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Abstract

Background: Identifying organism-environment interactions at the molecular level is crucial to understanding how
organisms adapt to and change the chemical and molecular landscape of their habitats. In this work we investigated
whether relative amino acid compositions could be used as a molecular signature of an environment and whether such a
signature could also be observed at the level of the cellular amino acid composition of the microorganisms that inhabit that
environment.

Methodologies/Principal Findings: To address these questions we collected and analyzed environmental amino acid
determinations from the literature, and estimated from complete genomic sequences the global relative amino acid
abundances of organisms that are cognate to the different types of environment. Environmental relative amino acid
abundances clustered into broad groups (ocean waters, host-associated environments, grass land environments, sandy soils
and sediments, and forest soils), indicating the presence of amino acid signatures specific for each environment. These
signatures correlate to those found in organisms. Nevertheless, relative amino acid abundance of organisms was more
influenced by GC content than habitat or phylogeny.

Conclusions: Our results suggest that relative amino acid composition can be used as a signature of an environment. In
addition, we observed that the relative amino acid composition of organisms is not highly determined by environment,
reinforcing previous studies that find GC content to be the major factor correlating to amino acid composition in living
organisms.
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Introduction

As early and in the 1930s, Alfred Redfield analyzed the oceanic

ratios of carbon, nitrogen and phosphorus to find that they were

approximately constant at 106C:16N:1P and similar to those

observed in the organisms living in those ecosystems [1]. Later,

Redfield suggested that this was a consequence of organisms

maintaining the environmental abundance of the major chemical

elements at homeostatic values closer to those in protoplasm [2].

Measurements of the Redfield ratio in other environments suggest

that, even though they vary slightly, they are approximately

constant for a given type of environment [3,4].

Recent work also reveals that the Redfield ratios in individual

organisms and clades deviates from the global values and is

dependent on phylogeny, geochemical constraints, and nutrient

availability [4–8]. In fact, long term deficits of a given

environmental chemical nutrient can be a driving force for

evolutionary changes in the composition of the enzymes that fix

that nutrient. Such changes in the enzyme’s composition usually

lead to a decrease in the frequency of amino acids that contain

large amounts of the limiting environmental nutrient [9]. At the

molecular level, such biases are also observed and enzymes that

synthesize specific amino acids, when they are absent from the

environment, contain low relative amounts of their cognate amino

acids [10].

Taken together, the above observations raise the following

questions:

i) Does environmental relative amino acid abundance

(eRAAA) of the 20 naturally occurring protein L-a-amino

acids have ratios that are analogous to the Redfield ratios

for chemical elements?

ii) If so, are such ratios as widespread as those for C:N:P?

iii) Is cellular relative amino acid abundance (cRAAA) of each

organism approximately the same as its habitat eRAAA,

suggesting an efficient utilization of free amino acids by the

microorganisms in a given community? If not, does each

organism have distinctive cRAAA, suggesting that eRAAA

is a complex function of the dynamics of amino acid
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production and turnover by microbial communities inhab-

iting such environments?

iv) Finally, could the environment feedback onto the organ-

isms and contribute to the evolution of their whole cell

amino acid composition in specific environments, as it

appears to do for the nucleotide composition of genomes

[11]?

To answer the first two questions we compiled complete amino

acid measurements from different environments and compared

them. We found that indeed there are specific signatures for

eRAAA and that these signatures are broadly similar within each

type of environment.

Answering the last two questions required an additional

estimation of the cellular relative amino acid composition

(cRAAA) of the different species inhabiting the various environ-

ments. Given that single-cell organisms represent the vast majority

of biomass in aquatic and terrestrial environments [12], to

estimate such cRAAA we used the predicted proteome composi-

tion of prokaryotes and unicellular eukaryotes with fully sequenced

genomes. Our results showed that the population in any given

environment is heterogeneous with respect to their cRAAA,

suggesting that organisms evolved the ability to differentiate their

cRAAA from that of their environment through the regulation of

their amino acid biosynthesis and utilization pathways.

Materials and Methods

Data collection and classification
We collected more than 100 different environmental determi-

nations of amino-acid natural abundances. Out of these, we only

retained those measurements that simultaneously determined at

least 16 out of the 20 L-a-amino acids (n = 69, see Table S1 and

references therein), covering a wide spectrum of habitats, including

water bodies, land masses and intestinal environments. Determi-

nations of Asp/Asn and Glu/Gln were considered together for the

analysis, because environmental measurements did not distinguish

between the two amino acids in the pairs. Environments were

classified in terms of aquatic (ocean and freshwater environments),

terrestrial and host-associated environments.

Completely sequenced genomes and predicted protein sequenc-

es of unicellular organisms were obtained from the KEGG and

NCBI databases [13,14]. Similar strains were discarded from the

analysis to reduce phylogenetic bias. Genomes used in further

analyses (n = 1086) included 961 Bacteria, 72 Archaea and 53

Eukarya (Table S2).

Organisms were classified in terms of habitat (aquatic,

terrestrial, versatile, specialized and host-associated) based on

information retrieved from the Integrated Microbial Genomes

[15], Genomes Online [16] and NCBI Genome Project [17]

databases and from the primary literature.

Calculation of genome and proteome properties
Using locally developed PERL scripts, we estimated the

following properties for each organism from completely sequenced

and fully annotated genomes: GC content, base pair composition

of genes, codon usage and absolute amino acid abundance. These

were important to control for the influence of non-environmental

factors on protein amino acid composition.

Estimation of cellular amino acid content
Since it was not feasible to obtain experimental determinations

of the cRAAA for all the organisms used in this work, we estimated

cRAAA from an organism’s predicted protein abundances

assuming that cells grow without nutrient restrictions. In such

Table 1. Average environmental relative amino acid abundance (eRAAA) across habitats calculated from the literature.

Amino Aquatic Terrestrial Host-associated All environments

acid (mean ±SD) (mean ±SD) (mean ±SD) (mean ±SD)

Ala 0.1167 60.05315 0.1144 60.01689 0.0602 60.00516 0.1113 60.04662

Arg 0.0378 60.03249 0.0459 60.03462 0.0504 60.01340 0.0409 60.03191

Asn+Asp 0.0896 60.04352 0.1435 60.04755 0.0618 60.00557 0.1009 60.04980

Cys 0.0005 60.00265 0.0015 60.00323 0.0351 60.00332 0.0037 60.01004

Glu+Gln 0.0883 60.04270 0.1696 60.13768 0.2039 60.01316 0.1187 60.08787

Gly 0.2002 60.11806 0.0951 60.04960 0.0781 60.00580 0.1633 60.11176

His 0.0134 60.02044 0.0328 60.03000 0.0199 60.00191 0.0189 60.02374

Ile 0.0375 60.02426 0.0266 60.00944 0.0349 60.00138 0.0345 60.02075

Leu 0.0604 60.02298 0.0439 60.02440 0.0723 60.00263 0.0572 60.02374

Lys 0.0139 60.02318 0.0356 60.02159 0.0333 60.00376 0.0210 60.02386

Met 0.0032 60.00587 0.0055 60.00211 0.0174 60.00149 0.0050 60.00627

Phe 0.0334 60.02062 0.0367 60.02188 0.0344 60.00219 0.0343 60.01995

Pro 0.0157 60.03960 0.0039 60.01650 0.1174 60.00959 0.0213 60.04465

Ser 0.1455 60.15386 0.0660 60.02238 0.0558 60.00245 0.1178 60.13120

Thr 0.0595 60.01956 0.0538 60.01834 0.0440 60.00337 0.0567 60.01884

Trp 0.0005 60.00129 0.0023 60.00549 0.0080 60.00037 0.0016 60.00359

Tyr 0.0179 60.01621 0.0563 60.05206 0.0126 60.00177 0.0272 60.03355

Val 0.0583 60.02954 0.0487 60.01737 0.0605 60.00371 0.0560 60.02583

Environmental determinations of Asp/Asn and Glu/Gln did not distinguish between the two amino acids in the pairs, therefore they were considered together for the
analysis.
doi:10.1371/journal.pone.0077319.t001
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conditions, the level of expression of the different proteins in the

genome can be estimated with respect to that of abundant

ribosomal proteins [18–22].

In this way, the average amino acid composition of each

organism was calculated using locally developed PERL scripts by

weighting the abundance of each protein with respect to the

ribosomal proteins, whose abundance was set to be maximal. Two

different metric functions were used to weight protein abundance,

CAI and a d index.

CAI defines translationally optimal codons [23]. To calculate it,

we normalized the data using the relative adaptiveness (wc,a), as

previously described [22]. This adaptiveness was calculated for

ribosomal proteins, in which the frequency of each synonymous

codons (nc,a) was normalized by the frequency of the most frequent

codon (being Ca the set of synonymous codons used by amino acid

a):

wc,a~
nc,a

max
c[Ca

nc,a

Thus, the codon usage of each coding sequence was represented

by a vector of length 59 (stop codons and amino acids with only

one codon were discarded). CAI was then computed for each gene

by summing over the codon usage vector (rather than over the

length) [22]:

CAI~exp(
1

ntot

X59

c~1

nc,a: log wc,a)

Here, ntot is the total number of codons in the gene.

To compute the d index, first we measured the Euclidean

distance (cp) between the codon usage of protein p (CUc,protein p

representing the average relative usage of codon c in protein p) and

the average codon usage of ribosomal proteins (CUc,rib):

cp~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X59

c~1

CUc,rib{CUc,protein p

� �2

vuut

Figure 1. Characterization of different environments by their relative amino acid composition. A) scatter plot by Principal Component
Analysis according to the type of environment; B) Hierarchical clustering analysis. The length of branches represents the degree of dissimilarity
between clusters. The x-axis of the heat map represents the 20 amino acids by alphabetical order of the three-letter code name. Determinations of
Asp/Asn and Glu/Gln were considered together for the analysis, because environmental measurements did not distinguish between the two amino
acids in the pairs. The y- axis of the heatmap represents the individual environments where amino acid abundance was determined. Over- and under-
representation of amino acid residues in each environment are represented in green and red colored squares, respectively.
doi:10.1371/journal.pone.0077319.g001
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Table 2. Spearman rank correlation coefficients between estimated amino acid compositions (based on CAI and d predictors) and
experimentally-determined amino acid abundances.

Organism Description Correlation p-value2

eaa1 vs. experimental data (Sauer et al., 1996) 0.783 ***

Bacillus subtilis CAI vs. experimental data (Sauer et al., 1996) 0.789 ***

d vs. experimental data (Sauer et al., 1996) 0.812 ***

eaa1 vs. experimental data (Pramanik & Keasling, 1998) 0.846 ***

Escherichia coli CAI vs. experimental data (Pramanik & Keasling, 1998) 0.837 ***

d vs. experimental data (Pramanik & Keasling, 1998) 0.857 ***

eaa1 vs. experimental data (Okayasu et al., 1997) 0.854 ***

Escherichia coli CAI vs. experimental data (Okayasu et al., 1997) 0.847 ***

d vs. experimental data (Okayasu et al., 1997) 0.861 ***

eaa1 vs. experimental data (Okayasu et al., 1997) 0.775 ***

Staphylococcus aureus CAI vs. experimental data (Okayasu et al., 1997) 0.743 ***

d vs. experimental data (Okayasu et al., 1997) 0.823 ***

Values in bold indicate the strongest correlation.
1
eaa indicates unweighted amino acid frequency in the complete predicted proteome of an organism.

2*** p,0.001.
doi:10.1371/journal.pone.0077319.t002

Figure 2. Characterization of the relative amino acid composition of the proteomes from different organisms. A) scatter plot by
Principal Component Analysis according to the type of environment; B) Hierarchical clustering analysis. The length of branches represents the degree
of dissimilarity between clusters. The x-axis of the heat map represents the 20 amino acids by alphabetical order of the three-letter code name. The y-
axis of the heatmap represents the individual organisms where amino acid abundance was estimated. Over- and under-representation of amino acid
residues in each organism are represented in green and red colored squares, respectively.
doi:10.1371/journal.pone.0077319.g002
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Then, we defined d as an independent weighting function for

gene expression as follows:

d~
XP

p~1

ecmax{ecp

ecmax{1

Here, cmax is the maximum Euclidean distance in a given

genome.

CAI and d range between 0 and 1 for any given gene, with

higher values indicating genes that are more expressed, thus

having higher contribution to organism’s amino acid content.

The cRAAA of each organism was computed as a vector of 20

amino acids, in which the cellular relative abundance of each

amino acid (cRAAAaai) was calculated as follows:

cRAAAaai~
1

Naai

XP

p~1

EI � naaið Þ

Here, naai is the frequency of amino acid i in each protein, EI is

the predicted expression index (CAI or d) and Naai is the total

count of that amino acid in the organism’s proteome.

As a control, predictions were compared with experimentally-

determined amino abundances in Bacillus subtilis, Escherichia coli and

Staphylococcus aureus retrieved from the literature [24–26].

Statistical analyses
Multi-dimensional matrixes of cRAAA and eRAAA were

generated in which each column represented the relative content

of each amino acid and each row represented each organism or

environmental measure, respectively.

Principal Component Analysis (PCA) and Hierarchical Clus-

tering were carried out to analyze the segregation of environments

and organisms as a function of eRAAA and cRAAA, respectively.

To understand if environmental factors significantly contributed

to shape global amino acid composition of organism, we needed to

Table 3. Linear regression models for the effect of GC
content, Phylogeny and Habitat on the relative cellular amino
acid abundance.

Amino
Acid Variable Function Adjusted R2 p-value1

%GC 12.3823+416.765x 0.888 ***

Ala Phylogeny 14.7820.209605x 0.019 ***

Habitat 3.28+0.0541254x 0.030 ***

%GC 10.0666+708.622x 0.892 ***

Arg Phylogeny 14.7820.0953123x 0.003 n.s.

Habitat 3.28+0.0627061x 0.041 ***

%GC 77.00242682.993x 0.815 ***

Asn Phylogeny 14.78+0.213086x 0.034 ***

Habitat 3.28+0.0618256x 0.038 ***

%GC 18.0057+587.185x 0.085 ***

Asp Phylogeny 14.7820.0699774x 0.018 ***

Habitat 3.28+0.052295x 0.028 ***

%GC 53.57932362.54x 0.009 ***

Cys Phylogeny 14.7820.0835933x 0.028 ***

Habitat 3.28+0.0504854x 0.025 ***

%GC 50.0219213.8308x 20.001 ***

Gln Phylogeny 14.7820.0940546x 0.036 ***

Habitat 3.28+0.0485648x 0.023 ***

%GC 79.85052472.873x 0.134 ***

Glu Phylogeny 14.7820.162344x 0.096 ***

Habitat 3.28+0.0319903x 0.009 ***

%GC 216.8867+945.005x 0.839 ***

Gly Phylogeny 14.78+0.420635x 0.120 ***

Habitat 3.28+0.0704056x 0.046 ***

%GC 13.4426+1730.45x 0.230 ***

His Phylogeny 14.7820.194095x 0.122 ***

Habitat 3.28+0.034075x 0.010 ***

%GC 86.75952563.15x 0.849 ***

Ile Phylogeny 14.7820.453057x 0.130 ***

Habitat 3.28+0.0538274x 0.026 ***

%GC 1.94247+470.982x 0.077 ***

Leu Phylogeny 14.7820.11572x 0.051 ***

Habitat 3.28+0.0486466x 0.023 ***

%GC 76.17642470.209x 0.866 ***

Lys Phylogeny 14.7820.0723698x 0.002 n. s.

Habitat 3.28+0.0618894x 0.040 ***

%GC 61.45242479.803x 0.016 ***

Met Phylogeny 14.7820.091508x 0.034 ***

Habitat 3.28+0.0488429x 0.024 ***

%GC 104.33721332.69x 0.682 ***

Phe Phylogeny 14.78+0.13288x 0.022 ***

Habitat 3.28+0.0707417x 0.056 ***

%GC 20.615608+1159.53x 0.841 ***

Pro Phylogeny 14.7820.145668x 0.013 ***

Habitat 3.28+0.0642624x 0.043 ***

%GC 89.68112655.588x 0.248 ***

Ser Phylogeny 14.7820.00453643x 20.001 n. s.

Table 3. Cont.

Amino
Acid Variable Function Adjusted R2 p-value1

Habitat 3.28+0.063256x 0.042 ***

%GC 15.6874+650.185x 0.089 ***

Thr Phylogeny 14.7820.0849289x 0.027 ***

Habitat 3.28+0.0493972x 0.024 ***

%GC 7.78436+3584.66x 0.617 ***

Trp Phylogeny 14.7820.15309x 0.037 ***

Habitat 3.28+0.0582441x 0.034 ***

%GC 93.362221407.74x 0.764 ***

Tyr Phylogeny 14.7820.333038x 0.110 ***

Habitat 3.28+0.0519745x 0.025 ***

%GC 211.348+863.332x 0.496 ***

Val Phylogeny 14.78+0.170741x 0.061 ***

Habitat 3.28+0.0768137x 0.058 ***

1*** p,0.001; n.s., not significant.
doi:10.1371/journal.pone.0077319.t003
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control for the factors which are already known to explain that

composition: genomic GC content and phylogeny [11]. In

addition we considered the main habitat of each organism.

Finally, we created a generalized linear model of amino acid

composition as a function of these three factors in order to estimate

the effect of each factor on that composition:

cRAAAaaj~a1GCza2Phylumza3Habitatze

In this equation cRAAA aaj is the cRAAA of amino acid j, a1, a2,

and a3 are linear coefficients and e is a noise term [27]. The

variables Phylum and Habitat were treated as discrete categorical

data and given integer values (e.g. Crenarchaeota R 1,

Euryarchaeota R 2, Korarchaeota R 3, Nanoarchaeota R 4,

Acidobacteria R 5, Actinobacteria R 6, etc.; and Aquatic R 1,

Terrestrial R 2, Versatile R 3, Specialized R 4, Host-associated

R 5, Gut R 6, respectively). We created independent models for

each amino acid and estimated the coefficients and their

significance using ANOVA analysis [28].

Linear and Rank Correlation analyses between environmental

and cellular amino acid compositions were performed based on

Pearson’s and Spearman’s correlation coefficients, respectively.

Statistical significance of the correlation coefficients was calculated

using a t-test [28].

All statistical analyses were done using Wolfram Mathematica

8.0 (Wolfram Research, Inc., USA).

Figure 3. Relative amino acid composition, weighted by d index, of each organism plotted against average GC content.
doi:10.1371/journal.pone.0077319.g003

Figure 4. Spearman Rank Correlations between the RAAA of organisms and environments. Asterisks represent significance at p,0.01 (**)
and p,0.001 (***).
doi:10.1371/journal.pone.0077319.g004
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Results

Environments share amino acid signatures
Table 1 shows the average environmental relative amino acid

abundances (eRAAA) obtained based on the experimentally

determined amino acids measurements collected from the

literature (Table S1 and references therein). Overall, eRAAA

ranged between 0.2% and 16%, with Gly, Ser, Ala, Asn+Asp and

Gln+Glu being the most abundant amino acids (mean .10%).

PCA was performed on the multidimensional matrix of eRAAA

for the environments. The principal components were used to

investigate how environments grouped as a function of their amino

acid composition. PCA showed segregation of water, soil and

intestinal environments with respect to eRAAA, as observed in

Figure 1A. Eight principal components were needed to explain

more than 90% of the variation in the environmental composition

data (91.7%).

Figure 1B represents the clustering of environments on the

basis of their eRAAA. Overall, similar environments clustered

together. Environments were segregated in clusters corresponding

to ocean waters, soil and host-associated environments, indicating

the presence of habitat-specific trends in eRAAA. In general,

ocean waters (cluster I) showed relative higher abundance of Ala,

Trp, Gly, Gln+Glu and Leu. Host-associated environments

(cluster II), showed relative higher abundance of Cys, Leu,

Lys, Met and Pro. Terrestrial environments (cluster III) grouped

into three sub-clusters: a) soil boreal forest, characterized by higher

abundance of Asn+Asp, Gln+Glu, His and Ala; b) sandy soils

(sacaton, mesquite, open) characterized by higher content of Arg,

Lys, Leu, Ala and Asn+Asp and c) grass land environments, richer

in Tyr, Lys, Asn+Asp, Ala, Leu and Thr.

Taken together these results suggest that the abundance of

specific sets of amino acids creates signatures that are particular for

each environment. However, it should be noted that Spearman

rank correlations between the eRAAA of each pair of environ-

ments were statistically significant, ranging between 0.517 (p-value

, 0.05) and 0.860 (p-value , 0.001). This indicates that, although

eRAAA of different environments are specific to that environment

and significantly different from those of other environments, the

absolute differences between environments are small.

Prediction of cellular amino acid abundance
To answer the third and fourth questions we estimated the

cellular amino acid abundance of the organisms inhabiting the

different environments, using CAI and d (see methods) as

predictors of an organisms’ amino acid cellular abundance. These

indexes weight the contribution of a given protein to the cellular

amino acids pool by its predicted relative abundance with respect

to ribosomal proteins. To validate this approach, predictions were

compared with published cRAAA of reference organisms.

Spearman rank correlations ranged from 0.743 to 0.861, showing

that estimated amino acid abundances correlated highly

significantly (p-values , 0.001) with experimental determinations

(Table 2). On average, higher correlations were obtained

considering amino acid abundances weighted by d. Nevertheless,

CAI-weighted cellular amino acid abundances also highly and

significantly correlated with the experimental determinations,

whereas unweighted RAAA in the full proteomes of the test

organisms correlated to the experimental determinations with

significantly lower Spearman correlations (Table 2).

Further calculations and analysis were performed using both

indexes d and CAI and produced similar results. For convenience,

data shown refers to the d predictor only.

Organisms did not segregate according to habitat or
lifestyle

To investigate whether relative cellular abundance of amino

acids also contained a signature of the environment in which the

organisms have evolved, we performed PCA of the cRAAA and

correlated each organism with its main environment. Figure 2A
shows the PCA analysis for the amino acid composition of

organisms colored according to the type of habitat. Projection of

the data in the 3 largest components accounted for 78.14%,

75.38% and 72.67% of the variation among organisms belonging

to Archaea, Bacteria and Eukarya domains, respectively. Howev-

er, no segregation of habitats by principal components was

observed (Figure 2A). Similar results were obtained considering

lower taxonomic levels (phyla and classes) as well as when

neglecting relative expression levels (data not shown).

Analyses based only on the amino acid composition of

ribosomal proteins and RNA polymerases provided similar trends,

with the 3 largest components accounting for only 62.77%,

62.70% and 66.14% of the variation among Archaea, Bacteria

and Eukarya domains, respectively (Figure S1).

Hierarchical clustering analysis grouped organisms into two

main clusters. The first cluster (cluster I) included organisms

from the three domains and different habitats, which share

relatively homogeneous amino acid abundance and GC content

lower than 50%. The second cluster (cluster II) included

organisms from the three domains and different habitats, but

possessing higher content of Ala, Arg, Gly, His, Pro, Trp and Val,

lower relative abundance of Asn, Ile, Lys, Pro, Tyr, and a GC

content higher than 50% (Figure 2B). Thus, segregation of amino

acid relative compositions was not habitat- or domain-specific,

being more constrained by GC content.

%GC is the major factor influencing amino acid
composition

To understand the contribution of the different factors on the

cellular RAAA, we performed a more detailed analysis by

modeling amino acid composition as a function of phylogeny,

GC content and habitat using generalized linear models.

Best fit models obtained confirmed that in 17 out of 20 amino

acids GC% was the major factor influencing amino acid

composition. In Ala, Arg, Asn, Gly, Ile, Lys, Pro and Tyr, that

effect was higher than 75% (Table 3). Phylogeny was the factor

that impacted most on Cys, Gln and Met relative abundance,

although explaining only about 3% of the variance.

In fact, amino acid composition plotted against average GC

content showed a strong correlation with the majority of amino

acids, being Asp, Cys, Gln, Glu, His, Leu, Met, Ser, Thr the

amino acids least affected by GC composition (Figure 3). Results

obtained considering the entire set of proteins in the genome did

not differ from those obtained when considering only the set of

highly expressed proteins (data not shown). The same trends were

also observed considering amino acid compositions not weighted

by expression.

Finally, we determined Spearman rank correlations between

cellular and environmental RAAAs. Correlations were high and

significant (Figure 4), although the correlation between the

cRAAA of a given organism and that of its environment was not

significantly different from the correlation between the composi-

tion of the same organism and that of non-cognate environments

for that organism.

Thus, our results suggest that the cRAAA are not unequivocally

determined by the eRAAA in their habitats and that there is a

complex and dynamic relationship between the relative amino

Environmental and Cellular Amino Acid Signatures
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acid abundance of an environment and that of its inhabiting

organisms.

Discussion

The ability to both adapt to and change its environment is a

characteristic of life. Such changes are observed from macroscopic

to microscopic and chemical scales. It is known that the relative

amount of the major chemical elements that compose organisms is

similar to that of environments. The accepted explanation for this

is that, over time, cells have modified the environmental chemical

landscape in such a way that it becomes more similar to themselves

[1,2].

To the best of our knowledge, whether a similar process is

observed at the molecular level had not been analyzed before. In

this work, we performed such an analysis by focusing on L-a-

amino acids and their relative abundance in the environments and

in cells. Given that L-a-amino acid production on Earth

environments is only biological, one might expect that those

abundances would be relatively constant. However, given that

many microorganisms can efficiently scavenge amino acids from

the environment one might also expect that the RAAA ratios are a

dynamic result of the balance between amino acid release to the

environment and amino acid uptake from the environment by the

biota. Our results support that there is a relative abundance of the

different amino acids in environmental source that is approxi-

mately constant.

Nevertheless, specific sets of amino acids were enriched in

specific habitats, creating molecular signatures. The following

environment-specific patterns of increased RAAA were observed:

Ala, Trp, Gly, Gln+Glu and Leu, in oceans; Cys, Leu, Lys, Met

and Pro, in host-associated environments; Asn+Asp, Gln+Glu, His

and Ala, in soil boreal forest; Arg, Lys, Leu, Ala and Asn+Asp in

sandy soils; and Tyr, Lys, Asn+Asp, Ala, Leu and Thr, in grass

environments.

When it comes to identifying a direct correlation between

environmental and cellular RAAA, our findings again suggest that

such abundances correlate well globally. In contrast, when looking

at how the cRAAA of specific organisms correlate to that of their

cognate environments, we find that such correlations cannot be

used to infer the environment from which the organism was

extracted. These findings are apparently at odds with those from a

previous study [11] that found both GC content and amino acid

content of metagenomic datasets to be influenced by their

environment. However, that study does not take into account

environmental amino acid determinations and only four meta-

genomes are analyzed.

In fact, there is a large body of work on the compositional biases

of genomes and proteomes and what controls such biases.

Examples of such compositional biases and their probable causes

are known at the nucleotide [29,30], codon [31] and amino acid

[9,10,32–35] levels. Nevertheless, such studies involved a limited

number of sequences/organisms and only looked at the amino

acid composition of the individual proteins, not that of the whole

cells.

Our analyses took into account the relative amino acid

compositions of proteins weighted by predicted levels of expres-

sion. These predictions were based on metrics that compare codon

utilization between the ribosomal coding genes and other protein-

coding genes [18–21]. More sophisticated estimations could also

be achieved considering aa-tRNA abundance and ribosome

occupancy as well [36–38]. However, aa-tRNA abundances are

only well known for a small number of organisms and under very

specific conditions. Estimations of aa-tRNA abundance based on

the number of genes coding for tRNAs could also be used [39].

However, this could be biased by the varying quality of the

genome annotation for each organism, given the size of the dataset

used in this study.

Correlations between the cRAAA calculated using CAI and d
indexes and experimentally determined mRNA and protein

abundance were not significant (data not shown). However, both

CAI- and (more notably) d-calculated cellular RAAA highly and

significantly correlated with experimentally determined amino

acid compositions. To the best of our knowledge, this constituted

the first study on the relative amino acid compositions across

domains, taking into account differential gene expression.

Hierarchical clustering analysis and PCA showed no apparent

segregation of organisms according to habitat or domain.

Clustering of amino acid relative content weighted by CAI and

d indexes showed segregation of organisms with higher content of

residues with GC-rich codons (Ala, Arg, Gly, Pro) and organisms

with higher content of residues with AU-rich codons (Asn, Ile, Lys,

Phe, Tyr). A recent study [40] found similar results and reported

that overall amino acid usage in Archaea is dominated by GC-

bias. Lightfield and co-workers [41] also reported that distantly-

related bacterial genomes with similar GC content have similar

patterns of amino acid usage. Analyses of Sargasso’s Sea shotgun

sequencing reads have also shown an overrepresentation of AU-

rich residues in such low-GC environments [11]. Taken together,

these strongly suggest that amino acid composition of organisms

cannot be directly predicted from their cognate environments and

are strongly dependent on the GC content of their genomes.

Our generalized linear model analysis showed that, with the

exception for Cys, Gln and Met, the variation in the cellular

RAAA of all other amino acids was clearly explained by the

variation in the GC content of the genomes. Given that the

genomes of the organisms we are looking at are mostly constituted

by gene coding sequences, such GC dependency could be a result

of the relative abundance of amino acids coded by GC-rich (Ala,

Gly, Pro, Arg and Ser) and/or GC-poor (Phe, Ile, Lys, Met, Asn,

Tyr, and Leu) codons in the genes. However, the observation that

the genomic GC content is the factor that explains the largest

amount of variation in cRAAA for 17 out of 20 amino acids

indicates that the dependency of cRAAA on genomic %GC

content is not strongly affected by the GC content of codons.

The variation on the cRAAA of Cys, Gln and Met was, in

contrast, influenced mainly by organism’s phylogeny. Models

based on mutation and selection in nearly 600 genomes, also

suggest that GC content drives codon usage (and implicitly amino

acid composition), rather than the reverse [42].

In conclusion, our findings are consistent with environmental

amino acid abundances following relationships that are analogous

to those of the Redfield ratios for chemical elements. Our results

point to the existence of specific amino acid signatures that are

particular for each environment, while also indicating that there

are global relationships between the relative amino acid

abundance in different environments. In contrast, the relative

amino acid composition of organisms is not highly determined by

the environment, even if the environmental composition is

undoubtedly determined by its community of resident microor-

ganisms. This is consistent with the existence of a complex and

dynamic relationship between the RAAA of an environment and

that of its inhabiting organisms, suggesting that individual

organisms have evolved the capacity to mold their amino acid

composition selectively, in a manner that is mostly independent

from the eRAAA.
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Supporting Information

Figure S1 Principal Component Analysis of organisms as a

function of cRAAA considering A) all predicted protein sequences

in the genome [as shown in Figure 2A] and B) only ribosomal

proteins and RNA polymerases.

(TIF)

Table S1 Relative amino acid composition of different
environments, as reported in and calculated from the
literature.
(XLSX)

Table S2 Relative amino acid composition of different
organisms calculated in this study based on predicted
protein sequences of fully sequenced organisms (faa:

relative amino acid frequency; daa: relative amino acid
frequency weighted by d index; CAIaa: relative amino
acid frequency weighted by CAI index).
(XLSX)
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