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Preface

This book shows how Microsoft Excel can be used as an effective educational platform
for thermofluid analyses. Excel provides a rich library of built-in functions and
powerful tools for data visualisation and analysis. The Solver add-in that comes with it
enables the students to perform multi-variable optimisation analyses of thermofluid
systems. Building on these capabilities, the Excel-based platform for thermofluid
analyses presented in this book also utilises the Visual Basic for Applications (VBA)
programming language that comes with Microsoft Office. The book shows how VBA
can be used for developing additional user-defined functions (UDFs) for supplementing
Excel’s built-in functions and introduces an Excel add-in, called Thermax, that provides
UDFs for determining the thermodynamic fluid properties. The fluids covered by
Thermax include twelve ideal gases, saturated water and superheated steam mixtures,
six refrigerants, humid air for psychrometric analyses, and air at standard atmospheric
pressure. Property add-ins developed by other academic and research institutions or
individuals can be used to extend the range of thermofluid analyses that can be
performed with the Excel-based platform.

Compared to the software that is dedicated to thermofluid analyses, the main advantage
of Excel as an educational tool is its wide availability on computers and mobile phones.
The introductory courses in computer applications usually taught to junior engineering
students make them familiar with the basic functions of the spreadsheet. The Excel-
based modelling platform described in this book provides the needed transparency and
flexibility that allow the students to build white-box models from basic principles. An
important advantage of this platform is that it minimises the need for the students to be
skilful in numerical methods and computer-programming in order to apply computer-
based methods in thermofluid analyses. This allows the students to pay more attention
to the application of thermofluid principles pertinent to their analyses.

The principles underlying thermofluid analyses are usually taught to engineering
students in three separate courses: thermodynamics, fluid mechanics, and heat transfer.
Rather than dealing with thermofluid analyses in this segregated manner, most chapters
of the book adopt a unified learning-by-example approach that best suits the students
who have already studied the three basic courses. Most of the examples considered in
the book are based on relevant examples given in popular textbooks so that the
solutions obtained with Excel can be verified. Exercises are given at the end of each
chapter to help students sharpen their skills related to that chapter. The last three
chapters of the book differ in that they deal with selected topics related to fluid
mechanics, heat transfer, and thermodynamics. The extended exercises given at the end
of these three chapters involve more challenging assignments that suit mini projects.
This arrangement makes the book also useful for those students interested in only one
thermofluid subject.
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Although the book is primarily written for mechanical engineering students, it may be
equally useful other engineering specialisations. Enough material is covered in the book
for a stand-alone course at the intermediate level on computer-aided analyses of
thermofluid and energy systems. Selected topics or examples can also be used to
supplement standard courses on thermodynamics, fluid dynamics, and heat transfer. It
is also hoped that the book can be a useful reference for practicing engineers in the area
of thermofluid and energy systems.
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Nomenclature

Area

Friction coefficient in Hazen-Williams equation, Eq. (1.27)
Friction coefficient, defined by Eq. (4.34)

Specific heat at constant pressure, kJ/kg-°C

Specific heat at constant volume, kJ/kg-°C

Diameter

Friction factor

Correction factor, defined by Eq. (D.4)

Drag force, defined by Eq. (4.34)

Acceleration of gravity

Average heat-transfer coefficient

Enthalpy, kJ/kg

Major friction in a pipe system

Thermal conductivity, W/m-°C

Isentropic exponent, dimensionless (=c; /c)

Minor losses friction coefficient in a pipe system, defined by Eq. (1.28)
Length

Mass °

Mass rate of flow

Molecular weight

Pressure, usually kPa

Reduced pressure

Relative pressure (for an ideal gas), defined by Eq. (4.4)
Heat-transfer per kg of the working fluid, usually kJ
Heat, usually kJ

Volume flow rate, defined by Eq. (1.19)

Rate of heat transfer, W or kW

Radius or radial distance

Gas constant, kJ/kg.K

Thermal resistance, usually °C/W

Universal gas constant kJ/kmol.K

Entropy

Temperature

Critical temperature

Reduced temperature

Internal energy

Overall heat-transfer coefficient of a heat-exchanger
Specific volume, m¥kg

Relative volume (for an ideal gas), defined by Eq. (4.8)
Velocity, usually m/s

Work-done per kg of the working fluid, usually kJ
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W Power, W or kW
X,y,z  Space coordinates in cartesian system

Greek Characters

Amortisation rate, defined by Eq. (6.24)
Thickness (e.g. of insulation)
Difference (e.g. temperature)
Roughness of surface material
Heat-exchanger effectiveness

Flow exergy

Efficiency

Kinematic viscosity, m?/s

Density, kg/m?®

Time, annual operating hours of a system

® M m >R

[ R ST

Dimensionless Groups
Nu Nusselt number
Pr Prandtl number
Re Reynolds number

Subscripts

f Saturated liquid condition

fg Difference in property between saturated liquid and saturated vapour
Saturated vapour condition

Im Log-mean

S Saturation temperature or pressure

S Evaluated at the surface

0 Evaluation at free-stream ambient conditions
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Cars, refrigerators, and air-conditioners that have become indispensible belongings for
the individuals and families around the globe require large amounts of energy that
mainly come from burning fossil fuels in power-generation plants. Apart from being
non-renewable sources of energy, large-scale combustion of fossil fuels is the main
cause for global warming and its devastating effects are felt at different parts of the
world. Therefore, proper design and operation of these and other energy-conversion
devices is becoming increasingly important. The principles underlying the designs of
these systems are usually taught to engineering students in three thermofluid subjects;
which are thermodynamics, fluid mechanics, and heat transfer. This chapter reviews
these principles and their application for typical analyses in each subject. Due to the
variation of the working fluids properties with temperature and pressure, the equations
involved in these analyses are usually nonlinear and difficult to solve without
introducing many simplifying assumptions that reduce their accuracy. In this respect,
the chapter highlights the advantages of computer-aided methods and describes the
Excel-based modelling platform for thermofluid analysis used in this book.

1.1. A review of thermofluid subjects

The two principles that form the framework for thermofluid analyses are the
conservation of mass (the continuity equation) and the conservation of energy (the first-
law of thermodynamics). These principles take different mathematical forms depending
on the nature of the flow (steady or unsteady), type of fluid (compressible or
incompressible), and whether the system is open or closed. Auxiliary relationships are
needed in order to quantify the various parameters involved in the relevant equations
such as pressure-variations, friction losses, and rates of heat-transfer. The following
sections review the main concepts of thermofluid analyses introduced in the three
subjects of thermodynamics, fluid dynamics, and heat-transfer and illustrate the
application of these principles by considering relevant cases.

1.1.1. Thermodynamics

The principles of engineering thermodynamics allow us to determine the amount of
energy transfer between the system and its surroundings in the form of work or heat and
to determine the effectiveness of energy utilization in the system. Thermodynamics has
four basic laws, the most important of which are the first law and the second law of
thermodynamics. In addition to these two basic laws, thermodynamic analyses use
many relationships that describe the behaviour of the particular system being
considered (closed or open) or the particular fluid involved (a liquid, a liquid-vapour
mixture, a gas, or a gaseous mixture). To illustrate the application of thermodynamic
laws and relationships in a typical analysis, consider the air-compression system shown
in Figure 1.1 that has two stages of compression separated by an intercooler. Air enters
the system at a temperature T, and pressure P;. The first-stage compressor, Ci,
compresses the air adiabatically to state 2, after which it enters the intercooler where its
temperature is reduced to Ts. The second-stage compressor, C», then increases the air
pressure to P4 and the temperature to Ta.



Computer-Aided Thermofluid Analyses Using Excel 15

4
Air

C2

Intercooler A3 Intercooling
Cooling
water s
(a) (b)
Figure 1.1. Schematic and T-s diagrams of a two-stage air compressor with inter-stage
intercooling

The total compression work depends on how the total pressure ratio is divided between
the two stages and there is a certain value of the intermediate pressure (Pi) that
minimises the total work. The principles of thermodynamics help us to determine this
optimum intermediate pressure as shown below.

Treating the two compressor stages as steady-flow processes, and neglecting changes in
kinetic and potential energy, the first-law of thermodynamics leads to [1]:

q_W:(hout _hin) (1.1)

Where g and w are the amounts of heat transfer and work transfer per unit mass flow of
air, respectively, and (h, —h;) is the resulting enthalpy change in the stage. Equation
(1.1) adopts the sign convention that heat into the system is positive, while work into
the system is negative. Assuming the compression processes in both stages to be
adiabatic (q=0) and reversible means that the processes are isentropic as shown in
Figure 1.1.b. Using an average specific heat for air at constant pressure (cp), the

compression work per unit mass flow of air in stage 1 (w1) and in stage 2 (wz) can be
determined from Equation (1.1) as follows:

w, =—(h, —h)=—c,(T, -T,) (1.2)
w, =—(h, —h;)=—c, (T, -T,) (1.3)
Therefore, the total compression work in both stages (Wietal) iS given by:

Wyg =Wy + W, =—C, [(T, =T,)+ (T, - T5)] (1.4)

Assuming perfect intercooling, i.e. Tz = Ty, and rearranging Equation (1.4):
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T T, T T,
Wigr = C pTlﬂl— f] + (1 - fﬂ = cpT{z - [f) - (iﬂ (1.5)

Since we already assumed the two compression processes to be isentropic and the
specific heats c, and c, for air to be constant, the temperature ratios in Equation (1.5)
can be converted into pressure ratios by using the following relationships:

E
L (8" "
T, \R

k-1
(e o
T3 P3

Where K is the ratio (cp/cv); cv is the specific heat for air at constant volume. Appendix
A gives properties of atmospheric air at different temperatures. Making another
assumption that there is no pressure loss in the intercooler, then P; = P,= Pi
Substituting from Equations (1.6) and (1.7) into Equation (1.5), we get:

= k1
P )k P, ) k
Wiotal = CpTl 2- (Elj - [fj (18)
1 i

To see how the total compression work varies with the intermediate pressure P;, let us
consider the specific case in which T.= 300K, P;=100 kPa, and P4 = 900 kPa. Using
Equation (1.8), the total compression work in the system was calculated for different
values of P; and the result is shown in Figure 1.2. The figure shows that the value of P;
at which the total compression work is minimal is around 300 kPa. Increasing or
decreasing Pi from this value will increase the compression work.

310

300 /

290 //
280 \/
270

260

Total compression work (kJ)

0 200 400 600 800 1000
Intermediate pressure (kPa)
Figure 1.2. Variation of the total compression work with the intermediate pressure
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The principles of thermodynamics are useful for performance analyses and optimisation
of various types of power-generation and refrigeration systems. For example, consider
the regenerative steam-turbine power plant shown in Figure 1.3. This plant consists of a
boiler house for producing superheated steam, a high-pressure steam turbine (HPT), a
low-pressure steam turbine (LPT), a condenser, an open feed-water heater (FWH) and
two feed-water pumps. A fraction of the steam (y) is extracted after the HPT for
preheating the feed-water before going back to the boiler house.

Boiler
House

7 FWH

6

Pump 2 Pump 1
Figure 1.3. Schematic diagram of a regenerative steam-turbine power plant

The extracted steam reduces the work output from plant, but it also reduces the amount
of heat added in the boiler and its net effect is to increase the thermal efficiency of the
plant. There is also a certain extraction pressure for the steam at which the plant’s
thermal efficiency attains a maximum value. As shown below, the principles of thermo-
dynamics can also be used to determine this optimum steam-extraction pressure.

The total specific work output from the two turbines (wou) and the total work input to
the two pumps (win) are given by:

W

out

= Wypr +Wipr (1.9)
Win = Wpy + Wp, (1.10)

Where wnpr and wipr are the specific work output from the high-pressure turbine and
the low-pressure turbine, respectively, and wer and we; are the specific work input in
pump 1 and pump 2, respectively. Assuming the two turbines and the two pumps to be
adiabatic and neglecting the changes in kinetic and potential energies, the work output
or input for each device can be determined from the enthalpy difference across the
device. Per each kg of steam generated in the boiler, these are given by:
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W,pr =(h, —h,) (1.11)
W e =(@-y)h,—h;) (1.12)
W, =(1-y)hs —h,) (1.13)
We, =(h, —hy) (1.14)

Mass and energy balance over the open feed-water heater gives:
yh, + (1 - y)hs =1x hy (1.15)
The net specific work output from the plant (wne:) is then given by:

Wnet = Wout - Wi, (1'16)

The specific heat input to the boiler (gin) can also be determined from the relevant
enthalpy change as follows:

Qin = (hl - h7) (1.17)
Therefore, the thermal efficiency of the plant () can be calculated from:
77 = Wyet /qin (118)

Both wnet and 7 depend on the fraction of steam extracted for regeneration (y); which in
turn depends on the extraction pressure (P2). Figure 1.4 shows the variation of y and #
with P, for an ideal cycle in which P; = 15 MPa, T; = 600°C, and P, = 10 kPa. The
figure shows that the cycle’s efficiency attains a maximum value of 45.55% when P; is
in the range of 1000 kPa.

It should be mentioned that the working fluid in the above power plant changes phase
from subcooled liquid water to superheated steam in the boiler, to saturated mixture of
water and steam in the low-pressure turbine, and returns to subcooled water in the
condenser. Therefore, appropriate property relationships, tables, or charts are needed in
order to determine the working fluid properties at different states. The principles of
thermodynamics are also applied in the analyses of air-conditioning and combustion
processes as well as the analyses of processes or systems involving chemical reactions.
For such analyses, thermodynamics provides the basic relationships needed to quantify
the effects of fluid mixing and chemical reactions on the properties of working fluid
and on the transfer of energy and effluents to or from the thermofluid system.
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Figure 1.4. The effect of intermediate pressure (P2) on the fraction of extracted steam
(y) and thermal efficiency (7) of a regenerative steam-turbine power plant

1.1.2. Fluid dynamics

Fluid-transporting systems have many components such as pipes, pumps, COmpressors,
control valves, flow-measuring devices, etc. The principles of fluid dynamics help us to
estimate the power needed for overcoming friction and pressure losses in these
components and to determine their suitable types and sizes. To illustrate the application
of these principles, consider the simple pump-pipe system shown in Figure 1.5 that
conveys a liquid between two non-pressurised tanks. Suppose that we want to
determine the pump power needed to deliver a liquid of a specific weight y between
points A and B at a rate of Q if the pipe’s length is L and diameter D.

L: | L,

L,

AI“*’:éQ ‘) = *

Figure 1.5. Schematic diagram of a simple pump-pipe system

The power needed for the pump (W), in W, can be determined from the following
power equation:

W =yxQxh, /7 (1.19)
Where y is the specific weight of the transported liquid (N/m?), Q is the volume flow

rate of the liquid (m%s), hy is the pump head (m) needed to circulate the fluid through
the pipe, and 5 is the combined efficiency of the pump and the electric motor. For
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steady flow of an incompressible fluid, h, can be determined from the following energy
equation:

), Ve -vE

hp:hf,total+(ZB_ZA + 29

(1.20)

Where ht o is the total head loss through the system due to friction (m), za and zg are
the elevations (m) at points A and B, respectively, and Va and Vs are the corresponding
fluid velocities (m/s).

The total friction head loss hswtar CONsists of two parts: the major friction loss (hy),
which is the part lost in the pipe itself, and the minor friction head loss (htminor), Which
is the part lost in other components of the system, i.e., elbows and tees, valves, etc. The
major friction loss can be determined from the following Darcy-Weisbach equation [2]:

LV?
hy = fBE (1.21)

Where f is the Dracy friction factor (dimensionless), V the fluid velocity (m/s), L the
total length of the pipe (m), and D the internal diameter of the pipe (m). The value of
the friction factor, which depends on the roughness of the pipe surface and on whether
the flow is laminar or turbulent, can be obtained from a Moody diagram [2] or
calculated from a relevant formula. For laminar flows, f can be calculated from:

f=64/Re Re < 2300 (1.22)

Where Re is the Reynolds number defined as:
Re=VD/v (1.23)

Where v is the kinematic viscosity of the flowing fluid (m%s). For a turbulent flow in
smooth tubes, f can be determined from the first Petukhov equation [2]:

f =(0.790In Re-1.64)°  10*<Re <10° (1.24)

For a turbulent flow in rough pipes, f can be obtained from the following Swamee-Jain
equation:

2
& 5.74
f=025/|log,y| ——+
{ 910(3.7[) e ﬂ Re > 4000 (1.25)
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Chemical engineers usually determine the pipe friction by using the Chezy-Manning
equation instead of the Darcy-Weisbach equation. According to this equation:

L
h, =2f ——
f D g (1.26)

Where f is the Fanning friction factor. Comparison with Equation (1.21) reveals that the
value of the Fanning friction factor used in Equation (1.26) is 4 times the corresponding
value of the Darcy friction factor. Civil engineers determine the friction head loss in
water-transporting pipes by using the following Hazen-Williams equation:

~10.67LQ*"?
L C 185248704

(1.27)

Where C is a coefficient that depends on the roughness of the pipe. Unlike Equations
(1.21) and (1.26), Equation (1.27) is applicable for both laminar and turbulent flows.

The minor friction loss, htminor, can be determined from the following equation:

2

LoV
hf,minor ZZK_g (1.28)
1

Where n is the total number of components in the system and K is a coefficient the
value of which for each component can be found in relevant tables.

The equations described above can be used to determine the required pump power for
specified values of the pipe length, pipe diameter, flow rate, fluid viscosity, and pipe
material. The equations can also be used to determine the minimum diameter of the
pipe, or the maximum flow rate of the fluid to be delivered, such that the friction loss in
the system or the needed pump power does not exceed a specified limit. By also taking
into consideration the initial cost of the pump-pipe system and the cost of electrical
energy needed by the pump, fluid-dynamics equations can be used to determine the
pipe diameter that gives the best economic compromise between the initial cost and the
operating cost of the system over its life-time.

The principles of fluid dynamics also enable us to select the appropriate type and size of
the pump for a given pump-pipe system. This is achieved with the help of characteristic
curves usually provided by the manufacturers such as that shown in Figure 1.6 for a
centrifugal pump. In many practical situations a single pump or a single compressor
may not be adequate to meet the required fluid flow rate or delivery pressure and more
than one pump or compressor have to be used. In this situation, the principles of fluid
dynamics allow us to decide when to arrange the pumps/compressor in parallel or in
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series. Figures 1.7 and 1.8 show the characteristic curves of two different arrangements
of centrifugal pumps.
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Figure 1.6. Characteristic curve for a centrifugal pump
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Figure 1.7. Two centrifugal pumps connected in parallel (adapted from Burmeister [3])
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Figure 1.8. Two centrifugal pumps connected in series (adapted from Burmeister [3])
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1.1.3. Heat transfer

The principles of heat transfer are required for design analyses of thermofluid devices
like boilers, condensers, and heat exchangers used to transfer thermal energy between
the system’s components or between the system and its surroundings. The subject also
describes the methods that can be used to minimise or maximise the rate of heat-
transfer such as thermal insulation, extended surfaces (fins), etc. To illustrate the use of
heat-transfer concepts in thermofluid analyses, consider Figure 1.9 that shows a pipe of
internal radius r1 and external radius r.. The fluid inside the pipe is at a temperature T;
while the temperature of the surrounding air is T... The temperature difference between
the pipe and the surroundings will cause heat gain or heat loss to/from the pipe and, in
order to reduce this heat gain or heat loss, the pipe has to be surrounded by an
insulation material. The principles of heat transfer help us to determine the required
thickness of insulation (0 = rs- r2) that keeps the rate of heat-transfer within a specified

v‘ Too

Figure 1.9. Schematic for an insulated metal pipe
The rate of heat transfer (Q ) to/from the pipe can be calculated from [4]:
Q :(Ti _Too)/ Rin (1.29)

Where Ru is the combined thermal resistance to heat-transfer by conduction,
convection, and radiation, which is given by [4]:

. 1 In(r, /r1)+ In(r3/r2)+ 1 (130)
hA 27Kk, 271Kk, h, A

Where h; and A; are the heat-transfer coefficient and surface area inside the pipe,

respectively, ho and As are the heat-transfer coefficient and surface area outside the

insulated pipe, respectively, L is the length of the pipe, and ki and k; are the thermal

conductivities of the pipe and the insulation, respectively. To simplify the analysis, it is

usually assumed that h, takes into account the heat-transfer by both convection and
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radiation to/from the insulation surface. The thickness of the metal pipe is usually small
compared to its diameter, while its thermal conductivity is much higher than that of the
insulation material. Therefore, the analysis can be simplified further by neglecting the
second term that gives the thermal resistance due to conduction through the pipe.

The above analytical model can be used to determine the thickness of insulation
required for reducing the rate of heat transfer to a specified limit or for controlling the
surface temperature to a limit that is dictated by safety or other practical considerations.
Although the thicker the insulation, the lower will be the rate heat transfer, the cost of
insulation increases with its thickness and there is a certain thickness beyond which
adding more insulation will be uneconomical. This economical thickness of insulation
can be determined by extending the above heat-transfer model so that the cost of
insulation and that of the saved energy can be calculated and compared.

Figure 1.10 shows a typical arrangement in which circular fins are attached to the
surface of a pipe so as to boost the rate of heat-transfer between the fluid being
transported with the pipe and the surrounding gas, usually air. As shown in Appendix
C, the principles of heat transfer can be used to develop the required mathematical
equations that describe the variation of temperature and rate of heat transfer over the
surface of the fin. These equations can then be used to evaluate the effectiveness and
efficiency of the fin.

Figure 1.10. Circular fins attached to a pipe

Another important application of these principles in thermofluid analyses is that related
to heat-exchangers. A heat-exchanger is a device used for transferring heat between two
fluids through a separating surface usually a pipe or a tube. Figures 1.11 and 1.12 show
a shell-and-tube heat-exchanger and a cross-flow heat-exchanger, respectively. These
two types of heat-exchangers are commonly used in industries, power-plants, and
vehicles. Heat-exchanger analyses either aim at determining the required size (i.e.
surface area) for a specified heat-transfer duty or determining the exit temperatures of
the two streams from a specified heat-exchanger type and size. Appendix D describes
the log-mean temperature difference (LMTD) method and the effectiveness-NTU
method used for these two types of analyses.
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Figure 1.11. A parallel-flow shell-and-tube exchanger

Cross-flow L
(unmixed) > |

Tube-flow
(unmixed)

Figure 1.12. A cross-flow exchanger with both streams unmixed

Three independent physical laws are used to quantify the rate of heat transfer between
the system and its surroundings by conduction (Fourier’s Law), convection (Newton’s
law of cooling), and radiation (Stefan-Boltzmann law). While the physical properties
that determine the rates of heat transfer by conduction and radiation, i.e. the thermal
conductivity (k) and surface emissivity (g), respectively, are substance-specific, the
convection heat-transfer coefficient (h) depends on both the fluid and the flow.
Numerous analytical relationships and empirical formulae are used for determining h
depending on whether the flow is forced or natural. For forced flows, the formulae also
depend on whether the flow is internal or external to the system being considered.
These formulae usually give the Nusselt number (Nu) from which the heat-transfer
coefficient can be calculated. For example, the following Dittus-Boelter equation is
used for determining Nu inside a fluid-transporting pipe due to forced convection:

Nu = 0.023 Re®® Pr" (1.31)
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Where Re is the Reynolds number, Pr the Prandtl number, and n is a constant that takes
the value of 0.4 when the pipe is being heated and 0.3 when it is being cooled. The heat
transfer coefficient is related to the Nusselt number as follows:

kK
h=—Nu 1.32
s (132

Where D is the pipe diameter and k is the thermal conductivity of the transported fluid.
Many other analytical or empirical formulae are used for determining the Nusselt
number for forced or natural flows over single tubes, bank of tubes, plates, etc. [4,5].

1.2. Advantages of computer-aided thermofluid analyses

Apart from saving the time and eliminating possible human errors, computer-aided
methods of analysis offer a number of advantages over traditional methods that use
property tables and charts. An important advantage of these methods with respect to
thermofluid analyses is their ability to give more realistic results by avoiding
unnecessary simplification of the models and by using more accurate estimations of
fluid properties. Moreover, they offer reliable techniques for iterative solutions and
optimisation analyses and for the analyses of complex thermofluid systems. In what
follows, these advantages are illustrated by means of relevant examples.

1.2.1. Avoiding excessive simplification of the model

In many situations, traditional analytical methods adopt excessive simplifications of the
analytical models; which makes their results grossly deviate from the behaviour of real
systems. A good example of this situation is given by the models of internal-
combustion (IC) engines. Traditional air-standard models of IC engines, such as the
Otto cycle and the Diesel cycle, involve many simplifications such as neglecting heat-
transfer and friction losses, treating the combustion process as heat-addition from an
external source, and using constant specific heats. These assumptions enable the engine
processes to be represented by simple closed-form relations for calculating the amount
of heat added to the engine and net work from the engine [6]. However, air-standard
models usually overestimate the engine’s output and thermal efficiency. By
comparison, computer-aided models of IC engines such as those described by Ferguson
[7] take into consideration the geometrical as well as the thermodynamic characteristics
of the engines. These models, which closely mimic the behaviour of actual IC engines,
can be used to investigate the effect of important design and operation factors such the
ignition or injection timing on the engine performance or the effect of engine speed on
the specific fuel consumption. However, the formulation of these models leads to a set
of ordinary differential equations that need to be solved simultaneously by using a
numerical solver such as the Newton-Raphson method.

1.2.2. Accurate representation of fluid properties and processes
The behaviour of real gasses and vapours is frequently modelled by using the following
ideal-gas law:
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PV =RT (1.33)

Where P is the absolute pressure of the gas, V is the molar specific volume, Ry is the
universal gas constant, and T is the absolute temperature of the gas. The ideal gas law
can be used with reasonable accuracy for determining the specific volume of a
superheated vapour, but when the temperature approaches the saturation line, the value
of the specific volume determined by the ideal-gas law departs significantly from the
actual volume. More accurate estimates can be obtained by using the Soave-Redlich-
Kwong (SRK) equation of state [1]:

_RT aa

P== —==
v-b v(v+b)

(1.34)

Where the constants a, b and « are fluid-dependent. Figure 1.13 shows the deviations
from the tabulated values by those obtained from the ideal-gas law and the SRK
equation of state for refrigerant R134a at 0.2 MPa.

7
\

< 6 X — = =|deal-gas model|—|
;’ \
€ 5 A SRK model —
3 \
o \
s ! S
— N\
S 3 -
L}
a ~
n S o
€ 2 <
S 1 N\
o] \

O T —

250 300 350 400

Temperature K

Figure 1.13. Errors in the specific volume of R134a by the ideal-gas law and the SRK
equation of state

The figure shows that the error of the ideal-gas law is more that 2% even at high
temperatures and increases as the temperature approaches the saturation value, but the
accuracy of the SRK equation remained higher than 99% even close to the saturation
line. However, since the SRK equation is implicit in V| it cannot be used directly to
determine the specific volume, but has to be solved iteratively. A number of standard

iterative procedures (e.g. Newton-Raphson method) can be used to solve the equation,
but they are not convenient for hand calculations.
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There are many similar situations in thermofluid analyses where a nonlinear equation
like the SRK equation gives advantage to computer-aided numerical methods by
enabling more realistic and accurate estimations. Another important implicit equation
for thermofluid analyses is the Colebrook-White equation (usually referred to as the
Colebrook equation) that determines the friction factor (f) in turbulent pipe flows:

1 elD 2.51
|~ = —2.0l0g,q| Z2+ 222 135
f 910[ 37 Reﬁ] (1.35)

Where Re is the Reynolds number, D is the pipe’s diameter, and ¢ is the roughness of
the pipe material. Since the equation involves the friction factor f on both sides, it needs
to be solved iteratively. This is why traditional methods prefer to use explicit
relationships, such as the Swamee-Jain formula given by Equation (1.25), even though
the Colebrook equation is more accurate.

1.2.3. Dealing with iterative solutions and optimisation analyses

Thermofluid analyses involving iterative solutions and optimisation analyses are two
common types that suit computer-aided methods more than manual methods even for
simple systems. A good example is found in pipe-flow analyses. Pipe flow problems
that require the friction head loss to be determined from Equation (1.21) when both the
diameter and flow rate are known can be solved in a straightforward manner. However,
in design analyses of pump-pipe systems we may need to find the flow rate in a given
pipe that gives a specified head loss or to find a suitable pipe diameter for specified
head loss, flow rate, and pipe length. In these two cases, the friction factor f cannot be
determined in advance because it depends on the Reynolds number. Therefore, these
two types of pipe-flow problems, referred to as type-2 and type-3 problems, need to be
solved by iteration. It is much easier to carry out the iterative process to the required
level of accuracy by using a computer-aided method than by doing it manually. There
are many other types of thermofluid problems that also require iterative solutions such
as the determination of the unknown fluids' exit temperatures from a given heat
exchanger or the determination of the adiabatic flame temperature by first-law analysis
of the combustion process.

Optimisation analyses are needed for determining the best design for a thermofluid
system such as the optimum intermediate pressure for an air-compression system, the
optimum steam-extraction pressure for a regenerative Rankine cycle, and the best
thickness of insulation for a pipe. While simple optimisation analyses that involve a
single design parameter can be performed by means of calculus techniques and graphic
tools, optimisation analyses of complex systems that involve multiple variables require
the use of computer-aided techniques.
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1.2.4. Analyses of complex systems

The physical complexity of some thermofluid systems makes their analyses only
possible with the help of computer-aided methods. An example of such systems is the
looped pipe network shown in Figure 1.14. This network is fed by two water tanks, A
and B, and consists of four pipe loops and four consumption points. Suppose that the
pipe diameters and lengths are given, the flow rates from the supply tanks are specified,
and it is required to determine the flows in the different pipes and the discharges at the
consumption points. Although the solution is mainly based on the two well-known
principles of the conservation of mass and the conservation of energy, it is difficult to
solve the problem by using manual analytical methods especially when a minimum
pressure level is to be met at the discharge points. Therefore, a computer-aided method,
such as the Hardy-Cross method, has to be used [8, 9].

Figure 1.14. A looped pipe network supplied by two tanks

Another type of thermofluid analyses for which computer-aided numerical methods are
necessary are the analyses of multi-dimensional fluid-flow and heat transfer in complex
geometries. This type of analyses involves coupled and nonlinear partial differential
equations that have to be solved by using computational fluid dynamics (CFD) methods
such as the finite-volume method or the finite-difference method. Many commercial
CFD applications are available nowadays that offer great flexibility and user-
friendliness.

1.3. An Excel-based modelling platform for thermofluid analyses

Microsoft Excel is a spread-sheet application developed mainly for statistical analyses
and presentations of tabulated data. Considering the simplicity of its user-interface and
the flexibility of its graphing tools, Excel has been used in some engineering textbooks
for dealing with simple computer-based operations like matrix inversion and matrix
multiplications [4,5]. However, Excel is equipped with other features that make it a
capable modelling platform for a wide range of engineering analyses [10-12]. In
addition to its “What-if” analyses tools that include the Goal Seek command and the
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Solver add-in, the “Developer” ribbon in Excel provides a programming language
called Visual Basic for Applications (VBA) that can also be used for developing
customised user-defined functions (UDFs) needed for engineering analyses when such
functions are not provided by Excel. The Developer ribbon also allows the use of
macros to remove the tedium of parametric studies and repetitive calculations.

The main limitation of Excel as modelling platform for thermofluid analyses is the lack
of built-in functions for fluid properties. This problem could be solved by developing
add-ins for this purpose. In this respect, the Mechanical Engineering Department at the
University of Alabama developed a set of add-ins for various thermofluid analyses [13-
15]. Their Thermotable add-in for fluid properties deals with ideal gases, water and
superheated steam, and four refrigerants R134a, R22, R410A, and R407C. They also
developed other add-ins for psychrometric and compressible flow analyses. Goodwin
[16] developed an educational Excel add-in, called TPX (Thermodynamic Properties for
Excel), that determines the thermodynamic properties of selected gases (H2O, Hz, O,
N, and CH.) and refrigerant R-134a. A number of property add-ins have also been
developed for research applications [17-19]. For industrial applications, the American
National Institute of Standards and Technology (NIST) developed the REFPROP add-
in that provides thermophysical properties of various refrigerants and their mixtures
[20]. An open-source alternative to REFPROP, called CoolProp, was developed by
Bell [21] at the University of Liege, Belgium. A commercial alternative to REFPROP is
provided by Optimized Thermal Systems called XProps [22].

The Excel-based modelling platform used in this book requires, in addition to Excel and
Solver, an educational Excel add-in called Thermax. Thermax provides property
functions for 12 ideal gases (air, N2, Oz, Hz, CO, CO;, H,0O, NO, NO;, Sz, SO, and
S0s), saturated water and superheated steam, 6 refrigerants (R134a, R22, R410A,
R717, R718, and R744), humid air for psychrometric analyses, and air at standard
atmospheric pressure. Thermax also provides two interpolation functions and a
Newton-Raphson solver for nonlinear equations that further enhance the usefulness of
the modelling platform for thermofluid analyses. The nonlinear equations and any
additional functions required by the analyses are developed by using VBA. Table 1.1
summarises the roles of the four components of the Excel-based modelling platform as
used in this book.

1.3. Closure

The following nine chapters of the book are grouped into three main parts. The first part
of the book consists of Chapters 2, 3, and 4 that describe the four components of the
Excel-based modelling platform in more details. Chapter 2 describes the features and
built-in functions of Excel that are mostly needed for thermofluid analyses. This chapter
also illustrates the use of Excel’s iterative tools; Goal Seek and circular calculations.
Chapter 3 introduces the Solver add-in and shows how its three solution methods can be
used for solving different types of computer-based problems. The chapter also shows
how VBA can be used for developing user-defined functions. Chapter 4 describes the
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Thermax add-in and shows how its functions can be used in Excel’s formulae. Relevant
exercises are given at the end of each chapter in this part to train the students for using
the different components of the modelling platform.

Table 1.1. Roles of the four components of the Excel-based modelling platform

Component Role

¢ Provides the basic functions needed for thermofluid analyses
including general mathematical functions, matrix-operation

Excel user- functions, and logical-operation functions.

interface e Provides graphical tools for data charting and trendlining

¢ Provides the Goal Seek command for performing unconstrained
iterative solutions involving a single parameter

¢ Allows constrained iterative solutions involving multiple
parameters

¢ Allows constrained optimisation analyses

o Offers three search options that suit different types of problems

¢ Provides the physical properties of ideal gases, water and
superheated steam, six refrigerants (R134a, R22, R410A, R717,
R718, and R744), humid air for psychrometric analyses, and air at
atmospheric pressure

¢ Provides a Newton-Raphson solver for non-linear equations such
as the Colebrook equation and the SRK equation

e Provides two interpolation functions for tabulated data

o Can be used to develop additional fluid property functions if
needed

e Can be used to develop user-defined functions for dealing with
non-linear equations and large systems of linear equations
involved in iterative solutions or optimisation analyses

o Can be used to develop macros for repetitive calculations

Solver

Thermax
add-in

VBA

The second part of the book consists of Chapters 5 and 6 that show how the Excel-
based modelling platform can be used to perform basic types of computer-aided
thermofluid analyses. Chapter 5 shows how Excel’s Goal Seek command and Solver
can be used to solve problems that require iterative solutions in the fields of fluid
dynamics, heat-transfer, and thermo-dynamics. Chapter 6 focuses on optimisation
analyses of thermofluid systems and shows how Solver can be used to deal with those
involving a single design parameter, such as the optimum thickness of insulation for a
pipe, and those involving multiple design variables. This chapter also shows how the
default settings of the GRG Nonlinear method can be adjusted when it fails to reach a
solution and demonstrates the use of the Evolutionary method instead of the GRG
Nonlinear method in optimisation analyses. Exercises are given at the end of each
chapter in this part to train the students to use the modelling platform in relevant
analyses.
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Chapters 7, 8, and 9 form the third part of the book. Each one of these three chapters
focuses on one type of thermofluid analyses. Chapter 7 deals with thermodynamic first-
law and second-law analyses of power generation and refrigeration cycles using
property add-ins. Chapter 8 that focuses on fluid-dynamic analyses illustrates the use of
Goal Seek and Solver to deal with the analyses of multi-pipe and pump-pipe systems.
Different pipe and pump arrangements are analysed in this chapter to determine the
system’s friction losses, power requirement, and operating point. Chapter 9 deals with
conduction heat-transfer analyses by using the finite-difference method. The three
chapters of this last part end with more challenging exercises that can be used as mini
projects for students’ evaluation.
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Excel is the backbone of the modelling platform used in this book for thermofluid
analyses. As a general-purpose application, Excel is equipped with numerous features
and functions that can be utilised by various users for the presentation and analysis of
their data. This chapter focuses on its features that are mostly needed in this book for
building a modelling platform for thermofluid analyses. These include Excel’s user-
interface, its formulae and built-in functions, and its graphical tools and trendline
feature. The chapter highlights the use of cell-labelling instead of the commonly-used
referencing by location and illustrates the use of Excel’s matrix functions for the
solution of linear systems of equations and the use of Goal Seek and circular
calculations for the solution of nonlinear equations. Finally, the section on Excel’s
graphical tools demonstrates the use of the trendline feature for data curve-fitting.

2.1. Elements of Excel’s user-interface

Excel’s user-interface allows us to store and manipulate our data by providing a large
set of analytical functions and several tools. It also provides numerous commands for
adjusting the appearance of the workspace and presenting the primary data and the
analysis results in various forms. Figure 2.1 shows a screenshot of an Excel sheet that
stores the scores obtained by a group of students in one semester.
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Figure 2.1. The main elements of Excel’s user-interface

To allow easy access to the large number of functions tools and commands provided by
Excel, its interface is divided into a number of elements with different purposes. Figure
2.1 shows four of these elements which are:

The ribbon

The name box
The formula bar
The workspace

PR

Formattin
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The Ribbon, which occupies the top part of the sheet, organises the numerous
commands provided by Excel into nine “tabs” including the File, Home, and Insert
tabs. Each tab consists of a number of command-groups that have a common purpose.
For example, the File tab consists of four groups of commands called Clipboard, Font,
Alignment, and Number. The Workspace, which is the main part of the sheet, is
divided into a grid of columns and rows so that the intersections of the rows with
columns form separate “cells”. A cell is referred to by a letter that represents its column
followed by a number that represents its row, e.g. Al, B3, H2, etc. As the figure shows,
a cell can contain a character data, such as “Saeed” and “Salim”, or a numerical data,
such as 62.5 and 70. A cell can also contain a formula for data manipulation using the
numerous built-in functions provided by Excel. The formula in cell H2 calculates the
average mark for the first student in the list; “Saeed”. While the Name box shows the
location of the current cell, the Formula bar shows the formula typed in the cell. The
role of the Formula bar will be explained in more details in the following section.

2.2. Excel’s formulae

The formula bar in Figure 2.1 reveals the formula typed in cell H2 that uses the built-in
function “AVERAGE” to determine the average score of the first student in the list
(Saeed) in the five subjects (64.0). Note that a formula is preceded by the equal sign
“=_1In general, Excel’s formulae consist of cell references, built-in functions, and
mathematical or logical operators. For illustration, let us write a formula that calculates
the area of a circle from its radius and use this formula to determine the area of a circle
with a radius of 5 m. To do this, open a new Excel sheet and type the number 5, which
is the radius of the circle, in cell Al as shown in Figure 2.2.

SECOND (= % « EC=pi()*A172/4 )
A B C D E F
1] 5
2 |=pI()*A1~2/4)
3 T Formula bar
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6

Figure 2.2. Writing an Excel formula to determine the area of a circle

Now, go to cell A2 and type the formula ”=PI()*Al1"2/4”. The function “PI()” is a
built-in function that returns the value of Archimedes’ constant 7. The formula also
contains a reference to cell Al that stores the value of the circle’s radius, the
multiplication operator *, the division operator /, the power operator #, and the
constants 2 and 4. Note that the formula is shown in the formula bar which can be used
to edit the formula. Pressing the Enter key after typing the formula, the result shown in
Figure 2.3 is obtained in cell A2; which is 19.63495 square meters.
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A2 v fe | =PI()*A172/4
A B C D B F
1 5
2 | 19.63495!
3
4
5
6

Figure 2.3. The completed Excel sheet with formula that determines the area of a circle

The following example shows how Excel’s formulae and built-in functions can be used
in a typical thermofluid analysis.

Example 2.1. Determining the error of the ideal-gas law for refrigerant R134a
Develop an Excel sheet that calculates the specific volume (v) of refrigerant R134a
from the ideal-gas law at a pressure of 200 kPa (Tsa = -10.09°C) and temperatures in the
range 0°C to 100°C (273 to 373 K). Compare your results with the tabulated data.

Solution

Figure 2.4 shows the Excel sheet prepared for this example. The pressure (P), the gas
constant (R), and the temperature (T) are stored in columns A, B, and C, respectively.
Column D stores the values of v obtained from property tables and column E stores the
corresponding values obtained from the ideal-gas law:

v=RT/P 2.1)

where, P and T are the absolute pressure and temperature, respectively, and R is the gas
constant (for R134a R = 0.08149 kJ/kg.K). The percentage error of the ideal-gas law in
estimating the specific volume is given by:

Error = e ~Vrave . 109 2.2)

VTabIe

To determine the percentage error at 273K, go to cell F2 and type the following formula
which is equivalent to Equation (2.2):

=(E2 — D2)/D2*100

When you press the Enter key, the number 6.566 will appear in cell F2 as shown in
Figure 2.4.
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F2 - f | =(E2-D2)/D2*100
A B C D E F G

1|p R T v_table v_ideal error v _ideal
2 200 0.08149 273 0.10438 D.111233EI| 5.5652433!
3 200 0.08149 283 0.10922 0.1153084 5.5743911
4 200 0.081459 293 0.11394 0.1193829 4.776944
5 200 0.08149 303 0.11856 0.1234574 4.1306933
i} 200 0.08149 313 0.12311 0.1275319 3.5917878
7 200 0.08149 323 0.12758 0.1316064 3.1559414
8 200 0.08149 333 0.13201 0.1356809 2.7807363

9 200 0.08149 343 0.13639 0.1397554 2.4574463
10 200 0.08149 353 0.14073 0.1438299 2.2026931
11 200 0.08149 363 0.14504 0.1473044  1.974869
12 200 0.08149 373 0.14932 0.1519789 1.7306389
13

Figure 2.4.The sheet developed for determining error in the ideal-gas law for R134a

Note that the formula shown in the formula bar represents Equation (2.2) when the
temperature is 273K. To find the percentage errors at other temperatures, you can
simply copy the formula in cell F2 and paste it on cells F3 to F12. Values of the
calculated errors show that the maximum error occurs at the lowest temperature, which
is 273K. The error decreases gradually as the temperature increases.

2.3. Use of cell labels

Reference to the cell by its relative location in the sheet, e.g., A5 and C3, suits perfectly
statistical analyses in which the same formula is applied to a large body of data that is
stored column-wise or row-wise. For example, we want to determine the average value,
maximum value, or minimum value of the data. Example 2.1 illustrated this situation.
However, thermofluid analyses usually involve a large number of formulae but a small
set of data, e.g. the diameter of a pipe, the density or viscosity of a fluid, the
effectiveness of a heat exchanger, etc. For such analyses, it is more convenient to give
the cell a meaningful name or “label” that matches its content. The label can then be
used as reference to the cell instead of its relative location. This method makes it easier
to interpret Excel formulae and recognise the quantities involved in them.

For the purpose of illustration, suppose that we want to compare the density of air
before and after an isentropic compression process from an initial condition of P; = 100
kPa, T; =300K to a final pressure of P, = 800 kPA. The two densities can be calculated
from the ideal-gas law as follows:

p, =P IRT, (2.3)

p, =P, IRT, (2.4)
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Where R is the gas constant for air (0.287 kJ/kg.K).

For an isentropic process, T, is related to T; according to the following approximate
relationship:

k-1
T,=T,x(P,/P )k (2.5)

Where k is the ratio of specific heat at constant pressure (cp,) and at constant volume
(cv). For air, k can be taken as 1.4.

Figure 2.5 shows the sheet prepared for this case. Note that respective labels are typed
in the column to the left of the different pressures and temperatures, while the
corresponding units are written in the column to the right of each quantity. This is also
done to the other quantities in the calculations.

F4 - fe | =B4*B7~((B8-1)/B8)
A B C D E F G
1 Air density before and after an isentriopic compression
2
3 P_1 100 kPa P2 800 kPa
4 T 1 o0 K T2 I 543.434 _lK
5
B R 0.287 kJkgK Density 1 116144 m3/kg
[ Pr 8 Density 2 512934 mi'kg
g k_ 1.4
3
10

Figure 2.5. Excel sheet for calculating the air densities before and after compression

Placing the cursor on cell F4 makes the formula bar reveal the formula used in the
calculation of the temperature T, which is:

=B4*B7/((B8-1)/B8)

The above formula can be made more understandable by using meaningful labels to
refer to the different cells involved. To do that, select the cells in columns A and B as
shown in Figure 2.6, then go to Formulas and, at the Name Manager, select Create
from Selection. When the form shown in Figure 2.6 appears to you, tick the “Left
column” option. Pressing the “OK” button will make Excel create names for the
different values in the selection box according to the labels written on the left column.
The cell F3 that stores the value of P_2 can also be associated with its corresponding
label in cell E3. Now, type the formula in cell F4 that determines T_2 as:

=T _1*P_r™M(k_-1)/k))
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The formula bar in the sheet shown in Figure 2.7 reveals the formula with the
corresponding labels instead of location references. Labelled formulae are easier to edit
than those using location referencing particularly when intricate formulas are involved.

m Home Insert Page Layout Data Review View Developer
» < < e -~ = : Py
3 2 2 G = ~3) Define Name ~ = Trace Prec
F T E0AE 0 6P B J

£2 Use in Formula ~ =(% Trace Dep
Insert AutoSum Recently Financial Logical Text Date & Lookup & Math More Name - -
Function - Used ~ v v v  Time~ Reference * &Trig v Functions * | Manager < Remove A
Function Library Defined Names
A3 v AKlpa1
[l A | B | C D E F G H [ J K L
1 Air density before and after an isentriopic compression
o Create Names from Selection ? X
3[ P1 100 |kPa P2 800 kPa :
—— = = Create fr I the:
4| 11 300 |k T2 543434 K Aol e s Mk
5 O v
|6 |Ra 0.287 |kJ/kg.K Density 1 1.16144 m3/kg Left column
7 Pr 8 Density 2 512934 m3/kg [[] Bottom row
8 k 14 [] right column
9
10 Cancel
11

12
Figure 2.6. Creating names for a selected group of cells

T2 - Je | =T_1%P_rn{(k_-1)/k_)
A B C D E F G
1 |Air density before and after an isentriopic compression
2
3 P_1 100 kPa P2 800  kPa
T 1 300 K T2 543 434 Ik

6 R 0.2687 klkgK Density 1 116144 m3lkg
7 Pr 8 Density 2 512934 m3/kg
g k_ 1.4
9
10

Figure 2.7. Formulae using cells labels instead of locations

There are a couple of rules that have to be observed when using cell labels. When
naming your cells, choose suitable representative names for the variables involved, e.g.
P_1and T_1 for P1 and T:. Note that Excel does not accept “P1” or “T1” as labels since
these can be confused with usual cell references by locations. In this case, Excel
automatically changes the labels to “P1 ” and “T1_". Also note that if you copy a
formula that uses the usual referencing by location in another cell, you will get a
different answer, but if you copy a labelled formula and paste it in any other cell, you
will get the same answer. To reveal or hide all the formulae in the sheet, press the
control key (ctrl) with the tilde key (~). A more detailed discussion of Excel formulae
can be found in Walkenbach [1] or the numerous online help sources.
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2.4. Excel’s built-in functions

Excel provides a large library of built-in functions for data manipulation like the
“AVERAGE” function and other functions needed in engineering analyses like the “PI”
“SIN”, and “COS” functions. To see the full range of Excel built-in functions, type “="
in any Excel cell as shown in Figure 2.8 and then press the “Insert Function” fx button
in the formula bar. The dialog box shown in Figure 2.9 will appear to you. This dialog

box allows you to select from various categories of built-in functions.

SECOMND - v k| =
A B C tn E F G

1

2 El

3

4

5

6

7

8

9

Figure 2.8. Using Excel’s built-in functions

Insert Function

Search for a function:

Go

Or select a cateqory:

Select a function:

AGGREGATE

All

Type a brief description of what you want to do and then dick

Most Recently Used
Al

Finandial
Date & Time
‘Math & Trig
Statistical
Lookup & Reference
Database

Text

ABS{number)
Returns the absolute

Help on this function

Logical
Information

User Defined

Cancel

Figure 2.9. Categories of Excel’s built-in functions
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The “Math & Trig” group includes the mathematical and trigonometric functions used
in different types of engineering analyses, including thermofluid analyses. Figure 2.10
shows some of the numerous functions in this group. Note that the dialog box gives a
brief explanation of each function. For example, the explanation given to the ABS
function is that it returns the absolute value of a number. The functions ACOS, ASIN,
and ATAN apply the familiar inverse trigonometric functions: cos?, sin, and tan®,
respectively. By scrolling down the list, you can find many other functions frequently
used in engineering calculations. The following sections focus on two types of
functions that deserve a special attention, which are (a) the logical functions and (b) the
functions for matrix operations.

[® |[=|
Search for a function:
Type a brief description of what you want to do and then dick Go
Go
Or select a category: | Math & Trig e

Select a function:

ABS{number)
Returns the absolute value of a number, a number without its sign.

Help on this function Cancel

Figure 2.10. Common mathematical functions supported by Excel

2.4.1. Logical functions

Logical functions are needed frequently in thermofluid analyses. For example, before
we can use the Darcy-Weisbach equation to determine the major friction loss in a pipe
we have to establish whether the flow is laminar or turbulent. The flow remains laminar
before the Reynolds number (Re) reaches a certain value, which is usually taken as
2,000. There is a transitional region between laminar and turbulent flows when 2000 <
Re < 3,000. Beyond Re = 3000, the flow is considered fully turbulent. Suppose that we
want to write an Excel formula to tell us the type of flow from the given value of the
Reynolds number. A simple IF function that gives only two choices is as follows:

=IF(logical_test,[value_if_true],value_if_false])
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Using the simple IF function, we can write the following formula:
=IF(Re<=2000, “Laminar”, “Turbulent or transitional”)
Note the quotation marks around “Laminar” and “Turbulent or transitional”. However,
the above formula does not tell us whether the flow is turbulent or transitional. The
required general formula can be written by using the following nested IF function:
=IF(Re<=2000, “Laminar”, IF(Re>=3000, “Turbulent”, “Transitional’))
Figure 2.11 shows an Excel sheet containing the above formula (shown in the formula
bar) and the response of the formula when Re = 500, which is “Laminar”. Excel
supports six other logical functions; AND, FALSE, IFERROR, NOT, OR and TRUE

that can be combined in the same formula so as to handle more intricate choices.

ca - Jfx | =IF(Re<=2000,"Laminar",IF{Re>=3000,"Turbulent","Transional"}))

A B C D E F G H 1 J

Re 500

Flow ILammar _I

U w M=

6
Figure 2.11. A formula using the nested IF function to determine the type of flow

2.4.2. Functions for matrix operations

A group of adjacent cells can be treated as a matrix or a vector and Excel formulae
allow for the addition, subtraction, and multiplication of these matrices and vectors
according to the established rules of matrix operations. For example, matrix [A] and
vector {b} shown in Figure 2.12 can be multiplied and the result stored in a third vector
{c} by using the matrix function MMULT. The procedure is as follows:

1. After keying in the data of matrix [A] and vector {b} as shown in Figure 2.12,
position the cursor at cell H3 and type the formula: =MMULT(B3:D5;F3:F5).

2. Now press ENTER key and cell H3 will take the value 14, which the result of
multiplying the first row of the matrix with the vector {b} (Figure 2.13).

The other two elements of the result vector will not appear automatically. To view the
complete results vector, do as follows:

3. Select the cells H3:H5 (Figure 2.14),

4. Press the function key F2 once and then simultaneously hold the (SHIFT +
CONTROL) keys together and press ENTER. The complete result vector {c}
will now appear as shown in Figure 2.15.
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SUM - K Jx| =MMULT(B3:D5,F3:F5)
A B C D E F G H I
1
2 Matrix A (3x3) Vector b (3X1, Vector ¢ (=Axb)
3| 1 2 3 1 =MMULT(B3:D5,F 3:F5]|
a 4 5 6 2
5 7 g 9 3
B
7
Figure 2.12. Step 1 of using the matrix multiplication function
H3 - Je | =MMULT(B3:D5,F3:F5)
A B C D E F G H I
1
2 Matrix A (3x3) Vector b (3X1) Vector ¢ {=Axb)
B 1 2 3 1 1]
a 4 5 6 2
5 7 8 3 3
6
7
Figure 2.13. Step 2 of using the matrix multiplication function
H3 - fe | =MMULT(B3:D5,F3:F5)
A B C D E F €] H I
1
2 Matrix A (3x3) Vector b (3X1) Vector c {=Axb)
3 1 2 3 1 14
a 4 5 6 2
5 7 8 3 3
B
7
Figure 2.14. Step 3 of using the matrix multiplication function
H3 M Je | {=MMULT(B3:D5,F3:F5)}
A B C D E F G H I
1
2 Matrix A (3x3) Vector b (3X1) Vector ¢ {=Axb)
3 1 2 3 1 14
a 4 5 6 2 32
5 7 g 9 3 sol
6
7

Figure 2.15. Step 4 of using the matrix multiplication function

Another important matrix-operation function provided by Excel is the matrix-inversion
function “MINVERSE”. The following example illustrates the use of this function
which is needed for the solution of linear systems of equations.
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Example 2.2. Using the matrix inversion function
Develop and Excel sheet to find the inverse of matrix [A] given by:

[A] =

o o1 O

3
6
5

~N O

Solution

The first step is to enter the elements of the matrix as shown in Figure 2.16. After
entering the data, go to cell F2 and type the formula “=MINVERSE(B2:D4)”. When
you press ENTER, this cell will have the value -0.3125, which is the first element of
[A]! shown in Figure 2.17. Starting with the formula in cell F2, select the range F2 to
H4 as shown in the figure. Press and release the function key F2 and then
simultaneously hold the CTRL+SHIFT keys and press ENTER. Other elements of the
inverse matrix [A]?* will then appear as shown in Figure 2.18. You can check the
answer by finding the product of matrix [A] with its inverse by using the MMULT
functions. The procedure is illustrated by Figures 2.19 to 2.21. As should be expected,
Figure 2.21 shows that the resultant matrix is the identity matrix.

SUM ~ (" ¥ « f| =MINVERSE(B2:D4)

A B C D E F G H
1 Matrix A Matrix inverse A-1
2 1 0 3 |:MINVERSE|{B2:D4}|
3 0 ]
i | 7 0
5
6

Figure 2.16. Step 1 of using the MINVERSE function
F2 - Je | =MINVERSE(B2:D4)
A B C D E F G H |

1 Matrix A Matrix inverse A-1
2 1 0 3 -0.3125
3 0 5 6
fi | 7 0
2
6

Figure 2.17. Step 3 of using the MINVERSE function
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F2 - Fx [{=MINVERSE(B2:D4)}
A B c D E | F G H I

1 Matrix A Matrix inverse A-1

2 1 ] 3 -0.3125 a 0.1875)

3 1] E] 1] -0.525 0.2 0.075

4 7 ] 5 0.4375 0 -0.0625

5

]

Figure 2.18. The complete inversed matrix [A]*

SECOND - ¥ & Jfo| =MMULT(B2:D4,F2:H4
A B C D E F G H 1
1 Matrix A Matrix inverse A-1
2 1 0 3 ! 031250 0.875
3 0 5 6 I -0.525 0.2 0.0?5?
4 ? 0 5, Lo0ars 0__-0.0625]
5
6 Matrix AxA-1
=MMULT{B2:D4,F2:H4]
3 | MMULT(array1, array2) |
9
10
Figure 2.19. Multiplying matrix [A] by its inverse [A]*!
B7 - fe | =MMULT(B2:D4,F2:H4)
A B C D E F G H 1
1 Matrix A Matrix inverse A-1
2 1 0 3 -0.3125 0  0.1875
3 0 5 ] -0.525 0.2 0.075
4 7 0 5 0.4375 0 -0.0625
5
6 Matrix AxA-1
1
8
9
10

Figure 2.20. The first element of the identity matrix

2.5. Solution of linear system of equations

Systems of linear equations arise, for example, in the numerical solution of the heat
conduction equation using the finite-difference method. Small and medium-sized linear
systems of equations can be solved with Excel by applying the matrix-inversion
method. Consider the following linear system written in matrix notation:

[Alix} =1y} (2.6)

Where [A] is the coefficient matrix, {x} the vector of unknowns, and {y} the right-side
or “load” vector.
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B7 - Fe |{=MMULT(B2:D4,F2:H4)}

A B C D E F G H I
1 Matrix A Matrix inverse A-1
2 1 0 3 -0.3125 o 0.1875
3 0 5 6 -0.525 0.2 0.075
a 7 0 5 0.4375 0 -0.0625
5
6 Matrix AxA-1
7 1 0 0
B 0 1
9 1] 1] 1]
10

Figure 2.21. The complete identity matrix

The solution vector {x} can be obtained as follows:

g =[A]" {y} 2.7)

Where [A]? is the inverse of matrix [A]. The following example illustrates the
procedure.

Example 2.3. Solution of a system of linear equations
Find the values of x; in the following system of linear equations:

(14 14 -9 3 -5](x) [-15
14 52 -15 2 -32||x,| |-100
-9 -15 36 -5 16 |{x,.=1 106
3 2 -5 47 49 ||x,| |329

-5 -32 16 49 79 ||x;) | 463 28)

Solution

Note that the system is symmetric; which is typically the case with linear systems that
arise in the solution of heat-conduction problems by the finite-difference method. For
large systems of equations, symmetry of the system can be utilised for reducing the
required computer memory by storing only one half of the coefficient matrix. However,
for small systems, such as the one considered here, it is more convenient to use the
matrix inversion method using Excel functions. Figure 2.22 shows the Excel sheet that
stores both the coefficient matrix [A] and the load vector {y}. The inverse of the
coefficient matrix [A]* was obtained by following the procedure described above and
stored below the coefficient matrix as shown in the figure. The inverse matrix [A]? is
then multiplied by the load vector {y} and the result stored below the load vector as
shown in Figure 2.23. The complete solution is shown in Figure 2.24. The first element
is practically zero and, therefore, the answer is{x} = (0, 1, 2, 3, 4).
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B8 - fe | {=MINVERSE(B2:F6)}

A B c | o | e ] ] = H I ) K
1
2 14 14 ) 3 5 -15
3 14 52 15 2 32 -100
a 15 36 5 16 106
5 3 2 -5 47 ) 329
6 -32 16 ) 79 463
7
8 0.270366 -0.37237 0.248897 0.614204 -0.56509)
9 -0.37237 0.768517 -0.48966 -1.31425 1.202069
10 0.248897 -0.48966 0.365182 0.880899 -0.80293
1 0.614204 -1.31425 0.880899 2.355126 -2.13266
12 -0.56509 1.202069 -0.80293 -2.13266 1.349218|
13

Figure 2.22.The coefficient matrix [A], the load vector {y}, and the inverse matrix [A]*

SUM - X & fe| =MMULT(BB:F12,H2:H6)
A B C D E F G H 1 J K
1
2 14 14 -9 3 -5 -15
3 14 52 -15 2 -32 -100
4 -9 -15 36 -5 16 106
5 3 2 -5 47 49 329
6 -32 16 49 79 463
7
E 0.270366 -0.37237 0.248897 0.614204 -0.56509 |:MMULT{BS:F12,H2:HG}|
9 -0.37237 0.768517 -0.48966 -1.31425 1.202063 T
10 0.248897 -0.48966 0.365182 0.380899 -0.80293
11 0.614204 -1.31425 0.880899 2.355126 -2.13266
12 -0.56509 1.202069 -0.80293 -2.13266 1.949218
13
Figure 2.23. Multiplying the inverse matrix [A]* with the load vector {y}
HB - fe | {=MMULT(B8:F12,H2:H6)}
A B C D E F G H 1 J K
1
2 14 14 -9 3 -5 -15
3 14 52 -15 2 -32 -100
4 -9 -15 36 -5 16 106
5 2 -5 47 49 329
6 -5 -32 16 49 79 463
7
8 0.270366 -0.37237 0.248897 0.614204 -0.56509 5.68434£-14)
9 -0.37237 0.768517 -0.48966 -1.31425 1.202069 1
10 0.248897 -0.43366 0.365182 0.380899 -0.30293 2
11 0.614204 -1.31425 0.880899 2.355126 -2.13266 3
12 -0.56509 1.202069 -0.80293 -2.13266 1.949218 4|
13

Figure 2.24. The complete solution vector {x}
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2.6. ltearative solutions with Excel

Iterative solutions are required in thermofluid analyses when the analytical model
involves a nonlinear equation, such as the SRK equation, or when there is
interdependency between fluid and flow parameters, as in type 2 and type 3 flow
problems. Excel’s user-interface offers two methods for obtaining iterative solutions: by
using the Goal Seek command or by using circular calculations. In what follows these
two methods will be explained with the help of simple examples.

2.6.1. Itearative solutions with Goal Seek

The Goal Seek command is a simple, yet very useful tool for “What-if” analyses. It is
used for finding the value of an independent variable (x) that yields a specified value of
a dependent variable (y). The following example illustrates how the Goal Seek
command can be used to solve a nonlinear equation.

Example 2.4. Solution of a nonlinear equation by Goal Seek
Two variable x and y are related according to the following quadratic equation:

y=x2-2x+1 -1.0<x<3 (2.9
It is required to find the two values of x that yields y = 1.5.
Solution

Using the conventional analytical method, the two values can be found by substituting y
in Equation (2.9) by 1.5. This leads to the following quadratic equation:

X2 —2x-05=0

The two roots of this equation using the standard solution method are:

_—(2)|(-2) +4x1x05 2:6

2x1 2
Or:
X1 =—0.22474
X2 = 2.2247.

We will now solve the problem by using the Goal Seek command. Figure 2.25 shows
the Excel sheet prepared for this purpose in which y is plotted at various values of x.
The figure shows that the two values of x that yield y = 1.5 are approximately -0.2 and
2.2.
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83 - 5 #8272-2°B2+1

A | B C E F G “ | J K
1 yon2-2x+1 x y
2 X 0 -1 4
3 1 0
4 0 1
] 0.5 0.25
& 1 0
7 15 0.25
8 2 1
9 25 225
10 3 4 v
1 -2 1 0 1 2 3 4

Figure 2.25. Excel sheet for finding the roots of a nonlinear equation

To solve the problem by using Goal Seek, enter an initial guess for x in cell B2, say 0,
and then enter the following formula that calculates y in cell B3:

=B27"2-2*B2 +1

Note that the formula bar reveals the above formula when the cursor is placed at cell
B3. To activate the Goal Seek command, go to the Data tab, select the What-If-
Analysis option in the Data Tools group and then select Goal Seek, as shown in Figure
2.26. The Goal Seek dialog form shown in Figure 2.27 will ask you to select the “Set
cell”, i.e. the cell that contains the dependent variable, which is B3 in this case.

—= b W= AN arE r= 5= 2
= _F s ‘ 2 EH € ;l -—] £5 2 Solver
‘ EE i &= A= HiE=
=o % ‘_"lgt) H T B8 ez,
Data Consolidate | What-If ‘ Group Ungroup Subtotal =
Validation ~ (Analysis ¥ ¥ »
_Data Tools Scenario Manager... utline " Analysis
Goal Seek.., ¢
L M Data Table... Q R S

Figure 2.26. Activation of the Goal Seek command

_____ . (7 |[=]

Set cell: B3 2.5

To value: 1.5

By changing cell: | &pg2 =5
Cance

Figure 2.27. Goal Seek Set-up for finding the root of a nonlinear equation
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You also have to specify the value sought for this cell and then select the adjustable cell
that stores the value of the parameter to be changed. In this case, we seek the value in
the Set Cell B3 to be 1.5 by changing the value of cell B2. Providing this information to
Goal Seek and then pressing the “OK” button, will trigger the tool to iterate by
changing the value in the adjustable cell (B2) until the Set cell (B3) acquires the
required value. As shown in Figure 2.28, the answer obtained by Goal Seek is x = -
0.22474 which agrees with the first root obtained analytically.

83 - o =8202.2°8241
4 i C o £ # 3 - K L tA

1 y=x"2 .2x41 x y

Goal Seek Statun

Goal Sewlong wih Tel 1)

found » scluton

Targetvakue! LS
Current value! 1459393420

| ox l Coowl

10 | 4
151

Figure 2.28. Goal Seek solution with an initial value of x = 0

Goal Seek determined the first solution and not the second one because it starts the
iterative process with the initially specified value in the changeable cell, which is x =
0.0, and gives the solution that is closer to it. To determine the second solution, we have
to start with a suitable initial guess. Figure 2.29 shows the same Excel sheet with the
initial value of x changed to 1.0 and the set-up for Goal Seek before the solution. Figure
2.30 shows the new solution found by Goal Seek, which is x = 2.2249.
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Figure 2.29. Goal Seek set-up with an initial value of x =1

Note that the second Goal Seek solution deviates slightly from the analytical solution of
x=2.2247. The precision of Goal Seek solution can be improved by adjusting Excel’s
default parameters for iterative solutions. This can be done by selecting Options from
the File tab and then selecting Formulas. You can now increase the allowable
maximum number of iterations from the default value of 100 and reduce the maximum
change from the default value of 0.001.
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Figure 2.30. Goal Seek solution with an initial value of x =1

2.6.2. Iterative solution with circular calculations

A circular calculation occurs when an Excel formula refers to its own cell in a direct or
indirect way. When this happens, Excel prompts the user that there is a circular refrence
and then indicates the cells involved. By allowing Excel to perform circular
calculations, it will itearate until all the parameters involved are satisfied. The following
example illustrates this feature.

Example 2.5. Determining the final temperature of heated air
A closed system contains one kg of air initially at 300K. 100 kJ of heat is added to the
air at constant pressure. Determine the final temperature of air if its molar specific-heat

(Ep) varies with temperature according to the following formula:

G, —a+bT +cT?+dT® [Ki/kmol] (2.10)

Where a =28.11, b =1.97x10%, ¢ = 4.80x10, and d = -1.97x10.

Solution
From the defenition of specific heat, the final temperature (T>) is given by:

T, =T,+Q/c, /M) (2.11)

Where T, is the initial temperature, Q is the amount of heat added, and M is the molar
mass for air, taken as 29. If we ignored the variation of Ep with temperature and

determined the final temperature based on its value at T. only, the answer would be
T,=399.73K. However, we can be more accurate by determining Ep from Equation
(2.10) by using the average temperature, Tawr = (T1+T2)/2. Figure 2.31 shows the Excel
sheet developed for this method which reveals the formulae inserted in cells F2, F4, and

F6. As soon as we type Equation (2.11) in cell F6, Excel makes the warning message
that there is a circulare refernce as shown in Figure 2.32. The circular reference occurs

because T, depends on Ep according to Equation (2.11) while Ep itself depends on T»
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according to Equation (2.10). If we press the “OK” button shown in Figure 2.32, the
cells involved in the circular reference whill be identified as shown in Figure 2.33. In
this case, three cells are involved in the circular reference, which are F2, F4, and F6.

suMm ~ (0 X v | =T_1+0/cp
A B 2 D E F G H
1 |Air
2 T1 300k [Tawr | 350|=(T_1+T_2)/2
3 Q 100|k)
4 | Cp ﬂriﬁiﬁie;: =(a+b*T_avr+c_*T_avr"2+d*T_avr~3)/29
5 a 28.11
6 | b 1.97E-03 [t 2 l1sa/cp =1 1+a/cp
7 c 4.30E-06
8 d -1.97E-09
9

Figure 2.31. Excel sheet developed for Example 2.5
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| resuits of 1hat same formula. For exampie, o ool Bl refiery 10 ity own value or o ool st reflers 50 another ool whch dedends on the oogmal celfls value both
= cordan oradar references

For mere information about understanding, fnding, and remaving crader refarences, cick Help. 1F you want % areate a cradr reference, dick OF (o continue

oK —ep

Figure 2.32. The circular-reference prompt
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a [co | #010428|={a+b*T_avrec_*T_avri2+d*T_avra3)/29
5 a 28.11
6 | b 1.97E-03 [[2 [ ol=T_1+a/cp
7 c 4.80E-06
8 d -1.97E-09
9

Figure 2.33. The cells involved in the circular reference

Excel can solve this problem and determine the values of both T, and Ep that satisfy the

relevant equations if allowed to iterate. To allow this option, go to File and select
Options. The Backstage View form shown in Figure 2.34 will appear to you. Select
Formulas, then the form will appear as shown in_Figure 2.35. Enable iterative
calculations by ticking the box indicated in the figure and press the “OK” button.
Excel can now find the correct values of T, and c;, by iteration. Figure 2.36 shows the
solution found by Excel, which is T, =398.976K.
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Figure 2.35. Enabling iterative calculations from Excel's Formulas option
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T2 - fe | =T_1+Q/Cp

A B C D E F G

1 |air
2 T1 300|K 349.488|=(T_1+T 2)/2
3 100/kJ
4 =(a+b*T_avr+c_*T_avr 2+d*T_avr~3)/29
5 a 28.11
6 | b 1.97E-03 =T_1+Q/Cp
7 c 4.30E-06
8 d -1.97E-09
9

Figure 2.36. Solution of Example 2.5 by circular calculations

Although the subtle nature of circular calculations can be useful in certain situations,
various type of thermofluid analyses that require iterative solutions can be solved more
easily with Goal Seek or the Solver add-in as shown in Chapters 5 and 8. Try to solve

this example by using Goal Seek and compare the results (Problem 2.10).
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2.7. Excel’s graphical tools for data presentation and analysis

Excel has numerous graphical tools for the visualisation and analysis of numerical data.
Using these tools, the data can be presented in a variety of charts. Figure 2.37 shows
one type of Excel charts that displays the annual variation of temperature and relative
humidity at one location in a certain day. The figure shows a line chart in which the
temperature is scaled on the primary y-axis (on the left) while the humidity is scaled on
the secondary y-axis (on the right). This arrangement is useful for displaying two or
more types of data that differ significantly in their magnitudes.
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2 25 LA >
© / \ - 30 5
g 20 7 \ E
§ 15 4~ / -~_-=12 £
10 > S P temperature
- - 10
= = Humidity
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Figure 2.37. An example of line charts

Excel supports other types of charts that allow the user to select the most appropriate
way to display his/her data in the form of bar, area, or scatter charts. For more
information about the different types of Excel’s charts, the reader can refer to
specialised references such as Walkenbach [2]. A number of tutorials and videos that
show how to create different types of charts can also be found in the internet.

Excel’s graphical tools provide a curve-fitting capability of numerical data by using the
Trendline feature. This particular capability is useful for computer-aided thermofluid
analyses because it can be used to convert tabulated data into analytical equations that
suit computer-based methods better. The trendline feature provides a number of
options, which include exponential, linear, logarithmic, polynomial, and power
equations as shown in Figure 2.38. For example, Table 2.1 shows properties of
saturated water in the range 0.001°C — 60°C. Values of the saturation pressure (Psax) and
saturated liquid enthalpy (hy) are used in psychrometric analyses of air-conditioning
applications, but for computer-based analyses it is useful to convert these data into
equations. First, we have to create line charts for the two properties as shown in Figure
2.39.
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Figure 2.38. The Format Trendline window
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Table 2.1. Properties of saturated water at temperatures in the range 0°C- 60°C taken
from Cengel and Boles [3]

T°C | Psat Vi Vg Us Ug ht hg St Sg
[kPa] [m3/kg] [m3kg] | [kI/kg] | [kdkg] | [kdkg] | [kdkg] | [kdkg.K] | [kI/kg.K]

0.01 | 0.6117 | 0.001000 | 206.00 | 0.000 2374.9 | 0.001 2500.9 | 0.0000 9.1556
5 0.8725 | 0.001000 | 147.03 | 21.019 | 2381.8 | 21.020 | 2510.1 | 0.0763 9.0249
10 1.2281 | 0.001000 | 106.32 | 42.020 | 2388.7 | 42.022 | 2519.2 | 0.1511 8.8999
15 1.7057 | 0.001001 | 77.885 | 62.980 | 2395.5 | 62.982 | 2528.3 | 0.2245 8.7803
20 2.3392 | 0.001002 | 57.762 | 83.913 | 2402.3 | 83.915 | 2537.4 | 0.2965 8.6661
25 3.1698 | 0.001003 | 43.340 | 104.83 | 2409.1 | 104.83 | 2546.5 | 0.3672 8.5567
30 4.2469 | 0.001004 | 32.879 | 125.73 | 2415.9 | 125.74 | 2555.6 | 0.4368 8.4520
35 5.6291 | 0.001006 | 25.205 | 146.63 | 2422.7 | 146.64 | 2564.6 | 0.5051 8.3517
40 7.3851 | 0.001008 | 19.515 | 167.53 | 2429.4 | 167.53 | 2573.5 | 0.5724 8.2556
45 9.5953 | 0.001010 | 15.251 | 188.43 | 2436.1 | 188.44 | 2582.4 | 0.6386 8.1633
50 12.352 | 0.001012 | 12.026 | 209.33 | 2442.7 | 209.34 | 2591.3 | 0.7038 8.0748
55 15.763 | 0.001015 | 9.5639 | 230.24 | 2449.3 | 230.26 | 2600.1 | 0.7680 7.9898
60 19.947 | 0.001017 | 7.6670 | 251.16 | 2455.9 | 251.18 | 2608.8 | 0.8313 7.9082
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Figure 2.39. Fitting trendlines on tabulated data for water of
(a) saturation pressure and (b) saturated liquid enthalpy

Trendlines can then be added on the line charts. Figures 2.39.a and 2.39.b also show the
corresponding trendline equations of the tabulated data as determined by using
polynomial equations. A linear equation is adequate for the h: data since its variation
over the given temperature range is mild (Figure 2.39.b), but a third-order polynomial is
required to represent the variation of Psx with temperature (Figure 2.39.a).

2.8. Closure

This chapter described the main features of Excel needed for thermofluid analyses. The
chapter highlighted the importance of using cell labelling with Excel’s formulae and
illustrated the use of Excel’s general mathematical functions and logical functions. The
chapter also showed how Excel’s functions for matrix operations can be used for
solving linear systems of equations and demonstrated the use of its iterative tools, Goal
Seek and circular calculations. In spite of its simplicity, the Goal Seek command is very
useful for computer-aided thermofluid analyses. As shown in later chapters of this
book, it can be used for solving problems that require iterative solutions, such as type-2
and type-3 pipe flow problems, and flow analyses of multi-pipe arrangements. Finally,
the chapter illustrated the usefulness of Excel’s charting tools for computer-based
thermofluid analyses particularly the trendline feature.

It should be mentioned that the Developer tab in Excel’s user-interface provides a
number of useful features that can be used to enhance the performance and user-
friendliness of Excel as modelling platform for thermofluid analyses. For example,
macros are useful when conducting repetitive calculations and parametric analyses. For
more information about these features, the reader can refer to specialised references or
the internet.
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Exercises

1. The following table shows the measured values of the temperature by two different
methods compared to the correct values. Find the average error for each method.

Correct T (°C) Method 1 | Method 2

0 0.1044 0.1112
10 10.1092 10.1153
20 20.1139 20.1194
30 30.1186 30.1235
40 40.1231 40.1275
50 50.1276 50.1316
60 60.1320 60.1357
70 70.1364 70.1397
80 80.1407 80.1438
90 90.1450 90.1479
100 | 100.1493 100.1520

2. Suppose that we have the data shown on the following table for the saturation
pressure of a certain fluid. Use a nested IF statement to develop an interpolation
formula that determines the saturation pressure for any temperature in the range 5°C

<T <30°C.
T(°C) Pex (kPa)

5 0.872

10 1.228

15 1.705

20 2.339

25 3.160

30 4.246

3. Asystem of algebraic equations can be expressed in matrix form as follows:

70 1 0 |la 636
60 -1 1 |Kb;=4518
40 0 -1f|c 307
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Solve the system of equations to determine the values of the three unknowns a, b,
and c. This exercise is based on Example 9.11 in Chapra and Canale [4]. The
answer is: a = 8.5941, b=34.4118, and c = 36.7647.

The following system of linear equations resulted from a finite-difference solution
of the heat transfer in the triangular fin shown in the following figure.

0 1 2 3 4 5

Solution of the system provides the temperatures in °C at different distances from
the fin base as shown in the accompanying figure. Rewrite the systems in the
matrix form [A]{x} = {b} and use Excel functions to solve it.

-8.008 T + 3.5 T =-900.209

3.5T1-6.008 T, + 2.5 T3 =-0.209

25T,-4.008 T3 + 1.5 T4 =-0.209

1.5T3-2.008 T4 + 0.5 Ts = -0.209

T4-1.008 Ts = -0.209
Adopting suitable names in your formulae, prepare an Excel sheet for calculating
the frictional loss (hy) in a circular pipe of diameter D, length L, and roughness k.
Use your sheet to determine hy in the following cases:

(@ D=25cm,L=150 m,V =2 m/s, ks = 0.045 mm, carrying water at 20°C.

(b) D=25cm, L =150 m, V =0.2 m/s, ks = 0.045 mm, carrying oil at 20°C.

(c)D=25cm, L =150 m, V =7 m/s, ks = 0.045 mm, carrying air at 20°C.

Determine the values of the kinematic viscosity from relevant property tables and
take the transition of flow from laminar to turbulent to occur at Re = 4,000.

Using a line chart, plot the variation of sine @ for -180 < @ < 180 in steps of
10°then add cosine @ on the same chart.
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7. Using the data shown in Table 2.1, make a line chart for vf and vg. Add
polynomial trendlines for both and comment on the trendlines equations.

8. The table below shows some of the thermo-physical properties of air at
atmospheric pressure and different temperatures. Use Excel charts to show the
variation of the properties p, B, cp, k, a, u, v, and Pr with temperature and use
trendline to obtain suitable equations for these properties.

L Bx10% ¢, k a ux10° | vx10° | Pr
(K) (kg/ms) (1/K) (‘]/kg.K) (W/m.K) (mZ/S) (N S/mZ) (mZ/S)

273 | 1.252 3.66 1011 0.0237 19.2 17.456 13.9 0.71
293 | 1.164 3.41 1012 0.0251 22.0 18.240 15.7 0.71
313 | 1.092 3.19 1014 0.0265 24.8 19.123 17.6 0.71
333 | 1.025 3.00 1017 0.0279 27.6 19.907 19.4 0.71
353 | 0.968 2.83 1019 0.0293 30.6 20.790 215 0.71
373 | 0.916 2.68 1022 0.0307 33.6 21.673 23.6 0.71
473 | 0.723 2.11 1035 0.0370 49.7 25.693 35.5 0.71
573 | 0.596 1.75 1047 0.0429 68.9 29.322 49.2 0.71
673 | 0.508 1.49 1059 0.0485 89.4 32.754 64.6 0.72
773 | 0.442 1.29 1076 0.0540 113.2 | 35.794 81.0 0.72

9. Using the Excel sheet developed for Example 2.4, check the accuracy of the
solution obtained by Goal Seek when the spreadsheet iteration parameters are
adjusted such that the maximum number of iterations is increased to 10,000 and the
maximum change is reduced to 0.00001.

10. Solve Example 2.5 by using the Goal Seek command instead of circular
calculations.

11. The volume V of liquid in a spherical tank of radius r is related to the depth h of the

liquid by:
V = th?(3r —h)/3
Using Excel and the Goal Seek command, determine h given r=1 mand V = 0.5 m?.

This exercise is based on Problem 8.9 in Chapra and Canale [4]. Answer: h = 0.431
m.
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This chapter focuses on two auxiliary components of the Excel-based modelling
platform for thermofluid analyses, which are Solver and VBA. Developed by Frontline
Systems [1], Solver enables Excel to perform iterative solutions and optimisation
analyses with multiple adjustable cells. It offers three solution methods that suit
different types of problems including a deterministic gradient method, a linear-
programming method, and a stochastic evolutionary method. This chapter shows how
Solver can be activated and used for solving single nonlinear equations and systems of
linear equations and performing optimisation analyses. The Chapter describes the
settings of Solver’s solution options and illustrates the use of its GRG Nonlinear
method and the Evolutionary method. Finally, the chapter shows how VBA can be used
for developing custom functions not provided by Excel.

3.1. Activation of Solver
Like the Goal Seek command, Solver is found in the Data tab as shown in Figure 3.1.
If it doesn’t appear in your Data tab, then you need to activate it as follows:

1. Go to File and then click Options.

2. Select Add-Ins. From the Manage option at the bottom of the menu select
Excel Add-ins and then press “Go”. The Add-Ins dialog box shown in Figure
3.2 will appear to you.

3. To add Solver to the add-ins menu, tick (V) on the “Solver” option. Return to
the data tab.

v %‘ =N |=4] Data validation ~
1! - = -

Formulaewe.,\,. View Developer
: -w Group : E

=

Filter 7 Textto Remove g i
M7 Advanced | Columns Duplicates =2 What-If Analysis ~ :’L] Subtotal

[ Consolidate @ Ungroup ~

Sort & Filter Data Tools Outline Analysis

E F G H | J K L M

Figure 3.1. The Solver add-in in the Data tab

When you click the Solver button from the Data tab, Solver Parameters dialog box
shown in Figure 3.3 will appear to you. This dialog box helps you to specify the
required outcome of a formula in one cell called the objective cell by adjusting the
values of a group of cells, called decision variables or variable cells, which are directly
or indirectly related to the formula in the objective cell. As shown on the parameters
dialog box, you can specify constraints on the values of the decision variables.
Compared to the Goal Seek command, Solver offers the following advantages:

1. While Goal-Seek can only be used for simple problems that involve one
decision variable, Solver can deal with more difficult problems in which the
objective cell is affected by many decision variables.
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Figure 3.2. Activating Solver from the menu of Excel add-ins
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2. Goal Seek allows only a required value of the objective cell to be achieved, but
Solver also enables us to perform an optimisation analysis by finding the
maximum or minimum value for the formula in the objective cell.

3. With Solver, we can apply constraints on the solution, which is not possible
with Goal Seek. Constraints are needed for some optimisation analyses and
iterative solutions.

4. Solver is that it allows the user to select the appropriate solving method for his
or her problem from three options.

The version of Solver that comes with Excel 2010 and later editions offers the
following three search methods:

1. GRG Nonlinear. A Generalized Reduced Gradient method (which is the
method selected in Figure 3.3).

2. Evolutionary. An Evolutionary method.

3. Simplex LP. A linear programming method.

Both the GRG Nonlinear method and the Evolutionary method are used for non-
linear problems, while the Simplex LP method is suitable for linear problems. Solver
uses the GRG Nonlinear method by default. This section shows how the three solution
methods can be used to solve different types of problems.

3.2. The GRG Nonlinear method
The GRG Nonlinear method is a mathematical method that involves the determination
of the function’s gradient like the Steepest Descent method [2]. Therefore, it is suitable
for problems involving functions that have continuous and smooth variations. The
following sections show how the method can be used for the solution of nonlinear
equations and optimisation analyses.

3.2.1. Solution of nonlinear equations

To illustrate this option, let us reconsider Equation (2.9) in Example 2.4 which has two
solutions. We can use the Excel sheet developed previously for the solution with Goal
Seek. Solver constraints allow us to search for the first or the second solution at a time.
Let us initially find the second solution, i.e. x> 0. To do so, select Solver from the Data
tab and fill its parameters dialog-box by entering the following information:

Set Objective: Type B3, select Value of, and type 1.5 for this
option since want the value of the function in cell
B3 to be 1.5.

By Changing Variable Cells:  Type B2, which is the cell that stores the value of
the independent variable x

Subject to the Constraints: Add two constraints that specify the minimum and
maximum values of X, e.g. x> 0and x <3

Select a Solving Method: Select the GRG Nonlinear option



Computer-Aided Thermofluid Analyses Using Excel 67

The upper part of the completed parameters dialog box will be as shown in Figure 3.4.
Note that the two constraints imposed on the solution correspond to x > 0 and x < 3.
When you press the Solve button in the dialog box, Solver will iterate to determine the
value of the only variable cell that yield the targeted objective within the limits
specified by the constraints. As Figure 3.5 shows, the solution determined by Solver is x
= 2.22474, y = 1.5, which is the second analytical solution found in Example 2.4. To
keep this solution, press the “OK” button in the Solver Results dialog box. Now try to
find the first solution by modifying the two constraints to: x > -1 and x <0.

Solver Parameters x
Set Objective: EE 5.5
To: () Max ) Min (®) Value OF: L3

By Changing Variable Cells:

]
i

sBs2

Subject to the Constraints:

SBe2 <=3

B2 ==0 Add
Change
Delete

Figure 3.4. The completed Solver dialog box for Example 2.4 with x > 0
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13 satisfied.
14 When the GRG engine is used, Solver has found at least a local optimal
solution. When Simplex LP is used, this means Sclver has found a global
15 optimal solution.
16

Figure 3.5. Solver solution for Example 2.4 with x> 0

3.2.2. Optimisation analyses

An optimisation problem requires the function in the objective cell to be maximised or
minimised. For example, the thermodynamic optimisation of a power-generation plant
requires its thermal efficiency to be maximised, while the economic optimisation of
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pipe insulation requires its total cost to be minimised. The following example illustrates
the use of the GRG Nonlinear method in optimisation analyses.

Example 3.1. Finding the minimum value of a smooth function
Find the minimum value of the following quadratic function f in the specified range.

f(x) =x2-2x-1; —2<x<3 (3.2)

Solution

Figure 3.6 shows the Excel sheet developed for this example that calculates the values
of f at different values of x. The line chart in Figure 3.6 shows the variation of f with x
from which we can see that the minimum value of f is -2 and occurs at x =1. Note the
curser is placed on cell B6 to reveal the formula fx = B3~2-2*B3—1. We will now use
Solver to determine the minimum value of the function. Figure 3.7 shows the completed
Solver’s parameters dialog box. Press the “Solve” button and Solver will iterate to find
the solution shown in Figure 3.8. As the figure shows, the answer found by Solver,
which is x = 1, f = -2, agrees with the graphical solution shown in Figure 3.6.

B - fe | =B372-2*B3-1
A B C D E F G H J K
Design variables X f k .
X -2 &

Obective function
f I 7]

|

wr oo L
PR L~
.
T
I-//

£

= w0 oo || L b=

1
12

Figure 3.6. Excel sheet for determining the local minimum of the quadratic function

Solver Parameters X

Set Objective: R
To: O Max ® Min (O value Of:

By Changing Variable Cells:

5BS3 E

Subject to the Constraints:

5B53 <=3
$B53 >=-2 Add

Change

Delete

Figure 3.7. The completed Solver dialog box for Example 3.1
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12
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17
18

19
Figure 3.8. Solver solution for Example 3.1

3.3.  The Simplex LP method

This Solver option provides an alternative method for solving small systems of linear
equations to that described in the previous chapter by using Excel’s matrix functions.
To illustrate this method, reconsider the problem of Example 2.3. Figure 3.9 shows a
new Excel sheet that has been prepared for the present method.

H13 - L | (sMMULT(B2:F6,F9:F13))

a 0 ( D E G H | i
1 A = fyl 5
2 14 14 -5 3 -5 -15
3 14 52 -15 2 -32 -100
3 9 18 36 -5 16 106
5 3 2 5 a7 45 329
6 -5 32 16 49 79 462
p
8 (x0) [Al{x0}
- 1 17
10 1 21
11 1 23
12 1 96
13 1 107
14 3

Figure 3.9. Excel sheet for solving Example 2.3 with Solver

The top part of the sheet stores the coefficient matrix [A] and the right-hand vector {y}
of the system of linear equations to be solved. The procedure starts with a guessed
solution which is stored in a vector {x0} in cell F9:F13. All the elements of this vector
are given a value of 1 as shown in Figure 3.9. The coefficient matric [A] is then
multiplied with the guessed vector {x0} by using Excel’s "MMULT” function and the
result stored in cells H9:H13. If this initial guess were correct, the multiplication
[A]{x0} would be the same as the true right-hand side vector, i.e,:

[AI{x0} = {y} (3.2)
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However, Figure 3.9 shows that the vector [A]{x0} is different form the true right-hand
side vector {y} stored in cells H2:H6. Solver can now be used to adjust the variable
cells D9:D13 so that all elements of the vector [A]{x0} become equal to their
counterparts in vector {y}, i.e:

H9 = H2

H10 = H3
H11=H4
H12 = H5
H13 = H6

Solver set-up for this task is shown in Figure 3.10. Note that the objective cell is left
blank. In this case, Solver will iterate to find the values of the decision variables that
satisfy all the imposed constraints. Also note that the Simplex LP method is selected as
the solution option.

Solver Parameters b4

Set Objective: | 53

To: (®) Max () Min () value Of: 0

By Chanaging Variable Cells:
§F$0:4F 513 55

Subject to the Constraints:

SHS10 = +8HS3
SHS11 = +8H54
SHS12 = +8HS5
SHE13 = +5HS6 Change
SHS9 = 45HS2

Add

Delete

Resat Al

Load/Save

Make Unconstrained Variables Mon-Megative

Select a Solving Method: Simplex LP e Options

Figure 3.10. Solver set-up for Example 2.3 with the Simplex LP method

The solution found by Solver using the above set-up is shown in Figure 3.11. All the
elements of the [A]{x0} are now equal to their corresponding elements in the vector
{y}. The first element of the solution vector, which is -6.6x102®, is practically zero.
Therefore, the solution is [0,1,2,3,4], which is the same as that obtained in Example 2.3
by using the matrix inversion method. You can now try to use the other two solution
methods of Solver to solve this problem. Solver can also be used for solving systems of
simultaneous nonlinear equations (refer to Problem 3.7).
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Fo | {=MMULT|B2:F6,F3:F13)

14 14 -9 3 -5 -15
14 52 -15 2 -32 -100
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(x0) [A]{x0}
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10 | 1 100

12 | 129
13 \ a | 363
1

Figure 3.11. Solution of Example 2.3 with the Simplex LP method

3.4. The Evolutionary method

When the function to be optimised has more than one optimum point, the GRG
Nonlinear method can only find the one that is closest to the initial guess; which may
not be the global minimum. For such functions, Solver provides the Evolutionary
method that adopts a variety of genetic algorithms and local search methods [3]. The
following example illustrates the capability of the Evolutionary method to find the
global minimum of a simple function.

Example 3.2. Finding the global minimum of a function
Determine the global minimum value for the following function:

f (x) = xcos(x) 3< x<14 (3.3)

Solution

Figure 3.12 shows the Excel sheet developed for solving this example. The insert shows
that the function has two minima in the specified range of x; one at X = 5 and another at
X = 11. At the initially-specified value ox x = 3, the function has a value of 0.42336. Let
us first try to solve the problem with the GRG Nonlinear method. Figure 3.13 shows the
completed Solver parameters dialog-box with two constraints that specify the upper and
lower limits for x. From Figure 3.14 that shows the solution found by Solver by using
the GRG Nonlinear method it is clear that Solver found the local minimum which is
nearer to the initial guess and not the global minimum. In order to locate the global
minimum by the GRG Nonlinear method, the solution has to be started with an initial
guess that is nearer to the global minimum, e.g., x = 9. The advantage of the
Evolutionary method is that such an arrangement is not required. With this method we
may choose to specify bounds on variables (see Section 3.6). Since the set-up shown in
Figure 3.13 already specifies upper and lower bounds on x, we only need to change the
solution method to “Evolutionary”. Figure 3.15, which shows the solution obtained by
this method, shows that the method produced the global minmum.
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Figure 3.12. The Excel sheet for Example 3.2
Solver Parameters |

Set Objective: BB

Ta: () Max (®) Min () value OF: 0

By Changing Variable Cells:
e

Subject to the Constraints:

=
=

=12
a0 [ am |

Delete

- 13

kS 8 C 4] 3 F G ] | ] K L “
1
2 x 3 0.42336 200
3 4 3m7m
4 fix -a.nua 3 A6 150
s 6 -16764% ino
) 7 A.558506
7 & 7.914800 50
= 3 3.703066 >
s 10 -5.44001 00 .
10 11 -10:9999 13 14 *
1 12 -6.43888 50
12 13 S48nn 400
13 14 138685
1% 291318 4.81847 150
u x
16

Figure 3.14. Solver solution for Example 3.2 with the GRG Nonlinear method
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Figure 3.15. Solver solution for Example 3.2 with the Evolutionary method

While the solution with the GRG Nonlinear method took less than a second that of the
Evolutionary method took one minute and 35 seconds on the same computer. As shown
in the following sections, the computer time of the Evolutionary method can be reduced
by adjusting the default options of the method. The method is particularly useful for
optimisation analyses that involve non-smooth and discontinuous functions, which are
difficult to solve with the GRG Nonlinear method. Section 3.6 compares the GRG
Nonlinear method and the Evolutionary method by considering an optimsation analyses
that is more relevant to thermofluid systems.

3.5.  The default settings of Solver options

Solver gives it user some control over how its three solution methods work by allowing
certain options in these methods to be adjusted. The default settings of these options are
usually satisfactory, but they may have to be changed in order to reduce the
computation time or increase the precision of the solution for some problems.
Sometimes, Solver fails altogether to find the solution if the default options are not
changed. While some adjustable options are common to all three solution methods,
others are particular to the GRG Nonlinear method or the Evolutionary method. By
clicking the “Options” button in Solver’s parameters dialog box as shown in Figure
3.16, the dialog box shown in Figure 3.17 will appear to you. This figure shows the
default settings of the options that are common to all three solution methods. The
general options shown in Figure 3.17 are used without change in most of the analyses
presented in this book. For example, the default value for the maximum number
iterations, which is 100, is adequate for all the analyses presented in later chapters of
the book. However, certain analyses required the automatic-scaling option to be used.
The automatic-scaling option enables Solver to handle a poorly-scaled model, i.e. a
model in which the values of the objective and constraint functions differ by several
orders of magnitude, by allowing the values of the objective and constraint functions to
be scaled internally in order to minimise the differences between them.
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Select a Solving Methed: GRG Monlinear v

Solving Method

Select the GRG Monlinear engine for Solver Problems that are smooth nonlinear, Select the LP Simplex
engine for linear Solver Problems, and select the Evolutionary engine for Solver problems that are
non-smooth,

Help Solve Close

Figure 3.16. Solver options in the Properties dialog box

Options @@

All Methods IGRG Nenlinear | Evelutionary ]
Constraint Precision: 0.000001

[ use Automatic Scaling

[ show Iteration Results
Solving with Integer Constrainis

lgnore Integer Constraints

Integer Optimality (%) 5
Solving Limits

Max Time (Seconds): 100
Iterations: 100

Evolutionary and Integer Constraints:

Max Subproblems:

Max Feasible Solutions:

aK Cancel ‘

Figure 3.17. Default Solver options adopted in the analyses for all solution methods

Figures 3.18.a and 3.18.b show the default settings which are particular to the GRG
Nonlinear method and to the Evolutionary method, respectively. Figure 3.18.a shows
that the GRG Nonlinear method uses the forward difference (FD) approximation of
derivatives by default. This option is kept unchanged in all the analyses presented in
this book. A case is considered in the following section in which the GRG Nonlinear
method needed the automatic-scaling option in order to reach the solution.
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Figure 3.18. The default Solver options specific to: (a) the GRG Nonlinear method and
(b) the Evolutionary method

Figure 3.18.b shows the default settings used by the Evolutionary method. According to
this set-up, the population size is 100, the maximum allowable time without
improvement is 50 seconds, and upper and lower bounds on variables are required. As
shown in the following section, the time required by the Evolutionary method can be
reduced by adjusting the population size or the maximum allowable time. Because of its
long computer time, only few cases in this book used the Evolutionary method.

3.6. Optimisation with the GRG Nonlinear and Evolutionary methods

The GRG Nonlinear method and the Evolutionary method apply two fundamentally
different methods of optimisation. While the GRG Nonlinear method applies a
deterministic numerical method, which is the generalised reduced gradient method [4],
the Evolutionary method applies a group of stochastic search algorithms [5]. This
section compares the two optimisation methods by considering the case of optimising
the thickness of insulation around an air-conditioning duct. The following example is
based on Example 4.1 in Janna [6].
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Example 3.3. Determining the optimum thickness of insulation around a duct
Figure 3.19 shows a circular duct of external diameter D; that transports hot air-
conditioning air. The difference in temperature between the air inside the duct and the
surroundings causes heat losses to the surroundings. This heat loss can be minimised by
using insulation of outside diameter D..

o

Figure 3.19. Schematic of the insulated duct

D,

It is required to determine the most economical thickness of insulation based on the
following information:

(@  The cost of pumping the air through the duct (Cp) in $/year is given by:
C,=3x10°D;" (3.4)
(b)  The cost of heating the air (Cy) in $/year is given by:

c, - (3.5)

9
o
In which ¢ is the insulation thickness (6 = D, — D1) in meters.

(c) Due to space limitations, the outside diameter of the insulation D, cannot exceed
12 cm.

The analytical model
The total cost (Cr) is given by the summation of the pumping and heating costs:

3x10° 9 3x10° 9
=————+— = +

C. = 3.6
! Dy 4 DY (D, - D) (36)

By imposing the requirement that the maximum diameter D, should not exceed 0.12 m,
the total cost becomes;
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_3x10°® L9

c
T pf (012-Dy)

(3.7)

Differentiating Equation (3.7) with respect to D, and equating the result to zero, Janna
[6] obtained the following solution for Da:

/6

D, = [L67x10°(0.12- D, )| (3.8)

The solution Equation (3.8) would give the required value of Ds, but it is nonlinear.
Therefore, it requires an iterative solution. By using an iterative method, Janna [6]
determined the optimum diameter as D; = 0.045 m. Excel can easily perform the
iterative solution of Equation (3.8) with Goal Seek. However, Solver provides an
alternative method for solving the problem by minimising the basic function in
Equation (3.6) without any differentiation.

Solution with the GRG Nonlinear method

Figure 3.20 shows the Excel sheet developed for this example. Note that the figure
reveals the formulae used in the calculations part in which cell labelling has been used.
The data part includes only the value of D, (D_2) = 0.12 m. The sheet gives the total
cost for a guessed inner diameter D1 (D_1) of 0.1 m. At this guessed diameter, the
insulation thickness ¢ (t) is 2 cm and the total cost is 450.3%.

C_Total - Jx | =C_pt+c_h
A B c D E F G H | J
1
2p2 | o012 fo1 | o4 [c_Total] 450.3]=c_p+c_h
3
a =D_2D_1
5
6 Cp 0.3|=0.000003/D_145
7 c_h 450]=9/t
8

Figure 3.20. Excel sheet for optimisation of the insulated duct

The diameter that minimises the total cost can be found by using Solver. Figure 3.21
shows Solver Parameters dialog box for finding the values of D (in the adjustable cell)
that minimises the total cost (in the target cell). Initial trials with the GRG Nonlinear
method showed that no solution can be obtained by using the default options shown in
Figures 3.17 and 3.18.a (i.e. without automatic scaling) without imposing a lower limit
on D;. Therefore, a lower limit of 1 cm was imposed on D; as shown in Figure 3.21.
The solution obtained by Solver with this method and setup is shown in Figure 3.22.
The optimum value thus obtained for the inner diameter, which is D1 = 0.045763 m,
agrees well with the value obtained by Janna [6]. The GRG Nonlinear method can solve
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the problem without imposing a lower limit on Dy, but by selecting the “Use Automatic
Scaling” option (see Problem 3.6).

Solver Parameters *

|
1l

Set Objective:

To: () Max (® Min () value OF: 0

By Chanaging Variable Cells:

L |
il

D_1

Subject to the Constraints:
D_1>=0.01 Add

Change

Delete

Figure 3.21. Solver set-up for the insulated duct optimisation with the GRG Nonlinear

method
- fe| =C_p+c h
A B C D E F G H I J
D 2 0.12 D1 |0.04576| [c Total| 136.18]=¢ p+c h
[t | 0.07424|=D 2-D 1

Cp 14.94683|=0.000003/D 175
c_h 121.233|=9/t

Lo | =] @ ||| b e

Figure 3.22. Optimised solution for Example 3.3 with the GRG Nonlinear method

Solution with the Evolutionary method

The same sheet that used the GRG Nonlinear method can be used with the Evolutionary
method. As shown in Figure 3.18.b, imposing upper and lower bounds on the problem
variables is also optional with the Evolutionary method. However, initial trials with this
method showed that no solution can be obtained without specifying limits on D,
whether automatic-scaling is used or not. Therefore, both upper and lower limits were
used with this method as shown in Figure 3.23. The upper limit is specified such that D
cannot exceed D,. As Figure 3.24 shows, the solution obtained with the Evolutionary
method is the same as that reached by the GRG Nonlinear method. However, with the
default number of the population size of 100 the Evolutionary method required more
than two minutes of computer time. By reducing the population size to 10, the method
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reached the same solution in less than a second. Chapter 6 gives more examples of
using the GRG Nonlinear method and the Evolutionary method for optimisation
analyses of thermofluid systems.

Solver Parameters *

L |
ul

Set Objective:

To: () Max (®) Min () value OF: 0

By Changing Variable Cells:
D1

n
i

Subject to the Constraints:

D_1<=0.12
D_1>=0.01

Add

Change

Delete

Figure 3.23. Solver set-up for the insulated duct optimisation with the Evolutionary

method
- £ | =c_p+c_h
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Figure 3.24. Optimised solution for Example 3.3 with the Evolutionary method

3.7.  VBA and the development of user-defined functions

VBA is a programming language that can be used for the development of customised
functions, called user-defined functions (UDFs), or macros. The process of activating
and using VBA for developing UDFs can be illustrated by means of a simple example.
Suppose that we want to write a function for determining the area A of a circle given its
diameter D by using the following equation:

A=7D?/4 (3.9)
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As shown in Figure 3.25, VBA is found on the left side of the Developer tab. This tab
gives many other development tools. If the Developer tab is not shown in the ribbon of
your Excel sheet, you can make it available by going to File, selecting Options, and
then the Customise Ribbon from the Backstage View shown in Figure 3.26.
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Figure 3.25. Selection of VBA from the Developer tab
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Figure 3.26. Adding VBA to the Developer tab
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In the Main Tabs list, select the Developer check box as shown in the figure, and then
click “OK”. The Developer tab will now be shown in the ribbon of your Excel sheet.
To start writing the UDF, go to Developer tab menu and select Visual Basic. The
Visual Basic editor will appear to you as shown in Figure 3.27. Select Insert —
Module and the blank page shown in Figure 3.28 will be open for you to type the VBA
code.

£ Microsoft Visual Basic for Applications - Themmax_D7dam - O X

" —

i Ele Edt Yiew |jnsen| format Debug Bon Jools Addlnc  Window el Type » question or help =

Figure 3.27. Inserting a new module

9 Microsoh Visual Basic for Applications - BookT - o @ x
}ﬂ. “ m M m M l\n I“h m m udp Type = guestion foc help
e A AR 90 ) d A B @

x| ,

Figure 3.28. A new VBA module
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The following VBA code is the required the UDF that determines the circle’s area from
its diameter according to Equation (3.9):

Function Circ_area(Dia)
Pi =3.141593
Circ_area=Pi*Dia"2/4
End Function

Note that the first line in the code starts with the word “Function” and then adds a
name for the function and specifies the required input parameters. The name you give to
your new function will be used to call it from Excel Ul. Therefore, this name should
clearly indicate the purpose of its use. In the present case, the name given to the
function is “Circ_area” to indicate that it calculates the area of a circle. The function
has only one input parameter, which is the circle’s diameter (Dia). As soon as you type
the first line of the code and press the “Enter” key, the editor will automatically add the
End line of the function. Now, type the rest of the code as shown in Figure 3.29.

| E Microsoft Visual Basic for Applications - Thermax_D7.xlam — O d
i File Edit View [nsett Format Debug Run Tools Add-Ins  Window Help Type a question for help -
HE-Ed L 54 9 pon B BMEY o @ Lnscoll A
Project - VBAProject »

J % Thermax_D7.xlam - Module3 (Code) EIIEI
lj | | 7] |tGeneraI] v| |Circ_area v|
| B[ Microsoft Excel Obje » —
23 Modules Function Circ area (Dia) -

L Modided v Pi = 3.141593
< > Circ area = Pi * Dia ™~ 2 / 4
= End Function

Properties - Module3 &

Module3 Module w |

Alphabetic ' Categorized

Module3 | hd
=)= <« >

After typing the code correctly, the function can be used via Excel Ul just like any
built-in function as shown in Figure 3.30. Note that the formula bar in Figure 3.30
reveals the formula in cell B2 as:

= Circ_area(10)

Where the number 10 refers to the diameter of the circle. You can now check the output
of your user-defined function, which is 314.1593 square units, by calculating the
circle’s area with a normal Excel formula. Finally, note that VBA does not provide a
built-in function for the constant Pi () and, therefore, you have to assign a value for it
as shown in Figure 3.29. Alternatively, you can use the one provided by Excel.
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B2 - f= | =Circ_area(10)
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3
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Figure 3.30. Using the “Circ_area” function in Excel

In thermofluid analyses, VBA is useful for developing UDFs for fluid properties. For
example, the molar specific-heat at constant pressure (Ep ) for an ideal gas is given by

the following formula [7]:
Co=ap +aT +a,T? +a,T° [kJ/kmol.K] (3.10)

Where T is the absolute temperature and ap, ai, az, and as are constants that have
different values for different gases. For air, the constants are 28.11, 0.1967x10?2, 0.4802
x10%, and -1.966 x10° in this order. Figure 3.31 shows the VBA code for the UDF

“cp_air” that determines Ep for air based on Equation (3.10) and the formula bar in

Figure 3.32 shows how the function can be used in an Excel formula to determine Ep
for air at 300K. The value returned by the function is 29.0771 kJ/kmol.K.
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Figure 3.31. A UDF for caclcuating the molar specific-heat for air
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Figure 3.32. Using the cp_air function in Excel
3.8. Closure

This chapter introduced the Solver add-in that enables Excel to perform constrained
iterative solutions and optimisation analyses involving multiple parameters. The chapter
briefly described the three solution methods provided by solver, which are the GRG
Nonlinear method, the Evolutionary method, and the Simplex LP method, and showed
how these methods can be used for solving nonlinear equations and systems of linear
equation and performing optimisation analyses. The use of Solver for optimisation
analyses of thermofluid systems is demonstrated by considering the case of insulating a
duct that carries hot air for air-conditioning. This analysis showsed that the default set-
up of Solver may have to be adjusted to allow automatic-scalling in order to perform
the analysis by the GRG Nonlinear method or to reduce the population size in the
Evolutionary method in order to reduce the computer time. Solver can also deal with
multi-variable optimisation analyses as shown in later chapters of the book.

The chapter also showed how VBA can be used for developing user-defined functions
not provided by Excel. In thermofluid analyses, this is needed for the development of
custom functions for fluid properties. As an example, a custom function was developed
for determining the specific heat of air from the ideal-gas law. Another situation that
requires the development of user-defined functions with VBA is faced when the
analytical model involves complex equations, implicit nonlinear equations, or a
complicated logical branching. In such cases, Excel formulae which are confined to
separate cells become too restrictive and inconvenient to use. VBA can then be used to
develop a suitable user-defined function that performs the complicated calculations and
passes the outcome to Excel. More information about the VBA language can be found
in specialised references [8-10].
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Exercises

1. Draw a line chart with Excel to show the variation of the following function in the

range -5 < x <5:
f(x) =x-13x —12

Use Solver with proper bounds to determine the roots of this equation. This exercise
is based on Example 6.2 in Chapra and Canale [11].
A system of algebraic equations can be expressed in matrix form as follows:

70 1 0 |la 636
60 -1 1 |Kb;=4518
40 0 -1f|c 307

Solve the system of equations by using Solver to determine the values of the three
unknowns a, b, and c. Based on Example 9.11 in Chapra and Canale [11]. The
answer is: a = 8.5941, b=34.4118, and ¢ = 36.7647.

Draw a line chart with Excel to show the variation of the following function in the
range 0 <x <4:

f(x) = 2 sin x — x%/10

Use Solver to find the maximum of the function in the same range. Based on
Example 13.1 in Chapra and Canale [11]. The answer is: f(x) = 1.7757 at x =1.4276.
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4. The following figure is a plot of the function:
f =e’sin(26)
Use Solver to find:
a) The minimum value of the function and the corresponding angle

b) The maximum value of the function and the corresponding angle
c) The angle at which value of the function equals 4

0 T T T

0 100 N 300 / 440
_5 \
-10

N4

Function

-15

Angle
Figure P1.4. A composite function

5. Using the Excel sheet developed to solve Example 2.4 by the GRG Nonlinear
method, study the effect of using central-difference approximation of derivatives
instead of the default forward-difference approximation on the solution.

6. Using the Excel sheet developed for the solution of Example 3.3 with the GRG
Nonlinear method, show that the same solution shown in Figure 3.22 can be
obtained without imposing a lower limit on D by using automatic scaling.

7. Consider the following set of simultaneous nonlinear equations:

X2+ xy = 10 (A)
y +3xy% = 57 (B)
To solve the system with Solver, rearrange the equations as follows:

ux, y) =x2+xy-10=0 ©
V(X,y) =y +3xy? =57 =0 (D)

Create two cells (Bland B2) to hold initial guesses for x and y. Enter the function
values themselves, u(x, y) and v(x, y) into two other cells (B3 and B4). The initial
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guesses may result in function values of u and v that are far from zero. Determine
the sum of the function squares, i.e. u? + v, and store it in cell B5. Use Solver to
find the values of x and y in cells B1 and B2 (the Changing cells) that make the
value in cell B5 (the objective cell) equal to zero. Using this procedure, find the
roots of the above system starting with initial guesses of x =1 and y = 3.5. Based on
Example 6.5 in Chapra and Canale [11]. The correct pair of roots is x=2 and y=3.

8. The pipe shown in Figure 3.19 has an external diameter D1 = 4.6 cm. The pipe is
surrounded by an insulation material with outside diameter D,. The cost of pumping
the fluid through the pipe (Cp) and the cost of heating the fluid (Ch) are given by
Equations (3.5) and (3.6) in Examples 3.3, respectively. The total cost (Cr) includes
the cost of the insulation itself, which is given by:

C, =5005

Use Solver with the GRG Nonlinear method to determine the optimum thickness of
insulation.

9. Solve Problem 3.8 with the Evolutionary method using lower and upper bounds for
D, of 5 cm and 30 cm respectively.

10.The volume V of liquid in a spherical tank of radius r is related to the depth h of the
liquid by:

V = 7h?(3r —h)/3

Using VBA, develop a user-defined function that determines h at any given values
of r [m] and V [m3]. Check your function at r=1 m and V = 0.5 m*. Answer: h =
0.431 m.Develop user-defined functions with VBA for determining the specific
enthalpy and entropy of superheated steam from its pressure and temperature.

11. Using tabulated data for refrigerant R134a, develop user-defined functions with
VBA for determining properties, e.g., enthalpy and entropy, of saturated
liquid/vapour R134a from its temperature or pressure.

12. Using suitable formulae for superheated refrigerant R134a, develop user-defined
functions with VBA for determining properties, e.g. enthalpy and entropy, of
superheated R134a from its temperature and pressure.
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Equipped with numerous built-in functions, the Goal Seek command and the Solver
add-in, Excel is a powerful modelling platform for fluid-flow and heat-transfer
analyses. However, for thermodynamic analyses Excel’s capacity is limited by the lack
of built-in functions for fluid properties. Another limitation of Excel for thermofluid
analyses even for fluid-flow and heat-transfer analyses is that Excel’s cell-confined
formula becomes too restrictive for model development when an iterative solution
involves a nonlinear equation like the Colebrook equation. This chapter presents the
Thermax add-in that provides custom functions for the properties of ideal gases,
saturated water and superheated steam, six commonly used refrigerants, humid air for
psychrometric analyses, and air at standard atmospheric pressure. In addition to its
property functions, Thermax provides two interpolation functions for general use and
an internal Newton-Raphson solver for nonlinear equations that can be used to deal
with the linear equation in an iterative solution. The chapter describes the procedure for
installing the add-in and using its functions and numerical tools in Excel’s formulae.

4.1. Thermax property functions

Thermax provides five groups of property functions for: (i) ideal gases, (ii) water and
superheated steam, (iii) vapour-compression refrigerants, (iv) humid air for
psychrometric analyses and (v) air at atmospheric pressure. To easily select the required
function from the large number of functions provided by the add-in, Thermax adopts a
style for naming the functions that indicates the group and the input and output
parameters of each function. This section describes the adopted name-style and shows
how the functions in the five groups are formulated.

4.1.1. Name style for Thermax property functions
The name of any property function consists of three distinct parts as follows:

1. The first part indicates the function’s group: “Gas” for ideal gases, “Wat” for
water, “Ref” for refrigerants, and “Air” for air at atmospheric pressure.

2. The second part indicates the function’s output property, e.g. “h” for enthalpy
and “s” for entropy.

3. The third part indicates the function’s input parameters, .e.g. “P” for pressure
and “T” for temperature.

For example, consider the two functions shown in Figure 4.1. The top function,
Wath_Px, determines the enthalpy of saturated water at a pressure of 500 kPa and
quality of 0.8. The first three letters in the function’s name refer to its group (Wat)
immediately followed by the function’s output (h). An underscore precedes the
function’s two input arguments, which are the pressure (P) and quality (x). Similarly,
the name of the bottom function, Refs_PT, tells that it belongs to the refrigerants group
and that it determines the entropy (s) of refrigerant R134a from its pressure (P) and
temperature (T). This function requires three input parameters which are (i) the
refrigerant name, (ii) the pressure, and (iii) the temperature. Table 4.1 shows more
examples for the functions with their intended usage.
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Wath_Px(500,0.8)
ot o=

Input arguments

(@)

Refs_PT(“R134a"”,200,50)

Gi}ﬁ -

Input arguments

(b)

Figure 4.1. Examples of Thermax functions

Table 4.1. Examples of Thermax property functions with their output arguments

# Thermax function

Output

1 | Gash TK(“Air”,350)

Determines the enthalpy (%) for air at 350K

2 | Wats_Px(300,0.5)

Determines the entropy (s) of saturated water at
a pressure of 300 kPa and quality of 0.5

3 | Wath_PT(90,150)

Determines the enthalpy of superheated steam at
90 kPa and 150°C

4 | RefPsat T(“R134a”-5)

Determines the saturation pressure (Psa) for
refrigerant R134a at -5°C.

PsyRh_PTSh(101,30,
5 | 0.001)

Determines relative humidity (¢) of humid air at
101 kPa, 30°C, and specific humidity (@) of
0.001 kg/kg

6 Airdv_T(25)

Determines the dynamic viscosity of air at
standard atmospheric pressure and 25°C.

The following points should be noted regarding the name style adopted by Thermax:

1. The output properties in all the functions are represented by one or two letters,
e.g. Gash TK and GasTK_h, except those for the saturation pressure and
saturation temperature in the WAT and Ref groups and the air density in the
Air-group, which are named WatPsat_T, WatTsat_P, RefPsat_T, RefTsat_P,

and Airrho_T.

2. The Gas-group and the Ref-group require the name of the gas or the refrigerant

fluid as the first input parameter as shown in Figure 4.1.b.

w

three other groups.

The unit for pressure in both the Wat-group and the Ref-group is kPa.
4. To indicate that absolute temperature is used in the Gas-group, the temperature
is represented by “TK”. However, “T” represents temperature in °C in the other
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4.1.2. Functions for ideal gases
Properties of ideal gases at a given temperature are obtained by suitable integration of

Equation (3.10) for the molar specific heat at constant pressure (5 o )- Accordingly, the

molar enthalpy (ﬁ), molar internal energy (U ), and temperature-dependent molar

entropy change (50) of an ideal gas are calculated from [1]:

h =hy + [, (T)dT (4.1)
TO
T 2
0 =0, + [C,(T)dT =, + [ €, (T)-R,)dT (4.2)
o =0 6(T)
s°:soo+J. pT aT (4.3)

Where, ﬁo,ﬁo, and §0° are pre-specified values at a reference temperature (To) and Ry is
the universal gas constant. For h and U, the reference temperature is taken as 300K and
the corresponding values of ﬁo and U, are those given by Cengel and Boles [1].
However, for $° the reference temperature is taken as 298K and the corresponding

value of §0° is the absolute entropy. Rather than the molar properties given above,
Thermax functions return the ideal-gase properties per kg, i.e. h, uand s°, i.e.:

h=h/M (4.4)
u=u/M (4.5)
s°=3/M (4.6)

Where M is the molar mass of the gas. The relative pressure (Pr) and relative specific
volume (vy) are then obtained from [1]:

Pr = exp(s°/R) 4.7
v, =T/P, (4.8)

Note that P, is a dimensionless quantity but v; is not. Based on the above equations, this
group provides 12 functions that give properties of the 12 ideal gases listed in Table
4.2. Table 4.3 lists the 12 functions and shows the input and output of each function and
their relevant units.
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Table 4.2. The ideal gases supported by Thermax

# Gas Thermax name
1 Nitrogen N2
2 Oxygen 02
3 Air Air
4 Hydrogen H2
5 Carbon monoxide co
6 Carbon dioxide Cco2
7 Water vapour H20
8 Nitric oxide NO
9 Nitrogen dioxide NO2
10 Sulphur S2
11 Sulphur dioxide SO2
12 Sulphur trioxide S03

Table 4.3. Functions for thermodynamic properties of gases

# Function Input/Unit Output/Unit
1 GasM Gas name M [-]

2 Gascp_TK Gas name, T[K] Cp [kI/kg.K]
3 Gash_TK Gas name, T[K] h [kJ/kg]

4 Gasu_TK Gas name, T[K] u [kJ/kg]

5 | Gass0_TK Gas name, T[K] % [kJ/kg.K]
6 GasPr_TK Gas name, T[K] Pr [-]

7 Gasvr_TK Gas name, T[K] vr [K]

8 GasTK_h Gas name, h[kJ/kg] T [K]

9 GasTK u Gas name, u[kJ/kg] TIK]

10 | GasTK_sO Gas name, s[kJ/kg.K] | T [K]

11 | GasTK_Pr Gas name, Py [-] TIK]

12 | GasTK vr Gas name, v, [K] TIK]

The first five functions shown in Table 4.3 determine the molar mass (M), specific heat
(cp), enthalpy (h), internal energy (u), and the part of entropy change due to temperature
change (s°). The following two functions determine the relative pressure (Pr) and
relative volume (v;). The last five functions in Table 4.3 are inversion functions that
determine the temperature of the ideal gas by iteration from its enthalpy (h), internal
energy (u), temperature-dependent entropy change (s°), relative pressure (Pr) or relative
specific volume (vr). Note that the temperature is represented by the letters “TK” in the
names of all the functions in this group. With the exception of the first function, GasM,
all the functions require the absolute temperature as inputs. An auxiliary custom
function named “Gas_data” stores the values of the four coefficients ao, a1, a2, and az in
Equation (3.10) for the twelve ideal gases. Values of the coefficients for the different
gases were obtained from Cengel and Boles [1].
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4.1.3. Functions for saturated water and superheated steam

This group includes 23 functions that return the properties of saturated water-steam
mixtures and superheated steam. These functions are divided into two subgroups: (a)
functions that determine the properties of saturated water and (b) functions that
determine the properties of superheated steam given the pressure and another property.
Properties of compressed liquid water are approximated by their corresponding values
of saturated liquid water at the given temperature.

a) Properties of saturated water/steam mixtures

Table 4.4 shows the input and output parameters of 8 property functions that determine
the properties of saturated water/steam mixtures at a given temperature, in °C, with their
relevant units. The first function “WatPsat_T” returns the saturation pressure at a given
temperature. The letters “f” and “g” before the underscore in the following 7 functions,
e.g., “Wathf T” and “Wathg_T”, refer to the saturated liquid state and saturated vapour
states, respectively. The corresponding custom functions that provide properties of
saturated water-steam mixture at a given pressure, in kPa, as listed in Table 4.5 with
their relevant input and output parameters.

Table 4.4. Property functions for saturated water/steam at a given temperature in °C

# | Function Output/Unit
1 | WatPsat_ T ps [kPa]

2 | Wathf T hr [kJ/kg]

3 | Wathg T hg [kJ/kg]

4 | Wathfg_T hsg [kJ/kg]

5 | Watvf T vi [m¥/kg]

6 |Watvg_ T Vg [m3/kg]

7 | Watsf T st [kJ/kg.K]
8 | Watsg_ T Sg [kJ/kg.K]

Table 4.5. Property functions for saturated water/steam at a given pressure in kPa

# | Function Output/Unit
1 | WatTsat_P Ts [°C]

2 | Wathf P ht [kJ/kg]

3 | Wathg_P hg [kJ/kg]

4 | Wathfg_P hrg [kJ/kg]
5 | Watvf P vi [m¥kg]

6 | Watvg_P Vg [m¥/kg]

7 | Watsf_P st [kd/kg.K]
8 | Watsg_P Sq [kJ/kg.K]

b) Properties of superheated steam and compressed liquid water
For superheated steam, the water group provides 7 functions that return the properties at
a given pressure and another property as shown in Table 4.6. The formulae used in these
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functions are the same as those used for superheated refrigerants which will be
described in the following section. These functions also determine properties of
compressed liquid water by calling those of saturated liquid water at the given

temperature shown in Table 4.4.

Table 4.6. Properties of superheated steam given the pressure in kPa and another

property
# Function Input/Unit Output/Unit
1 Watv_PT P, T[°C] v [m3/kg]
2 Wath_PT P, T[°C] h [kJ/kg]
3 Wats_PT P, T[°C] s [kJ/kg.K]
4 WatT_Ph P, h[kJ/kg] T[°C]
5 WatT_Ps P, s[kJ/kg.K] T[°C]
6 Wath_Ps P, s[kJ/kg.K] h [kJ/kg]
7 Wats_Ph P, h[kJ/kg] s [kJ/kg.K]

4.1.4. Functions for refrigerants

This group of Thermax functions deal with the properties of three synthetic refrigerants,
R22, R134a, and R410A (R32/R125 - 50/50), and three natural refrigerants, R717
(ammonia), R718 (water), and R744 (carbon-dioxide). The group includes 25 functions
that can be divided into two subgroups: (a) functions that determine the properties of
saturated refrigerants and (b) functions that determine the properties of superheated
refrigerants from the given pressure and another property.

a) Properties of saturated liquid/vapour refrigerants

Table 4.7 lists nine functions that determine the thermo-physical properties of saturated
refrigerants at a given pressure while Table 4.8 lists nine functions that determine the
same properties at a given temperature. These functions do not use mathematical
formulae, but interpolate the tabulated data provided by ASHRAE [2] for the six
refrigerants by a linear interpolation function. The functions return warning messages if
the given temperature, pressure, or quality is beyond the expected range.

Table 4.7. Properties of saturated refrigerants at a given pressure in kPa and quality

# | Function Input Output Unit

1 | RefTsat P | Refrigerant name, P, x | Saturation temperature, T | [°C]

2 | Refv_Px Refrigerant name, P, x | Specific volume, v [m3/kg]

3 | Refh_Px Refrigerant name, P, x | Specific enthalpy, h [kJ/kg]

4 | Refs_Px Refrigerant name, P, x | Specific entropy, s [kd/kg.K]

5 | Refcp_Px | Refrigerant name, P, x | Specific heat, ¢, [kJ/kg.K]

6 | Refvs_Px | Refrigerant name, P, x | Velocity of sound [m/s]

7 | Refdv_Px | Refrigerant name, P, x | Dynamic viscosity [UPa-s]

8 | Refk Px Refrigerant name, P, x | Thermal conductivity [MW/(m-K)]
9 | Refst_P Refrigerant nam, P Surface tension [MN/m]
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Table 4.8. Properties of saturated refrigerants at a given temperature in °C and quality

# Function Input Output Unit

1 RefPsat_ T | Refrigerant name, T, x | Saturation temperature, Te | [°C]

2 Refv_Tx Refrigerant name, T, x | Specific volume, v [m3/kg]

3 Refh_Tx Refrigerant name, T, x | Specific enthalpy, h [kJ/kg]

4 Refs_Tx Refrigerant name, T, x | Specific entropy, s [kd/kg.K]

5 Refcp_Tx | Refrigerant name, T, x | Specific heat, ¢, [kd/kg.K]

6 Refvs_Tx | Refrigerant name, T, x | Velocity of sound [m/s]

7 Refdv_Tx | Refrigerant name, T, x | Dynamic viscosity [UPa:s]

8 Refk_Tx Refrigerant name, T, x | Thermal conductivity [MW/(m-K)]
9 Refst_ T Refrigerant name, T Surface tension [MmN/m]

b) Properties of superheated refrigerants
Thermax functions that determine the thermodynamic properties of superheated
refrigerant use the following mathematical formulae.

Specific volume

The molar specific volume (V) of a superheated refrigerant is obtained from the Soave-
Redlich-Kwong equation of state [1]:

p= R,T aa

7-b V(¥ +b) (4.9

where, Ry is the universal gas constant, P is the absolute pressure, and T is the absolute
temperature. The constants a, b and «, which depend on the refrigerant’s pressure and
temperature at the critical point, are given by:

a=04278 R2T,2/ P, (4.10)
a=p+sp- 7 (4.12)

where, T. and P are the temperature and pressure at the critical point, T, =T/T. is the
reduced temperature, and S is a function of the acentric factor (@) for the given
refrigerant:

S =10.48508 + 1.55171 ® — 0.15613 w? (4.13)

The acentric factor itself can be calculated from [3]:
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o =—logo(p)-1, at T,= 0.7 (4.14)

Where P** =Pg/P. is the reduced saturation pressure. Values of T, P, and o for the
six refrigerants supported by Thermax are shown in Table 4.9.

Table 4.9. Values of T, P, @ and M for six refrigerants

# | Refrigerant | Formula M T [K] P.[MPa] | @

1 | R134a CFsCH2F 102.03 | 374.2 4.059 0.3268
2 | R22 CHCIF, 86.48 369.0 4.98 0.221
3 | R410A CH2F2,/CHF.CF3 | 72585 | 34451 4.903 0.296
4 | R717 NH; 17.03 405.5 11.33 0.256
5 | R718 H.O 18.0 647.1 22.06 0.3443
6 | R744 CO2 44.0 304.1 7.38 0.239

Equation (4.9) is a non-linear equation in V that requires a numerical solution. In the
present add-in the equation is solved by using the Newton-Raphson method. The
specific volume (v), in m%/kg, can be obtained from:

v=V/M (4.15)
Where M is the molar mass of the refrigerant and its values for the six refrigerants are
shown in Table 4.9. The accuracy of the above relation in determining the specific
volume was demonstrated by EI-Awad [4].

Enthalpy at a given pressure and temperature or entropy

Enthalpy (h) of a superheated refrigerant at a given pressure and temperature is
determined from the following relationship [4, 5]:

h=hy +Cp,y(T-T,) (4.16)

Where hg and T; are the enthalpy and temperature of the saturated vapour refrigerant at
the given pressure while Cp, is the value of its specific heat evaluated at a skewed

pressure (P*) given by:
P =zxP (4.17)

Where z is an adjusting factor the value of which can be taken as 0.5 [4,5]. Values of hg,
Ts, and Cp; are obtained from ASHRAE data for saturated refrigerants.

Entropy
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Entropy (s) of a superheated refrigerant at a given pressure and temperature is

determined from the following relationship:
Cpy(T -T;)
=5y + ﬁ (4.18)
av

Where sq is the entropy of saturated vapour refrigerant at the given pressure, Cp; is the

value of the specific heat evaluated at the reduced pressure (P*), and Ta is an average
temperature calculated as follows:

T, =(T+T,)/2 (4.19)

Temperature at a given pressure and enthalpy or entropy

Thermax group of functions for refrigerants properties also determine the temperature
of a superheated refrigerant given its pressure and enthalpy or pressure and entropy. In
the first case, Equation (4.16) is rearranged as follows:

T=T,+(h—hy )/ Cp; (4.20)

Where Ts and hg are values of the saturation temperature and enthalpy of saturated
refrigerant vapour at the given pressure, but Cp; is the value of the specific heat of

saturated refrigerant vapour determined at the reduced pressure P*. Similarly, when the
pressure and entropy of the superheated refrigerant are known and its temperature is to
be determined, the following equation is used:

$—Sq4

T=(T, +273)e ® —273 (4.21)

Where T4 and sq are the temperature and entropy of saturated vapour refrigerant at the
given pressure, while Cp; is the value of the specific heat of saturated refrigerant

vapour determined at the reduced pressure P*. Table 4.10 lists seven functions that
apply the above formulae to deal with superheated vapours of refrigerants.

Table 4.10. Properties of superheated refrigerants given the pressure in kPa

# Function Input/unit Output/Unit
1 Refv_PT Refrigerant name, P, T [°C] v [m®/kg]

2 Refh_PT Refrigerant name, P, T [°C] h [kJ/kg]

3 Refs_PT Refrigerant name, P, T [°C] s [kJ/kg.K]
4 RefT_Ph Refrigerant name, P, h [kJ/kg] T[°C]

5 RefT_Ps Refrigerant name, P, s [kJ/kg.K] T[°C]

6 Refh_Ps Refrigerant name, P, s [kd/kg.K] h [kJ/kg]

7 Refs_Ph Refrigerant name, P, h [kJ/kg] s [kJ/kg.K]
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The first six functions in Table 4.10 use Equations (4.15) to (4.21) to determine
property values. The last function is an inversion function that uses an iterative tool. All
the functions apply for pressures and temperatures not higher than the critical values of
the given refrigerant.

4.1.5. Functions for psychrometic analyses (Psy)

Functions of this group are based on the property relations commonly used in
psychrometric analyses [1]. Accordingly, the enthalpy (h) of an atmospheric mixture of
dry air and water-vapour is calculated from:

h=c,T +h, (4.22)

Where, Cpa is the specific heat at constant pressure for dry air (cpa =1.005 kJ/kg.K), T is
the temperature in °C, w is the absolute humidity, and hy is the enthalpy of water vapour
at the air temperature and partial-pressure of the water-vapour (P,). The absolute
humidity (@) in Equation (4.22) is determined from:

0.622P,
=
P-P,
Where, P is the total pressure of the air-water-vapour mixture and Py is the partial

pressure of water-vapour in the air. The partial pressure of water vapour itself is
determined from:

(4.23)

P -Lop, (4.24)

Where ¢ is the relative humidity and Ps is the saturation pressure of water at the given
dry-bulb temperature. The enthalpy of saturated liquid water (hy) in Equation (4.22) is
approximated by the enthalpy of saturated water-vapour at the given temperature (hg)
and calculated as follows:

h, = h, =2500.00+1.82T (4.25)

\

Property functions of this group also use the following relationship between the relative
and specific humidities:

b=1 P (4.26)

0.622 + w)P,

Table 4.11 lists 14 functions that are included in psychrometry group together with their
input and output arguments. The letters in the function names have the following
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meanings: h (specific enthalpy), Db (dry bulp), Dp (dew point), P (pressure), Rh
(releative humidity), Sh (specific humidity), v (specfic volume), Wb (wet bulp).

Table 4.11. Function for psychrometry analyses given the pressure in kPa and two other

properties
# Function Input/unit Output/unit
1 | Psyv_PDbRh P, Ta [°C], ¢ [%] v [m3kg]
2 | PsyRh_PDbSh | P, T [°C], w[kg/kg] ¢ [%]
3 | PsyRh_PDbWb | P, Ta, [°C], Tws [°C] ¢ [%]
4 | PsySh_PDbRh P, T [°C], ¢ [%] o [kg/kg]
5 | PsySh_PDbWb | P, Ta, [°C], Tws [°C]  [kg/kg]
6 | Psyh_PDbSh P, T [°C], w[kg/kg] h [kJ/kg]
7 | Psyh_PDbRh P, T [°C], ¢ [%] h [kd/kg]
8 | PsyDp_PDbRh | P, Ta, [°C], ¢ [%] T [°C]
9 | PsyDp_PDbWb | P, Tap [°C], Tus [°C] T [°C]
10 | PsyDb_PRhSh P, ¢ [%], w[kg/kg] Tab [°C]
11 | PsyDb_PhSh P, h [kJ/kg], w[kg/kg] Tan [°C]
12 | PsyWb_PDbRh | P, Ta, [°C], ¢ [%] Tub [°C]
13 | PsyWb_PDbSh | P, Ta, [°C], w[kg/kg] Tw [°C]
14 | PsyWh_PRhSh | P, ¢ [%], w[kg/kg] Tw [°C]

This group also needs functions that determine certain properties of saturated liquid
water, Viz. Psa, Tsae and hi. The group has its own functions that determine these
properties for temperatures in the range 0 — 100°C as met in common air-conditioning
practice. The saturation pressure (Psat) and saturation temperature (Tsa) are obtained
from the following Antoine equations [6]:

B

Ao_——
P, =01333x10 C*T

T =B/ A—Iog[Lj -C
0.1333

Where, T is in °C, P in kPa and the three constants A, B, and C, respectively, have
values of 8.07131, 1730.63, 233.426 for 1< T < 100°C and 8.14019, 1810.94, 244.485
for 99 < T < 374°C. Enthalpy of saturated liquid water at a given temperature is
obtained from the following equation which was obtained by curve-fitting the data
using Excel’s trendline feature:

(4.27)

(4.28)

h, =0.146+ 4.184T (4.29)

The functions in this group that use Equations (4.27), (2.18) and (4.29) make the group
independent from the water group. Case 5 in Table 4.1 shows how the function
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PsyRh_PTSh can be used to determine the relative humidity for air given its pressure,
temperature, and specific humidity.

4.1.6. Functions for air at standard atmospheric pressure (Air)

This group of functions provides the thermo-pysical properties of air at standard
atmospheric pressure as required by fluid-flow and heat-transfer analyses. Based on the
tabulated data given by Cengel and Ghajar [7], the functions use the linear interpolation
function to determine the air desnity (p), specific heat (cp), thermal conductivity (k),
thermal diffusivity (o), dynamic viscosity (u«), kinematic viscosity (v) and Prandtl
number (Pr) at temperatures in the range -150°C to 2000°C. Table 2.17 shows the
names of the seven functions in this group with their corresponding output properties.
Unlike the functions in the Gas-group, the temperature in this group is given in °C. Also
note that this group provides its own function for determining the specific-heat at
constant pressure (cp) for air.

Table 2.17. Properties of air at 1 atm pressure given the temperature in °C

# Function Output Output unit
1 | Airrho T Density (p) kg/m?®

2 Aircp T Specific heat (cp) JIKg.°’C

3 Airk T Thermal conductivity (k) | W/m.°C

4 Airdf T Thermal diffusivity (a) m?/s

5 Airdv_T Dynamic viscosity (u) kg/m-s

6 | Airkv. T Kinematic viscosity (v) m?/s

7 AirPr T Prandtl number (Pr) -

4.2. Installation and use of Thermax property functions

Excel comes with a number of add-ins that have been developed for general use,
including the Solver add-in. Active add-ins are automatically loaded when Excel starts
up. Before Thermax can be recognised by Excel you have to save it in your computer
and then install it. To do that, open the Thermax.xla file and then save it in your
computer as an “Excel Add-in”. Recent Excel versions locate all add-ins in a certain
folder in the computer that depends on the version of Excel you are using and
automatically directs you to the appropriate location. Save the add-in and restart Excel
in order to activate it. Open a new Excel sheet and then do the following:

1. Goto File and then click Options.

2. Select Add-Ins. From the Manage ribbon at the bottom of the menu select
Excel Add-ins and then press Go.

3. The pull-down menu shown in Figure 4.2 will appear to you. To add Thermax
to the add-ins menu, tick () the corresponding box.

If for any reason you saved the add-in in a location that is different from the default
folder, then click on Browse and search for it in the destination folder and select it.
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Having installed the add-in, its functions can be used in Excel's formulae just like its
built-in functions. Thermax functions are named in a way that helps you to easily
identify the required function via Excel’s user-interface without having to memorise all
the names of the functions and required input. The following sections illustrate two
methods for using the add-in functions in Excel formulae.

7=

Add-Inz available:

[] analysis ToolPak | K |

[] analysis ToolPak - VEA

[ | Euro Currency Tools Cancel

Solver Add-4n

Browse...
Automation. ..

Thermax 1

Thermodynamic properties of saturated
water fsteam and ideal gases

Figure 4.2. Adding Thermax to the menu of Excel add-ins

4.2.1. Accessing Thermax functions via the Function Wizard

To illustrate this method, let us start a formula by entering the equal sign (=) in any cell
(say cell B2). If you now press the fx button in the formula ribbon, the Function
Wizard shown in Figure 4.3 will come up. The Function Wizard firstly lists the various
categories of built-in functions provided by Excel, e.g. financial, mathematical,
statistical, etc. Scroll down the list of function categories and select the User-defined
functions. Then, all the functions provided by Thermax will be listed alphabetically as
shown in Figure 4.4. The first function in the list, Air_Data, is the auxiliary function
that stores the data for the seven thermophysical properties of air at standard
atmospheric pressure. This function is called by other functions in the Air-group to
obtain the values of these properties at the required temperature. To start using the add-
in functions, select the function number 4 in the list, which is the function Airk_T that
determines the thermal conductivity (k) of air at a given temperature. Upon pressing the
OK button, the Function Arguments box shown in Figure 4.5 will appear to you.
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Insert Function ? >
Search for a function:
Type a brief description of what you want to do and then didk Go
Go
Or select a category: | Most Recently Used -
Most R Hy Lsed
Select a function: m?s seEnty e ~
Finandial ~
Date & Time
Math & Trig
Statistical
Lookup & Reference
Database
AVERAGE Text v
Logical
FV(ratenper,pmt.f1nformation
Returns the future vallE= e = ¥ |stant payments
and a constant interest rate,
Help on this function Cancel
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Figure 4.3. Finding the add-in user-defined functions in the Function Wizard

Insert Function
Search for a function:

Type a brief description of what you want to do and then dick
Go

Or select a category: | User Defined e

Select a function:

L7 =]

Air_Data
Aircp T

AirPr_T
airrho_T
AirT

aird T

Airk_T({TempC)

The temperature in degree celdus.

Help on this function

Determines the thermal conductivity of atmospheric air in W /m.oC. Required input:

Cancel

Figure 4.4. Thermax functions listed alphabetically in the User Defined category



104 Mohamed M. El-Awad

Airk_T
TempC sl =

Determines the thermal conductivity of atmospheric air in W /m.oC. Required input: The
temperature in degree celdius.

TempC
Formula result =
Help on this function Cancel

Figure 4.5. The Function Arguments box for the “Airk T function

Figure 4.5 shows that this function has one input parameter, which is the temperature in
°C “TempC”, and gives a brief description of its intended use. Let us use the function to
determine the thermal conductivity for air at 25°C. Fill the form by entering thr value of
the temperature, 25, as shown in Figure 4.6. Note that the formula ribbon now shows
the formula in cell B2, which is “=Airk_T(25)”. The form also shows the calculated
value of k, which is 0.02551 W/m.°C. When you press the “OK” button, this value will
appear in the cell B2. Check this value with the tabulated data and try other functions.

DATE - K v Je | =Airk_T(25)
A B 5 D E F G H 1 J K L
1
2 |:Airk_T(25} Function Arguments ? X
g Airk_T
4 —=
: TempC | 25 B = 25
6 = 0.02551
7 Determines the thermal conductivity of atmospheric air in W/m.oC. Required input: The
temperature in degree celdus.
2
9 TempC
I Formula result = 0.02551
11
12 Help on this function Cancel
13
14
15

Figure 4.6. Using the function “Airk_T” to determine the thermal conductivity of
atmospheric air at 25°C

4.2.2. Direct use of Thermax functions in Excel formulae

It is not necessary to follow the lengthy procedure described above by using the
Function Wizard in order to use the add-in property functions. Instead, one can simply
type in the formula that contains the property function in the required Excel cell. For
illustration, suppose that we want to determine the ideal-gas temperature of carbon-
dioxide (CO-) at which the value of its enthalpy (h) equals 750 kJ/kg. Obviously, in this
case, we need to use the function in the “Gas” group that determines the temperature for
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a given enthalpy value. Therefore, we start an Excel formula by typing the equal sign
“="in any cell. As shown in Figure 4.7, as soon as we type the prefix "Gas" after the
equal sign, the user-interface will display all Thermax functions in the ideal-gases
group for us to select from.

DATE - K v f| =Gas

?r: Gascp_TK
?r: Gash_TK
?r: GasM

?r: GasPr_TK
?r: Gass0_TK
?i—: GasTk_|
?i—: GasTK_Pr
?i—: GasTK_s0
?i—: GasTK_u
?i—: GasTk_vr
?i—: Gasu_TE L

[F - R N S U

e e
MRS

13
Figure 4.7. Excel Ul showing all the functions in the Gas-group

Since the property we want to find is the temperature, which the Gas-group functions
require in absolute degree, we continue the name of the function by adding the letters
“TK” immediately after the three-letter prefix "Gas" followed by an underscore. As
shown in Figure 4.8, the user-interface then lists only the five functions in Table 4.3
that determine the gas temperature given h, Py, s°, u, or v;.

DATE - K v Jx| =GasTK
A B £ D E F

| =GasTK |
:fr\ GasTK_Pr
) GasTK_s0
:fr\ GasTk_u
:fr\ GasTk_wr

=T I S T

8
Figure 4.8. Ul showing only the five functions that determine the temperature of an
ideal gas from known values of h, pr, %, u, or v,

Since we want to find the temperature from a known value of enthalpy, we have to
select the “GasTK_h” function. This function requires as input the name of the gas,
which is “CO2”, and the value of enthalpy, which is 750 kJ/kg, as shown in Figure 4.9.
Pressing the “Enter” key after entering the required data, the function will calculate the
corresponding temperature. As shown in Figure 4.10, the answer is 817.5544K.
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DATE ~ (X & fe =GasTK_h("C02",750)|
A B cC D E F

|:GasTK_h|["CC12",?50}

ok WM

b
Figure 4.9. The required input for the GasTK_h function

B2 - Jx | =GasTK_h("C02",750)
A B C D E F

I 81?.5544!

ks W | M=

6
Figure 4.10. The temperature determined by the GasTK _h function

The following example shows how property functions in the Gas-group can be used for
applying the exact, variable specific-heat method in thermodynamic analyses.

Example 4.1. Thermodynamic analysis with the exact method

Figure 4.11 shows a well-insulated piston—cylinder device that initially contains 0.1 m?
of air at 100 kPa, 330K. Fifty kJ of heat is transferred to the air causing the air to
expand at constant pressure. Treating air as an ideal gas, determine the final
temperature inside the cylinder using: (a) the approximate constant-specific heat
method, with c,= 1.005 kJ/kg.K, and (b) the exact variable specific-heat method with
Thermax functions. Also, determine the error of the approximate method in determining

the final temperature.

Air

T, = 330K
P, =100 kPa
Vi=0.1mé

Figure 4.11. Schematic for Example 4.1
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Solution
Using the approximate constant specific heat method, the final temperature is
determined from:

T, ot s Q (4.30)
m><Cp

Where m is the mass of air in the piston-cylinder device, ¢, is the the specific heat at
constant pressure, and Q is the amount of heat added. The mass of air is calculated from
the ideal-gas law:

m= PV;
RxT,

(4.31)

Where R is the gas constant for air, R = 0.287 kJ/kg.K. Substituting for P, V1, R and T1
in Equation (4.31), leads to m = 0.105585 kg and substituting for m in Equation (4.30)
gives T> = 801.194K.

To apply the exact method by using the add-in functions in the Gas group, we first
determine the final enthalpy, h,, by applying the first law of thermodynamics to the
closed system:

h,=h +Q/m (4.32)

Once h; is found, the final temperature, T», can be determined by using the function
GasTK_h in the Gas group.

Figure 4.12 shows the Excel sheet developed for this example. The given data are
inserted at the left-hand side of the sheet together with the gas constant (R_) and
specific heat (cp) for air. The calculations part is divided into two parts that determine
the final temperature according to the approximate method and the exact method using
the corresponding equations given above.

H8 - fo | =T _2approx-T_2exact)/T_2exact*100

A I C D s $ (&Y - | ] K
i Approxiamte method Exact method
2 T2 330]x m 0.106]=p_1*v 1/(R_*T_1} [b 3t [ 330.027|=Gash_TK("Air",T_1)
3 P 1 100|kPa
a V1 0.1|m3 [T 2approx | 501.154|=T_1+Q/tm*cp) h 2 803.577]=h_1+Q/m
2
5 Q "r.l-; T 2exact | 781 r.'..;].(m-.n: R “Ar".h 2}
iR 0.287 |5/ vg.x Errar =(T_2approx-T_2exact)/T_2exact*100
3 o 1,005 [i/kg. K

Figure 4.12. Excel sheet developed for Example 4.1
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Figure 4.12 also reveals the formulae typed in these calculations. As the figure shows,
the answer found by the approximate method for T, is 801.2K, while the exact method
determines the final temperature as 781.6K. Thus, the approximate constant specific-
heat method results in an error of 2.5%.

4.3. Numerical functions provided by Thermax

In addition to its five groups of property functions, Thermax provides two interpolation
functions for tabulated data and a Newton-Raphson solver for nonlinear equations such
as the Soave-Redlich-Kwong equation of state (Equation 1.39). This section shows how
to use these additional functions by means of simple relevant examples.

4.3.1. The interpolation functions

The two interpolation functions, called Interpolland Interpol2, perform linear and
guadratic interpolation of tabulated data. These functions, which are listed in Appendix
E, enable tabulated fluid properties to be used in parametric studies, iterative solutions,
or optimisation analyses. For example, Figure 4.13 shows an Excel sheet in which three
properties of engine oil; density (p), specific heat (cp), and kinematic viscosity (v) are
given at various temperatures. The interpolation functions can be used to calculate these
properties at any temperature within the range of tabulated data. Suppose that we want
to determine the viscosity at 90°C by using these functions.

H7 - Je | =Interpll{T_,B5:B13,C5:C13,9)

A B C D E F G H I
1 Engine oil (unused) From Holman p 657
2

ToC | plke/ms3] P v [m2/s]

3 [Elkz.0C]
4 T 90 oC
5 0 20012 1.796 0.00428
B 20 88823 1.88 0.0002 Interpll Interpl2
7 40 876.03 1.964 0.00024 Density I 345_015! 846.465
3 60 864.04 2.047 8.30E-03 Sp. Heat 2.175 2.172
9 80 852.02 2131 3.75E-D3 Viscosity 2.89E-05 2.92E-05
10 100 240,01 2219 203E-03
11 120 328.96 2307 1.24E-05
12 140 216.94 2395 8.00E-06
13 160 805.89 2483 3.60E-06
14

Figure 4.13. Using the interpolation functions for tabulated data

Both Interpoll and Interpol2 require four input arguments referred to as: X, XX, YY,
and Ndata. Their meanings are as follows:
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- X passes the value of the independent property (i.e. temperature) at which the
value of the dependent property (i.e. viscosity) is to be determined.

- XX and YY are vectors that store the tabulated data (in this case, the
temperature, B5:B13, and viscosity values, E5S:E13,).

- Ndata passes the number of entries in the tabulated data. For the tabulated data
shown in Figure 4.13, Ndata = 9.

The formula bar in Figure 4.13 reveals the formula in which the linear interpolation
function Interpoll is used to determine the viscosity at 90°C. Both the linear and
quadratic interpolation functions return the warning message “Given data is out of
range” if the temperature lies outside the tabulated range. The following example
shows how the interpolation functions can be used in a thermofluid analysis.

Example 4.2. Effect of oil temperature on the drag force over a flat plate

Engine oil at 20°C flows over the upper surface of a 5-m-long flat plate as shown in
Figure 4.14. If the oil velocity is 2 m/s, determine the total drag force (Fp) per unit
width of the entire plate. Also, plot the variation of Fp with oil temperatures in the
range 40 - 150°C.

T.. = 40— 150°C
V=2mls
—>
oil —>
|
< A Fo T, = 20°C
— 7 > s
< |
| L=5m |

Figure 4.14. Schematic for Example 4.2 (adapted from Cengel and Ghajar [7])

The analytical model
The drag force (Fp) over a flat plate is due to friction, which is given by [7]:

Fo=C;ApV?/2 (4.34)

Where C; is the friction coefficient (not to be confused with the friction factor f), A is
the surface area of the plate, and p and V are the density and velocity of oil,
respectively. The value of the friction coefficient depends on whether is flow is laminar
or turbulent as indicated by the Reynolds number (Re.). For the flow over a flat plate,
the critical Reynolds number above which the flow becomes turbulent is about 5x10°.
For laminar flows, the friction coefficient is given by:
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C, =1.328Re*®  Re <5x10° (4.35)
For turbulent flows, it is given by:
C, =0.074Re®*?  5x10° <Re, <10’ (4.36)

Note that fluid properties are evaluated at the average temperature (Ts+T.)/2. For
example, if the oil temperature is 60°C, the oil viscosity and density are evaluated at
40°C.

The Excel sheet

Figure 4.15 shows the Excel sheet developed for this example. The data part shows the
given information concerning the oil temperature (T _oil), plate temperature (T_plate),
oil velocity (Velocity), and plate length (Length). Based on the specified oil
temperature, the sheet calculates the average temperature (T_average) and the
corresponding oil density (p_oil) and kinematic viscosity (v_oil). The sheet then
calculates the Reynolds number (Re) and friction coefficient (Cf). The single final
result, which is the drag force (F_D), is shown on the right-side of the sheet. The sheet
reveals the formulae entered in each cell in the calculations part and the formula bar
reveals that used for determining the drag force in cell 12.

FD - S | =Cf*(Length*1}*p_oil*{velocity*2)/2

B C D E F G H I
1
2 [T oil a0loc T averagd 30|=(T_oil+T_plate)/2 F D | ssaas|n
3 T_plate 20joC p_oil 882.14|=Interpl1(T_average,Datall5:113,Datal)5:013,9)
4 Velocity 2] m/s v_oil 0.00057)=Interpl1(T_average,Datall5:113,Data!L5:L13,9)
5 Length 5|m
6 Re 17543.86|=Velocity*Length/v_oil
7 cf 0.010026]=IF(Re<500000,1.328*Re"-0.5,0.074*Re"-0.2)
]

Figure 4.15. The Excel sheet developed for Example 4.2

The friction coefficient is calculated depending on the value of the Reynolds number by
using the following nested-If formula in cell F7:

Cf=IF(Re<500000,1.328*Re"-0.5,0.074*Re"-0.2)

The above formula determines whether to use Equation (4.35) or Equation (4.36) to
calculate the friction coefficient depending on whether the flow is laminar or turbulent.
Figure 4.15 shows the calculations at an oil temperature of 40°C, which is the initial oil
temperature in the required range. At the average temperature, which is 30°C, the sheet
uses the linear interpolation function linterpoll to determine the values of the oil
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density and viscosity. At this temperature the calculated drag force, F_D, is 88.445 N.
By inserting a different value for the oil temperature, say 50°C, the sheet automatically
updates its calculations. Figure 4.16 shows a plot of the drag force determined at
different oil temperatures in the range 40°C to 150°C. The figure shows that the drag
force drops exponentially with temperature, approaching a value of about 20 N.

100

80

(o2}
o

N
o
V4

Drag force (N)
/

)
o
'

0 50 100 150 200
Oil temperature (oC)
Figure 4.16. Variation of the drag force with oil temperature

The usefulness of the linear and quadratic interpolation functions in thermofluid
analyses goes beyond that of determining fluid properties since these functions are also
useful for interpolation of other types of tabulated data that is required by such
analyses. Table 4.12 shows the cost per meter of galvanised-steel air-conditioning ducts
for different diameters of the duct. In this case, the interpolation functions permit
automatic determination of the duct diameter from the tabulated data, which is useful
for optimisation analyses that involve the duct diameter.

Table 4.12. Cost of galvanised-steel air-conditioning ducts

Duct diameter | Cost per linear
(m) meter (3$)
0.10 9.0

0.15 11.5
0.20 14.5
0.25 17.0
0.30 22.5
0.35 29.0
0.40 34.0
0.45 40.0
0.50 50.0
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4.3.2. The Newton-Raphson solver

Excel’s cell formulae become too restrictive and inconvenient to use when the
analytical model involves an implicit equation such as the following Colebrook
equation that determines the Darcy friction factor (f) in a turbulent pipe flow:

1 e/D 251
|~ =-2.0l0g | =—— +——— 135
f 10[ 37 Reﬁj ( )

Where D is the pipe’s diameter, ¢ is the roughness of the pipe material, and Re is the
Reynolds number. Since the equation involves f on both sides, it needs to be solved
iteratively. Determining f from Equation (1.35) will be inconvenient particularly when
dealing with type-2 or type-3 pipe-flow problems, which themselves require iterative
solutions, since we have to deal with two nested iterations; an inner iteration to
determine f and an outer iteration to determine the pipe’s diameter or the flow rate.

Another nonlinear equation that is even more difficult to fit in an Excel formula is the
following Benedict-Webb-Rubin (BWR) equation of state [1]:

P=R“T+[BORUT—A0—$QJ1+W+aa+ ¢ (l+7/je_7lvz (4.37)
Y

o e 73 78 y3T?

Where Ry is the universal gas constant, P is the absolute pressure, T is the absolute
temperature, and V is the molar specific volume. The BWR equation, which is one of

the most accurate equations of state, is implicit in V and, therefore, cannot be used
directly in an Excel formula to determine the molar specific volume.

Thermax provides a third VBA function for solving nonlinear equations such as the
Colebrook equation and the BWR equation. The function, called NRM, requires four
input arguments: fun$, x0, Varl, and Var2. The first argument, fun$, passes the name
of the user-defined function developed separately for the particular nonlinear equation
to be solved; e.g. the SRK equation or the BWR equation. The second argument, X0, is
an initial guess for the dependent variable in the equation; i.e. f in Equation (1.35) and

V in Equation (4.37). The third and fourth arguments, Varl and Var2, are values of two
independent variables in the nonlinear equation; i.e. ¢/D and Re in Equation (1.35) and
P and T in Equation (4.37). To illustrate the use of the NRM function, let us use it to
compare the specific volumes of carbon dioxide (CO;) as determined by the ideal-gas
law and the BWR equation of state at different temperatures. The following VBA
function is that for the BWR equation of state taking the different constants in the
equation as those of carbon dioxide (COy):

Function BWR(x, P, T)
Dim Ru, a, A0, b, B0, ¢, CO0, alfa, gama
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'‘Carbon dioxide, CO2
Ru=28314

a=13.86

A0 =277.3

b =0.00721

B0 = 0.04991

¢ =1511000.0

C0 =14040000.0
alfa =0.0000847
gama = 0.00539

113

BWR=P-Ru*T/x+(BO*Ru*T-A0-CO/T"2)/(x"2)+(b*Ru*T
-a)/x"3+a*alfa/x"6+c/(X"3*T"2)*(L+gama/x " 2)* Exp(-

gama/x " 2)
End Function

Figure 4.17 shows an Excel sheet that determines the specific volume of carbon dioxide
at 0.2 MPa and temperatures in the range 273 — 373K by using the ideal gas law and by
using the BWR equation of state and Table 4.13 reveals the formulae used in the sheet.

F3 - J= | =NRM({"BWR",E3,P,D3)

A B C D E F G H
1
2 T v_ideal v BWR  error v _ideal
3 (P 200000 Pa 273 11.34351' 11.29304143! 0.44753
4 283 11.76431 11.71375945  0.43155
5 |Ru 8314 J/kmol-K 293 12.18001 12.12947677  0.41662
6 303 12.59571 12.54519338  0.40268
7 313 13.01141 12.96090929  0.38964
8 323 13.42711 13.37662453  0.37742
g 333 13.84231 13.79233913  0.36593
10 343 14.25851 14.2080531  0.35513
11 353 14.67421 14.62376648  0.34454
12 363 15.08991 15.0394793  0.33532
13 373 15.50561 15.45519157  0.32622
14

Figure 4.17. Excel sheet for determining the specific volume by the ideal-gas law
compared to the BWR equation of state

The formula bar in Figure 4.17 reveals the following Excel formula in cell F3 that uses

the NRM solver to calculate V at 273K:

D4=NRM("BWR",E3,P,D3)



114 Mohamed M. El-Awad

Note that the first argument passed to the NRM function is the name of the UDF written
for the nonlinear equation, which in this case is the BWR function. Also, note that the
value determined by the ideal-gas law in cell E3 is used as an initial guess for the BWR
equation. Figure 4.18 shows how the error of the ideal-gas law in estimating the
specific volume increases at the low temperatures.

Table 4.13. The formulae used in the Excel sheet using the NRM solver

T v_ideal v_BWR error_v_ideal
273 |=Ru*D3/P |=NRM("BWR",E3,P,D3) =ABS(F3-E3)/F3*100
283 |=Ru*D4/P |=NRM("BWR",E4,P,D4) =ABS(F4-E4)/F4*100
293 |=Ru*D5/P |=NRM("BWR",E5,P,D5) =ABS(F5-E5)/F5*100
303 |=Ru*D6/P |=NRM("BWR",E6,P,D6) =ABS(F6-E6)/F6*100
313 |=Ru*D7/P |=NRM("BWR",E7,P,D7) =ABS(F7-E7)/F7*100
323 |=Ru*D8/P |=NRM("BWR",ES,P,D8) =ABS(F8-E8)/F8*100
333 |=Ru*D9/P |=NRM("BWR",E9,P,D9) =ABS(F9-E9)/F9*100

343 |=Ru*D10/P |=NRM("BWR",E10,P,D10) |=ABS(F10-E10)/F10*100
353 |=Ru*D11/P |=NRM("BWR",E11,P,D11) |=ABS(F11-E11)/F11*100
363 |=Ru*D12/P |=NRM("BWR",E12,P,D12) |=ABS(F12-E12)/F12*100
373 |=Ru*D13/P |=NRM("BWR",E13,P,D13) |=ABS(F13-E13)/F13*100

0.50
0.45

0.40 \

0.35 \

™~

0.30 T T
250 300 350 400

Temperature (K)

Error of the ideal gas law(%)

Figure 4.18. Errors in the specific volume estimations by the ideal-gas law compared to
the BWR equation of state

4.4. Closure

The chapter introduced the Thermax add-in that provides property functions for 12
ideal gases, saturated water and superheated steam, the six refrigerants R134a, R22,
R410A, R717, R718, and R744, humid air for psychrometric analyses, and air at
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atmospheric pressure. Thermax property functions are named in a way that makes it
easy to find the appropriate function via Excel’s user-interface without having to
memorise the names of all the functions. Thermax also provides two custom functions
for data interpolation and a solver for nonlinear equations based on the Newton-
Raphson method. While the interpolation functions are useful for including additional
fluid properties or other tabulated data in a thermofluid analysis, the Newton-Raphson
solver removes the restriction of Excel’s formula when an optimisation analysis or an
iterative solution involves a nonlinear equation.
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Exercises
1. Complete the following table by specifying the usage of the given Thermax
function according to its name:

Function Output property Input property/properties
Watvf T
Gascp_TK
WatTs_P
GasTK_s0
WatT_Ph
PsyDb_PRhSh

OO B W NP H



https://en.wikipedia.org/wiki/Acentric_factor

116 Mohamed M. El-Awad

2.

Name the appropriate Thermax function to determine the following tasks:

Task Thermax function

The enthalpy of saturated liquid water at 25°C

The internal energy of oxygen at 300K

The entropy of saturated steam at 10 kPa

AW |IN|PFP | H®*

The absolute temperature at which the relative pressure of
air is equal to 15

ol

The saturation pressure for water at 150°C

To determine the dry-bulb temperature of humid air at P =
101 kPa, ¢ = 50%, w = 0.01

3. Using Thermax functions, determine the following fluid properties: Also, determine

the same properties by using the appropriate property tables and compare their
values with those determined previously by using Thermax functions.

# | Fluid Property Given properties

1 | Water Enthalpy (h) 100 kPa, x = 0.5

2 | Air Relative volume (V) 700K

3 | Steam Entropy (s) 100°C,x=1.0

4 Nitrogen Temperature (T) 350K

5 Liquid water Enthalpy (h) 10 kPa

6 | Carbon dioxide Specific heat (cp) 450K

7 | Water Specific volume (v) P=200 kPa, x = 0.7

8 Hydrogen Temperature (T) Enthalpy h = 2000 kJ/kg

Appendix A shows properties of air at atmospheric pressure and different
temperatures. Enter the data into Excel and use the interpolation functions
Interpoll or Interpol2 to determine these properties at 360K and 500K.

An equation of state that is simpler than the BWR equation, yet more accurate than
the ideal-gas law, is the following Soave-Redlich-Kwong (SRK) equation of state:

potul __aa (139)
V-b v(v+hb)

Where the constants a, b and « are fluid-dependent. Following the method
described in Section 4.5.2, develop a user-defined function that can be used with
the Newton-Raphson Solver to calculate the specific volume for refrigerant R-12
from the SRK equation of state at a pressure of 200 kPa and temperatures in the
range 0 - 50°C. On a suitable chart, compare values of the specific volume thus
obtained by those calculated by the ideal-gas equation of state.
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6. Develop a user-defined function with VBA to determine the friction factor from
the Colebrook equation, Equation (1.35), and use it with the NRM solver to
determine the frictional losses (hy) in a circular pipe in the following case:

D=25cm,L=150m,V =7 m/s, ks = 0.045 mm, carrying air at 20°C.
7. Using the data for properties of air at atmospheric pressure, develop a user-defined
function that can be used for determining the kinematic viscosity of air at any

given temperature in the range 200 — 1000K.

(a) By using the trendline feature of Excel
(b) By using the linear-interpolation function (Interpl) listed in Appendix E.
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5

Iterative solutions
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Thermofluid analyses frequently require iterative solutions that can be time-consuming
and inaccurate if only hand calculation and property tables are used. This chapter shows
how such analyses can be solved by using the iterative tools provided by Excel; the
Goal Seek command and the Solver add-in. Chapters 2 and 3 illustrated the use of these
tools for the solution of simple nonlinear equations. The advantage of Solver over Goal
Seek is that it enables iterative solutions involving multiple variables and allows
constraints to be applied to the solution. When the problem involves a nonlinear
equation, such as the Colebrook equation, the problem becomes difficult to solve with
only Excel’s iterative tools. For such problems, the chapter shows how the Newton-
Raphson solver provided by Thermax can be used to deal with the nonlinear equation
while Goal Seek or Solver performs the main iteration.

5.1. Simple iterative solutions by using Goal Seek

Despite of its simplicity, the Goal Seek command can be used to solve the majority of
thermofluid problem that require iterative solutions. This section presents three
examples that demonstrate the use of Goal Seek for iterative solutions of fluid-
dynamics, thermodynamics, and heat-transfer problems.

5.1.1. Type-2 and type-3 pipe-flow analyses

Frictional head loss (hy) in a pipe depends on a number of factors that characterise the
pipe itself as well as the velocity and viscosity of the fluid being transported. For a
straight pipe with no fittings carrying a viscous Newtonian and incompressible fluid,
the Darcy-Weisbach equation states:

hy=f—-—— (1.21)

where f is the Darcy friction factor, L the length of the pipe, D its diameter, V the fluid
velocity, and g the gravitational acceleration constant. The friction factor can be
obtained from Equation (1.22) if the flow is laminar and from Equation (1.24) or (1.25)
if it is turbulent.

Practical pipe-flow problems can be divided into three types [1]:

1. Type-1 problem - requires the determination of hs when both the pipe’s
diameter and fluid velocity (or flow rate) are known.

2. Type-2 problem - requires the flow rate for a specified h; and pipe diameter to
be determined.

3. Type 3 problem - requires the pipe diameter to be determined for a given hr and
flow rate.

Type-1 problems can be solved in a straight-forward manner by using Equation (1.21)
to determine the friction head loss. However, both type-2 and type-3 problems require
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iterative solutions because the Reynolds number and, therefore, the friction factor
cannot be determined in advance. In the case of type-2 problems (i.e. unknown
velocity), the iterative procedure can be avoided by using extended Moody diagrams
that require the determination of the following dimensionless parameter [2]:

15 (ogh. \°°
RefO'S:D—( J f] | (5.1)
Vv L

Apart from the inaccuracy of visual chart interpolation, the procedure is difficult to
adopt in optimisation or parametric analyses. By using the Goal Seek command, both
type-2 and type-3 problems can be solved more easily and accurately. The following
example, which is based on Example 8.4 in Cengel and Cimbala [1], demonstrates this
method by solving a type-3 problem.

Example 5.1. Solution of type-3 pipe flow problems
Heated air at 1 atm and 35°C is to be transported in a 150-m-long circular plastic duct

(¢=0.000045 m) as shown in Figure 5.1 at a rate,V , of 0.35 m%/s. If the head loss in the
duct is not to exceed 20 m, determine the smallest required diameter for the duct.

0.35 m®/s 5
%

50m @ —

Figure 5.1. Schematic for Example 5.1 (adapted from Cengel and Cimbala [1])

Solution:

The problem can be solved by calculating the friction head loss at different diameters of
the duct and then selecting the diameter that gives the required head loss of 20 m. The
iterative solution proceeds as follows:

Select a diameter for the inner pipe (D).

Calculate the flow areas of the pipe and velocity of the hot air, V = VIA.

Calculate the Reynolds number in the pipe, Re =VD/v .

Calculate the friction factor (f) from Equation (1.22), (1.24), or (1.25).
Calculate the friction head loss (hs) from Equation (1.21).

If hi #20 m, repeat steps 1 to 5.

oW

Figure 5.2 shows the Excel sheet developed for this example which is divided into three
parts: (i) problem data (ii) calculations, and (iii) results. The data part shows the
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information given in the question. The value of the kinematic viscosity of air at 35°C (v
= 1.655x10° m?/s) was obtained from Cengel and Cimbala [1] and fixed throughout the
calculations. Cell-labelling is applied in the formulae and Figure 5.2 reveals the
formulae used in each cell of the calculations part.

D -
B C

1 Given data

2L 150
3 ks 0.000045
4

5 |Flow 0.35
6

7 |T1 35
2 P1 101.325
9 |wvisc 1.66E-05
10 |g 9.81)
11

m
m

m3/s

oC
kPa
m2/s
mys2

b2 =f*{L/D)*(Vel~2/(2¥g))

E F G H I J K L
Calculations Results
D P 0.Lim [nf [ 2761.189]m
Goal Seek ? x
[a | 0.007854]=p1()*D"2/a
Set cell: 12 +
[vel | a4.563384]=Flow/a To yalue: 20
By changing cell: | 5F53| +
ks by D 0.00045|=ks/D
Re 269265.16|=vel*D/visc S
f 0.0181864|=IF(Re<2200,64/Re,0.25/({LOG10(ks_by_D/2.7+5.74/Re"0.9))"2)

Figure 5.2. Excel sheet and Goal Seek set-up for Example 5.1

As Figure 5.2 shows, for an assumed duct diameter of 0.1 m the friction head loss
exceeds 2761 m. Figure 5.2 also shows the completed Goal Seek dialog box that
requires Goal Seek to change the diameter in cell F2 and iterate until the friction head
loss in cell J2 attains the required value of 20 m. Figure 5.3 shows the answer found by
Goal Seek, which is D > 0.27 m. This answer agrees with that given by Cengel and
Cimbala [1]. A similar procedure can be used to solve type-2 flow problems by iterating
over the flow rate instead of the diameter.

12 4
B C

1 |Given data
2 |L 150
3 |ks 0.000045
4
5 |Flow 0.35
6
7Tl 33
2 P1 101.325
9 |visc 1.66E-05
10 |g 9.81
11

5.1.2.

m
m

m3/s

oC
kPa
m2/s
m)/s2

B || =f{L/D)*(velr2/{2*g))

E F G H | ] K L
Calculations Results
[o | 0.2697822|m hf 20.00001|m
Goal Seek Status ? x
[a | 0.0571632]=P1()*D" o
Goal Seeking with Cell J2 Step
found a solution.
[vel | 6.1228196]=Flow/a Targetvalue 20 —
Current value: 20.00000649
ks by D | 0.0001668|=ks/D
Cancel
Re 99808.336|=Vel*D/ 2
f 0.0188256|=IF(Re<2300,64/Re,0.25/(LOG10(ks_by_D/3.7+5.74/Re*0.9))*2)

Figure 5.3. Goal Seek solution for Example 5.1

Thermodynamic analyses involving ideal-gas mixtures

Thermodynamic analyses apply many simplifications and idealisations without which
most of these analyses, if not all, would require iterative solutions. For example, a
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common simplificationan in these analyses is the use of constant specific heats for
gases. Example 4.1 showed how the property function provided by Thermax enable the
exact method of analysis with variable specific heats to be used instead of the
approximate method. Another commonly used approximation in thermodynamic
analyses is to treat air as a pure gas even though it is mainly a mixture of nitrogen and
oxygen gases. Computer-aided analyses with property functions enable a more realistic
approximation to be used by treating air as a mixture of gases instead of a single gas.
However, this method involves an iterative solution when the temperature of the gas
mixture is not known but has to be determined. The following example shows how the
method can be applied by using the Goal Seek command.

Example 5.2. Constant-pressure expansion of a heated oxygen-nitrogen mixture
Figure 5.4 shows a piston—cylinder device that initially contains a mixture of oxygen
and nitrogen with 21% oxygen and 79% nitrogen by volume. Initially at 100 kPa, 330K,
the mixture occupies 0.1 m®, Fifty kJ of heat is then transferred to the mixture causing it
to expand at constant pressure. Treating oxygen and nitrogen as ideal gases, determine
the final temperature of the mixture inside the cylinder.

1

0, 21%, N2 79%
T, =330K

P, =100 kPa
V.= 0.1 m3

Heat 50 kJ

Figure 5.4. Schematic diagram for Example 5.2

Solution

This problem is basically the same as that given in Example 4.1, but the air is now
treated as a mixture of O, and N2 and not as a single pure gas. The solution procedure
also applies the first-law of thermodynamics, but the law is now applied as follows:

szoz(hz_oz _h1_02)+ mNZ(hZ_NZ _hl_NZ) (5.2)

Where Q is the amount of heat added, mo, and my. are the masses of oxygen and
nitrogen in the device, hy 02 and hy o> are enthalpies of oxygen at the initial and final
temperatures, respectively, and hi n2 and hz no are the corresponding enthalpies for
nitrogen. The enthalpies of O, and N in Equation (5.2) can be determined by using the
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relevant Thermax function, Gash_TK, and the masses mo, and myz can be obtained
from the ideal-gas law using the corresponding partial pressures as follows:

e, - 0.21PV, 53)
ROZT].
79PV

M, _0.79RV, (5.4)
RN2T1

Where Roz and Rn: are the gas constants for oxygen and nitrogen, which are 0.2598
kJ/kg.K and 0.2968 kJ/kg.K, respectively. The correct value of the final temperature is
that at which the amount of heat added (Q) is the same as the given value, which is 50
kJ. This can be determined by using Goal Seek.

Figure 5.5 shows the Excel sheet developed for this example. The data part includes the
initial pressure, temperature, and volume of the gas mixture together with the mole
fractions and gas constants of oxygen and nitrogen. The initial partial pressures of
oxygen and nitrogen, P1_O2 and P1_N2, are calculated from the total initial pressure
(P_1) and the respective volume fractions, y_02 and y_N2, as shown in cells E2 and
E3, respectively. The sheet then determines the masses of the two gases in the mixture
(m_0O2 and m_N2) in cells E5 and E6, respectively, and the total mass (m_total) in cell
E8. Note that the value of the total mass, 0.1052 kg, is slightly different from that
obtained in Example 4.1, which is 0.106 kg.

2. T2 304 F1_02 21{kiPa T 2g ' 500, 0 18.39971J
: | _ I L2 § ... %0

& v 0.3ms3 hi_O2 300.7581 kg |

Figure 5.5. The Excel sheet developed for Example 5.2 by using Thermax functions

The calculations start with a guessed value for the final temperature, T_2g, which is
500K. Equation (5.2) is then used to determine the total amount heat added in the
process (Q_g). The initial and final enthalpies of oxygen and nitrogen are determined
by using the function Gash_TK at the corresponding temperatures. Note that the sheet
determines the total amout of heat as 18.4 kJ, which is less than the actual values of 50
kJ. To find the appropriate final temperature, the guessed temperature T_2g has to be
adjusted by Goal Seek so that the value of Q_2g equals 50 kJ. Figure 5.5 shows the
required Goal Seek set-up and Figure 5.6 shows the solution obtained by Goal Seek,
which is 780.444 K. The value determined in Example 4.1 for T, by using the exact
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method was 781.6K, while the value determined by using the approximate method was
801.2K. Although these results confirm the the accuracy of treating air as a single pure
gas and using the exact method of analysis, the deviation from the present model and
that of Exampe 4.1 is expected to increase as the amout of heating increases.

H8 - fe | =Gash_TK("N2",T_2g)
A B c D E F G H 1 J K L

1
2 T1 330|K P1_02 21|kpa T 2g 780.4436| K 50.0000] kJ
3P 100|kpa P1_N2 79|kPa Goal Seek Status 7 x
alva 0.1|m3 h1 02 | 300.758

Goal Seeking with Cell K2
5 Q 50|k m_02 0.0245kg h2 02 | 749.163 - S T0e TS
6 m_N2 0.0807|kg

= Target value: 50
7 [y 02 21{% hl_NZ 342,118 Current value: 50,0000
8 y_N2 79|% 0.1052|kg h2 N2 | 825.845
Cancel

3 RO2 0.2598|kJ/kg.K ance
10 R_N2 0.2968|kJ/kg.K
1

Figure 5.6. Goal Seek solution for Exampe 6.2 by using Thermax functions

5.1.3. Convection heat-transfer analyses

Many types of heat-transfer problems require iterative solutions, particularly those of
convection heat-transfer. Although dimensional-analysis techniques are used in some
cases to prepare specific charts that enable the iterative solutions to be avoided, visual
interpolations of the charts can be inaccurate. The following example shows how
Excel’s Goal Seek command provides an alternative solution method for such analyses
that is easier and more accurate. The example is based on Example 10.1 in Holman [3].

Example 5.3. Overall heat-transfer coefficient for pipe in air

Hot water at 98°C flows through a 2-in schedule 40 horizontal steel pipe (k =54
W/m-°C) and is exposed to atmospheric air at 20°C as shown in Figure 5.7. The water
velocity is 25 cm/s. Calculate:

(a) the rate of heat-transfer through the pipe,
(b) the temperatures at the inside and outside surfaces of the pipe, and
(c) the overall heat-transfer coefficient based on the outer area of the pipe.

Properties of water at 98°C are: p = 960 kg/m?, 1 = 2.82 x 10 kg/m.s, k = 0.68 W/m.°C,
Pr =1.76. For a 2-in schedule 40 pipe, Di=5.25 cm and D, = 6.033 cm.

The analytical model
The rate of heat-transfer through the pipe is given by:

Q=(T, -T.)/R, (5.5)
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Air, 20°C, h,

Water
98°C —é
V=25cmls —>
hi —

Figure 5.7. Schematic for Example 5.3

Where Ty and T, are the water temperature and air-temperature, respectively, and Ry, is
the total thermal resistance to heat-transfer that consists of the thermal resistances due
to heat-transfer by convection inside the pipe (Ri), by conduction through the steel pipe
(Rp), and by convection from outside the pipe (Ro). The three resistances are given by:

1
R = A (5.6)
_In(D;/D,)
"=k (5.7)
1
R, = Ah. (5.8)

Where A;j and A, are the inside and outside areas of the pipe and h; and h, are the
corresponding heat-transfer coefficiens. The internal heat-transfer coefficien h; is
determined from the corresponding Nusselt number (Nu):

k
5 (5.9)

Where, ky is the thermal conductivity of water. The Nusselt number is determined from
emprirical equations depending on the type of the flow, i.e. natural or forced, laminar or
turbulent. For the turbulent forced internal flow (to be confirmed later), Nu is obtained
from the Dittus-Boelter equation, Equation (1.31), with n = 0.4 following Holman [3]:

Nu = 0.023 Re®® pr®* (5.10)

Where, Re and Pr are the Reynolds number and Prandtl number, respectively.

For the external flow, Holman [3] used the following simplified equation for free
laminar convection from a horizontal pipe to air at atmospheric pressure:
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AT 1/4 T T 1/4
h. =132 =—| =132 2= 5.11
1324} ( : J .1)

0

Both R;j and R, can be determined directly from the given data, but R, depends on h,
which cannot be determined directly because T, is not known. Therefore, the problem
has to be solved by adopting an iterative approach. A value for T, is assumed based on
which h, is determined and, consequently, Q. The value of Q thus obtained can be used
to calculate corresponding values for T; and T, from:

T, =T, -QR, (5.12)
T, =Ti+QR, (5.13)

If the guessed value for T, is correct, it will be the same as that obtained from Equation
(5.13). Otherwise, a new guess for T, has to be made repeatedly until this condition is
met. Once this is achieved, the overall heat-transfer coefficient (U,) based on the
outside area (A,) can be obtained from:

_ L (5.14)

0_Ao(Ri +R0+RP)

Solution with Excel

The Excel sheet developed for this example is shown in Figure 5.8. The given
information about the pipe, water, and air properties are entered in the data part on the
left side of the sheet. The cells are labelled and the figure shows the formulae used in
the calculations. The calculations part at the central part of the sheet starts with a
guessesd value for the pipe’s outside temperature (T _og) of 50°C. Based on this value,
the sheet determines the outside heat-transfer coefficient (h_o) from Equation (5.11)
and the thermal resistance associated with it (R_o) from Equation (5.8). Following the
analytical model described above, the sheet determines the three thermal resistances
(R_i, R_p, and R_0), and then calculates the rate of heat-transfer (Q), inside
temperature (T_i), outside temperature (T_o), and overall-heat transfer coefficient (U).

As Figure 5.8 shows, the value of T_o calculated from Equation (5.13) is 97.876°C,
which is different from the initially guessed value (T_og = 50°C). The formula bar
reveals the formula entered in cell H12 that calculates the difference between the
calculated exit temperature (T_o) and the guessd value (T_og) as a fraction of T_og.
The exit temperature that makes the difference vanishes can be found by using the Goal
Seek command and Figure 5.8 shows the required set-up. The solution found by Goal
Seek is shown in Figure 5.9. Table 5.1 that comapres the presents results with those
given by Holman [3] confirms the accuracy of the iterative solution with Goal Seek.
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T og - A ~ARS(T_o-T_og)/T og

" B c D E a N I
1
2 Di 00525|m IT Of | TR :LCSC(
3 Do 0.08033|m Goal Seek T
3 k_pipe S| wim< |h e 6.200341|=1.32°[{T_og-T_==)/D_o)"0.2% 'I'J-l-'_-l"'_"
5 RO 0.846439|=1/(h_o*P¥}*D_0) gt oad: Wil
o v 0.25|{m/'s =7 _w-Q*R To yohe

T_w StioC Lo DAS|=p*V*'O_U/p By ongeg b g2
np D0 kg/m3 L SANT_-O R _pipe
'D - x| Caem
W 2325 04{kg/ms b S8|eNu_"k/'D |
0 & 0.83 w/m-C :I",F'Ir'tnr':i 4R _pipe<R_o})
i Pr LM ll_a I 0,00 :rn-.]»;;-n_y"...;'hA.v
2 P | — ETya T 7|
131 | 20{oC [7_pipe ] 0.00041|=LN(D_o/D_i}/{2°P4)*%_pipe)
3
Figure 5.8. Excel sheet developed for Example 5.3

i . £ | ~ARNT_o-T_og)/T_og

A B C D E F a " i
t
3 Gowl Seek Satis '

o [ 7s0813]=132°((7_og-T_=}/0_ojn0.25 <t .opT o

= BRIy 528 Sewking with Onl 1112

7 [®_¢ ] 0.667530|=1/{h_o"24)*0_o) | S seiotor
- - = Torget vake
F T 9 Re i ALB0.85|=p"V Dl Curvmrt wslom: 3.00000913%
f o aenlkg/m3  [Nut 151, 3006|=IF{Re_|>2300,0.022*Re_1°0,8°Fr 0.0,01) [1 AR
—~— 5 ! o q Carcw
LI 2R2-0alag/ma [ 21950558 ~Nu_I*K/D_| | S
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1L Pr 176} [2 [ o.003083]=14¢h_i*ew)=0_0)
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Figure 5.9. Solution obtained by Goal Seek for Example 5.3

Table 5.1. Comparison of the presnt solution with that given by Holman [3]
Present solution Holman [3]

97.64 97.65
; 97.59 97.6
1960.56 1961.0
7.90 7.91
. 7.86 7.87

—

—

=

—p

o

Cc

5.2. Constrained iterative solutions with Solver

The previous sections demonstrated the adequacy of Excel’s Goal Seek command for
obtaining iterative solutions of different types of thermofluid problems. However,
Solver offers greater flexibility than Goal Seek by allowing multiple changeable cells
and by allowing constraints to be specified in the iterative process. This section
illustrates the need for these additional features in thermofluid analyses by means of
two examples from the areas of fluid dynamics and thermodynamics. The first example,
which is basically a type-2 pipe flow problem, is based on a similar example given by
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Schumack [4]. The second example demonstrates the usefulness of Solver for a
constrained iterative solution of Example 5.4 given by Cengel and Boles [5].

Example 5.4. Determining the maximum water flow rate to avoid cavitation

Water at 20°C (y = 9810 N/m?® and v =1.006x10° m?/s) is to be pumped from a large
reservoir via a pump-pipe system as shown in Figure 5.10. The pump is positioned
vertically at a level which is 9 m above the surface of the reservoir and horizontally at 1
m from the vertical section of the pipe. The pipe is made of commercial steel pipe (e =
0.046 mm) and has a 2" nominal diameter.

1m

__/f::.??

9m 2" commercial steel pipe

otV

Figure 5.10. Schematic for the pump-pipe system in Example 5.4

Determine the maximum allowable water flow rate (Q) that satisfies the following
restrictions:

1. To avoid cavitation, the pressure at the pump inlet must be greater than the
saturation pressure of water at 20°C, which is 2.338 kPa.
2. For economic considerations, the water velocity (V) is to be in the range 1.4-2.8 m.

The analytical model
The energy equation between the pipe inlet (point 1) and the pump inlet (point 2) is:

2 2
Py 21+Vi:&+ z, +V—2+hf
4 29y 29 (5.15)

Where y stands for the specific weight of water, z for the elevation, V for the water
velocity, g for the gravitational acceleration, and h; for the friction loss in the pipe. For



130 Mohamed M. El-Awad

suction from a large reservoir Vi = 0. Taking point 1 as a reference, i.e. z; = 0, and
noting that the water velocity in the pipe is uniform, i.e. Vo =V, the energy equation
becomes:

P, VL
p2—7(y Z, 2 hfj (5.16)

The velocity V is related to the pipe diameter (D) and water flow rate (Q) as follows:
vV =4Q/7Z‘D2 (5.17)

Neglecting minor losses, the friction loss can be calculated from the Darcy-Weisbach
equation which needs an auxiliary formula to determine the friction factor (f) as
described in Chapter 1 for both laminar and turbulent flows.

Solution with Excel

Figure 5.11 shows the Excel sheet developed for this example. The data part on the left
side stores the problem data such as the diameter, roughness, and length of the pipe, etc.
The central part stores a guessed value for the water velocity (V=1.0 m/s) in cell E2.
Based on the guessed water velocity, this part also performs the necessary calculations
according to the analytical model given above. Figure 5.11 reveals the formulae used in
these calculations. Note that an IF statement is used to calculate the friction factor (f)
depending on the value of the Reynolds number (Re). Cell E6 calculates the friction
loss (hf). Based on the calculated value of friction loss, the pressure at point 2 (P_2) is
calculated from Equation (5.16) and stored in cell E7.

Q - £ | =0.25%PI()*D2*V

A B c D E F G H I ) K
1
2 |D 0.05252|m m/s [a ['0.0021662|m3/s
3 & 0.000046|m
alL 10|m Re 52520|=v*D/v
5 |7 3|m f 0.023651]=IF (Re<2000,64/Re,0.25/(LOG10(£/3.7/D+5.74/Re0.9))*2)
6 P1 100|kpa hf 0.229523|=F*L/D*V"2/(2*gc)
7 v 1.00E-06Pa.s P2 8.958382]=(P_1=1000/y-Z_2-v*2/(2*gc)-hf)*y/1000
8 y 9810|N/m3
9 |gc 9.81|m/s2

=)
o

Figure 5.11. Excel sheet developed for Example 5.4

The right side of the sheet contains the single cell 12 that determines the flow rate (Q).
The formula in this cell is shown in the formula bar. Based on the assumed water
velocity of 1.0 m's, the calculated values of hf and P_2 are 0.2295 m and 8.958 kPa,
respectively. Since the pressure at point 2 is higher than the minimum design level of
2.338 kPa, while the water velocity (V) is less than the minimum economic value of 1.4
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m, there is room to increase the flow rate. The task can be left to Solver and Figure 5.12

shows the required set-up.

Solver Parameters

Set Objective:

]

To: @ Max

By Changing Variable Cells:

Subject to the Constraints:

() value Of: 0

|
1l

L |
il

P_2»=2.333
V=28
V=14

Add

Change

Delete

Figure 5.12. Solver parameters dialog box for Example 5.4

The above set-up requires Solver to maximise the value of the flow rate Q while
satisfying the three constraints shown in the figure. The first constraint on the iterative
solution requires the value of P_2 in cell E7 to be higher than or equal to the specified
value of 2.338 kPa, which is the minimum pressure level required to prevent cavitation.
The two other constraints are to satisfy the limits on the water velocity imposed by
economic limits, i.e. 1.4 m <V < 2.8 m. Pressing the “Solve” button will trigger Solver
to search for the solution. The solution found by Solver using the GRG Nonlinear
method is shown in Figure 5.13.

Q - £ | =0.25%PI()*DR2*Y

A B c D E F G H | )
1
2 D 0.05252|m [v [ 1.90]m/s [a [ 0.004125|m3/s
3 e 0.000046|m
aL 10|m Re 100001.5|=v*D/v
5 22 9|m f 0.021901|=IF(Re<2000,64/Re,0.25/(LOG10(£/3.7/D+5.74/Re0.9))"2)
6 P_1 100[ka hf 0.770567|=F*L/D*v"2/(2*ge)
7 1.00E-06|Pa.s P2 2.338005|=(P_1*1000/y-Z_2-V2/{2*gc)-hf)*y/1000
g8 y 9810|N/m3
9 gc 9.81|m/s2

=
=

Figure 5.13. Solver solution for Example 5.4

The value determined by Solver for the water velocity is 1.90 m/s. Note that this
velocity lies within the limits imposed by the economic constraint. The corresponding
flow rate, which is 0.00413 m?s, is the maximum flow rate to be recommended.
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Example 5.5. Restrained expansion of air inside a piston-cylinder device

Figure 5.14 shows a piston—cylinder device that initially contains 0.05 m? of air at 200
kPa, 317K. At this state, a linear spring is touching the piston but exerting no force on
it. Now, 72.7 kJ of heat is transferred to the air, causing the piston to rise and compress
the spring that has a constant of 150 kKN/m.

T1=317k
P, =200 kPa
V1 =0.05 m?®

Heat 727 kl

Figure 5.14. Schematic and pressure-volume diagrams for Example 5.5 (adopted from
Cengel and Boles [5])

If the cross-sectional area of the piston is 0.25 m?, determine the final volume, pressure,
and temperature of the air inside the cylinder. Air can be treated as an ideal gas with a
specific heat at constant volume (cy) that varies linearly with the temperature according
to the formula:

cv = 0.645+0.0002T (5.18)
Where T is the temperature in K and ¢y is in ki/kg.K.

Solution

Unlike the present example, Cengel and Boles [5] specified the final volume to be 0.1
m? instead of the amount of heat added. When the final volume (or final pressure) is
given, the problem can be solved in a straightforward manner without iteration by using
the ideal-gas law. However, in the present example T, V2, and P; at the final state all
depend on the amount of heat added. The specific value of 72.7 kJ given in this
example has been chosen so that the final volume will be 0.1 m® as specified by Cengel
and Boles [5]. Therefore, the final pressure on the piston and the total work should be
the same as those obtained by Cengel and Boles [5] even though the formulations of the
two examples are different.

The analytical model

Like Example 5.2, this problem can be solved by using the first-law of thermodynamics
together with the ideal-gas law. However, the addition of the linear spring in this
example introduces a new factor, which is the variation of pressure with air expansion.
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As in Example 5.2, the variation of the specific heat with temperature makes it
necessary to adopt an iterative solution approach. Since the iterative process here
involves not only the temperature but also the volume (or pressure), the Goal Seek
command is inadequate. Therefore, this example requires Solver since it allows the

iterative procedure to start by assumed values for both the final temperature (T;) and
the final volume (Vz* ). The final pressure P, is given by:
KAX

PZ = Pl - T (519)

Where A is the base area of the piston and AX is the reduction in the spring’s length
given by:

V2 _Vl
A

AX = (5.20)

The total work (W), i.e. the summation of the air expansion work and the work done
against the spring, can now be obtained from:

W = @(\/g -V, (5.21)

The final temperature can be determined by applying the first-law of thermodynamics
to the piston-cylinder device as a closed system:

Q-W = m(uz _Ul) = ch(TZ _T1) (5.22)

Where Q is the amount of heat added, u is the internal energy, m is the mass of air

inside the cylinder, and T, is the average specific heat of air at constant volume. The

mass and specific heat of air can be obtained from:

m=PV, /RT, (5.23)
C, =0.6+0.0002(T, + T, )/ 2 (5.24)

Rearranging Equation (5.22), the final temperature T, is given by:

(5.25)
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Using the values obtained for T, and P>, the final volume V; can be determined from the
ideal-gas law:

V, =mRT, /P, (5.26)

If the initially guessed volumes of T, and V, are correct, then they will be the same as
T, and V- obtained from Equation (5.23) and Equation (5.25), respectively. Otherwise,
new values for T, and V, have to be used until the difference between the calculated
and guessed values becomes negligibly small.

Solution with Excel

Figure 5.15 shows the Excel sheet developed for this example. The left side of the sheet
accommodates the problem data. The calculations part start by an assumed values for
the final temperature (T_2g = 500K) and final volume V_2g = 0.15 m®. Based on the
assumed final volume, the sheet determines the compression of the spring (Ax), spring
force (Fspring), final pressure (P_2), and total work involved (Work). The final
temperature (T_2) is then calculated from the first-law according to Equation (5.24),
and the final volume (V_2) from the ideal-gas law, Equation (5.26). As Figure, 5.15
shows, the calculated values T_2 and V_2 are different from the initial values T_2g and
V_2g. Solver can now be used to adjust the guessed value of T_2g and V_2g until they
become the same as the calculated values.

T2 - Je | =T_1+{Q-Work)/m/Cv

A B C D E F G H 1
1
2 P 1 200|kPa T 2g 500 T2 826.5425] K
3 T1 317|kPa v 2g 0.15 v 2 0.059259|m3
4 V1 0.05/m3
5 =p_1*V_1/Rgas/T 1
6 Q 72.7|kJ
7 Area 0.25[m hx 0.4|=(V_2g-V_1)/Area
8 Fspring 80 |=kspring®Ax
9 kn/m  [p_2 440|=p_1+Fspring/Area
10 Work 32|=0.5%(P_1+P_2)%(V_2g-V_1)
1 ki/kg.K

=
[ ¥]

=0.645+0.0002%(T_1+T_2g)/2
Figure 5.15. Excel sheet developed for Example 5.5

=
78]

Figure 5.16 shows the set-up that requires Solver to change the values of T_2g and
V_2g in cells F2 and F3, respectively, until two constraints are satisfied: (i) T_2=T_2g
and (i) V_2=V 2g. Note that the “Set Objective” option has been left blank. The
“Changing Variable Cells” are F2 and F3. Figure 5.17 shows the solution obtained by
the GRG Nonlinear method of Solver, which is T_2g = 1014.864K and V_2g = 0.1 m®.
At this state, the final pressure on the piston is 320.0 kPa and the total work is 13.0 kJ.
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These values agree with their corresponding values given by Cengel and Boles [5]
whose analysis also gave P, = 320 kPa and W = 13 kJ.

Solver Parameters 4

|
1l

Set Objective: |

To: () Max () Min (®) value Of: 0

By Changing Variable Cells:

L |
il

SFS2:5F83

Subject to the Constraints:

T 2=T_2g

V2=V 2q =
Change
Delete

Figure 5.16. Solver set-up for Example 5.5

- J= | =T_1+{Q-Work)/m/Cv

A B c D E F G H I
1
2 P1 200/kpa T 28 1014.864 T2 1014.864]x
3 T1 317kPa V_2g 0.100026 T 0.100026]m3
4 V1 0.05|m3
5 m 0.109915|=P_1*V_1/Rgas/T_1
6 Q 72.7|kJ
7 Area 0.25|m Ax 0.200105 |=(V_2g-V_1)fArea
8 Fspring 30.0157 |=kspring®Ax
g [kspring | 150(kn/m  [p2 320.0628|=P_1+Fspring/Area
10 work 13.00837|=0.5%(P_1+P_2)*(V_2g-V_1)
1 [Rgas | o.287|u/kgk

Cv 0.778186|=0.645+0.0002*(T_1+T_2g)/2

Figure 5.17. Solver solution for Example 5.5

il
La o pa

5.3. Iterative solutions involving nonlinear equations

Several nonlinear equations are met in thermofluid analyses because of the
characteristics of a process or properties of the fluid involved. For example, to
determine the head loss due to friction (hr) in Example 5.1 the friction factor (f) for the
turbulent pipe flow was obtained from Equation (1.25) - which is an explicit equation.
As mentioned in Chapter 1, f can be determined more accurately for a turbulent pipe
flow by using the Colebrook equation [1]:

1 elD 2.51
— =-20lg| =+ —— 135
E 737 " ReyT (1:39)
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Since the Colebrook equation involves the friction factor f in both sides, it needs to be
solved iteratively in order to determine f. Therefore, for type-2 and type-3 flow
problems using the Colebrook equation to determine the friction factor would involve
two nested iterations; an inside iteration to determine f and an outside iteration to
determine the pipe’s diameter or flow rate. This situation also occurs in optimisation
analyses that use the Colebrook equation.

Chapter 4 illustrated the use of the NRM solver provided by Thermax by considering
the Benedict-Webb-Rubin equation. The NRM solver can also be used to solve the
Colebrook equation with type-2 and type-3 problems. For illustration, let us reconsider
Example 5.1 and solve it by the using the Colebrook equation to determine f instead of
the Swamee-Jain equation. As mentioned in Chapter 4, the NRM solver requires the
intended nonlinear equation to be written as a separate user-defined VBA function. The
needed VBA function for the Colebrook equation is listed below:

Function colebrook(x, €, Re)
¢ Colebrook equation for the friction factor

colebrook = 1/Sqr(x) + (2/1og(10))*Log(e /3.7 + 2.51/Re/Sqr(x))
End Function

Note that, unlike in an Excel formula, in VBA syntax the term “log” is used for the
natural logarithm “In”. Figure 5.18 shows the Excel sheet developed for solving
Example 5.1 with the Colebrook equation.

D - fe | =NRM("Colebrook",0.004,ks_by_D,Re)

B c D E F G H | ] K
1 Given data Calculations Results
2 L 150|m [o i 0.1:m [nf 2744.235|m
3 ks 0.000045|m Goal Seek ? e
4 [a | 0.007854]=Pi()*D*2/2 _
5 Flow 0.35|m32/s Set cell: 182 5.3
6 [vel | 44.563384]=Flow/A To value: 20
7 T 35/oC By changing cell: | $F52| 25
8 P1 101.325|kPa ks by D 0.00045|=ks/D

— oK Cancel

9 |visc 1.66E-05|m2/s Re 269265.16]=Vel*D/visc _
10 (g 9.81|m/s2 f 0.0180748 |=MRM|"Calebrook",0.004,ks_by_D,Re)

11
Figure 5.18. Excel sheet for Example 5.1 using the Colebrook equation

The only difference between this sheet shown in Figure 5.2 is the content of the cell F9
that calculates friction factor. As Figure 5.18 shows, the formula typed in this cell now
reads:

“=NRM (“colebrook”,0.004, ¢ by D, Re)”.
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The first input to the NRM function, “colebrook”, refers to the function that contains
the Colebrook equation while the second input, 0.004, is an initial guess for f. The last
two arguments, € by _D and Re, respectively, are labels for the cells that hold values of
the roughness-diameter ratio (¢/D) and the Reynolds number (Re) at which f is to be
determined. Figure 5.18, which shows the calculations for a selected diameter of 0.1 m,
shows that the value of the friction factor obtained by the Colebrook equation is
0.018075. The diameter that keeps the losses below 20 m can be determined by using
Goal Seek as in Example 5.1. Figure 5.18 also shows Goal Seek set-up for finding the
value of D that makes the friction head loss equal to 20 m. As Figure 5.19 shows, the
answer found by Goal Seek is D > 0.27 m, which is the same answer obtained earlier in
Example 5.1.

F10 - Je | =NRM("Colebrook",0.004,ks_by_D,Re)
B C D E F G H | ] K
1 Given data Calculations Results
2 L 150|m [o | 0.2698595|m [nf 2000001 m
3 ks 0.000045|m Goal Seek Status 7 x
& [ |_0.057196]=r1()*D"2 Goal Seeking with Cell 12
5 |Flow 0.35|m3/s found a solution.
6 [vel | 6.1193121]|=FIOW/A | et vaie: 20
7|71 35]oC Current value: 2000000613
g [p1 101.325|kPa ks by D | 0.0001668]=ks/D p—
9 |visc 1.66E-05|m2/s Re 99779.744|=Vel*D/v|
10 |g 9.81|m/s2 f 0.0188526 |=NRM("Colebrook",0.004,ks_by_D,Re)

11
Figure 5.19. Goal Seek solution for Example 5.1 using the Colebrook equation

5.4. Closure

This chapter dealt with thermofluid analyses that require iterative solutions and showed
how Excel’s Goal Seek command and Solver can be used for solving typical problems
from the areas of fluid dynamics, thermodynamics, and heat-transfer. The cases
considered include a type-3 flow problem, expansion of an oxygen-nitrogen ideal-gas
mixture in a closed system, and a convective heat-transfer analysis of a pipe heat-
exchanger. Because of its simplicity, Goal Seek should be the first option to consider
for an iterative solution that involves a single parameter. Solver can be used to solve
more difficult problems because it can handle multiple changeable cells and allows
constraints to be applied to the iterative process. The chapter also showed how the
Newton-Raphson solver provided by Thermax can be used to deal with the analyses
that involve nonlinear equations such as the Colebrook equation.
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Exercises

1. Consider the problem in Example 5.1. Suppose that the only available pipe
diameter is 20 m and we want to maintain the same maximum limit on the friction
head loss of 20 m by reducing the water flow rate. Using the Excel sheet
developed for this example, determine the water flow rate that gives the required
result. Answer: 0.157 m®,

2. Using the two Excel sheets developed for Example 5.2, determine the final
temperature for air by the two methods when the amount of heat added is 50, 100,
150, and 200 kJ. Also calculate the final temperature from Equation (5.4) by using
a constant specific heat (c,) of 1.043 kJ/kg.K. Plot the values obtained for the final
temperature (T,) with the amount of heat added by the three methods and comment
on the result.

3. A gas mixture consisting of O, and CO, with mole fractions 0.2 and 0.8,
respectively, expands isentropically and at steady state through a nozzle from 700
K, 500 kPa to an exit pressure of 100 kPa as shown in the figure. Determine the
temperature at the nozzle exit, in K.

Pl =500 kPa \/ =
T, = 700K P, =100

— —>

/\

Figure P5.3. Isentropic expansion in a nozzle

This exercise is based on Example 12.4 in Moran and Shapiro [6]. Using the
approximate constant-specific heat method, the exit temperature (T,) can be
determined from:
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K—
T, =T, x (Pz / Pl)Tl (A)

Where k is the ratio of the specific heats for the mixture. Using k = 1.304, the
resulting exit temperature is 480.9K. Using the exact variable specific heat
method, T- is determined by requiring that the total entropy change is zero, i.e:

P P
yoz[sgz (Tz )_ 582 (Tl)_ Roz In FZ} *+ Ycoo [Sgoz (Tz)_ Sgoz (Tl)_ Reoz In FZ} =0

1 1

(B)

Where yoz and yco2 are the volume fractions of O, and Co, respectively, and Ro
and Rcop are the molar masses for O, and Co, respectively. The values of sJ, and

sdo, can be determined by using the relevant function provided by Thermax.

Equation (B), that requires an iterative solution, can be solved by using the Goal
Seek command. Answer: T, = 514.05K.

4. Steam is be condensed at 30°C on the shell side of the multi-pass shell-and-tube
heat exchanger shown in Figure P5.4. The condenser has 8-tube-passes with 50
tubes in each pass. Its overall heat transfer coefficient is 1000 W/m?2.°C. Cooling
water (Cp = 4180 J/kg-°C) enters the tubes at 15°C at a rate of 55,000 kg/h. The
tubes are thin-walled, and have a diameter of 1.5 cm and length of 2 m per pass.
Develp and Excel shhet to determine the outlet temperature of the cooling water by
using Goal Seek and the LMTD method instead of the e-NTU method [7].

Hot % i, T,

- = T,
¢ D)
@
D
S D)
@ — | &= Cold

| o T
?._';FI'J

Figure P5.4. A multi-pass shell-and-tube heat exchanger
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Reconsider the problem in Example 5.5. Show that an alternative solution of this
problem that also takes into consideration the variation of specific heat for air with
temperature can be obtained by using the ideal-gas property functions provided by
Thermax instead of Equation (5.18). Show that this solution can be obtained by
using the Goal Seek command instead or Solver and compare your solution with
that given in Example 5.5.

Consider the semi-infinite slab shown in the figure that is suddenly exposed to
convection environment at T... The temperature (T) at a depth x from the surface at
any time is given by [3]:

T-T ﬂ—erf(X)—[exp[%Jr h;i”ﬂ{l—erf(x + hmﬂ (A)

T, -T k

0 i

Where « and k are the diffusivity and thermal conductivity of the slap material,
respectively, and:

X = (2Jar)

T; = initial temperature of solid
T. = environmental temperature
7 = elapsed time in seconds

To
h T,

WA

—> x

Figure P5.6. Semi-infinite slab with convection heat-transfer

Equation (A) requires an iterative procedure because the time (z) appears in both
terms on the right-hand side of the equation.

A large slab of aluminium (k = 215 W/m.°C, a =8.4x10"°m?s) at a uniform
temperature of 200°C is suddenly exposed to a convection-surface environment of
70°C with a heat-transfer coefficient of 525 W/m?-°C. Calculate the time required
for the temperature to reach 120°C at the depth of 4.0 cm for this circumstance.
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This problem is based on Example 4-5 in Holman [3]. His answer is approximately
3000 seconds.

7. Water at 60°C enters a tube of 3-cm diameter at a mean flow velocity of 1.2 cm/s.
If the tube is 3.0 m long and the wall temperature is constant at 80°C, what will be
the exit water temperature?

Use Goal Seek to perform the iterative solution of this problem. To determine the
viscosity of water at any temperature, develop a user-defined function based on the
data shown in Appendix B. This exercise is based on Example 5.2 in Holman [3].
Answer: 73.0°C.
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6

Optimisation analyses of thermofluid
systems
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The cost of energy constitutes a major part of the total lifetime costs of thermofluid
systems. Therefore, a compromise must be made between the lifetime savings in energy
cost that result from improving the efficiency of these systems and the additional costs
of such improvements. Optimisation analyses of thermofluid systems aim to determine
the most desirable design or operating conditions for these systems. This chapter shows
how the Excel-based platform described in this book can be used for optimisation
analyses of thermofluid systems. Initially, the chapter highlights the advantages of the
Excel-aided optimisation method over the traditional analytical method by considering
a two-stage air-compression system. The optimisation method with Excel is then
applied to selected thermofluid systems that involve single and multiple design
variables. Finally, the chapter demonstrates the use of the Evolutionary method in
thermofluid optimisation analyses by solving two examples previously solved by the
GRG Nonlinear method and comparing the results and computer time.

6.1. Analytical vs. Excel-Aided optimisation of thermofluid systems

The analytical optimisation process involves two main steps: (a) development of an
objective function that can be used to analyse the system’s performance in terms of its
design and operating parameters and (b) using calculus methods to find the values of
these parameters that maximise or minimise the objective function. An important
advantage of the Excel-based method that uses Solver in the second step is that the
optimisation process can easily take into consideration any relevant constraints such as
physical constraints (spatial or temporal), economical constraints, or safety constraints.
To highlight the advantages of the Excel-aided optimisation method, let us use the two
methods to determine the intermediate pressure between the two stages in the air-
compression system shown in Figure 1.1 that minimises the total compression work.

6.1.1. The analytical optimisation method

The development of the objective function in the analytical method that uses calculus
techniques to determine the maximum or minimum value of the function usually
requires simplifying assumptions to be made regarding properties of the materials and
fluids involved in the system so that an analytical solution can be obtained. Chapter 1
showed that the total compression work (wWitar) OF the two-stage system is given by:

= k-
P )k P k
Wigtar =C pTl 2- [FIJ - [é} (61)
1 i

Where k is the ratio of the specific heat for air at constant pressure (c,) to that at
constant volume (c.). Equation (6.1) is the objective function for optimisation and we
are required to determine the intermediate pressure (Pi) that minimises the total
compression work. Designating the pressure ratio in the first and second compressor
stages by rp: and ry, respectively, and the ratio (k-1)/k by a, Equation (6.1) can be put
in the following simpler form:
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Wi =C,Ti[2— 1% 15, ] 6.2)

The pressure ratio in the second stage ry. can be replaced by the total pressure ratio (rp)
and the pressure ratio in the first stage (rp1) as follows:

P, (P) [R) T
r == — [ X| — | = — 63
P27 p (Pl] [P—j r 63)

Accordingly, Equations (6.3) can be written as:

r a
Wy = CPT{Z —rf - (r_pj ] (6.4)
pl

The analytical solution to the optimisation problem is obtained by determining the
intermediate pressure such that:

thotaI

=0 (6.5)
dry,

For convenience, let us replace rp: in Equation (6.4) by x. Then, Equation (6.5) leads to:

%CPT{ZX“ —[%"j }o (6.6)

After differentiation, we get:
[O —ax“t—ry (—a)x""’l] =0 (6.7)
Dividing by a and rearranging:

a-1l _ poy—-a-1
X" =1)X (6.8)
Multiplying both sides of the equation by x®*D, we finally get:

=r;, orx=[r, (6.9)

Thus, the optimum intermediate pressure ratio is such that:

2a

X
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Mg =Tpy = \/H (6.10)

This solution indicates that, in order to minimise the total compression work, the overall
pressure ratio should be divided equally between the two compression stages. For
example, consider a two-stage air compression system designed to receive air at 100
kPa, 300K and discharge it at 900 kPa. Using Equation (6.10), the optimum pressure
ratios rp; and rp. are such that:

o1 =Tp2 :\/5:3

The total compression work (w) can be determined from rom Equation (6.1). Taking ¢,
for air as 1.005 kJ/kg.K and k as 1.4, gives:

14-1
W0 =1.005 x 300{2 - 2(3)1.4} = -222.35 kJ

6.1.2. The Excel-aided optimisation method
The analytical optimisation method described above required the following
simplifications and idealisations in order to develop the objective function:

Ideal isentropic compression processes in both stages
Constant specific heat for air

Perfect intercooling, i.e. T3=Ti

Zero pressure losses in the intercooler, i.e. Pz = P

A

These simplifications and idealisations can undermine the accuracy of the results
obtained. The following example demonstrates how the Excel-based platform enables a
more realistic method for solving the optimisation problem by avoiding all the four
simplifying assumptions mentioned above.

Example 6.1. Excel-aided optimisation of a two-stage air compressor

An air compressor with two stages of compression takes atmospheric air at 300K and
100 kPa and delivers it at a final pressure of 900 kPa. The adiabatic efficiency of both
stages of the compressor (7c) is 85%. The intercooler that cools the air after the first
stage causes a pressure drop of 5 kPa and has effectiveness (€) of 85%. Determine the
exit pressure of the first stage (Px) that minimises the total compression work.

Unlike the analytical model, we don’t take the compression process to be ideal, but
allow for the actual friction losses in the process by using 7. = 85%. We also allow for
the imperfections of the intercooler by accounting for its pressure losses and heat-
transfer effectiveness. By using Thermax functions for ideal gases, we also don’t have
to use the approximate method that assumes constant specific heats for air.
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The analytical model

Figure 6.1 shows the T-s diagram for the two-stage compression process in this
example. Given the values of Ty, Py, T3, and Pa, the first step in the solution is to assume
a value for the intermediate pressure (Py). Using the exact variable-specific-heat
method, the relative pressure for air at state 1 (Pr1) is determined by using the relevant
function provided by Thermax, which is GasPr_TK.

Intercooling

N

S

Figure 6.1. T-s diagram for the two-stage air compressor with
inter-stage intercooling

The relative pressure at state 2s (Przs) can then be calculated from the following
relationship [1]:

P,
Pros =Py X (6.11)
Pl

Having determined the value of Py, the ideal isentropic temperature after the first
compression stage T»s can be determined by using the add-in function GasTK_Pr.
Enthalpy values at states land 2s can be calculated by using the Gash_TK function.
Enthalpy at the actual temperature (T2) can now be determined as follows:

h,=h; + (hZS - hl)/77c (6.12)

Where 7. is the adiabatic efficiency of the compressor. Therefore, the compression
work in the first stage (wc1) is given by:

We =h, —hy (6.13)

The temperature and pressure before the second compressor stage are given by:
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T3 =T, _3(T2 _Twi) (6.14)
P, =P, — AP (6.15)

The compression work in the second stage can also be calculated by using the exact
method to determine the ideal exit temperature T4s and actual exit enthalpy ha:

_ Pus
Ps =P x Fs (6.16)
hy =hy + (s —hy)/ 7 (6.17)
Wez =M =Py (6.18)

The total compression work (Wietar) is the summation of the work in the two stages:
Wiotal = Wer + Wes - (6.19)

The Excel model and solution

Figure 6.2 shows the sheet prepared for solving this example. The sheet reveals the
formulae entered in each cell in the calculations part, while the formula bar shows the
formula that calculates the total compression work (W_c =w_c1+w_c2) in cell L2. Cell
labelling has been used to clarify the formulae. Three Thermax functions are needed as
shown in Table 6.1. Figure 6.2 shows the results of calculations at a “guessed”
intermediate pressure of 200 kPa that gives a total compression work (W _c) of 277.85
kJ. Figure 6.3 shows the total compression work obtained at various assumed values of
the intermediate pressure (P_i).

L2 v 5| =w_cliw_c2

B c D E F G H I 1 K[
1
2 (T4 300] K [P | 200|kpa T3 | 309.8113|K
3 pa 100|kpa P.3 195kpa
apa | 900[kpa h i | 299.8455|=Gash_TK("Air"T_1) [h.3 | 309.7009|=Gash_Tk("Air",T_3)
5 Pr1 | 1.383536|=GasPr_TK("Air",T 1) [Pr 3 | 1.548483|=GasPr_TK("Air",T_3)
6 n_o 0.85 P r2 | 2.767073|=pr_1*(P_i/P_1) P_ra_ | 7.146844|=Pr_3*(P_a/P_3)
7 1T wi 300]oC T2 305,4084| =GasTK_Pr("AIr",P r2) [T 4 A476.8719]=GasTK_Pr("Air",P_ra)
8 e 0.85 h 2 | 365.8286|=Gash_TK("Air",T_2)  [n4 | 479.8916|=Gash_TK("Air",T_4)
9 (AP 5[kpa h2a | 377.4727|=h_1+(h_2-h_1)/n.c  |h.da | 509.9253|=h_3+(h_a-h_3)/n_c
10 w_cl 77.62727=h_2a-h_1 w €2 200.2244|=h_4a-h_3

=
-

Figure 6.2. Excel sheet developed for Example 6.1
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Table 6.1.Usage of Thermax functions in the Excel model

# Function Usage
1 GasPr_TK Pr1, Pr3
2 GasTK_Pr T2, T4
3 | Gash_TK h,, h,, hy, h,
__ 310
2
x 300 /
o
2 ////,
c 290
$ 280
Q.
g \/
8 270
s
2 260 . . .

200

600 800
Intermediate pressure (kPa)

1000
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Figure 6.3.Variation of the total compression work with the intermediate pressure

Figure 6.3 indicates that the total work has a minimum value of about 310 kPa. The
exact value of the intermediate pressure that minimises the total work can be
determined by using Solver. Figure 6.4 shows Solver Parameters set-up that requires
Solver to minimise the total compression work calculated in cell L2 by adjusting the
value of the intermediate pressure (P_i). Figure 6.5 shows the solution found by Solver
with this set-up using the GRG Nonlinear method.

Solver Parameters

Set Objective:

To: O Max

P

By Changing Variable Cells:

Subject to the Constraints:

() value Of: 0

]

i 11

n

oy

Add

Change

Delete

Figure 6.4. Solver Parameters set-up for Example 6.1
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. 2 _Clsw_c

a D E F K
2T 300 % [P5 T aisss0axea T3 | 317.4084)x e (207524
3 P31 100{«Pa P3| 311.8802|kPa
1 Pa S00{kP3 h 1 | 299.8455]=Gasn Tx(*Air"T_1) |h3 | 317.3382|=Gash_TK("Air"T_3)
5 Pr1 | 1.383536|=Gaspr TK("Air",T_1) [Pr3 | 1.68562|=GasPr TX("Al",T_3)
6 nc 0.35 Prz | 4384153|«Pr 1°(P 1/P 1) P ra | 4.864233|+Pr 3°(P 4/P 3)
7 T wi 300yoC T2 416.0290=GasTK_Pr("Asr".P r2} T 4 428331 1 =GasTK_Pr("Air",P_r4)
sx__| oss h2 | 4173667 <Gash TK("Au"T2)  [h & | 429.5568|=Gasn TK("Aw",T_2)
5 &P I Si«Pa h 23 438.1057 =h 1+{h 2-h l","ﬁ c h 4 449,330 +h 3+Hh 4-h 3)/n c
10 w el | 138.2602) =h_23-h_1 w_cd | 132.4922|=h_4a-h 3

Figure 6.5. Solver solution for Example 6.1

As shown in Figure 6.5, the solution found by solver is 316.88 kPa at which the total
compression work is 270.75 kJ. These values of the optimum intermediate pressure and
the corresponding compression work are higher than the corresponding values of 300
kPa and 222.35 kJ given by the analytical method.

This example demonstrates three advantages for the computer-aided optimisation over
the analytical method. Firstly, the computer-aided method is easier to use because it is
applied to the basic objective function without differentiation. Secondly, it leads to
more realistic results because it can take into consideration the pressure and heat-
transfer losses in the compressors and the intercooler. Thirdly, accounting for the
variation of the specific heat with temperature makes the computer-aided method more
accurate than the analytical method that uses a constant specific heat. Optimisation
analyses of thermofluid systems may also involve one or more of the following
complications that make the analytical method practically impossible to apply:

1. The model may involve discrete-valued variables, such as the cost of material
or equipment, which are difficult to handle using analytical methods.

2. The model may involve too many details that require the lengthy
manipulations. This makes analytical optimisation both tedious and inaccurate.

3. The analytical method cannot deal with complex systems that involve multiple
parameters in the objective function.

As the following sections illustrate, with these complications the computer-aided
method becomes the only viable method for optimisation.

6.2. Optimisation with a single design variable

Although many optimisation analyses of thermofluid systems involve a single design
parameter, such as the thickness of insulation or diameter of a pipeline, the nonlinearity
of the equations involved or the variation of fluid properties with temperature and
pressure make it practically impossible to solve the optimisation problem analytically.
Four cases are considered in this section to illustrate how the Excel-based platform can
be used to perform the optimisation analyses. All four optimisation analyses are
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performed by using the GRG Nonlinear method of Solver and the default settings
shown in Figures 3.17 and 3.18.a.

6.2.1. Optimum thickness of insulation

A thick layer of insulation maximises the resistance to heat-transfer and minimises the
heat loss, but the cost of insulation also increases as its thickness is increased.
Therefore, there is an optimum thickness beyond which adding more insulation
becomes economically unprofitable. The following example, which is based on
Example 6.1 in Eastop and Croft [2], illustrates the methodology of determining the
optimum thickness insulation by using the Excel-aided optimisation method.

Example 6.2. Optimum thickness of insulation

A steel pipe carries wet steam from a gas-fired boiler through a small workshop to a
process plant. It is proposed to insulate the pipe using glass fibre insulation with an
aluminium alloy casing. The cost of insulation is given below.

Thickness of insulation (8) /mm 19 25 32 38 50 60

Cost per metre length (Ci)/p 476 | 531 [632 |763 |1007 | 1280

Determine the most economic thickness of insulation based on the following data:

Pipe outside diameter (D) = 60.3 mm

Heat transfer coefficient for outside surface of insulation (ho) = 10 W/m?2.K
Thermal conductivity of insulation (k) = 0.07 W/m.K

Steam temperature (Ts) = 200°C

Temperature of air in workshop (T.) = 15°C

Boiler efficiency () = 80%

Price of gas (cg) = 0.3 p/MJ

Operation time of plant (t) = 3000 h per annum

Lifetime of insulation (N) = 5 years

The analytical model

Figure 6.6 shows a schematic of the system that consists of a pipe of external diameter
D; surrounded by an insulation material with a thickness & = D, - D;. The heat loss
through the insulation per 1 meter length of the pipe is given by:

o=" "= wm (6.20)

Where Ry, is the total thermal resistance to heat transfer by conduction through the pipe
and the insulation and by convection and radiation to the surrounding air.
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<

Figure 6.6. Dimensions of the pipe and its insulation

Neglecting the thermal resistance to heat transfer by conduction through the pipe and by
radiation from the outer insulation surface, the total thermal resistance becomes that due
to heat transfer by conduction through the insulation and by convection from the
surface of insulation casing to the surrounding air, i.e.:

In(D2/D1)+ 1

m.K/W 6.21
oo, k) (6.22)

Ry =

Where D is the outside diameter of the insulation given by:
D,=D,+25 (m) (6.22)

The total annualised cost (Cr) is the summation of the annual heating cost and the
annualised cost of insulation given by:

C; =axC; +C, (6.23)

Where C;i is the cost of insulation per meter length of the pipe and « is the amortisation
rate, which can be approximated by the following relationship:

a=1/N (6.24)

Where N is the lifetime of insulation or period after which capital cost is written off.
The annual cost of heat lost to the surrounding (Cy) is given by:

C, =(Q/10°)xc, x (tx3600)/ 7 (p/m) (6.25)

Although the objective function for optimisation in this case, which is Equation (6.23),
is a simple one, it is easier to handle the discrete data for the cost of insulation by using
the computer-aided method of optimisation than by using the analytical method.
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The Excel sheet

Figure 6.7 shows the Excel sheet developed for this example in which the problem data
are shown on the left side of the sheet (column B). The calculations start with a guessed
insulation thickness () equal to 25 mm. Based on this assumed thickness, the sheet
determines the thermal resistances due to conduction (R_ins) and due to convection
(R_con). From the total resistance (R_total = R_ins + R_con), the sheet calculates the
rate of heat transfer (Q) according to Equation (6.20). From Q and 9§, the sheet
determines the annual cost of heat-loss (C_heat) and annualised cost of insulation
(C_ins), respectively. Finally, the sheet determines the total annualised cost (C_total)
for the given insulation thickness according to Equation (6.23).

C_total - £ =C_heat+C_ins

A a C D E F G M |
2 0.1 60.3|mm [6 | 25|mm C_heat | asn.92757|
1 ho 10} [ei ins | 539.265/=359.4241.37137640.23297642
4 k_ins 0.07| D2 110,3|=D_1+2"5 C_ins l 107.853|=a"ci_ins
5 T steam 7r-7'1 R Ins | 1.372983|=LN(D 2/D 1)/(2*PI()*k _Ins)
& [T air 15 R_conv | 0.288585|=1/(h_o™PI{)*D_2/1000}
7 nboller | 0.8 R total | 1.861574|=R_ins+R_conv
i C gas 3
3 Y—;;1-ET_ ] __BEC;J‘ [:1_ —--l_z-i._i-;:-c-:']rf[s!-:-am T_air)/R_total
10 a 0.20}

1

Figure 6.7. Excel sheet for the optimisation of insulated pipe

The rate of heat loss (Q) is calculated as 111.3 W, which results in an annual cost
(C_total) of 450.9 p per metre length of the pipe. Adding the annualised cost of
insulation of 107.9 p, the total cost becomes 558.8 p. To allow the sheet to determine
the cost of insulation automatically for other values of J, the following polynomial was
obtained by using Excel trendline feature to curve-fit the price data given above:

C, =359.42+1.37135 +0.23295° (6.26)

As shown in Figure 6.7, the above formula is entered in cell H3 that calculates the
initial cost (ci_ins). Figure 6.8 shows the variation of the cost of the annualised
insulation cost (C_ins), annual heat-loss (C_heat), and the total annualised cost
(C total) with the thickness of insulation (8) as obtained by changing the insulation
thickness from 0 to 60 mm. It can be seen from the figure that the total cost has a
minimum value at an insulation thickness which is slightly greater than 40 mm. From a
graph similar to that shown in Figure 6.8, Eastop and Croft selected 50-mm as the
optimum thickness of insulation. The optimum insulation thickness can be determined
more accurately by using Solver. Figure 6.9 shows the set-up for Solver Parameters
dialog box to find the optimum value of & (in the adjustable cell) by minimising the
total annualised cost C_total (in the target cell). Based on the given data, two
constraints have been added to limit the thickness of insulation within the range 19 < §
< 60 mm. The solution determined by Solver is shown in Figure 6.10.
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Figure 6.8. Insulation cost against the thickness &
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i
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L |
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Add
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Delete

Figure 6.9. Solver set-up for insulation optimisation

- fo =C_hestsC_ins

A 8 | c| o E G G | ) X L
1
2 01 80.3]mm [& | 22.77954|mm C heat | 236.50823]=0"time*3600%(c_gas/1000000}/n_bailer
3 ho 10 ci_ins £44.20847|=359.42+1.3713*5+0.2329"6°2
4 k. ins 0.07 02 | 185.8575|=D_142*6 C_ins 168.854963|=a*ci_ins
3 T _steam 200 R_ins 2.00830%|=IN(D_2/0_1)/(2*P1()*k_ins)
6 T air 13 fi_conv 0.218233(=1/(h_o*Pi[)*D_2/1000) :C_hcaroc_m'.
? 1 _bailer 0.8 R_total | 2.226342|=R_Ins+R_conv
n CJE$ 04} )
3 tume 3000 [Q :33.03543]-|1_':taamrf_alr,v,"ﬁ_(otal
10a 0.20
1

Figure 6.10. Optimised solution for the insulation thickness

Figure 6.10 shows that Solver determined the optimum thickness of insulation as 42.8
mm. Since this thickness is not available in the given data, the nearest larger thickness
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should be selected; which is 50-mm. The thicker insulation is selected so as to allow for
any possible increase in fuel cost in the future.

6.2.2. Optimisation of a single heat-exchanger

Heat exchangers are used in many industrial and power generation plants and
optimisation of both the design and operation of heat-exchangers is needed for
satisfactory performance of these plants. This section shows how the total life-time cost
of a single heat- exchanger can be optimised by using Excel and Solver. The example
considered in this case is based on Example 9.6 in Janna [3].

Example 6.3. Optimum outlet temperature of the cooling water

A shell and tube heat exchanger uses water as a cooling medium to dispose of 1000 kW
of heat from a stream of hot water. The hot water enters the exchanger at 93.3°C and
leaves at 37.8°C. The cooling water enters the exchanger at 26.7°C. Use the data given
below to calculate the optimum cooling water outlet temperature:

U =613 W/m?K
F=0.817
cw=$1.32/m?

Co = $215/(m? .yr)
7= 7800 hrlyr,

Where U and F are the overall heat exchanger coefficient and correction factor in
Equation (1.36), respectively, cy is the unit cost of producing the cooling water, and ¢,

is unit cost of operating the heat-exchanger. Take the density of cold water ( p, ) and its
specific heat (Cpc) as 994 kg/m?® and 4179 J/kg.K, respectively.

The analytical model
In this case, both the inlet and exit temperatures of the hot water are given as well as the
inlet temperature of the cold water. The total rate of heat transfer in the heat exchanger

(Q) is also given. What is then required is to determine the optimum exit temperature

and mass flow rate of the cold water that minimises the total cost. The total annual cost
of the heat-exchangers (Cr) consists of two parts: (i) the annual cost of cooling water
(Caw) and (ii) the annual cost of operating the exchanger (Cao):

C;=C, +Cy (6.27)

The annual cost of the cooling water Caw is given by:

C,y =3600 D¢,z (6.28)
Yo,
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Where cy is the cost of water per m?, z is the total number of operation per year, and the
mass flow rate of cooling water (M) is in kg/s. Taking the time-value of money in
consideration, the annual cost of operating the exchanger is given by:

C,o = Ac, (6.29)

Where ¢, is the annual cost of operating the exchanger per m? of its area.

Both Caw and Cao depend on the cooling water exit temperature (T,). Starting the
iterative optimisation process by an assumed value of this temperature, the mass flow
rate of the cold water (m,) can be obtained from the following equation:

m= Q/Cpc (Tco _Tci ) (630)

Where cp, Tei, and Teo are the specific heat and inlet and exit temperatures of the cold
water, respectively. From Equation (D.4), the surface area (A) of the heat-exchanger is:

A=Q/UFAT,, (6.31)

Where AT is the log-mean temperature difference (LMTD) defined in Appendix D by
Figure D.2 and Equation (D.3).

The above analytical model indicates that, for a given rate of heat rejection to the
cooling water, the water outlet temperature depends on the water flow rate and the area
of the heat-exchanger. Increasing the water flow rate will increase the cost of cooling
water, but reduce the heat-exchanger area and the resulting annual operation cost. The
optimum water outlet temperature is that at which the total cost is minimal.

Development of the Excel sheet

Figure 6.11 shows the Excel sheet developed for this example. The left side of the sheet
stores the given value for the rate of heat-transfer (Q), the heat exchanger data, the
properties of the hot and cold water, and the water and operation costs involved in the
analysis. The calculations part starts with an assumed exit temperature for the cold
water (T_c2) which is given a value of 30°C. Based on this assumption, the sheet
calculates the log-mean temperature difference (LMTD), the area of the heat-exchanger
(A_HX), the mass flow rate of cold water (m_c), the volume flow rate of cold water
(V_c), the annual water and operation costs (C_AW and C_HX), and the total annual
cost (C_T). Figure 6.11 also reveals the formulae involved in the calculations by the
side of their respective cells. Based on the assumed outlet temperature of the cold
water, Figure 6.11 shows that the annual cost of water is $61,453.36, the annual cost of
operating the exchanger is $14,317.57, and the resulting total annual cost is $75,770.93.
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CT - £ =C_ AW HX
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1
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Figure 6.11. The Excel sheet developed for Example 6.3

The sheet was used to calculate the heat-exchanger costs at different values of the
cooling-water outlet temperature and the results are shown in Figure 6.12. The figure
shows that, as the water temperature increases, the annual cost of water decreases but
the annual cost of operating the exchanger increases. The total annual cost initially
decreases as the water outlet temperature is increased but then increases. From the
figure, it can be seen that the optimum water outlet temperature is in the range 45 to
60°C. A more accurate estimation of the optimum cooling-water outlet temperature can
be determined by using Solver. Figure 6.13 shows the required set-up in which two
constraints have been imposed on the optimisation process to ensure a physically
meaningful result. Figure 6.14 shows sheet with the solution found by Solver. The
figure shows that the optimum cooling-water outlet temperature is 53.27°C at which the
total annual cost is $26,666.4.
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Figure 6.12. The variation of the total cost with the cooling water outlet temperature
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Delete
Figure 6.13. Solver set-up for Example 6.3
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Figure 6.14. Solver solution for Example 6.3

6.2.3. Optimisation of two heat-exchangers in series

Li and Priddy [4] presented a hot water generation system that consists of two heaters
connected in series as shown in Figure 6.15. The incoming water enters at Twi and its
temperature is raised to an intermediate temperature Ty as it flows through the first
heater. The water is then heated in the second heater to the desired level Two. Two
streams of saturated steam flow through the two heaters and heat the incoming water.
The pressures of two streams are Py, and Psn, for the first and second heaters,
respectively. The corresponding saturation temperatures are Tgp and Tsyp for the low-
pressure and high-pressure, respectively. The high-pressure steam costs more than the
low-pressure steam. The high-pressure heater is also expected to cost more to purchase
than the low-pressure heater. Therefore, the total cost, which is the summation of the
initial cost and steam cost, depends on how the heat load is distributed between the two
heaters. It is required to determine the optimal sizes of the two heaters that minimise the
total annual relative cost of the system.
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High-pressure steam Low-pressure steam
l Ts,hp l Ts,lp
DL T Twi_ \water
HP heater LP heater

l Ts,h l Ts,l

Saturated liquid water

Figure 6.15. Schematic of the hot-water generation system
(adapted from Li and Priddy [4])

The analytical model

The cost of each heater is the sum of its annualised initial cost (C;) and annual steam
cost (Cs). For the system that consists of two heaters, the total cost (C) is given by:

C = (C| + Cs)hp + (C| + Cs)lp (632)
Where C; is the annual initial cost ($/year) and C; is the annual steam cost ($/year) and
the subscripts hp and Ip refer to the high-pressure heater and the low-pressure heater,
respectively. For a given heat exchanger, the steam cost is determined from the heat
transfer rate in the heater, which is also the amount of heat transferred to the water.

Using the notation shown in Figure 6.15, the rates of heat transfer in the two heaters can
be expressed as:

Q, =mC, (T, -T,;) (6.33)
Qy =MC,(T,, —T,) (6.34)
Where m is the water mass flow rate. The annual steam costs for both heaters are:

Coip = apolp'T (6.35)
Comp =2npQup T (6.36)

Where a is the steam cost in $/kJ and z is the operating hours per year. To determine the
annual initial cost of the two heaters, we must calculate their heat-transfer surface areas.
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Using Equation (D.4) with F = 1, the surface of the low-pressure heater (Aj) is given
by:

A, = O, /U AT, ] (6.37)

Where ATin is the log-mean temperature difference which for the low-pressure heater is
defined as:

AT - AT — ATy,

Imp |n(AT|p,1/AT,p,2), (6.38)
Where,
ATlp,l = (Tslp _TX) (6.39)
ATlp,2 = (Tslp _Twi) (6.40)

The relative cost of the low-pressure heater is simply the product of the heat transfer
surface area (Aip) and the unit cost per square meter (byp). If we apply the annual fixed
charge rate, the annual relative cost becomes:

Ciio = b A,.B (6.41)

Where £ is the annual fixed charge rate. Combining Equations (6.37) and (6.41) gives:

_b,BQ, InfaT,, /4T,

Ci (6.42)
P U, AT, —-AT,,
Similarly, the annual relative cost for the high-pressure heater is given by:
_b,,.BQ,, IN[AT,,, /AT,
Cimp = (6.43)
u hp AThp,l - AThp,2
Where,
AThp,l = (Tshp _Two) (644)

ATy =Ty =) (6.45)
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Equation (6.32), which is the objective function for optimisation, requires lengthy
calculations in order to determine the initial costs and the steam costs for both heaters.
Since the total cost depends on the intermediate temperature Ty, trying to obtain the
optimum value of Ty by the analytical method is bound to be a tedious and most likely
inaccurate procedure. The following numerical example illustrates the application of the
computer-aided method of optimisation with Excel and Solver.

Example 6.4. Design analysis of a hot water generation system

It is required to determine the optimum intermediate temperature and pressure for the
two-stage hot water generation system shown in Figure 6.15 based on the following
data:

Low-pressure | High-pressure
heater heater
Steam pressure [kPa] 350 550
Steam cost [$/10° kJ] 5.7 5.72
Heater surface cost [$/m?] 108.7 109.8
Water flow rate (m) 180,000 kg/hr
Water inlet temperature (Twi) 65°C
Water outlet temperature (Two) 150°C
Overall heat transfer coefficient (U) 10220.667 kd/hr-m2-°C
Annual fixed charge rate (5) 20%
Operation hours (7) 2000 h/yr

Excel implementation

Figure 6.16 shows the Excel sheet developed for this case. The top-left part of the sheet
shows the data provided above. The bottom-right part of the sheet shows calculations of
the steam and relative initial cost for the two heaters and their total for each heater. The
figure shows the calculations and total relative cost of the system at the top right-hand
side of the sheet for an intermediate temperature Ty = 125°C. We can determine the
optimal sizes of the two heaters by varying the intermediate temperature Ty and finding
the value at which the annual relative cost is minimal. Table 6.2 shows the heat load
distributions and surface areas of the two heaters for Ty in the range 65-135°C. It is seen
from the table that the heat load supported by the low-pressure heater increases as the
intermediate temperature Ty increases. Because of its large temperature differences,
however, the high-pressure heater always has the advantage over the low pressure
heater in terms of heat transfer surface area required. For instance, at Tx = 65°C, i.e.
when the heat load is solely supported by the high-pressure heater, the heater surface
area is approximately 207.41 m?, At T, = 135°C, i.e. when supported mostly by the low-
pressure, the total surface area becomes 217.95+97.51 = 315.46 m?.
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Total_relative_cost ~ fv =Subtotal_LP_heater+Subtotal_HP_heater
A B ( 0 E f G H I
1 Hot Water Generation System
2 Water flow rate 180000 kg'hr kitermecdiato semperature
3 Water inlet temperature 65 oC Tx 85oC
4 'Water outiet temperature 150 oC
Cp_wate 42 Kig-oC LP heaster HP heater
C) ts | 138.88 oC ts_h
! Steam pressuras Q. 0 Qh
2 LP heatar pressurs 330 e Cs_| ) $ Cs_h
S MP hester pressure 550 WPa
10 Steavn costs Dokt | 1388 Dot _h
11 LP heater stoam cost 57T De22 | 7188 Dek2 h
12 MP heater steam cost 572 10° ) LMTD | 7388 LMTD_h
13 Al 0'm2 Ah
14 Heaster surface costs Ci | 0s Ci_h
15 LP heatss imtial cost 108 7 $mz
16 HP heater intal cost 1093 $/o2 Subtotal LP heater 0s Subtotal HP heoater 73968907 5
17
11 |Ovarall haat transfer coaficient  10220.867 ) hv-m2-oC Total relative cost 5
19 Annual fixed charge rate 20 %
20 Operahion hours 2000 berypr
e

Figure 6.16. Excel sheet for Example 6.4

Table 6.2. Heat load distributions and heater sizes

T [°C] Heat load Q [kW] Heater surface area [m?]
LP HP LP HP

65 0 17850 0 207.41
75 2100 15750 10.76 198.74
85 4200 13650 23.35 188.93
95 6300 11550 38.54 177.61
105 8400 9450 57.67 164.24
115 10500 7350 83.54 147.91
125 12600 5250 123.67 126.93
135 14700 3150 217.95 97.51

Figure 6.17 shows the variation with Ty of the combined initial cost (C_initial), the
combined steam cost (C_steam), and the total combined cost (C_total). The figure
shows that the minimum combined initial cost is obtained at Ty = 65°C, while the
minimum combined steam cost is obtained at Tx =135°C. If only the initial cost is
considered, then a single high-pressure heater would be preferred for the hot water
production. On the other hand, if only steam cost is considered, then only a single low-
pressure heater is to be selected. However, the variation of the total relative cost with Ty
indicates that the minimum total cost occurs at an intermediate temperature which is
around 115°C. At this temperature, the figures in Table 6.2 indicate that the high-
pressure heater will take one-third of the total heat load while the low-pressure heater
will supply the remaining two-thirds. To precisely determine the optimum value of Ty,
we can use Solver. Figure 6.18 shows the prepared Solver Parameters dialog box for the
determination of the temperature Ty that minimises the total cost. Two constraints have
been inserted which are:
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Figure 6.17. Variation of the systems costs with the intermediate temperature Ty
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Figure 6.18. Solver parameters dialog box for determining the optimum intermediate
temperature for two heat-exchangers in series

Pressing the Solve button at the bottom of the dialog box will trigger Solver to iterate
and search for the value of Ty that makes the total cost assume its minimum value.
Figure 6.19 shows the solution found by Solver, which is Tx=116.5°C. At the optimum
temperature, the surface area of the LP heater is 88.428 m? while that of the HP heater
is 145.07 m?. The relative cost of the LP heater is 446,004.8% and that of the HP heater
is 292,679.7$, giving a total relative cost of 738,684.4%. This result shows that steam
cost is an important variable in the optimisation of the hot-water production system.
When the steam cost for low-pressure heater is substantially lower than that for high-
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pressure heater, it will definitely favour the use of a low-pressure heater. This is
particularly true when the hot water system is operated on a continuous basis.

S« <Subtotal_LP_heatersSubtotal_HP_heater
A B C 8] E F o ~
Hot Water Genoration System
4 Water fow rate 180000 kg'h Mitorrnediate tanparaiure
) Water miet temparature 65 oC Tx 11652720 oC
4 Water outlet temperature 150 oC
| 5 Cp_water 42 klikgoC LP heater HP heater
| & ts_! 138.83 oC ts_h 15548 oC
7 Sieam pressuras a_ 10820.718 Qhk 7029 2324
B LP heater prassure 350 kPa Cs_ 44408225 § Cs_ h 28849397 5
5 HP heate prossure 550 WPs
10 Sweam costs Dairt | Dekt h
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Figure 6.19. Solver solution for Example 6.4

6.2.4. Optimisation of a rectangular fin

Fins are added to heat-transfer surfaces so as to increase the rate of heat transfer from
these surfaces by forced convection. A good example of the application of fins is in car
radiators which cool the engine’s cooling water. Since the addition of fins increases the
weight of the radiator, the improvement in heat-transfer achieved by adding the fins
must be weighed against the additional cost and weight that they cause. In the following
example, adapted from Bejan et al [2], it is required to optimise the geometry of a
straight rectangular fin for the maximum possible heat-transfer rate. The example
illustrates how Solver can be obtaind to determine the optimum geometry for the fin.

Example 6.5. Optimisation of a rectangular fin

An electronic package includes several parallel straight rectangular (plate) fins such as
the one shown in Figure 6.20. The width of each fin W = 2.2 cm and the fins are swept
by forced air with U= 1.75 m/s and T.=20°C. The fin material is aluminium. Weight
limitations on the overall package permit the use of only 1 g aluminium for each fin.
Determine the plate fin thickness (t) and length (L) that maximise the heat transfer rate
extracted per fin and the corresponding heat transfer rate from the fin per degree of the
temperature difference at the base (Tp-Tx).

Analytical model
The rate of heat transfer from a fin (Qy,, ) is given by Equation (6.9). Using the notation

of Figure 6.20, the area and efficiency of the straight rectangular fin can be obtained
from [1]:
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Figure 6.20. A straight rectangular fin
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A, = 2wl (6.46)

fin
L. =L+t/2 (6.46)

For a rectangular fin the fin efficiency is given by:

_ tanh(mL,)

. 6.48
fin mLC ( )
The constamt m in Equation (6.13) is defined as:
m=~/2h/kt (6.49)

Where, k is the thermal conductivity of the fin’s material. The coefficient of heat
transfer h is depends on the type of air-flow over the fin, which is established by

calculating the Reynolds number (Re = pU L/ «). For a laminar flow, h is calculated
from [1]:

h = 0,664 Xair Re1/2 prls3 (6.50)
w

Where, kair and Pr are the thermal conductivity and Prandtl number of air, respectively.
For a turbulent flow...

Excel implementation
Figure 6.21 shows the Excel sheet prepared for the solution of this case problem. The
given data are entered on the left-side column of the sheet. The sheet then calculates the
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Reynolds number (Re), heat-transfer coefficient (h) and volume of the fin (Vol). In the
present case, the mass of the fin is not to exceed 1 g of aluminium. The thickness of the
fin is initially assumed and given the value of t=0.0002 m. The length of the fin is then
calculated from:

VvV 0.001 (651)
wt pal\Nt .

L=

Where, pa is the mass density of aluminium. Accordingly, the fin efficiency and heat-
transfer from the fin are determined from Equations (6.12.c) and (6.10), respectively.
As shown in Figure 6.21, the resulting rate of heat transfer is 0.037 W.Solver can now
be used to find the combination of t and L that gives the maximum possible rate of heat
transfer from the fin. Figure 6.22 shows the setting up of the dialog box for the
determination of the thickness that maximises the rate of heat transfer from the fin.

afin - S | =nfin*Qmax
A B C D E F G H 1 ] K
1
2 mass 1lg Re 2026.315789 nfin 0.290395
3 rho 2.707 gfm3 h 34.09582157 Qmax 0.126104|W
4 k_air 0.028| Vol 3.69413E-07|m3 Qfin 0.03662 |W
5 k_Al 204
6 U 1.75|m/s thickness 0.0002| m
7 Width 0.022|m Length 0.083957417|m
3 kvisc 1.90E-05
9 Pr 0.72] m 40.8823165
10 Thase 21|oC Lc 0.084057417|m
11 Too 20|oC Afin 0.003698526|m2

=
[ %]

Figure 6.21. Excel sheet for example 6.5
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Figure 6.22. Solver parameters dialog box for Example 6.5
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No constraints have been inserted for this case. Pressing the Solve button at the bottom
of the dialog box will trigger Solver to iterate and search for the value of t that
maximise the fin’s heat transfer rate, which in this case is t=0.00036 m or 0.36 mm
(Figure 6.23). The corresponding length is 0.046 m or 4.6 cm and the resulting heat
transfer rate is 0.044 W.

- fe | =nfin*Qmax

A B C D E F G H | ] K
1
2 mass 1= Re 2026.315789 nfin 0.627877
2 rho 2.707|g/m3 h 34.09582157 Qmax 0.069867|W
4 k_air 0.028| Vol 3.69413E-07|m3 afin 0.043868 W
5 k_al 204
6 Uwx 1.75|m/s thickness| 0.000361963|m
7 Width 0.022|m Length 0.046390023|m
3 kvisc 1.90E-05|
9 Pr 0.72] m 30.38912908
10 Thase 21|oC Lc 0.046571004|m
11 Two 20|oC Afin 0.002045124|m2

=
%]

Figure 6.23. Solver solution to Example 6.5

6.3. Multi-variable optimisation

All the cases considered so far involved a single variable for optimisation, e.g., the
intermediate pressure (Px) in Example 6.1, the thickness of insulation in Example 6.2,
and the optimum cold-water outlet temperature (Te) in Example 6.3. This section
demonstrates the capability of the Excel-Solver combination to perform multi-variable
optimisation of thermofluid systems which is the ultimate application of computer-
based methods in thermofluid analyses. The objective of optimisation for the two cases
to be considered is to minimise the total lifetime cost of the system, which achieved by
using the GRG Nonlinear method of Solver.

6.3.1. Optimisation of the cooling tower for a power plant

Steam-turbine power generation plants that consume large amounts of fuel energy have
to reject significant fractions of that energy to the atmosphere because of the second
law of thermodynamics. The waste heat is usually released to a near-by river or lake or
rejected directly into the atmospheric air by means of a cooling tower. Depending on
the space and fund available for the installation, the cooling tower can be of the forced
or natural types. Since the cost of the cooling system constitutes a major fraction of the
total installation cost, the optimisation of its components is important for the economic
feasibility of the whole plant. Example 6.3 considered earlier dealt with the
optimisation of the heat-exchanger that transfers the rejected heat from the power plant
condenser to the cooling water. The following example focuses on the cooling tower
and illustrates the use of Excel for its optimisation. The example is based on Problem
11.7 given by Stoecker [5].
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Example 6.6. Optimisation of the cooling tower for a power plant

A cooling-tower is to be used for removing 14 MW of heat rejected by the condenser of
a steam-turbine power plant as shown in Figure 6.24. The total lifetime cost of the
system consists of three parts: (a) the first cost of cooling tower (C.), (b) the lifetime
cost of pumping power (C2) and (c) the lifetime penalty in power production due to
elevation of temperature of cooling water (Cs).

COOIing /><
Tower QR

Turbine
N

AN AANAAN]
AN NN ANAANA]

Condenser > ) ‘ gjfc
(4

Figure 6.24. Schematic for the cooling system in Example 6.6
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The three components of the total cost are estimated by the following formulae:

C, =800 A%® (6.52)
C, =0.0005m* (6.53)
C, =270T, (6.54)

Where A is the cooling-tower area in m?, m is the flow rate of cooling water in kg/s,
and T¢ is the temperature of water entering the condenser in °C. The rate of heat
rejection (Qr) is also known to be related to the three factors by the following empirical
formula:

Qg =3.7mM"AT, = 14x10°W (6.55)

It is required to determine the values of the three design variables A, m, and T, that
minimise the total cost of the cooling system (Cr) given by:

C;=C,+C, +C (6.56)
T 1 2 3
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Solution

The objective function for optimisation in this case is Equation (6.56). Although three
variables are involved in the optimisation process, which are A, m, and T, Equation
(6.55) can be used to reduce the number to two variables only, e,g. A and m. Figure
6.25 shows the Excel sheet developed for this example. The only data in this problem is
the rate of heat rejection (Qcooling) which is assigned the given value of 14 MW. The
intermediate calculations start with initially assumed values for the water flow rate
(m_w=500 kg/s) and the area of the cooling tower (A=150 m?). Based on these assumed
values, Equation (6.55) is used to calculate the cooling-water temperature (T_cw) and
then the three costs given by Equations (6.52) - (6.54). Figure 6.25 reveals the formulae
used in these calculations. As Figure 6.25 shows, the cooling-water turned out to be
about 14.56°C and the resulting total lifetime cost (C_T) is $82,601.68. The values of
m_w and A that minimise the total cost C_T can be found by using Solver and Figure
6.26 shows the required set-up for Solver Parameters dialog box.

cT - fx | =C_ct+C_pump+C_penalty
A B C D E F G H 1
1
2 |Qcooling 14 MW m_w 500|kg/s lcT | s2601.68]
3 A 150|m2
4
5 T cw 14.5569 ?| =Qcooling*1000000/(3.7*m_w"1.2*A)
6
7 Cct 16171.29|=800*A~0.6
8 C_pump 62500|=0.0005*m_w"3
9 C penalty 3930.382|=270"T cw
10
Figure 6.25. The Excel sheet for Example 6.6
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Figure 6.26. Set-up of Solver Parameters dialog box for Example 6.6
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The set-up in Figure 6.26 requires Solver to minimise the total cost (C_T) by adjusting
the values of the two parameters, m_w and A. Although no constraints have been
specified, a better practice would be to apply reasonable upper and lower limits on the
two optimisation variables. The solution found by Solver is shown in Figure 6.27. As
the figure shows, the optimum mass flow rate for the cooling water is 202.52 kg/s and
the optimum area of the cooling tower is 167.95 m?. The value obtained for the water
mass flow rate agrees well with that given by Stoecker [5], which is 202.6 kg/s.
Stoecker [5] did not give the optimum value for the heat-exchanger area.

- Je | =C_ct+C_pump+C_penalty
A B C D E F G H 1
1
2 |acooling 14 MW m_w 202.5247|kg/s lc_T | 31842.78|
3 A 167.9469(m2
a
5 T cw 38.45}'46|=Qcooling*1000000,-"{3.?*m_w-‘1.2*h]-
b
7 C ct 17305.86|=800*A"0.6
g C_pump | 4153.405|=0.0005*m_w"3
9 C_penalty 10383.51|=270%T _cw

=
[=]

Figure 6.27. Solution of Example 6.6 obtained with Solver

6.3.2. Optimisation of an air-conditioning duct

The second example for multi-variable optimisation with Excel-Solver is that of an
insulated air-conditioning duct for which the objective function for optimisation
involves both the diameter (D) and thickness of insulation (d). In this case, we wish to
install the largest possible duct diameter so as to reduce the friction loss, but this would
adversely increase the heat loss from the duct because of the larger surface area. Since
the duct is insulated and the economical thickness of insulation also depends on the
duct's diameter, the optimisation process for determining the minimum total cost
involves two parameters, D and ¢. Moreover, the duct has two sections with different
diameters and, therefore, the process involves four parameters; D1, d1, D2 and 2. In this
case, the computer-aided optimisation method is the only viable method to be used.

Example 6.7. Optimisation of an air-conditioning duct

Conditioned air enters the 30-m air-handling duct shown in Figure 6.28 at P; = 100 kPa
and T, =80°C. The flow rate at the entrance is Qi = 0.7 m¥s, part of which (Qs=0.3
m?/s) is discharged at a point 16 m downstream of the duct entrance. The remaining
part (Qz = 0.4 m¥s) is discharged at the end. Ambient temperature (T) is 15°C and the
outside heat-transfer coefficient h, is 30 W/m?.°C. The air duct is to be assembled from
1-m-long prefabricated units made of 3-mm galvanized sheet metal and, to minimise
heat losses to the surroundings, it is decided to insulate the duct with fiberglass.
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Figure 6.28. The uninsulated air-conditioning duct

It is required to determine the diameters of the two duct sections (D: and D) and the
thicknesses of insulation (01 and o,) that minimise the total owning cost based on the
data provided below.

Duct data:

Thermal conductivity (kq) = 18 W/m.°C

Duct roughness (&) = 0.045mm

Cost of 1-m unit (cq) is as shown in Table 6.3.

Table 6.3. Unit cost of the duct body [6]
Diameter (Di) inm 0.1/015|02 |[025|{0.3 |035]04|045|05

Costperimlength ($) |9 | 115|145 |17 |225|29 |34 |40 |50

Insulation (Fiberglas) data:

Thermal conductivity (ks) = 0.04 W/m.°C

Insulation cost (cs1): 30 $/m? per cm of insulation
Labour cost (cs2): 10 $/m? (irrespective of thickness)

Operation data:
365 days per year 24 hours per day

Energy costs:

Cost of electricity (ce): 0.12 $/kWh

Cost of fuel (ce): 0.5 $/therm (1 therm = 105500 kJ)
Capital recovery factor (i) = 0.15

The idea of this example stemmed from a case given by Janna [3] which could be
solved analytically. The addition of insulation to the duct in the present example makes
the optimisation process involves four parameters instead of two as in the case
considered by Janna [3] and, therefore, the example is difficult to solve analytically.
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The analytical model
The total annual cost of the insulated air-duct (Crotr) consists of three components as
expressed by:

Cro =C x1+Cg +C¢ (%) (6.57)

Where:

C, =initial cost of the duct itself plus the cost of insulation

i = capital recovery factor

Ce = cost of electricity consumed by the fan in order to overcome friction in the
duct

Cr = cost of fuel needed to make-up for the heat loss to the surrounding air

How the three components of the total cost are evaluated is explained below.
a) Initial cost

The initial cost (Ci) has two parts: (1) the cost of the duct itself (Cauct) and (2) the cost
of insulation (Cixs). The two parts are given by:

Cuuct = (D, x €y, )x Ly +(D, x4, )x L, (6.58)
Cins = [(ﬂDlLl)X o, + (ﬂDz L, )X 0, ]X Cqt [(ﬂD1L1)+ (ﬂDz L, )]X Cs2 (6.59)
Where:

¢y = cost of 1-m duct unit which depends on the diameter ($/m)
0, = thickness of insulation in the first section of the duct (m)

0, = thickness of insulation in the second section of the duct (m)
c,, = cost of insulation per m* that varies with insulation thickness ($/m*.cm)

¢, , = cost of labour per m? that depends on insulated surface area only ($/m?)

b) Annual cost of electricity:
Ce =W, (KW) x time(hr) x c. ($/ kW.hr) $) (6.60)

Where w,,is the power consumed by the air-circulation fan and ce is the electricity

tariff in $/kW.hr. The power of the circulation fan depends on the friction head losses
(hs) in both sections of the duct which are given by the Darcy-Weisbach equation,
Equation (1.21). The friction factor ( f) in each section of the duct, which depends on
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the Reynolds number in the section, is obtained from the Swamee-Jain equation
(Equation 1.25). The total power consumed by the air-circulation fan (w,,,) is then

determined as follows:

B pairg(hf,lQl + hf,zQz)

W, = kW 6.61
fan 1000 ( ) ( )
¢) Annual cost of fuel:
_ QTotaI[\N] ><t[hr] % C
F F
1000x105500 %) (6.62)

Where ck is the cost of fuel in $/therm and t is the total number of operation hours in a
year. The total heat l0ss (Qry ) is the sum of the heat loss in both sections, i.e. Qrya =

Q,+Q,, where the heat loss (Q) in each section is calculated according to the formula:

Q=(T,,-T..)/Ry (W) (6.63)

Where T.1 and T, are the inside and outside air temperatures and Ru is the total
thermal resistance of the series resistances shown in Figure 6.29.

Figure 6.29. Total thermal resistance of the insulated duct
The total thermal resistance (Rw) is given by:

R, = 1 +|n(rz/r1)+|n(r3/rz)+ 1
2L 27k L | 27k.L  2amh,L

(M.K/W) (6.64)
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Where ry, > and r3 are the radii shown in Figure 6.29. Note that the value of the outside
heat-transfer coefficient (h;) is constant, but the inside heat-transfer coefficient (hi),
which depends on the air velocity, changes with the inside diameter of the duct and
therefore, has to be determined from the Nusselt number (Nu). For fully developed
turbulent flow in tubes, the Nusselt number is calculated from the Dittus—Boelter
equation, Equation (1.31), with n = 0.3 [7]:

Nu = 0.023 Re{® Pr%3 (6.65)

Where Re and Pr are the Reynolds and Prandtl number, respectively.

k..
h="2"Nu  (Wimz<C) (6.66)
1

Excel sheet

Figure 6.30 shows the Excel sheet developed for this example. The problem data are
shown in the two columns at the left side of the sheet. The calculations part has two
columns for the two sections of the duct. The calculations stat by guessed values for the
two diameters (D_1 and D_2) and two insulation thicknesses (6 _1 and &_2) in both
sections of the duct. The results part determines the total friction loss (hf_total), the fan
power (Power), and the different costs involved. The formula bar shows how the annual
cost of electricity is determined. The sheet determines the total annual cost (C_total) for
the guessed values of D_1=0.3m, D_2=0.2m, 6_1=0.1m and 6_2=0.1m.

523 - LA
] C 4] E F G L] I i L3 L M N o
SR Ot
27 BOJcC L1 1dim D1 03m D.2 0.2 h_total | 1 m
1 P31 101925 kP a 2 16m 5 1 0.1 51 0.1 Power | 326.615|W
a o 0.7|m3/s It duct 0.003; m
s Q2 DA|m3fs  [h_tuer WM T e 22,4550 €2 14,1 2822 Costs
6 wvisc 2.057E05 le 0.00008& m Asl 15.154689154m2 As2 10.053096 C iduct
7 k_air 002953 Vi | 9902974237 v2 | 12732395 cim
A Pr 07154 Fuel (Nataral gas) c by D1 | 0.00015333: &_by_02 0.00023 C efan
" 1008 [Fwet_cont| oafsmem  [Res o2 121434,3367) C_ehait
wRaw | o 3 , i | aouwen 2 |eowsrms ' _
11 rho 1L000038|kg/m3  |cew nialsewh |1 4126586268 m nt3 12.275762 240 m C total | 591.3021f$
12 ho | 30| W/ °C fe tu 4738508{ 5
13 T =0 18{oC It .13 Wl | 2748674387 Nu2 24297739
L] h1 2705611821 h2 35.875612
15 Insulation (Fibeoghes) lno.m ] N]h.‘.:.n Dol ] " Do2 m
16k o 0.04Wim °C |Dav; ] 365].:;..,4‘“ fsol | 13.45858253 002 Ased 10.354685{m2
17 rog'_ T —% ?_;1 _. 0.002301143 R cxcc.jﬁmé
18 Labour co! 204 %/ !5 I 9 Bly mis2 R_prpe] i 12506 7E-0% R _pipe? | 1.6338E-0%
19 {u/tnorm | 105500 & nsi | D84 Rns2 |08
20 & ol 0.00252626% R o2 0.003315728
n ® totall | 0148281398 R total? | 0174328135
b3 Hoatsossl  D.438355728{kW Heatloss2| 0.371793704 kW

Figure 6.30. Excel sheet developed for Example 6.7



Computer-Aided Thermofluid Analyses Using Excel 175

To allow Excel to automatically calculate the cost of duct unit (cq) when the two duct
diameters are changed, the following equation for cq was obtained by using Excel’s
trendline feature from the data shown in Table 6.3:

c, = 7.6881-1.7814D +169.91D? (6.67)

Solver can now be used to find the optimum values of D_1, D _2, 6 1 and &_2. As
shown in Figure 6.31, the set-up box for Solver requires it to minimise the total cost
(C_total), which is the target cell, by changing the values of the two diameters (D_1 and
D_2) and the two insulation thicknesses (6_1 and &_2), which are the adjustable cells.
Figure 6.32 shows the Excel sheet with the solution found by Solver. The optimised
dimensions found by Solver are shown in Table 6.4 which also shows the different cost
involved. The nearest dimeters are D_1=0.4 m and D_2=0.3 m. Both insulation
thicknesses are = 0.3 m. The total annual cost sums up to 479.7 §.

| Solver Parameters o

Set Objective: C_totall B
Ta: () Max (®) Min () value Of: 0

By Changing Variable Cells:
0_1,D_24_18_2

|
1l

Subject to the Constraints: 1
D_1<=0.5
D 1»=0.1 =
D_2<=0.5

Change

Delete

=)
Tl P e
WA W Ay
mmun g

coooo
>—~u'|>—~u'|:—-

Figure 6.31. Solver set-up for Example 6.7

As a rule-of-thump, air-conditioning engineers frequently determine the duct areas from
the ratio of flow rates. Accordingly, the duct diameters D; and D;, are related as follows:

D, =4Q; 1Q, x D, (6.68)

Equation (6.68) allows us to solve the optimisation problem with only three variables,
which are D;, d1 and J2. The solution determined by Solver with D1, J: and d. as
adjustable cells is also shown in Table 6.4. Comparison with the solution obtained
without Equation (6.68) indicates that the rule-of-thump leads to a larger D1 and a
smaller D,. Although the insulation thicknesses on the two section are only marginally
affected, the figures in the table show that the total cost (486.2%$) has increased due to
increases in the initial cost of the duct (132.1$) as well as the annual cost of electricity
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(186.4%). By suitably adjusting the given data, the Excel sheet can be used to study the
effects of electricity cost, fuel cost, or capital recovery factor on the opimised solution.

L %0
L C o € ¥ G " | M N [»]
1 Air Ouct
2T #0]oc L1 14]m o2 0.414198352|m D2 0.2950993] |nf_totai | 2.69263|m
1P 101.335{kPa [ 16/m I8 1 11.296976237| m 82 0.302264576| |Powr 173.88lw
a Q1 0.7 m3/fs 1_duts 0,000}
5 Q2 0.4{m3/s k_duct 13Wim*C e ju1 3610005328 c_u2 2155538078 Costs
6 vise 2497605 & 1 0.00006{m Ast 18.2173M98|m2 A 14 833338 C Muer | 128510]%
K_alr 0.02953 V1 5.195070271 V2 58483325 ns 45,7007
n P 07154 Funl (Natwal gas) §_by D4 0.000111058 € by D2 | 0000155679 C_efan 162702715
3w 1008 |Fuet_comt 0.5|stheem  [he1 102012.7583 Red 82300.53339) IC_onoat $
10 K ai Q87 1 0,018427R3% 1 0039423011
i rho 1000338 kg/m3 ¢ ey 0.22(S%Wn  |hn1 0,856 256962| m he 1 BISKI07L 1] en C 1otwl | 479.6808(5
12 ho | W/ °C e fu 4 Skl
1 T =o 15]oC 0.15 Nl 217.3506557) NuZ 177.9974)
3 S & 15.13940082 h2_ 17811851
13 Insulation (Fibreglass) u;:-.rj. | gql-u':!a. Dol 0420198332 Da2_ 0.361058870)
30 k_sns 0.04WmC |oays i M5 day/yr A0l 18 48128876|m2 Aso2 151345312
17 Cont W raiem A_iL 0.00352531 fi2 0.00378434)
32 Labour <ol wer g li?j{lm:‘} R_pipes | 9.08313€.26 11123305
13 k)j/therm | 108500 #_ins1 08
20 ".”;‘,_A_
7 I_totall :
Heatloss] 0. 254011928 %W Weatlonsd] 0.2322311 7 kW
n
Figure 6.32. Solver solution for Example 6.7
Table 6.4. Solver solution for the insulated duct
Optimised values Optimised values
determined by Solver determined by Solver
without Equation (6.68) | with Equation (6.68)
Di(m) 0.4142 0.4525
D,(m) 0.2951 0.2586
J,(m) 0.2970 0.2953
8, (m) 0.3023 0.3056
Cauce($) 1285113 132.1191
Cins($) 95.7092 95.2828
Ce ($) 182.7827 186.4329
Cr (9) 72.6776 72.3330
Crotal($) 479.6808 486.1678

6.4. Optimisation with the Evolutionary method
As demonstrated in Chapter 3, the Evolutionary method has an important advantage
over the GRG Nonlinear method which is the ability to find the global optimal point.
Although this advantage is particularly important in economic optimisation analyses,
the method has not been used in the previous sections because of its longer computation
time compared the GRG Nonlinear method. For the purpose of illustration, two
examples previously solved by the GRG Nonlinear method were solved by the
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Evolutionary method. The two examples are Example 6.3 that involved a single
optimisation variable and Example 6.7 that involved four optimisation variables. The
same sheets developed for these two examples were used to perform the optimisation
analyses by changing the solution method from “GRG Nonlinear” to “Evolutionary”.
Figure 6.33 shows the solution obtained with the Evolutionary method for Example 6.3,
while Figure 6.34 shows the method’s solution of Example 6.7.
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Figure 6.33. Solver solution for Example 6.3 with the Evolutionary method
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Figure 6.34. Solver solution for Example 6.7 with the Evolutionary method

Both solutions were obtained with the default set-up shown in Figure 3.17 and Figure
3.18.b. As Figures 7.29 and 7.30 show, the two solutions are identical to those obtained
earlier with the GRG Nonlinear method shown in Figures 7.14 and 7.35, respectively.
With the default options of the Evolutionary method shown in Figure 3.18.b, Solver
took more than 100 seconds to solve Example 6.3 which required less than one second

m
w
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with the GRG Nonlinear method. Example 6.7 required more than 110 seconds with the
Evolutionary method. As mentioned in Chapter 3, the computational time of the
Evolutionary method can be reduced by adjusting the default set-up for the method
shown in Figure 3.18.b to reduce the population size from 100 to 10. With this
adjustment, the Evolutionary method took about one second to solve Example 6.3, but
took about 24 seconds to solve Example 6.7 that involved four parameters.

6.5. Closure

This chapter showed how the Excel-based platform can be utilised for optimisation
analyses of thermofluid systems. The chapter initially highlighted the limitations of
traditional optimisation methods that apply calculus techniques and the advantages of
the computer-aided optimisation method. Four examples were then considered that
dealt with optimisation analyses involving a single design parameter, but the computer-
aided optimisation method was indispensable because the mathematical model either
involved lengthy calculations, nonlinear equations, or discrete-valued variables. The
advantage of the computer-aided optimisation method becomes more appreciable when
the optimisation process involves multiple parameters. In this respect, the chapter
showed how Solver can be used to handle optimisation analyses of insulating an air-
conditioning duct consisting of two sections with different diameters. Finally, the
chapter considered using the Evolutionary method instead of the GRG Nonlinear
method. It was shown that the computer time of the Evolutionary method can be
reduced by suitable adjustment to the default values of its options.
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Exercises

1. Using the analytical optimisation procedure, show that the compression ratios that
minimise the total work input for in a multi-stage compression systems with n
compression stages and a maximum compression ratio rpmax are given by:

ry,= I’pz == rp,n—l = rp,n =N rp,max

p


https://www.theductshop.com/shop/catalog-galvanized-sheet-metal-duct-c-1_3.html
https://www.theductshop.com/shop/catalog-galvanized-sheet-metal-duct-c-1_3.html

Computer-Aided Thermofluid Analyses Using Excel 179

2. An air compressor with three stages of compression takes atmospheric air at 300K
and 100 kPa and delivers it at a final pressure of 900 kPa. The adiabatic efficiency
of the three compressors (7c) is 85%. Each one of the intercoolers that cool the air
after the first and second stages causes a pressure drop of 5 kPa and has
effectiveness (¢) of 85%. By suitably extending the Excel sheet developed for
Example 6.1, determine the exit pressures of the first and second stages, Px and Py,
respectively, that minimise the total compression work.

3. Air, initially at a pressure of 175 kPa and a temperature of 50°C, is to be
compressed to a final pressure of 17,500 kPa by means of a two-stage compression
system that consists of a centrifugal compressor in series with a reciprocating
compressor as shown in Figure P6.3.

P, = 17,500

—>

Intercooler

Reciprocating
Compressor

Centrifugal
Compressor

Po=175 kPa
To=50°C
Qo= 15 m¥/s

Figure P6.3. The air compression system with centrifugal and reciprocating
COmpressors in series

The advantage of this arrangement is that centrifugal compressors can handle high-
volume flow rates but develop only low pressure ratios while reciprocating
compressors are suited to low-volume flow rates but can develop high pressure
ratios. The initial flow rate of air is 15 m3/s and its temperature after the intercooler
can be taken as the same as the inlet temperature of 50°C.

The first costs of the centrifugal and reciprocating compressors can be represented
by the following formulae:

C. =70Q, +1600 % %) (A)

0

C, =200Q, +800 % ($) (B)

1



180

Mohamed M. El-Awad

Where C. and C; are the first costs of the centrifugal and reciprocating
compressors, respectively, and Qo and Q; are the corresponding volume flow rates.

(a) Treating air as a perfect gas, develop the relevant analytical model and
objective function for optimisation in terms of the pressures and flow rates
appearing in Equations (A) and (B).

(b) Use Solver to determine the optimum intermediate pressures and the
corresponding total initial cost of the system.

This exercise is based on Problem 8.5 in Stoecker [5], p 178, Answer: minimum
cost = $24,100

A gas turbine operates on a regenerative Brayton cycle with air entering the
compressor at 100 kPa, 300 K. As shown in Figure P6.4, the hot exhaust gas is
used to preheat the compressed air before the combustion chamber. The
combustion gases leave the combustion chamber (CC) at 1400 K. Take the
regenerator effectiveness as 80% and the isentropic efficiency of both compressor
and turbine as 75%. Pressure losses can be neglected.

Regenerator
T6’ P6
<—}+-NMVWWW
IVAVAVAVAVAVAY <D
T, P, TP, T P,
TZ’ P2 /
T1, P1
- =
\
Compressor Gas turbine

Figure P6.4. The regenerative gas-turbine system

(a) Treating the working fluid (air) as an ideal gas and using the exact method of
analysis and the functions provided Thermax for ideal gases, develop a model
that determines the thermal efficiency of the regenerative gas-turbine cycle.

(b) By varying the pressure ratio from 2 to 16, study the effect of pressure ratio on
the thermal efficiency of the plant.

(c) Use Solver to determine the pressure ratio that maximizes thermal efficiency.

Consider the steam power plant that operates with one closed feedwater heater as
shown in Figure P6.5. Steam enters the high-pressure turbine at 15 MPa and 600°C
where it expands to a pressure of 700 kPa after which it is returned to the steam
generator house for reheating to a temperature of 550°C. The steam then expands
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in the low-pressure turbine and then condensed in the condenser at a pressure of 10
kPa. A fraction y of the steam leaves the low-pressure turbine at an intermediate
pressure P; which is passed to the closed feedwater heater.

3 LP
Turbine
4
y 6
Steam >
Generator 5
8  Condenser
11 7 ; 2
10 9 Pump |
Pump 11

Figure P6.5. Schematic diagram of a steam-turbine power plant with superheating
and reheating

Using reasonable upper and lower limits on the value of Pj, develop an Excel-
Thermax sheet to determine the value of P; that maximises the thermal efficiency
of the cycle and determine the corresponding fraction y of steam extracted from the
turbine.

6. Two identical pumps operate in parallel as shown in Figure P6.6 to deliver a total
of 0.01 m%/s of water at 15°C. The head losses hi1, hi2 in the lines depend upon
volumetric flow rates Qi, Q- according to the following formulae:

h, =2.1x10"Q? kPa (A)

h,, =3.6x10"Q? kPa (B)
Where Q; and Q- are the respective flow rates in cubic meters per second.

(a) Develop the mathematical model for determining the flow rates delivered by
the two pumps that minimize the total pumping power.

(b) Develop the Excel sheet with appropriate water properties and use Solver to
determine the optimum values for the pumps flows.
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0.01 m%/s

!

Figure P6.6. Water delivery system with two pumps in parallel

This exercise is based on Problem 8.3 in Stoecker [5], p. 177. Answer: Q1=0.00567
md/s, Q,=0.00433 m?s.

Hint:
W, = p0(Q;h,; +Q,h, ,)/1000 kW ©

Figure P6.7 shows a circular air duct system is to be design based on the following
data:

Q:1=2.4m%s,Q2=0.6 m%s, Q3 =1.0 m%s, Qs = 0.8 m¥s,
Quantity of sheet metal available for the system, 60 m2.
Use a constant friction factor f = 0.02

Air density p, 1.2 kg/m?

<« 16m i\ 12m H|e Z\ﬁm H|

N T o ? 0o, ? — >

2 3

Figure P6.7. The air duct system

It is required to determine the values of the three diameters D;, D, and D3 that
minimize the drop in static pressure between points A and B.

(a) Set up the objective function and constraints in terms of D1, D, and Ds.
(b) Using Excel and Solver, determine the optimal diameters and the minimum
total head loss.
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Neglect the influence of changes in velocity pressure
Neglect the pressure drop in the straight section past an outlet

This exercise is based on Problem 8.9 in Stoecker [5], p 182. Answer: D;,= 0.468
m D, = 0.426m and D3.= 0.325 m. hs = 17.203 m.



