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1. Introduction

Let @ C RN be a bounded domain with a C2-boundary 6Q. In this paper
we study the following nonlinear parametric Robin problem

—div a(Du(z)) = f(z,u(z),4) in Q,
(P3) U4 B(DuP' =0 on dQ,u>0,1<p< 0.

on,

The aim of this work is to study the dependence of the set of positive solutions
on the parameter 4> 0. In problem (P;) the map a: RY — R" involved in
the definition of the differential operator is continuous, strictly monotone (hence
maximal monotone too) and satisfies other regularity and growth conditions,
listed in hypotheses H(a) below. These hypotheses are general enough to
include into our framework many differential operators of interest such as the
p-Laplacian. However, we stress that the differential operator in problem (P))
is not homogeneous and this fact is a source of technical difficulties which
require different techniques. The reaction term f(z,x,4) is a Carathéodory
function in (z,x) € 2 x R for all 2> 0 (that is, for all xe R and all 1 >0,
z— f(z,x,A) is measurable and for a.a. ze Q and all 2 >0, x — f(z,x,1)
is continuous), which exhibits strictly (p — 1)-sublinear growth near +oo, while
it is (p — 1)-superlinear near 0*. Also, du/dn, denotes the generalized normal
derivative defined by 0u/dn, = (a(Du),n)zy where n(.) is the outward unit
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normal on 0Q and f is a positive boundary function (cf. H(f) in Section 2).
We show that there exists A > 0 such that

o for all 2> 4" problem (P;) admits at least two positive solutions;

o for A= 1" problem (P;) admits at least one positive solution;

o for all 2€(0,4") there are no positive solutions of problem (P;).

Moreover, we show that for all 2 > 1%, problem (P;) has a smallest positive
solution #; and we investigate the continuity and the monotonicity properties of
the map A — @,.

Such bifurcation-type results were proved primarily for problems driven by
the Laplacian or the p-Laplacian with competing nonlinearities (concave-convex
problems). We mention the works of Ambrosetti-Brezis-Cerami [6], Garcia
Azorero-Manfredi-Peral Alonso [12], Guo-Zhang [16], Hu-Papageorgiou [18§]
(Dirichlet problems) and Motreanu-Motreanu-Papageorgiou [21] (Neumann
problems). For such problems, the bifurcation occurs near zero (that is, for
small values of 4 > 0). Recently, Aizicovici-Papageorgiou-Staicu [4] (semilinear
Dirichlet problems) and Papageorgiou-Radulescu [26] (nonlinear Robin prob-
lems driven by the p-Laplacian) examined superdiffusive type logistic equations
and proved bifurcation-type results near +oco (that is, for large values of 1 > 0).
We also mention the relevant works on periodic scalar nonlinear equations of
Aizicovici-Papageorgiou-Staicu [2], [3].

2. Mathematical Background

Let (X, ||.||) be a Banach space. By X* we denote its topological dual and
by <-,-> the duality brackets for the pair (X*, X). We will use the symbol
“” to designate weak convergence.

Suppose that p € C!(X). We say that ¢ satisfies the Palais-Smale condition
(the PS-condition, for short), if the following is true:

“every sequence {x,},.; € X such that {¢(x,)},~; € R is bounded and

¢'(x,) =0 in X" as n—

admits a strongly convergent subsequence.”

This is a compactness-type condition on the functional ¢, which leads to
a deformation theorem from which one can derive the minimax theory of the
critical values of ¢. Prominent in that theory is the ‘“mountain pass theorem™
of Ambrosetti-Rabinowitz [7], which reads as follows:

Theorem 1. If p e C'(X) satisfies the PS-condition, ug,u; € X and p >0
are such that |lu; — uol|| > p,

max{p(uo), p(u1)} < inf{p(u) : [lu - uoll = p} =: m,,
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and

c= in? ir[(l)fll(/)(y(t)) with I' = {y e C([0,1], X) : (0) = up, y(1) = u; },
vel telo,

then ¢ =m, and c is a critical value of ¢ (i.e., there exists u* € X such that
o' (u*) =0 and p(u*) = c).

In the analysis of problem (P;), we will use the Sobolev space W!7(Q) and

by |.|| we will denote its norm defined by
4 1
lull = [lallh + ([ Dull2)'77,

where ||.||, stands for the L?-norm. In addition, we will also use the Banach
space C'(Q) and the boundary Lebesgue spaces L"(0Q) (1 <r < o).

The Banach space C'(Q) is an ordered Banach space with an order
(positive) cone given by

Cy={ueC'(Q):u(z) =0 for all zeQ}.
This cone has a nonempty interior, given by
int C, = {ueC'(Q):u(z) >0 for all zeQ}.

On 02 we consider the (N — 1)-dimensional Hausdorff (surface) measure o(.).
Having this measure on 092, we can define in the usual way the Lebesgue spaces
L"(02) (1 <r< ).

The theory of Sobolev spaces says that there exists a unique con-
tinuous linear map y,: W'?(Q) — L?(0Q), known as the “trace map”, such
that

W) =ulyy  for all ue WH(Q)N C(Q).

So, we can view the trace map as representing the “boundary values” of a
Sobolev function u e W7 (Q).

The trace map y, is compact from W'?(Q) into L"(dQ) for all re
[1,(N—=1)p/(N —p)) when p <N and into L"(0Q) for all re[l,c0) when
p = N. In addition, we have

: N T |
Im y, = W/P"P(6Q) with ;er =1 and ker y, = Wol’p(.Q).

For the sake of notational simplicity, in the sequel we drop the use of the
trace map y,. All restrictions of Sobolev functions to the boundary 02 are
defined in the sense of traces.

Let 0 e C'(0,00) be a function such that
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(2.1) 0<C<

<Gy and

' <0(t) < G(1+¢71  for all t>0

with Cy,C;,C, >0 and 1 < p < o0.
The hypotheses on the map a(y) involved in the definition of the differ-
ential operator of (P;) are the following:
(H(a)) a(y) =ao(|y|)y, for all y e RY with ay(¢) > 0 for all >0 and:
(i) aye CY(0,00), t — ap(t)t is strictly increasing,

,Li%h ap(t)t =0 and Jlim c;(;((tt))l > —1;
(ii) for some C; >0 and for all ye R"
Va(y)| < (||y||) for all yeR";
(iii) for all y e R¥\{0} and all ¢ R"
Va(né. e > “2U e

Here and in what follows, |y| denotes the R" norm of ye R".

Remarks. These hypotheses are motivated by the nonlinear regularity
theory of Lieberman [20] and the nonlinear maximum principle of Pucci-Serrin
[30] (see also Uhlenbeck [32]). They imply that the primitive

13
Gy(1) = J ao(s)s ds, for >0
0
is strictly increasing and strictly convex. We set G(y) = Go(]y|) for all y € RY.
Then G(.) is convex and continuously differentiable. More precisely, we have
VG(0) =0 and

VG(y) = Gy(Iy) 2 = a(ly))y =a(y)  for all ye RM\{0}.

vl

So, G(.) is the primitive of the map a(.). The convexity of G(.) implies
that

(2.2) G(y) < (a(y), y)gy for all yeR".

The next lemma summarizes the main properties of the map a(.) and it is an
easy consequence of the hypotheses (H(a)).



Parametric Nonlinear Nonhomogeneous Robin Problems 289

Lemma 1. If hypotheses (H(a)) hold, then:

(@) the map y — a(y) is continuous and strictly monotone, hence maximal
monotone 100,

(b) |a(»)| < Ca(1+ |y|"™") for all ye R and some Cy4> 0;

() (a(),»)gy = (C1/(p—=1))|y|" for all yeR".

This lemma together with (2.1) and (2.2) leads to the following growth
estimates for the primitive G(.):

Corollary 1. If hypotheses (H(a)) hold, then

C
p(Til)|y|pSG(y)£C5(l+|y\p) for all yeR"Y, some Cs> 0.
Examples. The following maps a(.) satisfy hypotheses (H(a)):
@) a(y)=|y/"?y with 1 < p < 0.
This map corresponds to the p-Laplacian differential operator
defined by

Apu = div(|Dul’*Du),  for all ue WP (Q).

(b) a(y)=|y]" 2y +|y|" %y with 1 <g < p < .
This map corresponds to the (p, g)-Laplacian differential operator
defined by

DAy + Dgu, for all ue W'7(Q).

Such operators arise in problems of mathematical physics (see, Benci-
D’Avenia-Fortunato-Pisani [8] (quantum physics) and Cherfils-Ilyasov [10]
(plasma physics).)

Recently there have been some existence and multiplicity results for
equations driven by such operators. We refer to the papers of Aizicovici-
Papageorgiou-Staicu [5], Cingolani-Degiovanni [11], Carmona-Cingolani-
Martinez Aparicio-Vannella [9], Mugnai-Papageorgiou [23], Papageorgiou-
Radulescu [24], Papageorgiou-Winkert [29], Sun-Zhang-Su [31].

(©) a(y)=(1+[yHP P2y, with 1 < p < 0.

This map corresponds to the generalized p-mean curvature dif-
ferential operator defined by

div((1 + |Du|*)?~?*Du), for all ue W7 (Q).
() a(y) = [p" (1 +1/(1+y[") with 1< p < 0.
This map corresponds to the following perturbation of the
p-Laplacian

for all ue W7 (Q).

) D (P*z)/zD
Apu + div <|u|—u ,

1+ |Dul?
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The assumptions on the boundary coefficient function f(.) are the following:
(H(B)) pe C%*(0Q) with xe (0,1), f(z) >0 for all z € 0Q.

Remark. The above hypothesis excludes Neumann problems (they corre-
spond to = 0).

Let 4: W'P(Q) — W P(Q)" be the nonlinear map defined by
(2.3) CA(u), by :J (a(Du), Dh)gvdz ~ for all u,h e W'r(Q).
Q

From Papageorgiou-Rocha-Staicu [28] we have:

Proposition 1. If hypotheses (H(a)) hold, then the nonlinear map
A: WhP(Q) — WP (Q)" defined by (2.3) is continuous, monotone, hence max-
imal monotone, too, and of type (S),, that is, if {u,},, C WOI””(.Q) is such that
Uy — u in W2(Q) and

n>1
lim sup <A(un)a Up — “> < 07
n—oo
then u, — u in Whr(Q) as n — oo.
Let fp: Q2 x R— R be a Carathéodory function such that
lfolz,x)| < ao(z)(1+|x|"")  for aa. zeQ, all xeR

with g e L¥(Q), :={aeL*(Q):a(z) >0 for aa. zeQ} and re(l,p*)
with

M
pr=< N %f p<N (the critical Sobolev exponent for p).
4o if p=N

Moreover, let ko e C%7(0Q x R) with n e (0,1) be such

lko(2,x)| < Cg|x|®  for all (z,x) € 0Q x R,
with C¢ >0 and 7€ (1,p]. We set

Fy(z,x) = J Jo(z,s)ds and Ky(z,x) = J ko(z, s)ds
0 0

and consider the C'-functional ¢, : W!?(Q) — R defined by

o0(u) = JQ G(Du(z))d- + LQ Kolz,u(2))do

_J Fo(z,u(z))dz  for all ue whr(Q).
o
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From Papageorgiou-Radulescu [25] (see also Gasinski-Papageorgiou [14]
for the Dirichlet case), we have

Proposition 2. If hypotheses (H(a)) hold and uye W'P(Q) is a local
CY(Q)-minimizer of ¢,, that is, there exists p, > 0 such that

@o(uo) < @o(uo + h) for all he CY(Q) with ||th1(§) < pos

then ug € C&‘“(f)) for some o€ (0,1) and uy is a local W'-P(Q)-minimizer of ¢,
that is, there exists p; >0 such that

0o(uo) < @y(uo + h) for all he WYP(Q) with ||h|| < p,.

Remark. The result remains true even if fy(z,.) has critical growth (that is,
if r=p*). We refer to Papageorgiou-Radulescu [27] for this generalization.

The next strong comparison theorem is related to Proposition 2.2 of
Guedda-Veron [15].

Proposition 3. If hypotheses (H(a)) hold, ¢ e L*(Q)
satisfy hy < ha, that is there exists C; >0 such that

/’ll,hz € LOC(Q)

+>

0<C<h(z)—M(z2) Sor all z e Q,

ue C'(Q)\{0}, veint C,, u <v,

@ <0 or @ <0
onlog on o
and
—div a(Du(z)) + &(2)|u(2)|"*u(z) = hi(z) for a.a. ze Q,
—div a(Do(2)) + E(2)o(2)P 2u(z) = hy(2) for aa. ze Q,
then
(v—u)(z) >0 Jor all ze Q
and

(v —u)
on

(z0) <0  for all zoeZXy:={z€0Q:u(z) =v(z)}.
Proof. By hypothesis, we have
(2.4) —div(a(Dv(z)) — a(Du(z)))

=hy(2) = h(2) = EE@) ()" = [u(@)|"u(z))  for aa. zeQ.
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If a = (a;);, with a; : RY — R for all ke{1,2,...,N}, then using the chain
rule, we have

N
da
ax(y) — ax(y }jj SR+ = )=

for all y = (y,«),.]l1 and y' = (ylf),./i1 eR" and ke {l,2,...,N}.
We introduce the following functions defined on Q:

Ok.i(z) = Jol g;l: (Du(z) + t(Dv(z) — Du(z)))dt  for all z e Q.

Using these functions, we define the following linear differential operator

= —div (Z O, i( 6w->

—fZN:i 0 ‘()a_w Ywe Whr(Q)
o — 0z kil2 0z; )’ v ’

Setting y = v —ue C;\{0}, from (2.4) we have
2.5) L(y) = ha(2) = I (2) — EE) (0" — Jul? 0
Let
E={zeQ:u(z)=v(z)} and Ey={z€Q: Du(z) = Dv(z) = 0}

Claim E C E,.
Let zpe E. Then y attains its infimum at z,, hence Dy(zy) =0,
therefore

Du(zy) = Dv(zy).
If zo ¢ Ey, then we can find p > 0 small such that
|Du(z)| > 0, |Du(z)| > 0, (Du(z), Do(z)) gy >0 for all z e B,(z).

Here B,(z9) denotes the open ball centered at zo of radius p.
Taking p > 0 even smaller if necessary we can have

L is strictly elliptic on B,(zo)
and

L(y(z)) >0  for all ze B,(z),
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(see (2.5) and recall that s; < /). Then by the strong maximum principle
we have

y(z) >0  for all ze B,(z),

a contradiction (let z =z)). This proves the Claim.
Note that £y C Q is compact. Hence so is £ and so we can find Q, C Q
open with a C2-boundary such that

ECQ CQ CQ.
Let ¢ > 0 be such that
u(z) +e<wo(z) for all ze0Q and h(z) +¢&< hy(z) for aa. zeQ.

Using these facts and the weak comparison principle we can easily check that
for 0 >0 small u4+0<wv on Q;. Hence E= and (v—u)(z) >0 for all
ze Q. Also from the boundary point theorem (see [22], p. 217 and [30], p. 120)
we have

0(v—u)

. <0. O
on o

Remark. Consider the following order cone in C!(Q)

C’+:{yeC1(§):y(z) >0 for all ze[_),g—i(z) <0 for all ZGZO},

where Xy :={z€0Q: y(z) =0}. This cone has a nonempty interior given
by

. . 0
intC+:{yeC+:y(z)>0 for all zeQ,%(z)<O for all zeEo}.

Then Proposition 3 says that v — u € int (:’Jr.

Consider the following nonlinear eigenvalue problem:

— A pu(z) = Au(z)|”Pu(z) in Q,
Qg B(|ulfPu=0 on 0Q,

on,

(2.6)

where 1 < p< oo and fe L*(0Q), f >0, f#0.
Recall that A, (1 < p < o) denotes the p-Laplacian differential operator
defined by

Apu=div(|Dul’*Du),  for all ue W'r(Q).
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In this case a(y) = |y|p72y for all ye RY, and so the generalized directional
derivative du/0n, on 0 is defined by
Ju -2 1

— = |Du|’""(Du,n) gv for all ue W'7(Q),
ony,
where n(.) is the outward unit normal on 9.

From Papageorgiou-Radulescu [25], we know that problem (2.6) has a
smallest eigenvalue il(/?) which has the following properties:

e J1(B) >0 and it is isolated in the spectrum of (2.6);

e Ji(p) is simple;

H(ul cue WhP(Q), u # 0},
P

el

(2.7) M(B) = inf{
where 0: W'P(Q) — R is the C!-functional defined by

0(u) = || Dul? + J B for all we W@,

(@

The infimum in (2.7) is achieved on the corresponding one dimensional
eigenspace. From (2.7) it is clear that the elements of this eigenspace do not
change sign. In what follows, by #; (ﬁ) we denote the positive L?-normalized
eigenfunction (that is, ||& (,5)||p = 1) corresponding to 4,(f) > 0.

The nonlinear regularity theory of Lieberman [20] and the nonlinear
maximum principle of Pucci-Serrin [30] imply that @ (§) € int C,.. These proper-
ties lead easily to the following simple but useful lemma (see Papageorgiou-

Radulescu [25]).
Lemma 2. [f e l™(Q),, ¢(z) < M(B) for aa. zeQ and & # Ay(B), then
there exists Cg > 0 such that

O(u) — JQ E(2)|u(z)|Pdz = Cg|lul|” for all ue Wh(Q).

Finally, we comment on our notation throughout the remainder of the
paper. By |.|y we denote the Lebesgue measure on RY. If x€R then x* =
max{+x,0}. Given ue W'?(Q), we define u*(.) = u(.)* and we have

ut e whr(Q), u=u"—u~  and  Jul=u"+u,

3. A bifurcation-type theorem

In this section we prove a bifurcation-type theorem decribing the behavior
of the set of positive solutions of problem (P;) as the parameter 1 > 0 varies.
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The hypotheses on the reaction term f(z,x,4) are the following:

(Hy): f:QXxRx(0,00)— R is a function such that for all 1 >0, (z,x) —
f(z,x,4) is a Carathéodory function, f(z,x,1) >0 for a.a. z € Q and all
x>0, f(z,0,1) =0 for a.a. ze Q and:

(i) for every p >0 and I C (0, 00) bounded, we can find a/f e L*(Q)
such that

+

0<f(z,x,4) ga/{(z) for a.a. zeQ, all 0 <x <p, all 1el;
(ii) for every 1> 0,

f(z,x,2)

lim —=0 uniformly for a.a. z e ;
x—+oo  XP
(iii) for every 4 >0,
' A .
M =0 uniformly for a.a. z € Q;

x—07+ Xp_l

(iv) there exists & e L?(Q) such that
J F(z,h(z),A)dz >0  for all 2> 2 >0
Q

where

X

F(z,x,A) = J f(z,s,A)ds;
0

(v) foraa.zeQ andall x>0, 2 — f(z,x,1) is strictly increasing; for
each s > 0, we can find #; > 0 such that

0<n, < flz,x,7) —f(z,x,4) for a.a. ze Q,
all x>s>0, and all t > 1> 0,
f(z,x,A) — 0% as A — 07 uniformly for a.a. ze Q,
all xe K C R compact
and
f(z,x,4) =+ as A — 4oo uniformly for a.a. ze Q.

Remarks. Since we are interested in positive solutions and all the above
conditions on the reaction f(z,.,4), concern the positive semiaxis (0, c0),
without any loss of generality, we may assume that

flz,x,4) =0 for a.a. zeQ, all x<0, all 1> 0.
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Hypotheses (H;) (ii), (iii) imply that f(z,.,4) is strictly (p — 1)-sublinear both
near +oo and near to 0.

Examples. The following functions satisfy hypotheses (H;). For the sake
of simplicity we drop the Q > z-dependence.

AT —xmh) if0<x<1

with | <g<p<t<r
Ax? 1 n x if 1<x

ﬁmmz{

ith l<g<p<r;
Jx1 A 1 < x W T=pP=r

{ (x 1 +x7) f0<x<1

{M— ifo<x<l1

with 1 <g < p <1

2)x47! if 1<x
{lx’l 1f0<x<p(/1)
xV+a(d) if p(A) <
with p(1) € (0,1], p(2) — 0% as 2 — 0F, p(.) is strictly increasing,

a(2) = (Ap(2)"" = 1)p(4), and Il<g<p<r.
We introduce the following two sets

&L ={A>0: problem (P,) admits a positive solution},
and
& (1) = the set of positive solutions of (P;).
We set
At =inf &
(if = then 1" =+0).

Proposition 4. If hypotheses (H(a)), (H(f)), (Hi) hold, then for all 2 >0
we have (1) Cint Cy and 1" > 0.

Proof. Assume that ¥ # & and let 1€ ¥. Then there exists u e ¥ (1)
such that

(3.1 4 B(z)uP~' =0 on 0Q

e

{—div a(Du(z)) = f(z,u(z),1) in Q,

(see Papageorgiou-Radulescu [25]). From (3.1) it follows that ue L*(Q) (see
Papageorgiou-Radulescu [27]). Then using the nonlinear regularity theory of
Lieberman ([20], p. 320) we have that u e C.\{0}. Hypotheses (H;) (i), (ii),
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(1) imply that given p > 0, we can find fp > 0 such that
(3.2) f(z,x,A) + prp_l >0 for a.a. zeQ, all 0 <x < p.
Let p = |ju||,, and let éN,, > (0 be as postulated by (3.2) above. We have

—div a(Du(z)) + Eu(z)" " = f(z,u(z),2) + Eu(z)"!

>0 for a.a. ze Q (see (3.2)),
hence
div a(Du(z)) < fpu(z)p*1 for a.a. ze Q.
Let
n(t) = ap(0)t for all 7> 0.

Hypothesis (H(a)) (iii) (unidimensional version) and (2.1) imply that
n' ()t = al(H)* + ap()t = Cre~ .

Performing an integration by parts, we have

t t
(3.3) J n'(s)s ds = n(t)t — J n(s)ds
0 0
= (1)t — Go(1)
> %ﬂ’, for all > 0.

Let H(t) = ap(t)t*> — Go(t) and Hy(t) = (Ci/p)t?, for all ¢t > 0 and consider the
sets

D, ={te(0,1): H(t) >}  and
Dy, ={te(0,1): Hy(t) = u} with ¢ > 0.
From (3.3) we have Hy < H, hence D, C D, therefore
inf D; <inf D;.
From Leoni ([19], p. 6) we have

H™ ' (u) < Hy''(w),

hence
) )
J 7Edﬂ2 J 75611#
0 Hfl(yﬂup> 0 H(;l(?ﬂﬂp)
£ 6
°d
PJo K
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So, we can use the strong maximum principle of Pucci-Serrin ([30], p. 111) and
infer that u(z) > 0 for all ze 2. Using the boundary point theorem of Pucci-
Serrin ([30], p. 120) we conclude that u € int C;. Therefore

F(A) Cint Cy for all 2> 0.
Hypotheses (H;) (i), (iii), (v) imply that we can find Z > 0 such that

_ C

(3.4) fz,x,2) < F= lil(l;’)x”_l for a.a. zeQ, all xe R

(here f = ((p—1)/C1)f e L*(R)). Choose A€ (0,7) and assume that ie &.
Then we can find u; € S(4) Cint C; such that

(3.5) CAlw) b+ | Bz hdo

o
:J f(z,uy(2),)hdz  for all he W'P(Q).
Q

In (3.5) we choose h=u; e WH?(Q). Then

C
p—1

IDul+ | pe do

< J f(zyuy(2), u, dz (see Lemma 1)
Q

C_llil(/?)nu;,n; (see hypothesis (H,) (v) and use (3.5)),

hence

C
p—1

1Dl + | et do] <Al

o
a contradiction. This proves that
25 >2>0. O

Proposition 5. If hypotheses (H(a)), (H(p)), (Hy) hold, then & # &, and
so A" € (0,400).

Proof. Hypotheses (H;) (i), (ii) imply that given ¢ > 0 and A > 0 we can
find Cy = Cy(g,2) > 0 such that

(3.6) F(z,x,A) < ix” + Gy for a.a. ze Q, all x > 0.
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We introduce the following Carathéodory function

(3.7) fz,x,4) = f(z,x,A) + (xT)? for all (z,x,4) €2 x R x (0,+00).

p—1

We set F(z,x,7) = [ f(z,5,4)ds and introduce the C'-functional ¢, : W'?(Q)
— R by

. 1 1
bl = | GO+~ el [ p s
—J F(z,u,2)dz  for all ue wh?(Q).
Q

Using Corollary 1, (3.7) and choosing ¢ > 0 small, we have

6, (1) > ,)(%1) {|Du+|§ + LQ ﬁ@)(f)ﬁda} _ L Flzut,2)de
b D+ [ ey do)
> s oty | peyde - 22 ]
s = Glly (e (36)

> Cyollul]” — Co| 2]y for some Cjp > 0 (see Lemma 2),

hence ¢; is coercive for all 4 > 0.

Also using the Sobolev embedding theorem and the compactness of the
trace map, we can see that ¢, is sequentially weakly lower semicontinuous. So,
by the Weierstrass theorem we can find u; € W!?(Q) such that

(3.8) ¢, (u;) = inf{p,(u) : ue WhH(Q)}.

Hypotheses (H;) (i), (ii), (iii) imply that for every 4 >0, we can find Cj; =
C11(A) > 0 such that

(3.9) 0 < F(z,x,4) < Cpix* for a.a. ze Q, all x> 0.

Consider the integral functional J, : L?(Q) — R defined by

T,(h) = JQ F(-h(z),)d=  for all he LP(Q).
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Then, from (3.9) and the dominated convergence theorem, it follows that J;(.) is
continuous. Moreover, due to hypothesis (H;) (iv), we have

Jy(h) >0 for all 4> Ag.

Exploiting the density of W!7(Q) into L?(Q), we can find & e W!”(Q) such
that

J(@) >0 for all A >4 > 4.

Moreover, since F(z,u,A) =0 for a.a. ze Q, all x <0 and all 1 >0, we can
replace # by a* e W'?(Q), and so, without any loss of generality, we may
assume that z > 0.

Hypothesis (H;) (v) and Fatou’s lemma imply that

A— 00

lim J F(z,u(z),A)dz = + 0.
Q

So, using Corollary 1 and hypothesis (H(f)), we see that we can find 1 >0
large enough such that

¢,(u) <0.
Then
91(u1) <0=9,(0) (see (3.8)),
hence u; #0. From (3.8), we have
¢ (uz) =0

hence

1
(3.10) <A(m),h>+—J | |P b dz—i—J B |"*uph do
p—1llo 0Q
:J f(zyuy, )hdz  for all he WhP(Q).
Q
In (3.10) we choose h = —u; € W'P(Q). Then

1 _ _
F[Cl [ Duy | + [Ju; [I;] < 0

(see Lemma 1, hypothesis (H(f)) and (3.7)), hence

u; >0, u; #0.
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Then equation (3.10) becomes

CA(uy), by + J Bzl hdo = L f(z,u;, )hdz  for all he WP (Q),

o0
therefore u, € (1) Cint C, for A > 0 large, and we get Ae ¥ and & # .
O

Proposition 6. If hypotheses (H(a)), (H(f)), (Hi) hold and 1 e ¥, then
[4,4+00) C 2.

Proof. Let u> /. Since by hypothesis 1€ ¥, we can find u, € ¥ (1) C
int C; (see Proposition 4). Using u; we introduce the following truncation-
perturbation of the reaction term for problem (P,):

o N ew@ ) uE) T x <)
(311> ;7/1( ,X) {f(z,x,,u)erpl if u;y(z) < x.

This is a Carathéodory function. We set H,(z,x) :J"g;yﬂ(z,s)dv and
introduce the C!-functional ,: W!?(Q) — R defined by

) = [ GDuE =l | gl

0Q

—J H,(z,u)dz for all ue W'’ (Q).
Q

As before (see the proof of Proposition 5), using hypotheses (H;) (i), (ii), we can
see that the functional y, is coercive and sequentially weakly lower semi-
continuous. So, by the Weierstrass theorem, we can find u, € W!?(Q) such
that

W, (1) = inf{y, (u) : ue W (Q)},

hence
lp;:(uﬂ) = 07
and this implies
(3.12) CA(uy), by + J )" u,h dz + J B u [P 2ush do
Q o0

:J (2, uu)h dz for all he W7 (Q).
Q

In (3.12) we choose /= (u; —u,)" € WH?(Q). Then
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(13) A, (s — ) > + J e ” 2 (u; — ) dz
Q
+ J .B(Z)|”ﬂ|p72“/l(”2 - ”u)+d0'
o
_ +
= Q’?g(za ) (w;, — uy) " dz
= | VG uwnw +ul - ) dz (e (3.11))

Q

[f (z,uz, %) +u? " (u; —w,)"dz  (see hypothesis (Hj) (v))
Q

Y

= A ), (1 — 1) > + JQ Wy — ) d

+J Bl uy —w,)Tde  (since u; € (1)),
hence

CA(uz) — Auy), ;= )™ + L(uf_l — [t )" (w0 — ) Tz < 0

(see hypothesis (H(f))), therefore
|{W~ > uﬂHN =0,
and we conclude that
u; < uy.

Then, because of (3.11), equation (3.12) becomes

CA(y), by + J

B(z)ul ' h do = J f(zu,whdz  for all he Whr(Q).

00 Q

Then u, € ¥ (u) Cint C;, and we conclude that [4,+o0) C Z. O
According to Proposition 6,

(A, 400) C Z.

Next we show that for every 4> 1%, problem (P;) admits at least two
positive solutions. To have this multiplicity result, we need to stregthen a little
the conditions on the reaction term f(z,x,1).

The new hypotheses are the following:
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(Hy): f:Q xR x(0,00) — R is such that for all 1 >0, (z,x) — f(z,x,4) is
a Carathéodory function, f(z,x,A) >0 for a.a. ze Q and all x>0,
f(z,0,2) =0 for a.a. ze Q and:

(1)

(iii)

for every p>0 and every I C (0,00) bounded, we can find
al e L*(2), such that
0<f(z,x,A) < a/f(z) for a.a. ze Q, all xe|0,p], all Lel;

for every 4 >0,

f(z,x,4)

lim =0 uniformly for a.a. z € Q;
xX—+00 xP-1
for every 4> 0,
A .
im f(z,—x;) =0 uniformly for a.a. ze Q
X0t  xP~

there exists 7 € L?(Q) such that

J F(z,h(z),2)dz>0  for all 1> Jy>0
Q

where

X

F(z,x,A) = Jo f(z,s,A)ds;

for a.a. ze Q and all x >0, A — f(z,x,4) is strictly increasing; for
each s > 0, we can find #;, > 0 such that

0<n, < flz,x,7)— f(z,x,4) for a.a. ze Q,

all x>s>0, and all t > 1> 0,
flz,x,2) — 0" as A — 07 uniformly for a.a. ze Q,
all xe K C R compact

and

f(z,x,2) = +o0 for a.a. ze Q as A — +oo;

for every p > 0 and every I C (0, o) bounded, we can find E; >0
such that for a.a. ze Q2 and all A e[ the function

x— f(z,x,4) +é~;x"*1 is nondecreasing on [0, p].

Remarks. If for a.a. ze Q, f(z,.,4) is differentiable on (0,400) and the
function x — f’(z,x,4) has at most (p — 2)-polynomial growth, uniformly for
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all 2eI C (0,400) bounded, then hypothesis (H,) (vi) holds. The examples
given after the hypotheses (H;) satisfy the new conditions.

Proposition 7. If hypotheses (H(a)), (H(f)), (H,) hold and ) e (", +0),
then problem (P;) admits at least two positive solutions

up, ueint C,.
Proof. Recall that (A", +00) C #. Letn,l,ue (A%, +00) and assume that
n<A<u

From the proof of Proposition 6, we know that we can find u, € () C int C,.
and u, € (u) Cint C; such that

uy < uy,.
We introduce the following Carathéodory function

S(2uy(2),2) +uy ()77 x <y (2)
(3.14) e;(z,x) =¢ f(z,x,4) +xr~! if w,(z) < x <uy(z).
f(z,u,(2),4) + u,,(z)‘”*1 if u,(z) < x.

We set E)(z,x) = [ e;(z,5)ds and consider the C'-functional y, : W!7(Q)
— R defined by

1 1
() = jg GlDudz + [ul] + ;Lgﬂ(Z)\ul"dG

—J E)(z,u)dz for all ue W7 (Q).
Q

Corollary 1 and (3.14) imply that y, is coercive. Also, it is sequentially weakly
lower semicontinuous. So, we can find uy e W!?(Q) such that

Vi(uo) = inf{y,(u) 1 ue Wl"p(Q)}-

Then
75 (uo) =0,
hence
(3.15) CACw) by + [ ool 2ok dz 4 | pE Nl o dr
Q o

:J e;(z,up)h dz for all he W7 (Q).
Q

In (3.15) we choose /= (ug —u,)" € WH?(Q). Then
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—1
), (0 =) ">+ | ™ o~ )
Q
p—1 +
+J p)u (o —u,) " do
0Q

_ +
= | ey(z,uo)(ug —uy,) " dz

Q

= Q[f(Za g, 2) +ul (o —u,) Tdz - (see (3.14))

IA

ot ) o =2z

(see (Hz) (v) and recall that A < y)

= {A(uy), (ug — uﬂ)+> + JQ ufj*l(uo - u,,)+dz

+ J ﬁ(z)uﬁ’l(uo —u,)"do (since u, € & (1)),
00
hence

{A(ug) — Aluy), (1o — u,,)+> + L?(ug_l — uﬁ’l)(uo — uﬂ)+dz

|~ ) do <o
0
Therefore
{uo > uu}y =0,
and we conclude that
Uy < .

If in (3.15) we choose & = (u; —up) " € W'?(Q) and argue similarly, then we
show that

Uy < .
So, we have proved that
U € [y, u,) = {ue W(Q) : uy(2) < uo(z) <uy(z) for aa. zeQ},

therefore uy € #(A) Cint C, (see (3.14)).
For 6>0, let uj=uy+deintC. Also, let p=|ul, and I=
(0, lull ). According to hypothesis (H») (vi), we can find é; > 0 such that for
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a.a. zeQ and all V' eI, we have that
(3.16) x— f(z,x,2") +f~;x1’*1 is nondecreasing on [0, p].
We have
(3.17)  —div a(Dud) + &) (ug)"™"

< —div a(Dug) + ELul ' + 2(0)  with z(0) — 0% as 6 — 0T

= f(z,u0,2) + El ™ +4(0)  (since ug € S (1))

< [z, 2) + Eul™" + 5(0)

(see (3.16) and recall that uy < u,)

= f G ) + Eul ™ = [f (2t 1) — £ (2,10, 1)) + 2(6).

Since u, €int C, we can find s > 0 such that
0<s<u,(z) forall zeQ.
Then hypothesis (Hy) (v) implies that
0 <y < f(2uu(2), 1) = S (2,uu(2), 2)-

Since y(5) — 0% as d — 0%, for J > 0 small we have

1
0< 5775 < un —X(&)
Returning to (3.17), we obtain

(3.18) —div a(Duo) + Eluf ™!

< f(zup )+ Eul " — %m

< —div a(Du,) + E/fufl’*l for a.a. ze Q.
From (3.18) and Proposition 3 we have
(3.19) u, — up € int C (recall that uy < uy,).
In a similar fashion we show that
(3.20) Uy — uy, € int Cy (recall that u, < uy).
From (3.19) and (3.20) it follows that

(3.21) up € intey g [y, 1)
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Let ¢, € C'(W!7(Q)) be the functional from the proof of Proposition 5. From
(3.14), we have

(3.22) Pl ) = Vil g + €1 for some ¢ e R.

Then (3.21) and (3.22) imply that uy is a local C'(@)-minimzer of ¢;, hence
(3.23) up is a local W'7(Q)-minimizer of ¢,,

(see Proposition 2). Hypothesis (H;) (iii) implies that given any & > 0, we can

find 0 =d(e, ) > 0 such that

(3.24) F(z,x,2) < =(x")!  for aa. ze Q, all |x| <4.

SR

Let ue C'(Q) with |lulci 5 <. We have
1 .

D = z))dz + — l z o— z /4
) = | GDu)E+ sl 41 | polulda | P

C [
p(p—1) 12wl + |
G

+p(p—_1)[||Du’||ﬁ+ ™[] (see (3.24) and hypothesis (H(p))

> Cpolull” for some Cjp >0,

0Q

peuda - L

hence u=0 is a local C!(Q)-minimizer of ¢, therefore u=0 is a local
W-r(Q)-minimizer of ¢,. Without any loss of generality, we may assume that

(3.25) 0=0,(0) < ¢,(u)-

The reasoning is similar if the opposite inequality holds. Because of (3.23), we
can find p e (0,1) small such that

(3.26) 9, (o) <inf{g;(u) : lu—uoll = p} =1y, luol| > p

(see Aizicovici-Papageorgiou-Staicu [1], proof of Proposition 29). Recall that
@, is coercive (see the proof of Proposition 5). Then

(3.27) ¢, satisfies the PS-condition,

(see Papageorgiou-Winkert [29]). Then (3.25), (3.26) and (3.27) permit the use
of mountain-pass theorem (see Theorem 1). So, we can find 4 € W!?(Q) such
that

¢,(@) =0 and  my < ¢, (4).
Clearly u ¢ {0,up} and ue ¥ (1) Cint C,. N
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Next we establish the admissibility of the critical parameter value A* > 0.
Proposition 8. If hypotheses (H(a)), (H(f)), (Ha) hold, then
K =1, +0).

Proof. Let {/,},>; C (A",4) be such that 4, — A" as n — co. Then
we can find u, € ¥ (4,) C int C,, for all ne N and {u,},. is decreasing (see the
proof of Proposition 7). We have

(3.28) u, < uy for all ne N.
Then from (3.28) and hypotheses (Ha) (i), (H(f)), we infer that
{un},>1 € W' (Q) is bounded.
So, we may assume that
(3.29) w, —u, in WHP(Q), and u, — u, in LP(Q) and in L7 (0Q).
For every ne N, we have

{ —div a(Du,(z)) = f(z,un(z),2,) for a.a. ze Q,

(330) %+ﬁ(z)u5_l = 0 on aQ

ony

(see Papageorgiou-Radulescu [25]). From (3.28), (3.30) and the nonlinear
regularity theory of Lieberman [20] (p. 320), we know that we can find
%€ (0,1) and M > 0 such that

(331)  w,eC"(Q) and  |ullcig <M forall neN.

Recalling that C'*(Q) is compactly embedded into C!'(Q), from (3.29) and
(3.31) we infer that

(3.32) u, —»u, in C'(Q) as n— 0.

Hypothesis (H») (iii) implies that given & > 0, we can find J =d(¢, 41) > 0 such
that

f(z,x,0y) < exP! for a.a. ze Q, all xe[0,d],
hence
(3.33)  f(z,x,2,) <exP! for a.a. zeQ, all xe(0,0], all ne N

(see hypotheses (H,) (v)). Suppose that u, = 0. Then from (3.32) we see that
we can find ny € N such that

uy(z) € (0,0] for n = ny,
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therefore

(3.34) F(zoun(2), 2n) < eun(z)?! for a.a. ze Q, all n>ny
(see (3.33)). From (3.30) and (3.34) we have

(3.35) —div a(Duy(z)) < eu,(z)?"! for a.a. ze Q, all n > ny.

We multiply (3.35) with u,(z), integrate over 2 and use the nonlinear Green’s
identity (see Gasinski-Papageorgiou [13] (p. 320). We obtain

J (a(Duy), Duy) gvdz + J B(2)ul do < el|uy||} for all n > ny,
Q o0

hence

Ci
p—1

[||Dun||§ +J B(2)u? do} < éllun |1} for all n > ny,
o

(see Lemma 1 and recall that § = ((p —1)/C1)f e L*(RQ)), therefore

Mp) <e (see (2.7)).

But ¢ > 0 is arbitrary. We let ¢ — 0" to conclude that
0<h(B) <o,

a contradiction. (At this point we need the hypothesis 8 # 0, (see H(f)) since
it implies that 4;(f) > 0). Therefore u, # 0 and we have

u, e (A7) Cint C,.
hence
e o and so ¥ =[1",+w). O

Next we show that for all 1e ¥ = [1",+0), problem (P;) has a smallest
positive solution.

Proposition 9. If hypotheses (H(a)), (H(p)), (Ha) hold and le ¥ =
[2*,+00), then problem (P;) has a smallest positive solution i, € int Cy, and
the map A — i, from %y = (2", +0) into CY(Q) is left continuous and strictly
increasing in the sense that

}v<ﬂéﬂﬂ—ﬁ/zeinté+.

Proof. Since our aim is to produce the smallest positive solution for
problem (P;), from the proof of Proposition 6 we see that without any loss of
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generality, we may assume that
(3.36) u<u, for all ue S (4), with u, e ¥ (p) Cint C,, o> A

From Lemma 3.10 of Hu-Papageorgiou ([17], p. 178), we know that we can find
{un},~ € () such that

inf ¥ (1) = inf wu,.

n>1
Using (3.36) and reasoning as in the proof of Proposition 7, we infer that
u, — i,  in CY(Q) with @, e ¥(1) Cint C,,
hence
i), = inf F(1).

Next we show the strict monotonicity of the map A — ;. Let 4 <pu and
let 7, € () Cint C; be the minimal solution for problem (P,). From the
proof of Proposition 7 we know that we can find u; € (1) Cint C; such
that

il, —u, eint Cy,
hence
i, — iy eint Cg,

therefore A — ii; is strictly C,-increasing from %, into C'(Q).

Finally we show the left continuity of 1 — ;. So, we suppose that
{Zn}ys1 € % and assume that A, — A as n— co. Then using (3.36) (with
1> 21) and reasoning as above, we can show that

(3.37) i, — U in C'(Q) with @#; € () Cint C,.
Suppose that i, # ii;. Then we can find zy € Q such that
,(z0) < (o),
therefore
i,(z0) < #,(20) for all n>ny (see (3.37)),

which contradicts the monotonicity of 1 — i; established earlier. Hence
i; = ii; and this proves the left continuity of A — ii; from %, into C'(Q).
O

Summarizing the situation for problem (P;), we can state the following
bifurcation-type result.
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Theorem 2. If hypotheses (H(a)), (H(p)), (Hy) hold, then there exists
2% >0 such that
(@) for all 2> )" problem (P,) has at least two positive solutions

uy,u € int Cy;
(b) for A= A" problem (P)) admits at least one positive solution
u, €int Cy;

(¢) for all 2€(0,A") problem (P;) has no positive solutions;

(d) for every Ae ¥ =[A", ) problem (P;) has a smallest positive solution
i, eint C, and the map i — i, from %y into CY(Q) is left continuous and
strictly increasing in the sense that

}v<ﬂ=>ﬂﬂ—ageinté+.
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