A Coruña – WI2017). Each 

pooled WSOC sample analyzed in this study was concentrated under rotary evaporation 

followed by a freeze-drying procedure and kept on a desiccator over silica gel until NMR 

analysis (section 2.5). 

 

2.3. EEM fluorescence spectroscopy 

The EEM fluorescence spectrum of each PM2.5 and PM10 aqueous extract was recorded on a 

spectrophotometer JASCO (Tokyo, Japan), model FP-6500 using a 1 cm path-length quartz 

cuvette. Excitation and emission wavelength ranges were set from 220 to 450 nm and 250 to 

600 nm, respectively, and their scanning intervals were set at 10 nm and 5 nm, respectively. 

The excitation and emission slit widths were fixed at 10 nm and the scan speed was set at  
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100 nm/min. For each day of analysis, a spectrum of a sample of ultra-pure water was acquired 

under the same experimental conditions and used as blank. 

 

2.4. Water-soluble trace metal analysis 

Water soluble metals in PM2.5 and PM10 aqueous extracts (section 2.2) were analyzed by 

inductively coupled plasma–mass spectrometry (ICP-MS), Thermo Finnigan X Series (Waltham, 

125 MA, USA). Optimal conditions for ICP-MS were as follows: radio frequency (RF) power 

1360 W, nebuliser gas flow 0.9 L min
−1

, auxiliary gas flow 0.9 L min
−1

, and plasma gas flow  

15.0 L min
−1

. Detection was performed in the peak jump mode; monitored ions were m/z 27, 75, 

137, 44, 111, 59, 52, 65, 56, 39, 24, 55, 95, 23, 60, 208, 51 and 64 for Al, As, Ba, Ca, Cd, Co, 

Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, Pb, V and Zn, respectively. Calibrations were based on  

2.0 M nitric acid aqueous standard solutions covering metal concentrations from 0 to 500 μg L
−1

. 

Yttrium and indium (5.0 μg L
–1
), germanium (10.0 μg L

–1
), and scandium (50.0 μg L

–1
) were 

selected as internal standards. Trueness of the method was assessed by analyzing WS-PE 

trace Metals Mix from AccuStandard (New Haven, CT, USA). 

 

2.5. Solution-state 1D and 2D NMR spectroscopy 

All NMR spectra were acquired using a Bruker Avance-500 spectrometer operating at 500.13 

and 125.77 MHz for 
1
H and 

13
C, respectively, and equipped with a liquid nitrogen cooling 

CryoProbe Prodigy
TM

. All 1D and 2D spectra were run at 295.1 K, and additional details on 

NMR data acquisition can be found in Section S2, in SI. The dried WSOM samples were 

dissolved in deuterated methanol (MeOH-d4, ~1 mL) and transferred to 5 mm NMR tubes. The 

identification of functional groups in the NMR spectra was based on their chemical shift relative 

to the central solvent (MeOH–d4) peak set at δH 3.31 ppm and δC 49.0 ppm. The interpretation 

of the spectral regions and structural assignments were based on the NMR chemical shift data 

described in the literature for standard organic compounds and for natural organic matter 

(NOM) from different environmental matrices (Duarte et al., 2008; Hertkorn and Kettrup, 2005; 

Lopes et al., 2015; Matos et al., 2017; Simpson et al., 2001), as well as on data generated by 

NMR simulators software’s and databases (namely, Perkin Elmer ChemBioDraw® Ultra 14.0 

and nmrdb.org (Banfi and Patiny, 2008). 
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2.6. Stable isotopic δ
13

C and δ
15

N analysis 

Carbon (δ
13

C) and nitrogen (δ
15

N) isotopes analysis was performed using a stable Isotope Ratio 

Mass Spectrometer (IRMS) calibrated by international certified reference standards (NBS-22, 

IAEA-CH-6 and USGS 24) by International Atomic Energy Agency (Vienna, Austria). The filters 

were analyzed with an elemental analyzer FlashEA 1112 connected to the stable isotope ratio 

mass spectrometer Thermo Finnigan Delta Plus through a Conflo II interface. Two small discs 

(diameter 0.9 cm) were placed into the tin capsule and combusted in the oxidation furnace at 

the temperature of the 1020º C in excess of oxygen. Later this gas was transferred into the 

reduction furnace (650º C) and separated by a GC column (40º C). The precision (standard 

deviation) for the analysis of δ
13
C and δ

 15
N of the laboratory standard (acetanilide) was  

± 0.15 ‰ (1-sigma, n=10). The analysis comprised evaluation of the 
13

C to 
12

C or 
15

N to 
14

N 

isotope ratios, expressed as δ (delta) values and defined as the standard-normalized difference 

from the reference standard, and expressed as δ
13
C or δ

15
N in parts per mill (‰). 

 

 

3. Results and discussion 

3.1. Mass concentrations of TC, TN, and WSOC in ambient particulate matter 

Table 1 reports the range and median values of ambient concentrations of PM, TC, TN, WSOC, 

total mass of particulate WSOM, and percentage of mass ratio between WSOM and PM at each 

studied location. The ambient concentrations of TC and TN were estimated based on isotopic 

δ
13

C and δ
15

N data, respectively. The total mass of WSOM was estimated as 1.6  WSOC, 

based on elemental analysis performed on the WSOC aerosol samples collected at Aveiro 

(Duarte et al., 2015). In Aveiro, this factor ranged between 1.5 in winter and 1.7 in summer, 

yielding an average WSOM–to–WSOC ratio of 1.6 (Duarte et al., 2015). It is very likely that this 

ratio would vary from site to site; however, due to the lack of additional information for the 

region of A Coruña, a value of 1.6 was used here to calculate the total mass of particulate 

WSOM at both sites. 

<TABLE 1> 
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As depicted in Table 1, the ambient concentrations of PM2.5 and its TC and WSOC components 

were consistently higher in Aveiro than in A Coruña, with the highest levels being found during 

the winter season at both locations. This seasonal trend has been already quite well 

documented in this and other regions (Duarte et al., 2017b, 2015, 2007; Kiss et al., 2002; 

Shakya et al., 2012), although an opposite trend has been observed in North America [e.g., 

(Park et al., 2003; Wozniak et al., 2012)]. Moreover, in summer, the contribution of WSOC to TC 

in PM2.5 is higher in Aveiro than in A Coruña, whereas in winter, the WSOC/TC ratios are of 

same order of magnitude in both locations and higher than those found during warmer 

conditions. The scatter plot of WSOC versus TC in PM2.5 [Figure 1(a)] also indicates a 

relationship between these two carbonaceous fractions, which is higher in Aveiro (R
2
 = 0.84,  

n = 8) than in A Coruña (R
2
 = 0.54, n = 8). In Aveiro, this trend suggests that both TC and its 

water-soluble organic fraction are probably derived from the same primary emission source(s) 

and/or are influenced by similar secondary processes in the atmosphere. In previous studies 

carried out at this suburban site, it has been shown that contributions of biomass burning 

combined with less warm weather conditions (favoring the particulate phase of semi-volatile 

organics) are important contributors to ambient TC and water-soluble OA levels during winter 

[e.g., (Duarte et al., 2017b, 2015; Lopes et al., 2015; Matos et al., 2017)]. In summer, secondary 

OAs from fossil fuel combustion may prevail over primary sources as an important contributor to 

fine particulate TC and WSOC fractions (Lopes et al., 2015). In A Coruña, on the other hand, 

the large spread of WSOC/TC ratios in PM2.5 (8.1 to 46%, Table 1), combined with the low 

correlation between WSOC and TC, and low ambient concentrations of PM2.5, TC, and WSOC 

further suggests dissimilar seasonal and spatial variability in emission sources, their strength, 

and contribution from aging processes at this suburban site. Interestingly, the range and median 

values of the WSOM/PM2.5 ratio (Table 1) are rather similar between the two coastal locations 

regardless of the seasonal period, with the highest values being again found during winter. This 

finding suggests that the mass contribution of the WSOM fraction to PM2.5 do not portray the 

differences in specific water-soluble organic compounds and their sources which were identified 

in these two locations (additional details in section 3.4). 

<FIGURE 1> 
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Publications describing WSOC concentrations in aerosols are most often concentrated on PM2.5 

size-range. When the size distribution of WSOC is discussed [e.g., (Contini et al., 2014; 

Witkowska and Lewandowska, 2016)], this carbonaceous fraction is typically dominant in the 

size interval up to 2.5 μm. In aerosols collected in A Coruña, the particulate matter in 

suspension is enriched in PM10 coarse fraction (i.e., particles with aerodynamic diameter 

between 2.5 and 10 µm), especially during summer (Table 1). While during the warmer period 

the PM2.5 size-fraction comprised only 27-37% of the PM10, during winter the fine-size fraction 

represented 39-41% of the PM10. In a similar vein, the highest levels of TC and WSOM were 

comprised in the PM10 coarse fraction in both seasons. The ranges of PM2.5/PM10 ratios for TC 

and WSOM were as follows: TC: 33-49% and 33-44%, and WSOM: 29-34% and 39-42% during 

summer and winter season, respectively. These findings also indicate an apparent increase on 

the contribution of the WSOM component for the fine size-range particles during winter, thus 

suggesting an enhanced contribution of primary emission sources of fine water-soluble OAs 

[e.g., biomass burning (Duarte et al., 2017b, 2015; Lopes et al., 2015; Matos et al., 2017)] 

and/or aging of these compounds in the colder season. The scatter plot of WSOC versus TC in 

both aerosol size fractions [Figure 1(b)] further indicates a better correlation between these two 

carbonaceous fractions in coarse PM10 (R
2
 = 0.65, n = 8) than in PM2.5 (R

2
 = 0.54, n = 8) 

samples. This feature suggests that both TC and WSOC in PM10 coarse fraction are being 

influenced by similar emission sources [e.g., biomass burning (Reid et al., 2005)] and local 

conditions, particularly during the winter season, whereas their presence in PM2.5 may be 

influenced by different emission sources and/or removal processes. 

The TN content at each studied location (Table 1) had a narrow range of variation in PM2.5 

samples, with the highest values being found in Aveiro during both seasons. These findings 

may be due to differences both in the emission of nitrogenous gaseous precursors and 

photochemical atmospheric processes taking place in the studied locations. The TC/TN weight 

ratios in PM2.5 samples collected in Aveiro ranged from 2.1 to 6.6 (median: 4.1) in summer and 

from 5.4 to 12 (median: 8.3) in winter, whereas in A Coruña the TC/TN ratio ranged from 7.4 to 

8.8 (median: 7.9) in summer and from 6.8 to 11 (median: 7.9) in winter. A strong positive 

correlation between TN and TC in both PM2.5 (R
2
 = 0.95, n = 8) and PM10 (R

2
 = 0.96, n = 8) 

samples from A Coruña may indicate that TC and TN have a common source in both aerosol 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

11 

 

size fractions during both seasons. On the other hand, a somewhat lower correlation between 

TN and TC (R
2
 = 0.62, n = 8) in PM2.5 samples collected in Aveiro, suggest that these two 

aerosol components originate from different sources during both seasons at this coastal 

location. 

 

3.2. Water-soluble metals and isotopic δ
13

C and δ
15

N composition of ambient particulate 

matter 

Table 2 shows the results of isotopic δ
13
C and δ

15
N composition in the fine and coarse fractions 

during winter and summer season samplings in Aveiro and A Coruña. The highest median δ
13

C 

values were found in the PM2.5 and PM10 samples collected in A Coruña during the warmer 

period. These samples also exhibit the lowest median δ
15

N values. Previous studies on stable 

isotopic δ
13

C of TC in atmospheric aerosols at different locations (urban, rural, and pristine) 

have shown that the δ
13

C values of anthropogenic carbonaceous aerosols range between -27 to 

-25‰, with the lowest and highest values being associated with anthropogenic fresh and aged 

aerosols, respectively (Aggarwal et al., 2013; Mkoma et al., 2014; Narukawa et al., 2008). The 

examples discussed in the literature suggest that the isotopic δ
13

C data obtained in A Coruña 

during summer are consistent with the values obtained when the particulate matter is relatively 

aged (i.e., photochemically more processed) and less influenced by anthropogenic emissions of 

fresh OAs. On the other hand, the low values during the colder period could be explained by (1) 

changes in the contribution of OAs sources, and (2) less photochemical activities with 

concomitant enhancement of gas-to-particle processes. These two factors could also explain 

the isotopic enrichment of δ
15

N in both PM2.5 and PM10 samples collected in A Coruña during 

winter. The lower δ
15

N values during summer in A Coruña could also hint a higher contribution 

of marine nitrogen species (with lighter δ
15

N) at this suburban location (Agnihotri et al., 2015). 

Indeed, throughout the summer campaign at A Coruña, the backward air masses trajectories 

are mostly characterized by air masses that traveled over the Atlantic Ocean (Table S1, Section 

S3, in SI). On the other hand, regardless of the seasonal period, the isotopic δ
13

C and δ
15

N data 

obtained in Aveiro may be mainly associated with the presence of anthropogenic fresh OAs. 

<TABLE 2> 
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Water-soluble metal contents in PM2.5 and PM10 collected in Aveiro and A Coruña during winter 

and summer seasons are shown in Table S2 (Section S4, in SI). Na
+
 dominates the cation 

budget with the sequence Na* > K
+
 > Ca

2+
 ~ Mg

2+
 in Aveiro and A Coruña. The highest soluble 

trace metal concentrations were registered for Al, Fe and Zn. On the other hand, As, Cd, Co 

and Mo offers the lowest values. Results shown in Table S2 are generally in good agreement 

with reported values for water-soluble metals at coastal sites (Moreda-Piñeiro et al., 2015). 

Water-soluble metal content is generally impacted by the particulate matter origin (see principal 

component and cluster analysis in Section S5, in SI). 

 

3.3. Fluorescence properties of aerosol WSOM 

Figure 2 shows typical EEM fluorescence profiles of WSOM in atmospheric aerosol samples 

collected in Aveiro and A Coruña during summer and winter seasons. Two common 

fluorophores were found in most of the EEM profiles: fluorophores α (excitation/emission 

maxima at 240-250/410-420 nm) and α’ (excitation/emission maxima at 310-320/410-420 nm). 

Fluorescence profiles similar to those of fluorophores α and α’ are already well documented for 

natural organic matter (NOM) samples from different environmental matrices (Andrade-Eiroa et 

al., 2013; Baghoth et al., 2011; Singh et al., 2010; Stedmon et al., 2003), including also WSOM 

from atmospheric aerosols (Chen et al., 2016; Duarte et al., 2004; Fan et al., 2016; Fu et al., 

2015; Matos et al., 2015a; Mladenov et al., 2011). These two WSOM fluorophores are usually 

associated with humic-like materials of terrestrial and aquatic origin (Chen et al., 2016; Fan et 

al., 2016; Fu et al., 2015; Mladenov et al., 2011). However, one should be careful when 

associating the spectral features of these fluorophores to those of humic-like substances 

occurring in water and soils, since these are unlikely to resemble the WSOM from atmospheric 

aerosols, both in origin/transformation and compositional terms (Duarte et al., 2007; Matos et 

al., 2015a). In fact, fluorophore α’ is also similar to the peaks in the EEM profiles of secondary 

OAs from the ozonolysis of α-pinene (Lee et al., 2013). This difficulty in assigning fluorophores 

α and α’ to specific organic species indicates that a final conclusion on the structural nature of 

the whole aerosol WSOM samples cannot be withdrawn based solely on their EEM 

fluorescence profiles. 

<FIGURE 2> 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

13 

 

The spatial and temporal variations of the intensity of fluorophores α and α’ seems to be also 

consistent with those of TC and WSOC, with the highest intensities being found for PM2.5 

samples collected in Aveiro during the winter season. Of notice, the remarkable decrease in the 

intensity of fluorophore α in the EEM spectra of PM10 samples collected in A Coruña during 

winter. The fluorescence feature of PM10 samples in winter resemble that of WSOM from diesel 

exhaust particles (Mladenov et al., 2011), being consistent with the isotopic δ
13
C and δ

15
N data, 

which suggest a higher influence of anthropogenic emissions of fresh OAs during this period at 

this Spanish location. 

 

3.4. Structural and molecular characterization of aerosol WSOM 

The solution-state 1D 
1
H NMR spectra of the WSOM from PM2.5 and PM10 samples collected at 

the two suburban locations are illustrated in Figures 3(a) to 3(f). All spectra consist of a complex 

overlapping profile with broad bands superimposed by a relatively small number of sharp peaks. 

Although a very limited number of resonances can be assigned to specific organic compounds, 

four main categories of functional groups carrying C-H bonds can be identified in these 
1
H NMR 

spectra: (i) δ 
1
H 0.5–1.9 ppm – protons bound to carbon atoms of straight and branched 

aliphatic chains (H-C), which includes protons from methyl (R–CH3), methylene (R–CH2), and 

methyne (R–CH) groups; (ii) δ 
1
H 1.9–3.2 ppm – protons bound to carbon atoms in α–position to 

unsaturated groups in allylic (H–Cα–C=), carbonyl or imino (H–Cα–C=O or H–Cα–C=N) groups, 

protons from methyl groups bound to an aromatic carbon, and protons in secondary and tertiary 

amines (H–C–NHR and H–C–NR2); (iii) δ 
1
H 3.5–4.1 ppm – protons bound to oxygenated 

saturated aliphatic carbon atoms (H–C–O) in alcohols, polyols, ethers, esters, and organic 

nitrate (R–CH2–O–NO2), and (iv) δ 
1
H 6.5–8.3 ppm – protons bound to aromatic carbon atoms 

(Ar–H). Additional NMR resonances at δ 
1
H 5.0–5.3 ppm, assigned to protons bound to 

anomeric carbons [O-C(H)-O], can be also distinguished in all spectra. 

<FIGURE 3> 

For a further understanding of the 
1
H NMR spectra profiles, a quantitative integration of the four 

main spectral regions was performed in order to assess the abundance of each functionality in 

the WSOM samples. As depicted in Figure 3(g), regardless of the studied environment, all 

aerosol WSOM samples exhibit the same major proton types; however, they differ in terms of 
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the relative distribution of the major proton regions. Overall, the relative content of the proton 

functional groups obtained in this study are within the range of those published for aerosol 

WSOM samples from urban, rural, forest, and coastal environments (e.g., (Chalbot et al., 2016, 

2014; Decesari et al., 2005; Duarte et al., 2017b; Graham et al., 2002; Lopes et al., 2015; Song 

et al., 2012). For the WSOM samples collected in Aveiro, the relative contributions of the four 

proton functional groups exhibits the following typical variation: H-C (40-43%) > H-C-C= (31-

39%) > H-C-O (12-15%) > Ar-H (5.0-13%). However, a different trend is observed for PM2.5 and 

PM10 samples collected in A Coruña, for which the relative contribution of H-C-O structures (24-

30% and 23-29%, respectively) equals (or surpasses, as in the case of winter samples) that of 

the H-C-C= structures (25-26% and 25-29%, respectively), being also higher than those of the 

PM2.5 samples collected in Aveiro. Examples of organic species that typically resonate in the H-

C-O region includes sugar alcohols (e.g., mannitol and arabitol), carbohydrate-like moieties 

(e.g., glucose, sucrose, fructose), and some anhydrosugars such as levoglucosan and 

mannosan) (Chalbot et al., 2016, 2014; Duarte et al., 2008; Matos et al., 2017). Sugar alcohols 

are molecular tracers for fungal spores from vegetation [e.g., (Bauer et al., 2008; Fu et al., 

2012, 2010; Liang et al., 2013)], as well as decomposing plants during cold seasons (Burshtein 

et al., 2011). Their presence in aerosol WSOM collected in A Coruña is consistent with the 

characteristics of the sampling site, which is surrounded by vegetation, and it represents a 

suburban scenario with low influence of emissions from industrial and traffic sources. Moreover, 

primary saccharides can also have a biological origin [e.g., (Fu et al., 2010)], whereas 

anhydrosugars are mainly associated with the emissions from biomass burning during winter 

[e.g., (Duarte et al., 2008; Matos et al., 2017)]. The presence of a sharp resonance at δ 
1
H 5.3 

ppm, assigned to protons bound to anomeric carbons in anhydrosugars from cellulose (Duarte 

et al., 2008; Matos et al., 2017), further corroborates the contribution of biomass burning into 

the winter WSOM samples. The occurrence of the strong H-C-O signature during summer in A 

Coruña may be also associated with the presence of polyols from marine oxidized organic 

particles (Decesari et al., 2011), although the contribution of secondary OAs formation and/or 

aged OAs enhanced under slightly polluted conditions cannot be ruled out (Chalbot et al., 2016; 

Shakya et al., 2012). 
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The potential contribution of fresh biomass burning emissions to winter aerosol samples can 

also be inferred from the aromatic content of WSOM samples collected in Aveiro (13% for 

PM2.5) and A Coruña (9.0% for PM2.5, and 10% for PM10) as compared to those collect in 

summer (5.2, 2.2 and 5.9%, respectively). Also, the presence of an intense sharp resonance at 

δ 
1
H 5.3 ppm attributed to anhydrosugars in all winter samples further confirms the presence of 

smoke particles during this period. Interestingly, the relative content of aromatic protons in the 

WSOM from PM2.5 samples collected during summer in Aveiro is higher than those in A Coruña. 

A possible explanation can be related to the primary emissions from traffic sources (Heal and 

Hammonds, 2014), which are expectedly to be more enhanced close to the sampling site in 

Aveiro than in A Coruña. 

Additional details on the structural differences between the aerosol WSOM samples with 

respect to the two suburban locations were further explored using 2D NMR spectroscopy. 

Figures 4 to 6 depict the 
1
H-

13
C HSQC NMR spectra of the WSOM samples collected in Aveiro 

and A Coruña during both seasons, whereas the corresponding 
1
H-

13
C HMBC and 

1
H-

1
H COSY 

NMR spectra are provided in SI (Figures S5 to S10). The HSQC NMR spectra of all WSOM 

samples reveal several important 
1
H-

13
C correlations in three major regions of chemical 

environments, but with very different relative intensities: aliphatic [δH 0.4 – 3.6 ppm / δC 10 – 45 

ppm, represented by C-H and H-C-C= in Figure 4(B)], O-alkyl (δH 3.6 – 6.0 ppm / δC 50 – 107 

ppm, including anomeric carbons), and aromatic (δH 6.5 – 8.5 ppm / δC 107 – 160 ppm) regions. 

The distribution of the 2D NMR cross peaks across these chemical shift areas are consistent 

with other 2D NMR spectral profiles found in literature related to WSOM fractions from field OAs 

samples (Duarte et al., 2008; Matos et al., 2017; Schmitt-Kopplin et al., 2010). By combining 

chemical shift information, for known organic structures (Section 2.5) and for other aerosol 

WSOM samples described in the literature (Duarte et al., 2008; Matos et al., 2017), with 

homonuclear (COSY) and heteronuclear (HSQC and HMBC) connectivity data (Figures S5 to 

S10), it was possible to describe the most important substructures within the WSOM 

components that are likely to be present in the aerosol samples collected in Aveiro and A 

Coruña. Figure 7 discriminates the substructures common to all WSOM samples, from those 

typical of each suburban location. The 2D NMR spectral assignments for each substructure are 

described in Table S5 (section S7), in SI. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

16 

 

<FIGURE 4> & <FIGURE 5> & <FIGURE 6> & <FIGURE 7> 

Overall, 20 polyfunctional aliphatic and aromatic substructures (labeled as (1) to (19) in Figure 

7, and Table S5 in SI) were identified in this study as being common to all aerosol WSOM 

samples collected in Aveiro and A Coruña. Of those, aliphatic substructures (1) to (8) were 

identified in both summer and winter samples, suggesting that their sources mostly remain 

identical in both suburban areas, regardless of the seasonal period. Such type of aliphatic 

substructures has been recognized as first- and/or second-generation photochemical oxidation 

products of different gas-phase precursors (e.g., alkanes, isoprene, carbonyl, epoxides, and 

anhydrides) emitted from both anthropogenic [e.g., biomass burning, fossil fuel combustion, and 

meat cooking (Kundu et al., 2010; Liu et al., 2011)] and natural sources [e.g., sea-to-air 

emission of marine organics, and terrestrial vegetation (Decesari et al., 2011; Facchini et al., 

2008; Liu et al., 2011; Russell et al., 2011; Schmitt-Kopplin et al., 2012)]. For example, the 

persistent in both seasons and locations of molecular signatures characteristic of 

dimethylammonium (DMA
+
), diethylammonium (DEA

+
), and methanesulfonic acid (MSA) 

[substructures (5) to (7) (Figure 7 and Table S5), respectively], indicate the contribution of 

marine aerosols originating from the Atlantic Ocean. These three WSOM constituents are well-

known tracers of marine aerosols - DMA
+
 and DEA

+
 have a biogenic oceanic source and are 

produced through the reaction of gaseous amines with sulfuric acid or acidic sulfates, whereas 

MSA is a photochemical product from marine dimethylsulfide (Facchini et al., 2008). In terms of 

functional group distribution, the NMR resonances assigned to these three WSOM constituents 

are more pronounced in the aerosol WSOM samples collected in summer with respect to those 

collected in winter (Figure 3). This feature is likely associated to the enhanced marine biological 

activity during summer as opposed to winter period, when plankton blooming is at its lowest 

(Cavalli et al., 2004; O'Dowd et al. 2004). The marine origin of these aerosol WSOM 

constituents also agree with the principal component and cluster analyses (PCA and CA, 

respectively) performed for major water-soluble ions and metals present in the PM2.5 and PM10 

samples (Section S5, in SI), which identified a marine source dominated by ions Na
+
 and Mg

2+
. 

On the other hand, substructure (8) (Figure 7 and Table S5), known as aliphatic methyl esters, 

and whose NMR resonances are more prominent in aerosol WSOM from Aveiro, could be a 

secondary product derived from compounds emitted by various combustion sources (Gordon et 
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al., 2014; Schnelle-Kreis et al., 2007). The existence of a traffic road source, dominated by 

elements such as Cu, Cr, Ni and V (Section S5, in SI), favors the interpretation of the secondary 

formation of aliphatic methyl esters from anthropogenic precursors. Photo-oxidation of gas-

phase N-containing organics from traffic emissions under the presence of atmospheric OH 

radicals (Barnes et al., 2010; Tong et al., 2016), could also explain the presence of substructure 

(21) (Figure 7 and Table S5) in WSOM samples from Aveiro. In a similar fashion, the NMR 

resonances assigned to structure (22) (Figure 7 and Table S5) are more prominent in summer 

aerosol WSOM from Aveiro. This structure closely resemble those of secondary OAs derived 

from green leaf volatiles, which are unsaturated, oxygenated hydrocarbons emitted in large 

quantities by stressed plants (e.g., grass cutting or local weather changes) (Jain et al., 2014). Its 

presence in summer aerosol WSOM from Aveiro could be due to the occurrence of grass 

cutting activities, which took place during two of the sampling days in the surrounding areas. 

The aerosol WSOM samples collected at both locations also exhibit the ubiquitous presence of 

anhydrosugars (such as levoglucosan and mannosan - structures (9) and (10), respectively, in 

Figure 7 and Table S5) and disaccharides (such as trehalose and maltose - structures (11) and 

(12), respectively, in Figure 7 and Table S5). Levoglucosan, and to a minor extent mannosan, 

are well-known organic molecular markers of biomass-burning emissions [(Matos et al., 2017) 

and references therein]. Their contribution to the aerosol WSOM load, particularly during the 

winter season, confirms that biomass burning for house heating is an important source of these 

compounds in the studied suburban OAs. Their presence in summer samples can be due to the 

occurrence of forest fire events in the surrounding areas during the sampling campaign. Dimeric 

sugars, such as maltose, has previously been identified in aerosol samples influenced by 

biomass burning (Matos et al., 2017; Nolte et al., 2001). The trehalose is a fungal metabolite 

usually referred as a tracer for the resuspension of surface soil and unpaved road dust and 

associated microbiota (Simoneit et al., 2004). Hence, resuspension of soil from agricultural 

activities in areas nearby the sampling locations could be a plausible source of this compound, 

particularly at A Coruña. This finding is in agreement with PCA and CA results for major water-

soluble ions and metals (Section S5, in SI), which indicate the existence of a crustal source 

dominated by elements such as Al or Ca
2+

 or Fe. Interestingly, molecular signatures 

characteristic of amino sugar derivatives [structure (26), Figure 7, Table S5] were exclusively 
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found in both PM2.5 and PM10 WSOM samples collected in A Coruña, probably reflecting the 

contribution of fungal-derived microbial residues in resuspended soil material (Joergensen and 

Wichern, 2008). These results clearly indicate that soil and/or dust resuspension is an important 

source for aerosol WSOM at this suburban site. 

Eight aromatic substructures [(13) to (20) in Figure 7] carrying neutral (aliphatic carbon), NO2, 

and/or oxygen-containing (namely, OCH3, OH, COOR, and COR, where R = H or alkyl group) 

substituents were consistently found in the aerosol samples collected at both suburban 

locations, particularly during the winter season. One exception is the terephthalic acid [structure 

(14) in Figure 7, Table S5, δH 8.11 / δC130.4 ppm], whose NMR resonances are present in all 

aerosol WSOM samples, being particularly intense in summer and winter WSOM samples from 

Aveiro. Terephthalic acid has already been detected in urban and suburban areas, including 

Aveiro (Matos et al., 2017), being associated with the oxidation of aromatic hydrocarbons from 

urban traffic emissions (Chalbot et al., 2014; Lee et al., 2014). In a similar fashion, nitrophenyl-

derived compounds [substructure (23) in Figure 7, Table S5], whose NMR resonances were 

exclusively found in WSOM samples from Aveiro, have been mainly attributed to traffic 

emissions (Tong et al., 2016). Smog chamber studies have also suggested that nitroaromatic 

compounds in the aerosol phase may also originate from the photo-oxidation of anthropogenic 

volatile organic compounds, such as toluene (Kelly et al., 2010) and benzene (Borrás et al., 

2012), under different NOx concentrations. In this regard, the city of Aveiro distances 15 km 

from industrial sources producing aniline and nitrobenzene compounds (see Section 2.1). The 

photo-oxidation of gas-phase N-containing aromatics emitted from those sources cannot be 

excluded as an SOA source in this urban region. Overall, these findings reflect a notable 

influence of anthropogenic emissions to the secondary (and more water-soluble) OAs formation 

at Aveiro. Moreover, substructures (15) to (20) have been usually used as tracers for biomass 

burning emissions (Duarte et al., 2008; Matos et al., 2017). Once in the atmosphere, these 

structures can also undergo photooxidation, originating highly oxidized SOA species. For 

example, substructures (16) and (17) in Figure 7, are likely to originate from the photo-oxidation 

of m-cresol (emitted from biomass burning) in the presence of NOx (Iinuma et al., 2010). Two 

additional lignaceous structures [substructures (24) and (25) in Figure 7] were exclusively found 

in winter aerosol WSOM collected at Aveiro, thus highlighting the prominent influence of 
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biomass burning emissions into the aerosol WSOM characteristics, particularly at the suburban 

site of Aveiro. 

 

 

4. Conclusions 

This study employed a multidimensional non-targeted analytical strategy to investigate and 

compare the chemical composition of water-soluble OAs from two contrasting suburban 

environments at the Iberian Peninsula Coast: Aveiro and A Coruña. Three major questions have 

guided this study: (i) how the levels of ambient water-soluble OAs distribute along this region, 

(ii) how they compare in terms of their structural composition and sources, and (iii) whether 

would be possible to complement existing OAs source profiles within this region. Parallel 

sampling campaigns during summer and winter seasons made it possible to conclude that: 

(1) Ambient concentrations of PM2.5 and its TC, TN, and WSOC components were consistently 

higher in Aveiro than in A Coruña, with the highest levels of TC and WSOC being found 

during winter at both locations. In A Coruña, the concentrations of PM10 coarse fractions 

were higher than those of PM2.5, especially during summer. At this site, the highest levels 

of TC and WSOC were comprised in PM10 coarse fractions, during both seasons. 

(2) Stable isotopic δ
13
C and δ

15
N in PM2.5 suggest an important contribution of anthropogenic 

fresh OAs at Aveiro, regardless of the seasonal period. In A Coruña, summer PM2.5 and 

PM10 samples are enriched in 
13

C and depleted in 
15

N when compared to those collected 

during winter, suggesting a decreased anthropogenic input at this suburban location during 

warmer conditions. 

(3) The EEM fluorescence profiles were very similar for all WSOM samples. However, the 1D 

and 2D NMR analysis confirmed differences in their structural composition, likely reflecting 

differences in aging processes and/or local sources between the two suburban locations. 

At both studied locations, the saturated (H-C) and unsaturated (H-C-C=) aliphatic 

structures, and oxygenated alkyls (H-C-O) accounted for most of the characterized WSOM 

functional groups (86-97%), with the highest content being observed during summer and 

the lowest during winter. The aromatic (Ar-H) content exhibited an opposite trend, with the 

highest values being observed during winter (9-13%) and the smallest during summer (2.2-
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5.9%). Nevertheless, the relative contribution of each proton functional group differs 

between the two locations. For PM2.5 WSOM in Aveiro, their relative contribution varies in 

the following order: H-C > H-C-C= > H-C-O > Ar-H. In contrast, for PM2.5 and PM10 WSOM 

in A Coruña, the relative contribution of H-C-O groups equals and/or surpasses that of H-

C-C= groups, being also higher than those collected in Aveiro. 

(4) Based on 1D and 2D NMR molecular signatures, the structural composition of WSOM in 

PM2.5 and PM10 at A Coruña is dominated by oxygenated aliphatic compounds, witnessing 

formation or transformation processes from biogenic, marine, and soil dust precursors, with 

a minor influence of emissions from biomass burning, industrial, and traffic sources 

particularly for PM2.5. In contrast, WSOM in PM2.5 at Aveiro appears to be significantly 

impacted by both primary and secondary anthropogenic OAs (road traffic, industry, and 

biomass burning emissions), exhibiting a structural composition that can be reconciled with 

the presence of aged polluted air. Nonetheless, the presence of molecular fingerprints 

typical of biogenic oceanic sources (DMA
+
, DEA

+
, and MSA) also pinpoint to the 

contribution of marine OAs to WSOM in Aveiro. Hence, these marine-derived molecular 

signatures are considerably more important in aerosol WSOM at A Coruña, during 

summer. 

The noteworthy structural findings and source signatures reported in this study for aerosol 

WSOM pinpoint the need to build, in the future, a consistent assessment on the seasonal and 

spatial variability of the water-soluble OAs composition within and between different Iberian 

coastal locations. To accomplish this goal, one needs to expand this study both in time and 

spatial dimensions, and include other atmospheric parameters related to air quality. 
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FIGURES CAPTIONS 

 

Figure 1. Scatter plots between WSOC and TC in (a) PM2.5 samples collected in Aveiro and 

Coruña, and (b) PM2.5 and PM10 samples collected just in Coruña. 

Figure 2. Typical EEM spectra (fluorescence intensity in A.U.) of WSOM in the aerosol 

samples collected in Aveiro and A Coruña in summer (A) and winter (B) seasons. 

Figure 3. Solution-state 1D 
1
H NMR spectra of WSOM from the aerosol samples collected at A 

Coruña [PM2.5 – (a) and (b), and PM10 – (e) and (f)] and Aveiro [PM2.5 – (c) and (d)] 

during summer (SU2016) and winter (WI2017) seasons, and (g) percentage 

distribution of 
1
H NMR in each aerosol WSOM sample. Four spectral regions are 

identified at the bottom of spectra (d) and (f): H-C, H-C-C=, H-C-O, and  

Ar-H. NMR resonances assigned to DMA
+
, DEA

+
, MSA (see text for explanation of 

acronyms), and protons bound to anomeric carbons (O-C(H)-O) are also identified. 

Additional resonance signals: solvent (S) – MeOH-d4, and tetramethylsilane (TMS) – 

0.03% (v/v). 

Figure 4. 
1
H-

13
C HSQC NMR spectra of WSOM from the PM2.5 samples collected during 

summer (SU2016) season in A Coruña (A) and Aveiro (B), and expanded aromatic 

region (B1) of the spectrum of WSOM collected in Aveiro. See text for the 

assignments of regions defined in spectrum (B); C – carbon atom.  

Figure 5. 
1
H-

13
C HSQC NMR spectra of WSOM from the PM2.5 samples collected during 

winter (WI2017) season in A Coruña (A) and Aveiro (B). 

Figure 6. 
1
H-

13
C HSQC NMR spectra of WSOM from the PM10 samples collected during (A) 

summer (SU2016) and (B) winter (WI2017) seasons in A Coruña. 

Figure 7. Aliphatic, carbohydrate and aromatic substructures identified in the aerosol WSOM 

samples collected in Aveiro and A Coruña. See text and Table S5 (in SI) for 

assignment of number labels, and the identity of aliphatic and aromatic substituents 

(R
1
 to R

9
). 
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Table 1. Range and median values of ambient concentrations of PM, TC, TN, WSOC, total 

mass of particulate water-soluble organic matter (WSOM), and percentage of mass 

ratio between WSOM and PM at each location. 

Location Sample 
Total PM 

(g m
-3

) 

TC  

(g C m
-3

) 

TN  

(g N m
-3

) 

WSOC  

(g C m
-3

) 

WSOM 
(a)

 

(g m
-3

) 

WSOC/TC 
(%) 

WSOM/PM 
(%) 

Aveiro 
PM2.5 – SU2016 

PM2.5 – WI2017 

12 – 26; 14 

13 – 47; 31 

2.5 – 4.0; 3.1 

1.8 – 30; 6.9 

0.46 – 1.9; 0.71 

0.23 – 2.5; 1.1 

0.38 – 0.82; 0.45 

0.74 – 5.6; 2.8 

0.60 – 1.3; 0.71 

1.2 – 8.9; 4.4 

14 – 20; 15 

19 – 41; 39 

4.4 – 5.5; 5.3 

5.9 – 20; 17 

A Coruña 

PM2.5 – SU2016 

PM10 – SU2016 

3.1 – 4.2; 3.9 

11 – 13; 11 

0.68 – 1.5; 1.1 

2.0 – 3.0; 2.6 

0.08 – 0.17; 0.14 

0.28 – 0.41; 0.38 

0.06 – 0.15; 0.10 

0.19 – 0.45; 0.30 

0.09 – 0.24; 0.15 

0.30 – 0.72; 0.48 

8.1 – 10; 9.1 

9.2 – 15; 12 

2.8 – 5.7; 4.0 

2.6 – 5.7; 4.3 

PM2.5 – WI2017 

PM10 – WI2017 

4.3 – 6.0; 5.1 

11 – 15; 12 

0.51 – 4.1; 1.2 

1.2 – 10; 3.3 

0.07 – 0.36; 0.16 

0.12 – 0.97; 0.42 

0.13 – 0.69; 0.48 

0.31 – 1.7; 1.2 

0.20 – 1.1; 0.77 

0.50 – 2.7; 1.9 

17 – 46; 29 

16 – 36; 31 

4.7 – 18; 15 

4.7 – 18; 15 

(a)
 [WSOM] = [WSOC]  1.6 (factor used to convert WSOC into WSOM derived from elemental analysis on 

WSOC aerosol samples collected at Aveiro (Duarte et al., 2015)). 
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Table 2. Range and median values of isotopic δ
13
C and δ

15
N composition in the fine and 

coarse fractions during winter and summer seasons at each location. 

Location Sample δ 
13

C (‰) δ 
15

N (‰) 

Aveiro 
PM2.5 – SU2016 

PM2.5 – WI2017 

-28.3 to -26.7; -27.2 

-27.3 to -26.9; -27.0 

5.80 – 17.4; 10.8 

6.87 – 11.5; 8.98 

A Coruña 

PM2.5 – SU2016 

PM10 – SU2016 

-27.1 to -26.7; -26.9 

-26.7 to -26.5; -26.6 

6.29 – 7.76; 6.90 

4.31 – 5.08; 4.86 

PM2.5 – WI2017 

PM10 – WI2017 

-27.6 to -26.9; -27.2 

-27.4 to -26.9; -27.2 

3.12 – 14.4; 9.79 

3.28 – 13.5; 10.0 
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HIGHLIGHTS 

 

 Parallel sampling of aerosol WSOM in 

Iberian Peninsula Coast: Aveiro vs. A Coruña 

 Structural and molecular composition 

and major sources of WSOM in PM2.5 and PM10 

 Aveiro impacted by fresh & secondary 

anthropogenic OAs 

 A Coruña impacted by secondary OAs 

from biogenic, soil dust & anthropogenic sources 

 Marine and biomass burning OAs are 

also important contributors, common to both sites 
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