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Preface 

 

This book shows how Microsoft Excel can be used as an effective educational platform 

for thermofluid analyses. Excel provides a rich library of built-in functions and 

powerful tools for data visualisation and analysis. The Solver add-in that comes with it 

enables the students to perform multi-variable optimisation analyses of thermofluid 

systems. Building on these capabilities, the Excel-based platform for thermofluid 

analyses presented in this book also utilises the Visual Basic for Applications (VBA) 

programming language that comes with Microsoft Office. The book shows how VBA 

can be used for developing additional user-defined functions (UDFs) for supplementing 

Excel’s built-in functions and introduces an Excel add-in, called Thermax, that provides 

UDFs for determining the thermodynamic fluid properties. The fluids covered by 

Thermax include twelve ideal gases, saturated water and superheated steam mixtures, 

six refrigerants, humid air for psychrometric analyses, and air at standard atmospheric 

pressure. Property add-ins developed by other academic and research institutions or 

individuals can be used to extend the range of thermofluid analyses that can be 

performed with the Excel-based platform.  

 

Compared to the software that is dedicated to thermofluid analyses, the main advantage 

of Excel as an educational tool is its wide availability on computers and mobile phones. 

The introductory courses in computer applications usually taught to junior engineering 

students make them familiar with the basic functions of the spreadsheet. The Excel-

based modelling platform described in this book provides the needed transparency and 

flexibility that allow the students to build white-box models from basic principles. An 

important advantage of this platform is that it minimises the need for the students to be 

skilful in numerical methods and computer-programming in order to apply computer-

based methods in thermofluid analyses. This allows the students to pay more attention 

to the application of thermofluid principles pertinent to their analyses.  

 

The principles underlying thermofluid analyses are usually taught to engineering 

students in three separate courses: thermodynamics, fluid mechanics, and heat transfer. 

Rather than dealing with thermofluid analyses in this segregated manner, most chapters 

of the book adopt a unified learning-by-example approach that best suits the students 

who have already studied the three basic courses. Most of the examples considered in 

the book are based on relevant examples given in popular textbooks so that the 

solutions obtained with Excel can be verified. Exercises are given at the end of each 

chapter to help students sharpen their skills related to that chapter. The last three 

chapters of the book differ in that they deal with selected topics related to fluid 

mechanics, heat transfer, and thermodynamics. The extended exercises given at the end 

of these three chapters involve more challenging assignments that suit mini projects. 

This arrangement makes the book also useful for those students interested in only one 

thermofluid subject. 
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Although the book is primarily written for mechanical engineering students, it may be 

equally useful other engineering specialisations. Enough material is covered in the book 

for a stand-alone course at the intermediate level on computer-aided analyses of 

thermofluid and energy systems. Selected topics or examples can also be used to 

supplement standard courses on thermodynamics, fluid dynamics, and heat transfer. It 

is also hoped that the book can be a useful reference for practicing engineers in the area 

of thermofluid and energy systems.  
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Nomenclature 

 

A  Area 

C Friction coefficient in Hazen-Williams equation, Eq. (1.27) 

Cf  Friction coefficient, defined by Eq. (4.34) 

cp  Specific heat at constant pressure, kJ/kg·oC  

cv  Specific heat at constant volume, kJ/kg·oC  

D  Diameter 

f  Friction factor 

F  Correction factor, defined by Eq. (D.4) 

FD  Drag force, defined by Eq. (4.34) 

g  Acceleration of gravity 

h  Average heat-transfer coefficient 

h  Enthalpy, kJ/kg 

hf  Major friction in a pipe system 

k  Thermal conductivity, W/m·oC  

k Isentropic exponent, dimensionless (=cp /cv) 

K Minor losses friction coefficient in a pipe system, defined by Eq. (1.28) 

L  Length 

m  Mass ˙  

m   Mass rate of flow  

M  Molecular weight  

P  Pressure, usually kPa 

Pr  Reduced pressure 

Pr  Relative pressure (for an ideal gas), defined by Eq. (4.4) 

q  Heat-transfer per kg of the working fluid, usually kJ  

Q  Heat, usually kJ 

Q  Volume flow rate, defined by Eq. (1.19) 

Q   Rate of heat transfer, W or kW  

r  Radius or radial distance 

R  Gas constant, kJ/kg.K 

Rth  Thermal resistance, usually oC/W 

Ru  Universal gas constant kJ/kmol.K 

s  Entropy 

T  Temperature 

Tc  Critical temperature 

Tr  Reduced temperature 

u  Internal energy 

U  Overall heat-transfer coefficient of a heat-exchanger 

v  Specific volume, m3/kg 

vr  Relative volume (for an ideal gas), defined by Eq. (4.8) 

V  Velocity, usually m/s 

w  Work-done per kg of the working fluid, usually kJ  
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W   Power, W or kW  

x,y,z  Space coordinates in cartesian system  

 

Greek Characters 

α Amortisation rate, defined by Eq. (6.24)  

δ Thickness (e.g. of insulation)   

∆ Difference (e.g. temperature)   

ε  Roughness of surface material 

ε  Heat-exchanger effectiveness 

εf  Flow exergy 

η  Efficiency  

ν  Kinematic viscosity, m2/s 

ρ  Density, kg/m3 

τ  Time, annual operating hours of a system 

 

Dimensionless Groups 

Nu Nusselt number 

Pr Prandtl number  

Re Reynolds number  

 

Subscripts 

f  Saturated liquid condition  

fg  Difference in property between saturated liquid and saturated vapour  

g  Saturated vapour condition 

lm Log-mean 

s  Saturation temperature or pressure 

s  Evaluated at the surface  

∞  Evaluation at free-stream ambient conditions 
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Cars, refrigerators, and air-conditioners that have become indispensible belongings for 

the individuals and families around the globe require large amounts of energy that 

mainly come from burning fossil fuels in power-generation plants. Apart from being 

non-renewable sources of energy, large-scale combustion of fossil fuels is the main 

cause for global warming and its devastating effects are felt at different parts of the 

world. Therefore, proper design and operation of these and other energy-conversion 

devices is becoming increasingly important. The principles underlying the designs of 

these systems are usually taught to engineering students in three thermofluid subjects; 

which are thermodynamics, fluid mechanics, and heat transfer. This chapter reviews 

these principles and their application for typical analyses in each subject. Due to the 

variation of the working fluids properties with temperature and pressure, the equations 

involved in these analyses are usually nonlinear and difficult to solve without 

introducing many simplifying assumptions that reduce their accuracy. In this respect, 

the chapter highlights the advantages of computer-aided methods and describes the 

Excel-based modelling platform for thermofluid analysis used in this book. 

 

1.1. A review of thermofluid subjects  

The two principles that form the framework for thermofluid analyses are the 

conservation of mass (the continuity equation) and the conservation of energy (the first-

law of thermodynamics). These principles take different mathematical forms depending 

on the nature of the flow (steady or unsteady), type of fluid (compressible or 

incompressible), and whether the system is open or closed. Auxiliary relationships are 

needed in order to quantify the various parameters involved in the relevant equations 

such as pressure-variations, friction losses, and rates of heat-transfer. The following 

sections review the main concepts of thermofluid analyses introduced in the three 

subjects of thermodynamics, fluid dynamics, and heat-transfer and illustrate the 

application of these principles by considering relevant cases.  

 

1.1.1. Thermodynamics 

The principles of engineering thermodynamics allow us to determine the amount of 

energy transfer between the system and its surroundings in the form of work or heat and 

to determine the effectiveness of energy utilization in the system. Thermodynamics has 

four basic laws, the most important of which are the first law and the second law of 

thermodynamics. In addition to these two basic laws, thermodynamic analyses use 

many relationships that describe the behaviour of the particular system being 

considered (closed or open) or the particular fluid involved (a liquid, a liquid-vapour 

mixture, a gas, or a gaseous mixture). To illustrate the application of thermodynamic 

laws and relationships in a typical analysis, consider the air-compression system shown 

in Figure 1.1 that has two stages of compression separated by an intercooler. Air enters 

the system at a temperature T1 and pressure P1. The first-stage compressor, C1, 

compresses the air adiabatically to state 2, after which it enters the intercooler where its 

temperature is reduced to T3. The second-stage compressor, C2, then increases the air 

pressure to P4 and the temperature to T4.  
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Figure 1.1. Schematic and T-s diagrams of a two-stage air compressor with inter-stage 

intercooling 

 

The total compression work depends on how the total pressure ratio is divided between 

the two stages and there is a certain value of the intermediate pressure (Pi) that 

minimises the total work. The principles of thermodynamics help us to determine this 

optimum intermediate pressure as shown below.  

 

Treating the two compressor stages as steady-flow processes, and neglecting changes in 

kinetic and potential energy, the first-law of thermodynamics leads to [1]: 

 

 inout hhwq          (1.1) 

 

Where q and w are the amounts of heat transfer and work transfer per unit mass flow of 

air, respectively, and (ho –hi) is the resulting enthalpy change in the stage. Equation 

(1.1) adopts the sign convention that heat into the system is positive, while work into 

the system is negative. Assuming the compression processes in both stages to be 

adiabatic (q=0) and reversible means that the processes are isentropic as shown in 

Figure 1.1.b. Using an average specific heat for air at constant pressure (cp), the 

compression work per unit mass flow of air in stage 1 (w1) and in stage 2 (w2) can be 

determined from Equation (1.1) as follows: 

 

   12121 TTchhw p         (1.2) 

 

   34342 TTchhw p         (1.3) 

 

Therefore, the total compression work in both stages (wtotal) is given by: 

 

    341221 TTTTcwww ptotal       (1.4) 

 

Assuming perfect intercooling, i.e. T3 = T1, and rearranging Equation (1.4): 

(b) (a) 
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Since we already assumed the two compression processes to be isentropic and the 

specific heats cp and cv for air to be constant, the temperature ratios in Equation (1.5) 

can be converted into pressure ratios by using the following relationships: 

k

k

P
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T
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Where k is the ratio (cp/cv); cv is the specific heat for air at constant volume. Appendix 

A gives properties of atmospheric air at different temperatures. Making another 

assumption that there is no pressure loss in the intercooler, then P3 = P2= Pi. 

Substituting from Equations (1.6) and (1.7) into Equation (1.5), we get: 
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To see how the total compression work varies with the intermediate pressure Pi, let us 

consider the specific case in which T1= 300K, P1=100 kPa, and P4 = 900 kPa. Using 

Equation (1.8), the total compression work in the system was calculated for different 

values of Pi and the result is shown in Figure 1.2. The figure shows that the value of Pi 

at which the total compression work is minimal is around 300 kPa. Increasing or 

decreasing Pi from this value will increase the compression work. 

 

 
Figure 1.2. Variation of the total compression work with the intermediate pressure 
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The principles of thermodynamics are useful for performance analyses and optimisation 

of various types of power-generation and refrigeration systems. For example, consider 

the regenerative steam-turbine power plant shown in Figure 1.3. This plant consists of a 

boiler house for producing superheated steam, a high-pressure steam turbine (HPT), a 

low-pressure steam turbine (LPT), a condenser, an open feed-water heater (FWH) and 

two feed-water pumps. A fraction of the steam (y) is extracted after the HPT for 

preheating the feed-water before going back to the boiler house. 

 

 
Figure 1.3. Schematic diagram of a regenerative steam-turbine power plant 

 

The extracted steam reduces the work output from plant, but it also reduces the amount 

of heat added in the boiler and its net effect is to increase the thermal efficiency of the 

plant. There is also a certain extraction pressure for the steam at which the plant’s 

thermal efficiency attains a maximum value. As shown below, the principles of thermo-

dynamics can also be used to determine this optimum steam-extraction pressure. 

 

The total specific work output from the two turbines (wout) and the total work input to 

the two pumps (win) are given by: 

 

LPTHPTout www          (1.9) 

 

21 PPin www          (1.10) 

 

Where wHPT and wLPT are the specific work output from the high-pressure turbine and 

the low-pressure turbine, respectively, and wP1 and wP2 are the specific work input in 

pump 1 and pump 2, respectively. Assuming the two turbines and the two pumps to be 

adiabatic and neglecting the changes in kinetic and potential energies, the work output 

or input for each device can be determined from the enthalpy difference across the 

device. Per each kg of steam generated in the boiler, these are given by: 
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 21 hhwHPT          (1.11) 

 

  321 hhywLPT          (1.12) 

 

  451 1 hhywP          (1.13) 

 

 672 hhwP          (1.14) 

 

Mass and energy balance over the open feed-water heater gives: 

 

  652 11 hhyyh          (1.15) 

 

The net specific work output from the plant (wnet) is then given by: 

 

inoutnet www          (1.16) 

 

The specific heat input to the boiler (qin) can also be determined from the relevant 

enthalpy change as follows:  

 

 71 hhqin           (1.17) 

 

Therefore, the thermal efficiency of the plant (η) can be calculated from: 

 

innet qw /          (1.18) 

 

Both wnet and η depend on the fraction of steam extracted for regeneration (y); which in 

turn depends on the extraction pressure (P2). Figure 1.4 shows the variation of y and η 

with P2 for an ideal cycle in which P1 = 15 MPa, T1 = 600oC, and P4 = 10 kPa. The 

figure shows that the cycle’s efficiency attains a maximum value of 45.55% when P2 is 

in the range of 1000 kPa.  

 

It should be mentioned that the working fluid in the above power plant changes phase 

from subcooled liquid water to superheated steam in the boiler, to saturated mixture of 

water and steam in the low-pressure turbine, and returns to subcooled water in the 

condenser. Therefore, appropriate property relationships, tables, or charts are needed in 

order to determine the working fluid properties at different states. The principles of 

thermodynamics are also applied in the analyses of air-conditioning and combustion 

processes as well as the analyses of processes or systems involving chemical reactions. 

For such analyses, thermodynamics provides the basic relationships needed to quantify 

the effects of fluid mixing and chemical reactions on the properties of working fluid 

and on the transfer of energy and effluents to or from the thermofluid system.  
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Figure 1.4. The effect of intermediate pressure (P2) on the fraction of extracted steam 

(y) and thermal efficiency (η) of a regenerative steam-turbine power plant 

 

1.1.2. Fluid dynamics 

Fluid-transporting systems have many components such as pipes, pumps, compressors, 

control valves, flow-measuring devices, etc. The principles of fluid dynamics help us to 

estimate the power needed for overcoming friction and pressure losses in these 

components and to determine their suitable types and sizes. To illustrate the application 

of these principles, consider the simple pump-pipe system shown in Figure 1.5 that 

conveys a liquid between two non-pressurised tanks. Suppose that we want to 

determine the pump power needed to deliver a liquid of a specific weight γ between 

points A and B at a rate of Q if the pipe’s length is L and diameter D. 

 
Figure 1.5. Schematic diagram of a simple pump-pipe system 

 

The power needed for the pump (W ), in W, can be determined from the following 

power equation: 

 

 /phQW          (1.19) 

 

Where γ is the specific weight of the transported liquid (N/m3), Q is the volume flow 

rate of the liquid (m3/s), hp is the pump head (m) needed to circulate the fluid through 

the pipe, and η is the combined efficiency of the pump and the electric motor. For 
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steady flow of an incompressible fluid, hp can be determined from the following energy 

equation: 

 

 
g

VV
zzhh AB

ABtotalfp
2

22

,


       (1.20) 

 

Where hf,total is the total head loss through the system due to friction (m), zA and zB are 

the elevations (m) at points A and B, respectively, and VA and VB are the corresponding 

fluid velocities (m/s).  

 

The total friction head loss hf,total consists of two parts: the major friction loss (hf), 

which is the part lost in the pipe itself, and the minor friction head loss (hf,minor), which 

is the part lost in other components of the system, i.e., elbows and tees, valves, etc. The 

major friction loss can be determined from the following Darcy-Weisbach equation [2]: 
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          (1.21) 

 

Where f is the Dracy friction factor (dimensionless), V the fluid velocity (m/s), L the 

total length of the pipe (m), and D the internal diameter of the pipe (m). The value of 

the friction factor, which depends on the roughness of the pipe surface and on whether 

the flow is laminar or turbulent, can be obtained from a Moody diagram [2] or 

calculated from a relevant formula. For laminar flows, f can be calculated from: 

 

 Re/64f          Re < 2300                                   (1.22) 

 

Where Re is the Reynolds number defined as: 

 

/Re VD                                  (1.23) 

 

Where ν is the kinematic viscosity of the flowing fluid (m2/s). For a turbulent flow in 

smooth tubes, f can be determined from the first Petukhov equation [2]: 

 

  2
64.1Reln790.0


f  104 < Re  < 106                              (1.24) 

 

For a turbulent flow in rough pipes, f can be obtained from the following Swamee-Jain 

equation:  
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Chemical engineers usually determine the pipe friction by using the Chezy-Manning 

equation instead of the Darcy-Weisbach equation. According to this equation: 

 

g

V

D

L
fh f

2

2          (1.26) 

 

Where f is the Fanning friction factor. Comparison with Equation (1.21) reveals that the 

value of the Fanning friction factor used in Equation (1.26) is 4 times the corresponding 

value of the Darcy friction factor. Civil engineers determine the friction head loss in 

water-transporting pipes by using the following Hazen-Williams equation: 

 

8704.4852.1

852.167.10

DC

LQ
h f           (1.27) 

 

Where C is a coefficient that depends on the roughness of the pipe. Unlike Equations 

(1.21) and (1.26), Equation (1.27) is applicable for both laminar and turbulent flows.  

 

The minor friction loss, hf,minor, can be determined from the following equation: 
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        (1.28) 

 

Where n is the total number of components in the system and K is a coefficient the 

value of which for each component can be found in relevant tables. 

 

The equations described above can be used to determine the required pump power for 

specified values of the pipe length, pipe diameter, flow rate, fluid viscosity, and pipe 

material. The equations can also be used to determine the minimum diameter of the 

pipe, or the maximum flow rate of the fluid to be delivered, such that the friction loss in 

the system or the needed pump power does not exceed a specified limit. By also taking 

into consideration the initial cost of the pump-pipe system and the cost of electrical 

energy needed by the pump, fluid-dynamics equations can be used to determine the 

pipe diameter that gives the best economic compromise between the initial cost and the 

operating cost of the system over its life-time. 

 

The principles of fluid dynamics also enable us to select the appropriate type and size of 

the pump for a given pump-pipe system. This is achieved with the help of characteristic 

curves usually provided by the manufacturers such as that shown in Figure 1.6 for a 

centrifugal pump. In many practical situations a single pump or a single compressor 

may not be adequate to meet the required fluid flow rate or delivery pressure and more 

than one pump or compressor have to be used. In this situation, the principles of fluid 

dynamics allow us to decide when to arrange the pumps/compressor in parallel or in 
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series. Figures 1.7 and 1.8 show the characteristic curves of two different arrangements 

of centrifugal pumps. 

 

 
Figure 1.6. Characteristic curve for a centrifugal pump 

 
Figure 1.7. Two centrifugal pumps connected in parallel (adapted from Burmeister [3]) 

 

 
Figure 1.8. Two centrifugal pumps connected in series (adapted from Burmeister [3]) 
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1.1.3. Heat transfer 

The principles of heat transfer are required for design analyses of thermofluid devices 

like boilers, condensers, and heat exchangers used to transfer thermal energy between 

the system’s components or between the system and its surroundings. The subject also 

describes the methods that can be used to minimise or maximise the rate of heat-

transfer such as thermal insulation, extended surfaces (fins), etc. To illustrate the use of 

heat-transfer concepts in thermofluid analyses, consider Figure 1.9 that shows a pipe of 

internal radius r1 and external radius r2. The fluid inside the pipe is at a temperature Ti 

while the temperature of the surrounding air is T∞. The temperature difference between 

the pipe and the surroundings will cause heat gain or heat loss to/from the pipe and, in 

order to reduce this heat gain or heat loss, the pipe has to be surrounded by an 

insulation material. The principles of heat transfer help us to determine the required 

thickness of insulation (δ = r3- r2) that keeps the rate of heat-transfer within a specified 

limit. 

 

 
Figure 1.9. Schematic for an insulated metal pipe 

 

The rate of heat transfer ( Q ) to/from the pipe can be calculated from [4]: 

 

  thi RTTQ /         (1.29) 

 

Where Rth is the combined thermal resistance to heat-transfer by conduction, 

convection, and radiation, which is given by [4]: 

 

   

32

23

1

12

1

1

2

/ln

2

/ln1

AhLk

rr

Lk

rr

Ah
R

oi

th 


     (1.30) 

 

Where hi and A1 are the heat-transfer coefficient and surface area inside the pipe, 

respectively, ho and A3 are the heat-transfer coefficient and surface area outside the 

insulated pipe, respectively, L is the length of the pipe, and k1 and k2 are the thermal 

conductivities of the pipe and the insulation, respectively. To simplify the analysis, it is 

usually assumed that ho takes into account the heat-transfer by both convection and 
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radiation to/from the insulation surface. The thickness of the metal pipe is usually small 

compared to its diameter, while its thermal conductivity is much higher than that of the 

insulation material. Therefore, the analysis can be simplified further by neglecting the 

second term that gives the thermal resistance due to conduction through the pipe.  

 

The above analytical model can be used to determine the thickness of insulation 

required for reducing the rate of heat transfer to a specified limit or for controlling the 

surface temperature to a limit that is dictated by safety or other practical considerations. 

Although the thicker the insulation, the lower will be the rate heat transfer, the cost of 

insulation increases with its thickness and there is a certain thickness beyond which 

adding more insulation will be uneconomical. This economical thickness of insulation 

can be determined by extending the above heat-transfer model so that the cost of 

insulation and that of the saved energy can be calculated and compared.  

 

Figure 1.10 shows a typical arrangement in which circular fins are attached to the 

surface of a pipe so as to boost the rate of heat-transfer between the fluid being 

transported with the pipe and the surrounding gas, usually air. As shown in Appendix 

C, the principles of heat transfer can be used to develop the required mathematical 

equations that describe the variation of temperature and rate of heat transfer over the 

surface of the fin. These equations can then be used to evaluate the effectiveness and 

efficiency of the fin. 

 
Figure 1.10. Circular fins attached to a pipe 

 

Another important application of these principles in thermofluid analyses is that related 

to heat-exchangers. A heat-exchanger is a device used for transferring heat between two 

fluids through a separating surface usually a pipe or a tube. Figures 1.11 and 1.12 show 

a shell-and-tube heat-exchanger and a cross-flow heat-exchanger, respectively. These 

two types of heat-exchangers are commonly used in industries, power-plants, and 

vehicles. Heat-exchanger analyses either aim at determining the required size (i.e. 

surface area) for a specified heat-transfer duty or determining the exit temperatures of 

the two streams from a specified heat-exchanger type and size. Appendix D describes 

the log-mean temperature difference (LMTD) method and the effectiveness-NTU 

method used for these two types of analyses.  
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Figure 1.11. A parallel-flow shell-and-tube exchanger 

 

 
Figure 1.12. A cross-flow exchanger with both streams unmixed 

 

Three independent physical laws are used to quantify the rate of heat transfer between 

the system and its surroundings by conduction (Fourier’s Law), convection (Newton’s 

law of cooling), and radiation (Stefan-Boltzmann law). While the physical properties 

that determine the rates of heat transfer by conduction and radiation, i.e. the thermal 

conductivity (k) and surface emissivity (ε), respectively, are substance-specific, the 

convection heat-transfer coefficient (h) depends on both the fluid and the flow. 

Numerous analytical relationships and empirical formulae are used for determining h 

depending on whether the flow is forced or natural. For forced flows, the formulae also 

depend on whether the flow is internal or external to the system being considered. 

These formulae usually give the Nusselt number (Nu) from which the heat-transfer 

coefficient can be calculated. For example, the following Dittus-Boelter equation is 

used for determining Nu inside a fluid-transporting pipe due to forced convection: 

 
nNu PrRe023.0 8.0           (1.31) 
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Where Re is the Reynolds number, Pr the Prandtl number, and n is a constant that takes 

the value of 0.4 when the pipe is being heated and 0.3 when it is being cooled. The heat 

transfer coefficient is related to the Nusselt number as follows: 

 

Nu
D

k
h             (1.32) 

 

Where D is the pipe diameter and k is the thermal conductivity of the transported fluid. 

Many other analytical or empirical formulae are used for determining the Nusselt 

number for forced or natural flows over single tubes, bank of tubes, plates, etc. [4,5]. 

 

1.2. Advantages of computer-aided thermofluid analyses  

Apart from saving the time and eliminating possible human errors, computer-aided 

methods of analysis offer a number of advantages over traditional methods that use 

property tables and charts. An important advantage of these methods with respect to 

thermofluid analyses is their ability to give more realistic results by avoiding 

unnecessary simplification of the models and by using more accurate estimations of 

fluid properties. Moreover, they offer reliable techniques for iterative solutions and 

optimisation analyses and for the analyses of complex thermofluid systems. In what 

follows, these advantages are illustrated by means of relevant examples. 

 

1.2.1. Avoiding excessive simplification of the model 

In many situations, traditional analytical methods adopt excessive simplifications of the 

analytical models; which makes their results grossly deviate from the behaviour of real 

systems. A good example of this situation is given by the models of internal-

combustion (IC) engines. Traditional air-standard models of IC engines, such as the 

Otto cycle and the Diesel cycle, involve many simplifications such as neglecting heat-

transfer and friction losses, treating the combustion process as heat-addition from an 

external source, and using constant specific heats. These assumptions enable the engine 

processes to be represented by simple closed-form relations for calculating the amount 

of heat added to the engine and net work from the engine [6]. However, air-standard 

models usually overestimate the engine’s output and thermal efficiency. By 

comparison, computer-aided models of IC engines such as those described by Ferguson 

[7] take into consideration the geometrical as well as the thermodynamic characteristics 

of the engines. These models, which closely mimic the behaviour of actual IC engines, 

can be used to investigate the effect of important design and operation factors such the 

ignition or injection timing on the engine performance or the effect of engine speed on 

the specific fuel consumption. However, the formulation of these models leads to a set 

of ordinary differential equations that need to be solved simultaneously by using a 

numerical solver such as the Newton-Raphson method. 

 

1.2.2. Accurate representation of fluid properties and processes 

The behaviour of real gasses and vapours is frequently modelled by using the following 

ideal-gas law: 
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TRvP u~          (1.33) 

 

Where P is the absolute pressure of the gas, v~ is the molar specific volume, Ru is the 

universal gas constant, and T is the absolute temperature of the gas. The ideal gas law 

can be used with reasonable accuracy for determining the specific volume of a 

superheated vapour, but when the temperature approaches the saturation line, the value 

of the specific volume determined by the ideal-gas law departs significantly from the 

actual volume. More accurate estimates can be obtained by using the Soave-Redlich-

Kwong (SRK) equation of state [1]: 
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Where the constants a, b and  are fluid-dependent. Figure 1.13 shows the deviations 

from the tabulated values by those obtained from the ideal-gas law and the SRK 

equation of state for refrigerant R134a at 0.2 MPa.  

 

 
Figure 1.13. Errors in the specific volume of R134a by the ideal-gas law and the SRK 

equation of state 

 

The figure shows that the error of the ideal-gas law is more that 2% even at high 

temperatures and increases as the temperature approaches the saturation value, but the 

accuracy of the SRK equation remained higher than 99% even close to the saturation 

line. However, since the SRK equation is implicit in v~ , it cannot be used directly to 

determine the specific volume, but has to be solved iteratively. A number of standard 

iterative procedures (e.g. Newton-Raphson method) can be used to solve the equation, 

but they are not convenient for hand calculations.  
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There are many similar situations in thermofluid analyses where a nonlinear equation 

like the SRK equation gives advantage to computer-aided numerical methods by 

enabling more realistic and accurate estimations. Another important implicit equation 

for thermofluid analyses is the Colebrook-White equation (usually referred to as the 

Colebrook equation) that determines the friction factor (f) in turbulent pipe flows: 

 


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Where Re is the Reynolds number, D is the pipe’s diameter, and ε is the roughness of 

the pipe material. Since the equation involves the friction factor f on both sides, it needs 

to be solved iteratively. This is why traditional methods prefer to use explicit 

relationships, such as the Swamee-Jain formula given by Equation (1.25), even though 

the Colebrook equation is more accurate.  

 

1.2.3. Dealing with iterative solutions and optimisation analyses 

Thermofluid analyses involving iterative solutions and optimisation analyses are two 

common types that suit computer-aided methods more than manual methods even for 

simple systems. A good example is found in pipe-flow analyses. Pipe flow problems 

that require the friction head loss to be determined from Equation (1.21) when both the 

diameter and flow rate are known can be solved in a straightforward manner. However, 

in design analyses of pump-pipe systems we may need to find the flow rate in a given 

pipe that gives a specified head loss or to find a suitable pipe diameter for specified 

head loss, flow rate, and pipe length. In these two cases, the friction factor f cannot be 

determined in advance because it depends on the Reynolds number. Therefore, these 

two types of pipe-flow problems, referred to as type-2 and type-3 problems, need to be 

solved by iteration. It is much easier to carry out the iterative process to the required 

level of accuracy by using a computer-aided method than by doing it manually. There 

are many other types of thermofluid problems that also require iterative solutions such 

as the determination of the unknown fluids' exit temperatures from a given heat 

exchanger or the determination of the adiabatic flame temperature by first-law analysis 

of the combustion process.  

 

Optimisation analyses are needed for determining the best design for a thermofluid 

system such as the optimum intermediate pressure for an air-compression system, the 

optimum steam-extraction pressure for a regenerative Rankine cycle, and the best 

thickness of insulation for a pipe. While simple optimisation analyses that involve a 

single design parameter can be performed by means of calculus techniques and graphic 

tools, optimisation analyses of complex systems that involve multiple variables require 

the use of computer-aided techniques.  
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1.2.4. Analyses of complex systems 

The physical complexity of some thermofluid systems makes their analyses only 

possible with the help of computer-aided methods. An example of such systems is the 

looped pipe network shown in Figure 1.14. This network is fed by two water tanks, A 

and B, and consists of four pipe loops and four consumption points. Suppose that the 

pipe diameters and lengths are given, the flow rates from the supply tanks are specified, 

and it is required to determine the flows in the different pipes and the discharges at the 

consumption points. Although the solution is mainly based on the two well-known 

principles of the conservation of mass and the conservation of energy, it is difficult to 

solve the problem by using manual analytical methods especially when a minimum 

pressure level is to be met at the discharge points. Therefore, a computer-aided method, 

such as the Hardy-Cross method, has to be used [8, 9].  

 
Figure 1.14. A looped pipe network supplied by two tanks 

 

Another type of thermofluid analyses for which computer-aided numerical methods are 

necessary are the analyses of multi-dimensional fluid-flow and heat transfer in complex 

geometries. This type of analyses involves coupled and nonlinear partial differential 

equations that have to be solved by using computational fluid dynamics (CFD) methods 

such as the finite-volume method or the finite-difference method. Many commercial 

CFD applications are available nowadays that offer great flexibility and user-

friendliness. 

 

1.3. An Excel-based modelling platform for thermofluid analyses 

Microsoft Excel is a spread-sheet application developed mainly for statistical analyses 

and presentations of tabulated data. Considering the simplicity of its user-interface and 

the flexibility of its graphing tools, Excel has been used in some engineering textbooks 

for dealing with simple computer-based operations like matrix inversion and matrix 

multiplications [4,5]. However, Excel is equipped with other features that make it a 

capable modelling platform for a wide range of engineering analyses [10-12]. In 

addition to its “What-if” analyses tools that include the Goal Seek command and the 
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Solver add-in, the “Developer” ribbon in Excel provides a programming language 

called Visual Basic for Applications (VBA) that can also be used for developing 

customised user-defined functions (UDFs) needed for engineering analyses when such 

functions are not provided by Excel. The Developer ribbon also allows the use of 

macros to remove the tedium of parametric studies and repetitive calculations.  

 

The main limitation of Excel as modelling platform for thermofluid analyses is the lack 

of built-in functions for fluid properties. This problem could be solved by developing 

add-ins for this purpose. In this respect, the Mechanical Engineering Department at the 

University of Alabama developed a set of add-ins for various thermofluid analyses [13-

15]. Their Thermotable add-in for fluid properties deals with ideal gases, water and 

superheated steam, and four refrigerants R134a, R22, R410A, and R407C. They also 

developed other add-ins for psychrometric and compressible flow analyses. Goodwin 

[16] developed an educational Excel add-in, called TPX (Thermodynamic Properties for 

Excel), that determines the thermodynamic properties of selected gases (H2O, H2, O2, 

N2, and CH4) and refrigerant R-134a. A number of property add-ins have also been 

developed for research applications [17-19]. For industrial applications, the American 

National Institute of Standards and Technology (NIST)  developed the REFPROP add-

in that provides thermophysical properties of various refrigerants and their mixtures 

[20]. An open-source alternative to REFPROP, called CoolProp, was developed by 

Bell [21] at the University of Liege, Belgium. A commercial alternative to REFPROP is 

provided by Optimized Thermal Systems called XProps [22]. 

 

The Excel-based modelling platform used in this book requires, in addition to Excel and 

Solver, an educational Excel add-in called Thermax. Thermax provides property 

functions for 12 ideal gases (air, N2, O2, H2, CO, CO2, H2O, NO, NO2, S2, SO2, and 

SO3), saturated water and superheated steam, 6 refrigerants (R134a, R22, R410A, 

R717, R718, and R744), humid air for psychrometric analyses, and air at standard 

atmospheric pressure. Thermax also provides two interpolation functions and a 

Newton-Raphson solver for nonlinear equations that further enhance the usefulness of 

the modelling platform for thermofluid analyses. The nonlinear equations and any 

additional functions required by the analyses are developed by using VBA. Table 1.1 

summarises the roles of the four components of the Excel-based modelling platform as 

used in this book.  

 

1.3. Closure 

The following nine chapters of the book are grouped into three main parts. The first part 

of the book consists of Chapters 2, 3, and 4 that describe the four components of the 

Excel-based modelling platform in more details. Chapter 2 describes the features and 

built-in functions of Excel that are mostly needed for thermofluid analyses. This chapter 

also illustrates the use of Excel’s iterative tools; Goal Seek and circular calculations. 

Chapter 3 introduces the Solver add-in and shows how its three solution methods can be 

used for solving different types of computer-based problems. The chapter also shows 

how VBA can be used for developing user-defined functions. Chapter 4 describes the 
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Thermax add-in and shows how its functions can be used in Excel’s formulae. Relevant 

exercises are given at the end of each chapter in this part to train the students for using 

the different components of the modelling platform. 

 

Table 1.1. Roles of the four components of the Excel-based modelling platform  

Component Role 

Excel user-

interface 

 Provides the basic functions needed for thermofluid analyses 

including general mathematical functions, matrix-operation 

functions, and logical-operation functions. 

 Provides graphical tools for data charting and trendlining  

 Provides the Goal Seek command for performing unconstrained 

iterative solutions involving a single parameter 

Solver 

 Allows constrained iterative solutions involving multiple 

parameters 

 Allows constrained optimisation analyses 

 Offers three search options that suit different types of problems 

Thermax 

add-in 

 Provides the physical properties of ideal gases, water and 

superheated steam, six refrigerants (R134a, R22, R410A, R717, 

R718, and R744), humid air for psychrometric analyses, and air at 

atmospheric pressure 

 Provides a Newton-Raphson solver for non-linear equations such 

as the Colebrook equation and the SRK equation  

 Provides two interpolation functions for tabulated data 

VBA 

 Can be used to develop additional fluid property functions if 

needed 

 Can be used to develop user-defined functions for dealing with 

non-linear equations and large systems of linear equations 

involved in iterative solutions or optimisation analyses 

 Can be used to develop macros for repetitive calculations 

 

The second part of the book consists of Chapters 5 and 6 that show how the Excel-

based modelling platform can be used to perform basic types of computer-aided 

thermofluid analyses. Chapter 5 shows how Excel’s Goal Seek command and Solver 

can be used to solve problems that require iterative solutions in the fields of fluid 

dynamics, heat-transfer, and thermo-dynamics. Chapter 6 focuses on optimisation 

analyses of thermofluid systems and shows how Solver can be used to deal with those 

involving a single design parameter, such as the optimum thickness of insulation for a 

pipe, and those involving multiple design variables. This chapter also shows how the 

default settings of the GRG Nonlinear method can be adjusted when it fails to reach a 

solution and demonstrates the use of the Evolutionary method instead of the GRG 

Nonlinear method in optimisation analyses. Exercises are given at the end of each 

chapter in this part to train the students to use the modelling platform in relevant 

analyses. 
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Chapters 7, 8, and 9 form the third part of the book. Each one of these three chapters 

focuses on one type of thermofluid analyses. Chapter 7 deals with thermodynamic first-

law and second-law analyses of power generation and refrigeration cycles using 

property add-ins. Chapter 8 that focuses on fluid-dynamic analyses illustrates the use of 

Goal Seek and Solver to deal with the analyses of multi-pipe and pump-pipe systems. 

Different pipe and pump arrangements are analysed in this chapter to determine the 

system’s friction losses, power requirement, and operating point. Chapter 9 deals with 

conduction heat-transfer analyses by using the finite-difference method. The three 

chapters of this last part end with more challenging exercises that can be used as mini 

projects for students’ evaluation. 
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Excel is the backbone of the modelling platform used in this book for thermofluid 

analyses. As a general-purpose application, Excel is equipped with numerous features 

and functions that can be utilised by various users for the presentation and analysis of 

their data. This chapter focuses on its features that are mostly needed in this book for 

building a modelling platform for thermofluid analyses. These include Excel’s user-

interface, its formulae and built-in functions, and its graphical tools and trendline 

feature. The chapter highlights the use of cell-labelling instead of the commonly-used 

referencing by location and illustrates the use of Excel’s matrix functions for the 

solution of linear systems of equations and the use of Goal Seek and circular 

calculations for the solution of nonlinear equations. Finally, the section on Excel’s 

graphical tools demonstrates the use of the trendline feature for data curve-fitting. 

 

2.1.  Elements of Excel’s user-interface 

Excel’s user-interface allows us to store and manipulate our data by providing a large 

set of analytical functions and several tools. It also provides numerous commands for 

adjusting the appearance of the workspace and presenting the primary data and the 

analysis results in various forms. Figure 2.1 shows a screenshot of an Excel sheet that 

stores the scores obtained by a group of students in one semester. 

 

 
Figure 2.1. The main elements of Excel’s user-interface 

 

To allow easy access to the large number of functions tools and commands provided by 

Excel, its interface is divided into a number of elements with different purposes. Figure 

2.1 shows four of these elements which are: 

 

1. The ribbon 

2. The name box 

3. The formula bar 

4. The workspace 

 

1 

2 

4 

3 
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The Ribbon, which occupies the top part of the sheet, organises the numerous 

commands provided by Excel into nine “tabs” including the File, Home, and Insert 

tabs. Each tab consists of a number of command-groups that have a common purpose. 

For example, the File tab consists of four groups of commands called Clipboard, Font, 

Alignment, and Number. The Workspace, which is the main part of the sheet, is 

divided into a grid of columns and rows so that the intersections of the rows with 

columns form separate “cells”. A cell is referred to by a letter that represents its column 

followed by a number that represents its row, e.g. A1, B3, H2, etc. As the figure shows, 

a cell can contain a character data, such as “Saeed” and “Salim”, or a numerical data, 

such as 62.5 and 70. A cell can also contain a formula for data manipulation using the 

numerous built-in functions provided by Excel. The formula in cell H2 calculates the 

average mark for the first student in the list; “Saeed”. While the Name box shows the 

location of the current cell, the Formula bar shows the formula typed in the cell. The 

role of the Formula bar will be explained in more details in the following section. 

 

2.2.  Excel’s formulae 

The formula bar in Figure 2.1 reveals the formula typed in cell H2 that uses the built-in 

function “AVERAGE” to determine the average score of the first student in the list 

(Saeed) in the five subjects (64.0). Note that a formula is preceded by the equal sign 

“=”. In general, Excel’s formulae consist of cell references, built-in functions, and 

mathematical or logical operators. For illustration, let us write a formula that calculates 

the area of a circle from its radius and use this formula to determine the area of a circle 

with a radius of 5 m. To do this, open a new Excel sheet and type the number 5, which 

is the radius of the circle, in cell A1 as shown in Figure 2.2.  

 
Figure 2.2. Writing an Excel formula to determine the area of a circle  

 

Now, go to cell A2 and type the formula ”=PI()*A1^2/4”. The function “PI()” is a 

built-in function that returns the value of Archimedes’ constant π. The formula also 

contains a reference to cell A1 that stores the value of the circle’s radius, the 

multiplication operator *, the division operator /, the power operator ^, and the 

constants 2 and 4. Note that the formula is shown in the formula bar which can be used 

to edit the formula. Pressing the Enter key after typing the formula, the result shown in 

Figure 2.3 is obtained in cell A2; which is 19.63495 square meters.  

 

Formula bar 
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Figure 2.3. The completed Excel sheet with formula that determines the area of a circle  

 

The following example shows how Excel’s formulae and built-in functions can be used 

in a typical thermofluid analysis. 

 

Example 2.1. Determining the error of the ideal-gas law for refrigerant R134a 

Develop an Excel sheet that calculates the specific volume (v) of refrigerant R134a 

from the ideal-gas law at a pressure of 200 kPa (Tsat = -10.09oC) and temperatures in the 

range 0oC to 100oC (273 to 373 K). Compare your results with the tabulated data. 

 

Solution 

Figure 2.4 shows the Excel sheet prepared for this example. The pressure (P), the gas 

constant (R), and the temperature (T) are stored in columns A, B, and C, respectively. 

Column D stores the values of v obtained from property tables and column E stores the 

corresponding values obtained from the ideal-gas law: 

 

PRTv /          (2.1) 

 

where, P and T are the absolute pressure and temperature, respectively, and R is the gas 

constant (for R134a R = 0.08149 kJ/kg.K). The percentage error of the ideal-gas law in 

estimating the specific volume is given by: 

 

100



Table

TableIdeal

v

vv
Error        (2.2) 

 

To determine the percentage error at 273K, go to cell F2 and type the following formula 

which is equivalent to Equation (2.2): 

 

 =(E2 – D2)/D2*100 

 

When you press the Enter key, the number 6.566 will appear in cell F2 as shown in 

Figure 2.4. 
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Figure 2.4.The sheet developed for determining error in the ideal-gas law for R134a 

 

Note that the formula shown in the formula bar represents Equation (2.2) when the 

temperature is 273K. To find the percentage errors at other temperatures, you can 

simply copy the formula in cell F2 and paste it on cells F3 to F12. Values of the 

calculated errors show that the maximum error occurs at the lowest temperature, which 

is 273K. The error decreases gradually as the temperature increases. 

 

2.3.  Use of cell labels 

Reference to the cell by its relative location in the sheet, e.g., A5 and C3, suits perfectly 

statistical analyses in which the same formula is applied to a large body of data that is 

stored column-wise or row-wise. For example, we want to determine the average value, 

maximum value, or minimum value of the data. Example 2.1 illustrated this situation. 

However, thermofluid analyses usually involve a large number of formulae but a small 

set of data, e.g. the diameter of a pipe, the density or viscosity of a fluid, the 

effectiveness of a heat exchanger, etc. For such analyses, it is more convenient to give 

the cell a meaningful name or “label” that matches its content. The label can then be 

used as reference to the cell instead of its relative location. This method makes it easier 

to interpret Excel formulae and recognise the quantities involved in them.  

 

For the purpose of illustration, suppose that we want to compare the density of air 

before and after an isentropic compression process from an initial condition of P1 = 100 

kPa, T1 =300K to a final pressure of P2 = 800 kPA. The two densities can be calculated 

from the ideal-gas law as follows: 

 

111 / RTP          (2.3) 

 

222 / RTP          (2.4) 
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Where R is the gas constant for air (0.287 kJ/kg.K).  

 

For an isentropic process, T2 is related to T1 according to the following approximate 

relationship: 

  k

k

PPTT
1

1212 /


         (2.5) 

 

Where k is the ratio of specific heat at constant pressure (cp) and at constant volume 

(cv). For air, k can be taken as 1.4.  

 

Figure 2.5 shows the sheet prepared for this case. Note that respective labels are typed 

in the column to the left of the different pressures and temperatures, while the 

corresponding units are written in the column to the right of each quantity. This is also 

done to the other quantities in the calculations.  

 

 
Figure 2.5. Excel sheet for calculating the air densities before and after compression 

 

Placing the cursor on cell F4 makes the formula bar reveal the formula used in the 

calculation of the temperature T2, which is: 

 

=B4*B7^((B8-1)/B8)  

 

The above formula can be made more understandable by using meaningful labels to 

refer to the different cells involved. To do that, select the cells in columns A and B as 

shown in Figure 2.6, then go to Formulas and, at the Name Manager, select Create 

from Selection. When the form shown in Figure 2.6 appears to you, tick the “Left 

column” option. Pressing the “OK” button will make Excel create names for the 

different values in the selection box according to the labels written on the left column. 

The cell F3 that stores the value of P_2 can also be associated with its corresponding 

label in cell E3. Now, type the formula in cell F4 that determines T_2 as:  

 

=T_1*P_r^((k_-1)/k_)  
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The formula bar in the sheet shown in Figure 2.7 reveals the formula with the 

corresponding labels instead of location references. Labelled formulae are easier to edit 

than those using location referencing particularly when intricate formulas are involved.  

 

 
Figure 2.6. Creating names for a selected group of cells 

 

 
Figure 2.7. Formulae using cells labels instead of locations 

 

There are a couple of rules that have to be observed when using cell labels. When 

naming your cells, choose suitable representative names for the variables involved, e.g. 

P_1 and T_1 for P1 and T1. Note that Excel does not accept “P1” or “T1” as labels since 

these can be confused with usual cell references by locations. In this case, Excel 

automatically changes the labels to “P1_” and “T1_”. Also note that if you copy a 

formula that uses the usual referencing by location in another cell, you will get a 

different answer, but if you copy a labelled formula and paste it in any other cell, you 

will get the same answer. To reveal or hide all the formulae in the sheet, press the 

control key (ctrl) with the tilde key (~). A more detailed discussion of Excel formulae 

can be found in Walkenbach [1] or the numerous online help sources. 
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2.4.  Excel’s built-in functions 

Excel provides a large library of built-in functions for data manipulation like the 

“AVERAGE” function and other functions needed in engineering analyses like the “PI” 

“SIN”, and “COS” functions. To see the full range of Excel built-in functions, type “=” 

in any Excel cell as shown in Figure 2.8 and then press the “Insert Function” fx button 

in the formula bar. The dialog box shown in Figure 2.9 will appear to you. This dialog 

box allows you to select from various categories of built-in functions. 

 

 
Figure 2.8. Using Excel’s built-in functions 

 

 
Figure 2.9. Categories of Excel’s built-in functions 
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The “Math & Trig” group includes the mathematical and trigonometric functions used 

in different types of engineering analyses, including thermofluid analyses. Figure 2.10 

shows some of the numerous functions in this group. Note that the dialog box gives a 

brief explanation of each function. For example, the explanation given to the ABS 

function is that it returns the absolute value of a number. The functions ACOS, ASIN, 

and ATAN apply the familiar inverse trigonometric functions: cos-1, sin-1, and tan-1, 

respectively. By scrolling down the list, you can find many other functions frequently 

used in engineering calculations. The following sections focus on two types of 

functions that deserve a special attention, which are (a) the logical functions and (b) the 

functions for matrix operations.  

 

 
Figure 2.10. Common mathematical functions supported by Excel 

 

2.4.1. Logical functions 

Logical functions are needed frequently in thermofluid analyses. For example, before 

we can use the Darcy-Weisbach equation to determine the major friction loss in a pipe 

we have to establish whether the flow is laminar or turbulent. The flow remains laminar 

before the Reynolds number (Re) reaches a certain value, which is usually taken as 

2,000. There is a transitional region between laminar and turbulent flows when 2000 < 

Re < 3,000. Beyond Re = 3000, the flow is considered fully turbulent. Suppose that we 

want to write an Excel formula to tell us the type of flow from the given value of the 

Reynolds number. A simple IF function that gives only two choices is as follows: 

 

=IF(logical_test,[value_if_true],value_if_false]) 
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Using the simple IF function, we can write the following formula: 

 

=IF(Re<=2000, “Laminar”, “Turbulent or transitional”) 

 

Note the quotation marks around “Laminar” and “Turbulent or transitional”. However, 

the above formula does not tell us whether the flow is turbulent or transitional. The 

required general formula can be written by using the following nested IF function:  

 

=IF(Re<=2000, “Laminar”, IF(Re>=3000, “Turbulent”, “Transitional”)) 

 

Figure 2.11 shows an Excel sheet containing the above formula (shown in the formula 

bar) and the response of the formula when Re = 500, which is “Laminar”. Excel 

supports six other logical functions; AND, FALSE, IFERROR, NOT, OR and TRUE 

that can be combined in the same formula so as to handle more intricate choices. 

 

 
Figure 2.11. A formula using the nested IF function to determine the type of flow 

 

2.4.2. Functions for matrix operations 

A group of adjacent cells can be treated as a matrix or a vector and Excel formulae 

allow for the addition, subtraction, and multiplication of these matrices and vectors 

according to the established rules of matrix operations. For example, matrix [A] and 

vector {b} shown in Figure 2.12 can be multiplied and the result stored in a third vector 

{c} by using the matrix function MMULT. The procedure is as follows: 

 

1. After keying in the data of matrix [A] and vector {b} as shown in Figure 2.12, 

position the cursor at cell H3 and type the formula: =MMULT(B3:D5;F3:F5).  

2. Now press ENTER key and cell H3 will take the value 14, which the result of 

multiplying the first row of the matrix with the vector {b} (Figure 2.13).  

 

The other two elements of the result vector will not appear automatically. To view the 

complete results vector, do as follows:  

 

3. Select the cells H3:H5 (Figure 2.14),  

4. Press the function key F2 once and then simultaneously hold the (SHIFT + 

CONTROL) keys together and press ENTER. The complete result vector {c} 

will now appear as shown in Figure 2.15. 
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Figure 2.12. Step 1 of using the matrix multiplication function 

 

 
Figure 2.13. Step 2 of using the matrix multiplication function 

 

 
Figure 2.14. Step 3 of using the matrix multiplication function 

 

 
Figure 2.15. Step 4 of using the matrix multiplication function 

 

Another important matrix-operation function provided by Excel is the matrix-inversion 

function “MINVERSE”. The following example illustrates the use of this function 

which is needed for the solution of linear systems of equations. 
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Example 2.2. Using the matrix inversion function 

Develop and Excel sheet to find the inverse of matrix [A] given by: 

 

[A] = 

















507

650

301

 

 

Solution 

The first step is to enter the elements of the matrix as shown in Figure 2.16. After 

entering the data, go to cell F2 and type the formula “=MINVERSE(B2:D4)”. When 

you press ENTER, this cell will have the value -0.3125, which is the first element of 

[A]-1 shown in Figure 2.17. Starting with the formula in cell F2, select the range F2 to 

H4 as shown in the figure. Press and release the function key F2 and then 

simultaneously hold the CTRL+SHIFT keys and press ENTER. Other elements of the 

inverse matrix [A]-1 will then appear as shown in Figure 2.18. You can check the 

answer by finding the product of matrix [A] with its inverse by using the MMULT 

functions. The procedure is illustrated by Figures 2.19 to 2.21. As should be expected, 

Figure 2.21 shows that the resultant matrix is the identity matrix. 

 

 
Figure 2.16. Step 1 of using the MINVERSE function 

 

 
Figure 2.17. Step 3 of using the MINVERSE function 
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Figure 2.18. The complete inversed matrix [A]-1 

 

 
Figure 2.19. Multiplying matrix [A] by its inverse [A]-1 

 

 
Figure 2.20. The first element of the identity matrix 

 

2.5.  Solution of linear system of equations 

Systems of linear equations arise, for example, in the numerical solution of the heat 

conduction equation using the finite-difference method. Small and medium-sized linear 

systems of equations can be solved with Excel by applying the matrix-inversion 

method. Consider the following linear system written in matrix notation: 

 

    yxA 
         (2.6) 

 

Where [A] is the coefficient matrix, {x} the vector of unknowns, and {y} the right-side 

or “load” vector. 
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Figure 2.21. The complete identity matrix 

 

The solution vector {x} can be obtained as follows: 

 

     yAx
1

          (2.7) 

 

Where [A]-1 is the inverse of matrix [A]. The following example illustrates the 

procedure. 

 

Example 2.3. Solution of a system of linear equations 

Find the values of xi in the following system of linear equations:  

 

































794916325

4947523

16536159

322155214

5391414



























5

4

3

2

1

x

x

x

x

x

=































463

329

106

100

15

    (2.8) 

 

Solution 

Note that the system is symmetric; which is typically the case with linear systems that 

arise in the solution of heat-conduction problems by the finite-difference method. For 

large systems of equations, symmetry of the system can be utilised for reducing the 

required computer memory by storing only one half of the coefficient matrix. However, 

for small systems, such as the one considered here, it is more convenient to use the 

matrix inversion method using Excel functions. Figure 2.22 shows the Excel sheet that 

stores both the coefficient matrix [A] and the load vector {y}. The inverse of the 

coefficient matrix [A]-1 was obtained by following the procedure described above and 

stored below the coefficient matrix as shown in the figure. The inverse matrix [A]-1 is 

then multiplied by the load vector {y} and the result stored below the load vector as 

shown in Figure 2.23. The complete solution is shown in Figure 2.24. The first element 

is practically zero and, therefore, the answer is{x} = (0, 1, 2, 3, 4). 
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Figure 2.22.The coefficient matrix [A], the load vector {y}, and the inverse matrix [A]-1 

 

 
Figure 2.23. Multiplying the inverse matrix [A]-1 with the load vector {y} 

 

 
Figure 2.24. The complete solution vector {x} 
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2.6.  Itearative solutions with Excel 

Iterative solutions are required in thermofluid analyses when the analytical model 

involves a nonlinear equation, such as the SRK equation, or when there is 

interdependency between fluid and flow parameters, as in type 2 and type 3 flow 

problems. Excel’s user-interface offers two methods for obtaining iterative solutions: by 

using the Goal Seek command or by using circular calculations. In what follows these 

two methods will be explained with the help of simple examples.  

 

2.6.1. Itearative solutions with Goal Seek 

The Goal Seek command is a simple, yet very useful tool for “What-if” analyses. It is 

used for finding the value of an independent variable (x) that yields a specified value of 

a dependent variable (y). The following example illustrates how the Goal Seek 

command can be used to solve a nonlinear equation.  

 

Example 2.4. Solution of a nonlinear equation by Goal Seek 

Two variable x and y are related according to the following quadratic equation: 

 

y = x2 – 2x +1  -1.0 ≤ x ≤ 3      (2.9) 

 

It is required to find the two values of x that yields y = 1.5.  

 

Solution 

Using the conventional analytical method, the two values can be found by substituting y 

in Equation (2.9) by 1.5. This leads to the following quadratic equation: 

 

05.022  xx  

 

The two roots of this equation using the standard solution method are: 

 

   
2

62

12

5.01422
2







x  

 

Or:  

 

x1 =  ̶ 0.22474  

 

x2 = 2.2247. 

 

We will now solve the problem by using the Goal Seek command. Figure 2.25 shows 

the Excel sheet prepared for this purpose in which y is plotted at various values of x. 

The figure shows that the two values of x that yield y = 1.5 are approximately -0.2 and 

2.2. 
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Figure 2.25. Excel sheet for finding the roots of a nonlinear equation 

 

To solve the problem by using Goal Seek, enter an initial guess for x in cell B2, say 0, 

and then enter the following formula that calculates y in cell B3: 

 

= B2^2 – 2*B2 +1  

 

Note that the formula bar reveals the above formula when the cursor is placed at cell 

B3. To activate the Goal Seek command, go to the Data tab, select the What-If-

Analysis option in the Data Tools group and then select Goal Seek, as shown in Figure 

2.26. The Goal Seek dialog form shown in Figure 2.27 will ask you to select the “Set 

cell”, i.e. the cell that contains the dependent variable, which is B3 in this case. 

 

 
Figure 2.26. Activation of the Goal Seek command 

 

 
Figure 2.27. Goal Seek Set-up for finding the root of a nonlinear equation 
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You also have to specify the value sought for this cell and then select the adjustable cell 

that stores the value of the parameter to be changed. In this case, we seek the value in 

the Set Cell B3 to be 1.5 by changing the value of cell B2. Providing this information to 

Goal Seek and then pressing the “OK” button, will trigger the tool to iterate by 

changing the value in the adjustable cell (B2) until the Set cell (B3) acquires the 

required value. As shown in Figure 2.28, the answer obtained by Goal Seek is x = -

0.22474 which agrees with the first root obtained analytically. 

 

 
Figure 2.28. Goal Seek solution with an initial value of x = 0 

 

Goal Seek determined the first solution and not the second one because it starts the 

iterative process with the initially specified value in the changeable cell, which is x = 

0.0, and gives the solution that is closer to it. To determine the second solution, we have 

to start with a suitable initial guess. Figure 2.29 shows the same Excel sheet with the 

initial value of x changed to 1.0 and the set-up for Goal Seek before the solution. Figure 

2.30 shows the new solution found by Goal Seek, which is x = 2.2249.  

 

 
Figure 2.29. Goal Seek set-up with an initial value of x = 1 

 

Note that the second Goal Seek solution deviates slightly from the analytical solution of 

x=2.2247. The precision of Goal Seek solution can be improved by adjusting Excel’s 

default parameters for iterative solutions. This can be done by selecting Options from 

the File tab and then selecting Formulas. You can now increase the allowable 

maximum number of iterations from the default value of 100 and reduce the maximum 

change from the default value of 0.001.  
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Figure 2.30. Goal Seek solution with an initial value of x = 1 

 

2.6.2. Iterative solution with circular calculations 

A circular calculation occurs when an Excel formula refers to its own cell in a direct or 

indirect way. When this happens, Excel prompts the user that there is a circular refrence 

and then indicates the cells involved. By allowing Excel to perform circular 

calculations, it will itearate until all the parameters involved are satisfied. The following 

example illustrates this feature.  

 

Example 2.5. Determining the final temperature of heated air 

A closed system contains one kg of air initially at 300K. 100 kJ of heat is added to the 

air at constant pressure. Determine the final temperature of air if its molar specific-heat 

( pc~ ) varies with temperature according to the following formula: 

 
32~ dTcTbTac p   [kJ/kmol]      (2.10) 

 

Where a = 28.11, b =1.97x10-03, c = 4.80x10-06, and d = -1.97x10-09.  

 

Solution 

From the defenition of specific heat, the final temperature (T2) is given by: 

 

 McQTT p /~/12          (2.11) 

 

Where T1 is the initial temperature, Q is the amount of heat added, and M is the molar 

mass for air, taken as 29. If we ignored the variation of pc~  with temperature and 

determined the final temperature based on its value at T1 only, the answer would be 

T2=399.73K. However, we can be more accurate by determining pc~  from Equation 

(2.10) by using the average temperature, Tavr = (T1+T2)/2. Figure 2.31 shows the Excel 

sheet developed for this method which reveals the formulae inserted in cells F2, F4, and 

F6. As soon as we type Equation (2.11) in cell F6, Excel makes the warning message 

that there is a circulare refernce as shown in Figure 2.32. The circular reference occurs 

because T2 depends on pc~  according to Equation (2.11) while pc~  itself depends on T2 
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according to Equation (2.10). If we press the “OK” button shown in Figure 2.32, the 

cells involved in the circular reference whill be identified as shown in Figure 2.33. In 

this case, three cells are involved in the circular reference, which are F2, F4, and F6.  

 

 
Figure 2.31. Excel sheet developed for Example 2.5 

 

 
Figure 2.32. The circular-reference prompt 

 

 
Figure 2.33. The cells involved in the circular reference 

 

Excel can solve this problem and determine the values of both T2 and pc~  that satisfy the 

relevant equations if allowed to iterate. To allow this option, go to File and select 

Options. The Backstage View form shown in Figure 2.34 will appear to you. Select 

Formulas, then the form will appear as shown in Figure 2.35. Enable iterative 

calculations by ticking the box indicated in the figure  √   and press the “OK” button. 

Excel can now find the correct values of T2 and cp by iteration. Figure 2.36 shows the 

solution found by Excel, which is T2 =398.976K.  
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Figure 2.34. Selecting Excel's option (Formulas) 

 

Figure 2.35. Enabling iterative calculations from Excel's Formulas option 

 

 
Figure 2.36. Solution of Example 2.5 by circular calculations 

 

Although the subtle nature of circular calculations can be useful in certain situations, 

various type of thermofluid analyses that require iterative solutions can be solved more 

easily with Goal Seek or the Solver add-in as shown in Chapters 5 and 8. Try to solve 

this example by using Goal Seek and compare the results (Problem 2.10). 
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2.7.  Excel’s graphical tools for data presentation and analysis 

Excel has numerous graphical tools for the visualisation and analysis of numerical data. 

Using these tools, the data can be presented in a variety of charts. Figure 2.37 shows 

one type of Excel charts that displays the annual variation of temperature and relative 

humidity at one location in a certain day. The figure shows a line chart in which the 

temperature is scaled on the primary y-axis (on the left) while the humidity is scaled on 

the secondary y-axis (on the right). This arrangement is useful for displaying two or 

more types of data that differ significantly in their magnitudes.  

 

 
Figure 2.37. An example of line charts 

 

Excel supports other types of charts that allow the user to select the most appropriate 

way to display his/her data in the form of bar, area, or scatter charts. For more 

information about the different types of Excel’s charts, the reader can refer to 

specialised references such as Walkenbach [2]. A number of tutorials and videos that 

show how to create different types of charts can also be found in the internet. 

 

Excel’s graphical tools provide a curve-fitting capability of numerical data by using the 

Trendline feature. This particular capability is useful for computer-aided thermofluid 

analyses because it can be used to convert tabulated data into analytical equations that 

suit computer-based methods better. The trendline feature provides a number of 

options, which include exponential, linear, logarithmic, polynomial, and power 

equations as shown in Figure 2.38. For example, Table 2.1 shows properties of 

saturated water in the range 0.001oC – 60oC. Values of the saturation pressure (Psat) and 

saturated liquid enthalpy (hf) are used in psychrometric analyses of air-conditioning 

applications, but for computer-based analyses it is useful to convert these data into 

equations. First, we have to create line charts for the two properties as shown in Figure 

2.39.  

 

 

0

10

20

30

40

50

60

0

5

10

15

20

25

30

35

40

45

Ja
n

Fe
b

M
ar

A
p

r

M
ay Ju
n

Ju
l

A
u

g

Se
p

O
ct

N
o

v

D
e

c

H
u

m
id

it
y 

(%
)

Te
m

p
e

ra
tu

re
  (

o
C

)

Month

temperature

Humidity



Computer-Aided Thermofluid Analyses Using Excel                                                57            

 

 
Figure 2.38. The Format Trendline window 

 

Table 2.1. Properties of saturated water at temperatures in the range 0oC- 60oC taken 

from Cengel and Boles [3] 
ToC Psat 

[kPa] 

vf  

[m3/kg] 

vg 

[m3/kg] 

uf 

[kJ/kg] 

ug 

[kJ/kg] 

hf 

[kJ/kg] 

hg 

[kJ/kg] 

sf 

[kJ/kg.K] 

sg 

[kJ/kg.K] 

0.01 0.6117 0.001000 206.00 0.000 2374.9 0.001 2500.9 0.0000 9.1556 

5 0.8725 0.001000 147.03 21.019 2381.8 21.020 2510.1 0.0763 9.0249 

10 1.2281 0.001000 106.32 42.020 2388.7 42.022 2519.2 0.1511 8.8999 

15 1.7057 0.001001 77.885 62.980 2395.5 62.982 2528.3 0.2245 8.7803 

20 2.3392 0.001002 57.762 83.913 2402.3 83.915 2537.4 0.2965 8.6661 

25 3.1698 0.001003 43.340 104.83 2409.1 104.83 2546.5 0.3672 8.5567 

30 4.2469 0.001004 32.879 125.73 2415.9 125.74 2555.6 0.4368 8.4520 

35 5.6291 0.001006 25.205 146.63 2422.7 146.64 2564.6 0.5051 8.3517 

40 7.3851 0.001008 19.515 167.53 2429.4 167.53 2573.5 0.5724 8.2556 

45 9.5953 0.001010 15.251 188.43 2436.1 188.44 2582.4 0.6386 8.1633 

50 12.352 0.001012 12.026 209.33 2442.7 209.34 2591.3 0.7038 8.0748 

55 15.763 0.001015 9.5639 230.24 2449.3 230.26 2600.1 0.7680 7.9898 

60 19.947 0.001017 7.6670 251.16 2455.9 251.18 2608.8 0.8313 7.9082 
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(a)      (b) 

Figure 2.39. Fitting trendlines on tabulated data for water of  

(a) saturation pressure and (b) saturated liquid enthalpy  

 

Trendlines can then be added on the line charts. Figures 2.39.a and 2.39.b also show the 

corresponding trendline equations of the tabulated data as determined by using 

polynomial equations. A linear equation is adequate for the hf data since its variation 

over the given temperature range is mild (Figure 2.39.b), but a third-order polynomial is 

required to represent the variation of Psat with temperature (Figure 2.39.a). 

 

2.8.  Closure  

This chapter described the main features of Excel needed for thermofluid analyses. The 

chapter highlighted the importance of using cell labelling with Excel’s formulae and 

illustrated the use of Excel’s general mathematical functions and logical functions. The 

chapter also showed how Excel’s functions for matrix operations can be used for 

solving linear systems of equations and demonstrated the use of its iterative tools, Goal 

Seek and circular calculations. In spite of its simplicity, the Goal Seek command is very 

useful for computer-aided thermofluid analyses. As shown in later chapters of this 

book, it can be used for solving problems that require iterative solutions, such as type-2 

and type-3 pipe flow problems, and flow analyses of multi-pipe arrangements. Finally, 

the chapter illustrated the usefulness of Excel’s charting tools for computer-based 

thermofluid analyses particularly the trendline feature. 

 

It should be mentioned that the Developer tab in Excel’s user-interface provides a 

number of useful features that can be used to enhance the performance and user-

friendliness of Excel as modelling platform for thermofluid analyses. For example, 

macros are useful when conducting repetitive calculations and parametric analyses. For 

more information about these features, the reader can refer to specialised references or 

the internet. 
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Exercises 

1. The following table shows the measured values of the temperature by two different 

methods compared to the correct values. Find the average error for each method. 

 

Correct T (oC) Method 1 Method 2 

0 0.1044 0.1112 

10 10.1092 10.1153 

20 20.1139 20.1194 

30 30.1186 30.1235 

40 40.1231 40.1275 

50 50.1276 50.1316 

60 60.1320 60.1357 

70 70.1364 70.1397 

80 80.1407 80.1438 

90 90.1450 90.1479 

100 100.1493 100.1520 

 

2. Suppose that we have the data shown on the following table for the saturation 

pressure of a certain fluid. Use a nested IF statement to develop an interpolation 

formula that determines the saturation pressure for any temperature in the range 5oC 

≤T ≤ 30oC. 

 

T(oC) Psat (kPa) 

5 0.872 

10 1.228 

15 1.705 

20 2.339 

25 3.169 

30 4.246 

 

3. A system of algebraic equations can be expressed in matrix form as follows: 
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Solve the system of equations to determine the values of the three unknowns a, b, 

and c. This exercise is based on Example 9.11 in Chapra and Canale [4]. The 

answer is: a = 8.5941, b=34.4118, and c = 36.7647. 

4. The following system of linear equations resulted from a finite-difference solution 

of the heat transfer in the triangular fin shown in the following figure.  

 

 
Solution of the system provides the temperatures in oC at different distances from 

the fin base as shown in the accompanying figure. Rewrite the systems in the 

matrix form [A]{x} = {b} and use Excel functions to solve it. 

 

-8.008 T1 + 3.5 T2 = -900.209 

 

3.5 T1 -6.008 T2 + 2.5 T3 = -0.209 

 

2.5 T2 -4.008 T3 + 1.5 T4 = -0.209 

 

1.5 T3 -2.008 T4 + 0.5 T5 = -0.209 

 

T4 - 1.008 T5 = -0.209 

 

5. Adopting suitable names in your formulae, prepare an Excel sheet for calculating 

the frictional loss (hf) in a circular pipe of diameter D, length L, and roughness ks. 

Use your sheet to determine hf in the following cases:  

 

(a) D = 25 cm, L = 150 m, V = 2 m/s, ks = 0.045 mm, carrying water at 20oC. 

(b) D = 25 cm, L = 150 m, V = 0.2 m/s, ks = 0.045 mm, carrying oil at 20oC. 

(c) D = 25 cm, L = 150 m, V = 7 m/s, ks = 0.045 mm, carrying air at 20oC. 

 

Determine the values of the kinematic viscosity from relevant property tables and 

take the transition of flow from laminar to turbulent to occur at Re = 4,000. 

 

6. Using a line chart, plot the variation of sine θ for -180 ≤ θ ≤ 180 in steps of 

10othen add cosine θ on the same chart. 

1 2 3 4 5 0 
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7. Using the data shown in Table 2.1, make a line chart for vf and vg. Add 

polynomial trendlines for both and comment on the trendlines equations.   

8. The table below shows some of the thermo-physical properties of air at 

atmospheric pressure and different temperatures. Use Excel charts to show the 

variation of the properties ρ, β, cp, k, α, μ, ν, and Pr with temperature and use 

trendline to obtain suitable equations for these properties.  

 

T 

(K) 

  

(kg/m3) 

310

 (1/K) 

pc

(J/kg.K) 

k
(W/m.K) 

  

(m2/s) 

610  

(N S/m2) 

610  

(m2/s) 

Pr  

273 1.252 3.66 1011 0.0237 19.2 17.456 13.9 0.71 

293 1.164 3.41 1012 0.0251 22.0 18.240 15.7 0.71 

313 1.092 3.19 1014 0.0265 24.8 19.123 17.6 0.71 

333 1.025 3.00 1017 0.0279 27.6 19.907 19.4 0.71 

353 0.968 2.83 1019 0.0293 30.6 20.790 21.5 0.71 

373 0.916 2.68 1022 0.0307 33.6 21.673 23.6 0.71 

473 0.723 2.11 1035 0.0370 49.7 25.693 35.5 0.71 

573 0.596 1.75 1047 0.0429 68.9 29.322 49.2 0.71 

673 0.508 1.49 1059 0.0485 89.4 32.754 64.6 0.72 

773 0.442 1.29 1076 0.0540 113.2 35.794 81.0 0.72 

 

9. Using the Excel sheet developed for Example 2.4, check the accuracy of the 

solution obtained by Goal Seek when the spreadsheet iteration parameters are 

adjusted such that the maximum number of iterations is increased to 10,000 and the 

maximum change is reduced to 0.00001.  

10. Solve Example 2.5 by using the Goal Seek command instead of circular 

calculations. 

11. The volume V of liquid in a spherical tank of radius r is related to the depth h of the 

liquid by: 

 

V = πh2(3r −h)/3  

 

Using Excel and the Goal Seek command, determine h given r=1 m and V = 0.5 m3. 

This exercise is based on Problem 8.9 in Chapra and Canale [4]. Answer: h = 0.431 

m. 
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Solver and VBA 
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This chapter focuses on two auxiliary components of the Excel-based modelling 

platform for thermofluid analyses, which are Solver and VBA. Developed by Frontline 

Systems [1], Solver enables Excel to perform iterative solutions and optimisation 

analyses with multiple adjustable cells. It offers three solution methods that suit 

different types of problems including a deterministic gradient method, a linear-

programming method, and a stochastic evolutionary method. This chapter shows how 

Solver can be activated and used for solving single nonlinear equations and systems of 

linear equations and performing optimisation analyses. The Chapter describes the 

settings of Solver’s solution options and illustrates the use of its GRG Nonlinear 

method and the Evolutionary method. Finally, the chapter shows how VBA can be used 

for developing custom functions not provided by Excel. 

 

3.1.  Activation of Solver 

Like the Goal Seek command, Solver is found in the Data tab as shown in Figure 3.1. 

If it doesn’t appear in your Data tab, then you need to activate it as follows:  

 

1. Go to File and then click Options.  

2. Select Add-Ins. From the Manage option at the bottom of the menu select 

Excel Add-ins and then press “Go”. The Add-Ins dialog box shown in Figure 

3.2 will appear to you. 

3. To add Solver to the add-ins menu, tick (√) on the “Solver” option. Return to 

the data tab. 

 

 
Figure 3.1. The Solver add-in in the Data tab 

 

When you click the Solver button from the Data tab, Solver Parameters dialog box 

shown in Figure 3.3 will appear to you. This dialog box helps you to specify the 

required outcome of a formula in one cell called the objective cell by adjusting the 

values of a group of cells, called decision variables or variable cells, which are directly 

or indirectly related to the formula in the objective cell. As shown on the parameters 

dialog box, you can specify constraints on the values of the decision variables. 

Compared to the Goal Seek command, Solver offers the following advantages: 

 

1. While Goal-Seek can only be used for simple problems that involve one 

decision variable, Solver can deal with more difficult problems in which the 

objective cell is affected by many decision variables.  

javascript:AppendPopup(this,'xldefFormula_2_2')
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Figure 3.2. Activating Solver from the menu of Excel add-ins 

 

 
Figure 3.3. Solver parameters dialog box  
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2. Goal Seek allows only a required value of the objective cell to be achieved, but 

Solver also enables us to perform an optimisation analysis by finding the 

maximum or minimum value for the formula in the objective cell.  

3. With Solver, we can apply constraints on the solution, which is not possible 

with Goal Seek. Constraints are needed for some optimisation analyses and 

iterative solutions. 

4. Solver is that it allows the user to select the appropriate solving method for his 

or her problem from three options. 

 

The version of Solver that comes with Excel 2010 and later editions offers the 

following three search methods: 

 

1. GRG Nonlinear. A Generalized Reduced Gradient method (which is the 

method selected in Figure 3.3). 

2. Evolutionary. An Evolutionary method. 

3. Simplex LP. A linear programming method.  

 

Both the GRG Nonlinear method and the Evolutionary method are used for non-

linear problems, while the Simplex LP method is suitable for linear problems. Solver 

uses the GRG Nonlinear method by default. This section shows how the three solution 

methods can be used to solve different types of problems. 

 

3.2. The GRG Nonlinear method 

The GRG Nonlinear method is a mathematical method that involves the determination 

of the function’s gradient like the Steepest Descent method [2]. Therefore, it is suitable 

for problems involving functions that have continuous and smooth variations. The 

following sections show how the method can be used for the solution of nonlinear 

equations and optimisation analyses. 

 

3.2.1. Solution of nonlinear equations 

To illustrate this option, let us reconsider Equation (2.9) in Example 2.4 which has two 

solutions. We can use the Excel sheet developed previously for the solution with Goal 

Seek. Solver constraints allow us to search for the first or the second solution at a time. 

Let us initially find the second solution, i.e. x ≥ 0. To do so, select Solver from the Data 

tab and fill its parameters dialog-box by entering the following information: 

 

Set Objective:  Type B3, select Value of, and type 1.5 for this 

option since want the value of the function in cell 

B3 to be 1.5.  

By Changing Variable Cells:  Type B2, which is the cell that stores the value of 

the independent variable x 

Subject to the Constraints:  Add two constraints that specify the minimum and 

maximum values of x, e.g. x ≥ 0 and x ≤ 3  

Select a Solving Method:  Select the GRG Nonlinear option 



Computer-Aided Thermofluid Analyses Using Excel                                                67            

 

The upper part of the completed parameters dialog box will be as shown in Figure 3.4. 

Note that the two constraints imposed on the solution correspond to x ≥ 0 and x ≤ 3. 

When you press the Solve button in the dialog box, Solver will iterate to determine the 

value of the only variable cell that yield the targeted objective within the limits 

specified by the constraints. As Figure 3.5 shows, the solution determined by Solver is x 

= 2.22474, y = 1.5, which is the second analytical solution found in Example 2.4. To 

keep this solution, press the “OK” button in the Solver Results dialog box. Now try to 

find the first solution by modifying the two constraints to: 1x  and .0x  

 

 
Figure 3.4. The completed Solver dialog box for Example 2.4 with x ≥ 0 

 

 
Figure 3.5. Solver solution for Example 2.4 with x ≥ 0 

 

3.2.2. Optimisation analyses 

An optimisation problem requires the function in the objective cell to be maximised or 

minimised. For example, the thermodynamic optimisation of a power-generation plant 

requires its thermal efficiency to be maximised, while the economic optimisation of 
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pipe insulation requires its total cost to be minimised. The following example illustrates 

the use of the GRG Nonlinear method in optimisation analyses. 

 

Example 3.1. Finding the minimum value of a smooth function  

Find the minimum value of the following quadratic function f in the specified range. 

 

 f (x) =x2 −2x – 1; −2 ≤ x ≤3     (3.1) 

 

Solution 

Figure 3.6 shows the Excel sheet developed for this example that calculates the values 

of f at different values of x. The line chart in Figure 3.6 shows the variation of f with x 

from which we can see that the minimum value of f is -2 and occurs at x =1. Note the 

curser is placed on cell B6 to reveal the formula fx = B3^2-2*B3−1. We will now use 

Solver to determine the minimum value of the function. Figure 3.7 shows the completed 

Solver’s parameters dialog box. Press the “Solve” button and Solver will iterate to find 

the solution shown in Figure 3.8. As the figure shows, the answer found by Solver, 

which is x = 1, f = -2, agrees with the graphical solution shown in Figure 3.6. 

 

 
Figure 3.6. Excel sheet for determining the local minimum of the quadratic function 

 

 
Figure 3.7. The completed Solver dialog box for Example 3.1 
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Figure 3.8. Solver solution for Example 3.1 

 

3.3. The Simplex LP method  

This Solver option provides an alternative method for solving small systems of linear 

equations to that described in the previous chapter by using Excel’s matrix functions. 

To illustrate this method, reconsider the problem of Example 2.3. Figure 3.9 shows a 

new Excel sheet that has been prepared for the present method.   

 

 
Figure 3.9. Excel sheet for solving Example 2.3 with Solver 

 

The top part of the sheet stores the coefficient matrix [A] and the right-hand vector {y} 

of the system of linear equations to be solved. The procedure starts with a guessed 

solution which is stored in a vector {x0} in cell F9:F13. All the elements of this vector 

are given a value of 1 as shown in Figure 3.9. The coefficient matric [A] is then 

multiplied with the guessed vector {x0} by using Excel’s ”MMULT” function and the 

result stored in cells H9:H13. If this initial guess were correct, the multiplication 

[A]{x0} would be the same as the true right-hand side vector, i.e,: 

 

[A]{x0} = {y}          (3.2) 
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However, Figure 3.9 shows that the vector [A]{x0} is different form the true right-hand 

side vector {y} stored in cells H2:H6. Solver can now be used to adjust the variable 

cells D9:D13 so that all elements of the vector [A]{x0} become equal to their 

counterparts in vector {y}, i.e: 

 

H9 = H2 

H10 = H3 

H11 = H4 

H12 = H5 

H13 = H6 

 

Solver set-up for this task is shown in Figure 3.10. Note that the objective cell is left 

blank. In this case, Solver will iterate to find the values of the decision variables that 

satisfy all the imposed constraints. Also note that the Simplex LP method is selected as 

the solution option. 

 

 
Figure 3.10. Solver set-up for Example 2.3 with the Simplex LP method 

 

The solution found by Solver using the above set-up is shown in Figure 3.11. All the 

elements of the [A]{x0} are now equal to their corresponding elements in the vector 

{y}. The first element of the solution vector, which is -6.6x10-16, is practically zero. 

Therefore, the solution is [0,1,2,3,4], which is the same as that obtained in Example 2.3 

by using the matrix inversion method. You can now try to use the other two solution 

methods of Solver to solve this problem. Solver can also be used for solving systems of 

simultaneous nonlinear equations (refer to Problem 3.7). 
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Figure 3.11. Solution of Example 2.3 with the Simplex LP method 

 

3.4. The Evolutionary method   

When the function to be optimised has more than one optimum point, the GRG 

Nonlinear method can only find the one that is closest to the initial guess; which may 

not be the global minimum. For such functions, Solver provides the Evolutionary 

method that adopts a variety of genetic algorithms and local search methods [3]. The 

following example illustrates the capability of the Evolutionary method to find the 

global minimum of a simple function. 

 

Example 3.2. Finding the global minimum of a function  

Determine the global minimum value for the following function: 

 

  )cos(xxxf     3 ≤  x ≤ 14     (3.3) 

 

Solution 

Figure 3.12 shows the Excel sheet developed for solving this example. The insert shows 

that the function has two minima in the specified range of x; one at x ≈ 5 and another at 

x ≈ 11. At the initially-specified value ox x = 3, the function has a value of 0.42336. Let 

us first try to solve the problem with the GRG Nonlinear method. Figure 3.13 shows the 

completed Solver parameters dialog-box with two constraints that specify the upper and 

lower limits for x. From Figure 3.14 that shows the solution found by Solver by using 

the GRG Nonlinear method it is clear that Solver found the local minimum which is 

nearer to the initial guess and not the global minimum. In order to locate the global 

minimum by the GRG Nonlinear method, the solution has to be started with an initial 

guess that is nearer to the global minimum, e.g., x = 9. The advantage of the 

Evolutionary method is that such an arrangement is not required. With this method we 

may choose to specify bounds on variables (see Section 3.6). Since the set-up shown in 

Figure 3.13 already specifies upper and lower bounds on x, we only need to change the 

solution method to “Evolutionary”. Figure 3.15, which shows the solution obtained by 

this method, shows that the method produced the global minmum.  
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Figure 3.12. The Excel sheet for Example 3.2 

 

 
Figure 3.13. Solver set-up for Example 3.2 with GRG Nonlinear method 

 

 
Figure 3.14. Solver solution for Example 3.2 with the GRG Nonlinear method  
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Figure 3.15. Solver solution for Example 3.2 with the Evolutionary method 

 

While the solution with the GRG Nonlinear method took less than a second that of the 

Evolutionary method took one minute and 35 seconds on the same computer. As shown 

in the following sections, the computer time of the Evolutionary method can be reduced 

by adjusting the default options of the method. The method is particularly useful for 

optimisation analyses that involve non-smooth and discontinuous functions, which are 

difficult to solve with the GRG Nonlinear method. Section 3.6 compares the GRG 

Nonlinear method and the Evolutionary method by considering an optimsation analyses 

that is more relevant to thermofluid systems. 

 

3.5. The default settings of Solver options  

Solver gives it user some control over how its three solution methods work by allowing 

certain options in these methods to be adjusted. The default settings of these options are 

usually satisfactory, but they may have to be changed in order to reduce the 

computation time or increase the precision of the solution for some problems. 

Sometimes, Solver fails altogether to find the solution if the default options are not 

changed. While some adjustable options are common to all three solution methods, 

others are particular to the GRG Nonlinear method or the Evolutionary method. By 

clicking the “Options” button in Solver’s parameters dialog box as shown in Figure 

3.16, the dialog box shown in Figure 3.17 will appear to you. This figure shows the 

default settings of the options that are common to all three solution methods. The 

general options shown in Figure 3.17 are used without change in most of the analyses 

presented in this book. For example, the default value for the maximum number 

iterations, which is 100, is adequate for all the analyses presented in later chapters of 

the book. However, certain analyses required the automatic-scaling option to be used. 

The automatic-scaling option enables Solver to handle a poorly-scaled model, i.e. a 

model in which the values of the objective and constraint functions differ by several 

orders of magnitude, by allowing the values of the objective and constraint functions to 

be scaled internally in order to minimise the differences between them.  
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Figure 3.16. Solver options in the Properties dialog box 

 

   
Figure 3.17. Default Solver options adopted in the analyses for all solution methods  

 

Figures 3.18.a and 3.18.b show the default settings which are particular to the GRG 

Nonlinear method and to the Evolutionary method, respectively. Figure 3.18.a shows 

that the GRG Nonlinear method uses the forward difference (FD) approximation of 

derivatives by default. This option is kept unchanged in all the analyses presented in 

this book. A case is considered in the following section in which the GRG Nonlinear 

method needed the automatic-scaling option in order to reach the solution. 
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(a)       (b) 

Figure 3.18. The default Solver options specific to: (a) the GRG Nonlinear method and 

(b) the Evolutionary method 

 

Figure 3.18.b shows the default settings used by the Evolutionary method. According to 

this set-up, the population size is 100, the maximum allowable time without 

improvement is 50 seconds, and upper and lower bounds on variables are required. As 

shown in the following section, the time required by the Evolutionary method can be 

reduced by adjusting the population size or the maximum allowable time. Because of its 

long computer time, only few cases in this book used the Evolutionary method. 

 

3.6. Optimisation with the GRG Nonlinear and Evolutionary methods 

The GRG Nonlinear method and the Evolutionary method apply two fundamentally 

different methods of optimisation. While the GRG Nonlinear method applies a 

deterministic numerical method, which is the generalised reduced gradient method [4], 

the Evolutionary method applies a group of stochastic search algorithms [5]. This 

section compares the two optimisation methods by considering the case of optimising 

the thickness of insulation around an air-conditioning duct. The following example is 

based on Example 4.1 in Janna [6].  

 

 



76          Mohamed M. El-Awad 

 

Example 3.3. Determining the optimum thickness of insulation around a duct 

Figure 3.19 shows a circular duct of external diameter D1 that transports hot air-

conditioning air. The difference in temperature between the air inside the duct and the 

surroundings causes heat losses to the surroundings. This heat loss can be minimised by 

using insulation of outside diameter D2.  

 
Figure 3.19. Schematic of the insulated duct 

 

It is required to determine the most economical thickness of insulation based on the 

following information: 

 

(a) The cost of pumping the air through the duct (Cp) in $/year is given by: 

 
5

1
6103  DC p         (3.4) 

 

(b) The cost of heating the air (Ch) in $/year is given by: 

 



9
hC          (3.5) 

 

In which δ is the insulation thickness (δ = D2 – D1) in meters.  

  

(c) Due to space limitations, the outside diameter of the insulation D2 cannot exceed 

12 cm.  

 

The analytical model 

The total cost (CT) is given by the summation of the pumping and heating costs: 

 



9103
5
1

6







D
CT  = 

 12
5
1

6 9103

DDD 


 

     (3.6) 

 

By imposing the requirement that the maximum diameter D2 should not exceed 0.12 m, 

the total cost becomes; 

 

   

D
2
 

D
1
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       (3.7) 

 

Differentiating Equation (3.7) with respect to D1 and equating the result to zero, Janna 

[6] obtained the following solution for D1: 

 

   6/12

1

6

1 12.01067.1 DD  
      (3.8) 

 

The solution Equation (3.8) would give the required value of D1, but it is nonlinear. 

Therefore, it requires an iterative solution. By using an iterative method, Janna [6] 

determined the optimum diameter as D1 = 0.045 m. Excel can easily perform the 

iterative solution of Equation (3.8) with Goal Seek. However, Solver provides an 

alternative method for solving the problem by minimising the basic function in 

Equation (3.6) without any differentiation.  

 

Solution with the GRG Nonlinear method 

Figure 3.20 shows the Excel sheet developed for this example. Note that the figure 

reveals the formulae used in the calculations part in which cell labelling has been used. 

The data part includes only the value of D2 (D_2) = 0.12 m. The sheet gives the total 

cost for a guessed inner diameter D1 (D_1) of 0.1 m. At this guessed diameter, the 

insulation thickness δ (t) is 2 cm and the total cost is 450.3$.  

 

 
Figure 3.20. Excel sheet for optimisation of the insulated duct 

 

The diameter that minimises the total cost can be found by using Solver. Figure 3.21 

shows Solver Parameters dialog box for finding the values of D1 (in the adjustable cell) 

that minimises the total cost (in the target cell). Initial trials with the GRG Nonlinear 

method showed that no solution can be obtained by using the default options shown in 

Figures 3.17 and 3.18.a (i.e. without automatic scaling) without imposing a lower limit 

on D1. Therefore, a lower limit of 1 cm was imposed on D1 as shown in Figure 3.21. 

The solution obtained by Solver with this method and setup is shown in Figure 3.22. 

The optimum value thus obtained for the inner diameter, which is D1 = 0.045763 m, 

agrees well with the value obtained by Janna [6]. The GRG Nonlinear method can solve 
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the problem without imposing a lower limit on D1, but by selecting the “Use Automatic 

Scaling” option (see Problem 3.6). 

 

 
Figure 3.21. Solver set-up for the insulated duct optimisation with the GRG Nonlinear 

method 

 

 
Figure 3.22. Optimised solution for Example 3.3 with the GRG Nonlinear method 

 

Solution with the Evolutionary method 

The same sheet that used the GRG Nonlinear method can be used with the Evolutionary 

method. As shown in Figure 3.18.b, imposing upper and lower bounds on the problem 

variables is also optional with the Evolutionary method. However, initial trials with this 

method showed that no solution can be obtained without specifying limits on D1, 

whether automatic-scaling is used or not. Therefore, both upper and lower limits were 

used with this method as shown in Figure 3.23. The upper limit is specified such that D1 

cannot exceed D2. As Figure 3.24 shows, the solution obtained with the Evolutionary 

method is the same as that reached by the GRG Nonlinear method. However, with the 

default number of the population size of 100 the Evolutionary method required more 

than two minutes of computer time. By reducing the population size to 10, the method 
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reached the same solution in less than a second. Chapter 6 gives more examples of 

using the GRG Nonlinear method and the Evolutionary method for optimisation 

analyses of thermofluid systems. 

 

  
Figure 3.23. Solver set-up for the insulated duct optimisation with the Evolutionary 

method 

 

 
Figure 3.24. Optimised solution for Example 3.3 with the Evolutionary method 

 

3.7. VBA and the development of user-defined functions 

VBA is a programming language that can be used for the development of customised 

functions, called user-defined functions (UDFs), or macros. The process of activating 

and using VBA for developing UDFs can be illustrated by means of a simple example. 

Suppose that we want to write a function for determining the area A of a circle given its 

diameter D by using the following equation: 

 

4/2DA           (3.9) 

 



80          Mohamed M. El-Awad 

 

As shown in Figure 3.25, VBA is found on the left side of the Developer tab. This tab 

gives many other development tools. If the Developer tab is not shown in the ribbon of 

your Excel sheet, you can make it available by going to File, selecting Options, and 

then the Customise Ribbon from the Backstage View shown in Figure 3.26. 

 

 
Figure 3.25. Selection of VBA from the Developer tab 

 

 
Figure 3.26. Adding VBA to the Developer tab 
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In the Main Tabs list, select the Developer check box as shown in the figure, and then 

click “OK”. The Developer tab will now be shown in the ribbon of your Excel sheet. 

To start writing the UDF, go to Developer tab menu and select Visual Basic. The 

Visual Basic editor will appear to you as shown in Figure 3.27. Select Insert → 

Module and the blank page shown in Figure 3.28 will be open for you to type the VBA 

code.  

 

 
Figure 3.27. Inserting a new module 

 

 
Figure 3.28. A new VBA module 
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The following VBA code is the required the UDF that determines the circle’s area from 

its diameter according to Equation (3.9): 

  

Function Circ_area(Dia) 

Pi = 3.141593 

Circ_area = Pi * Dia ^2 / 4 

End Function 

 

Note that the first line in the code starts with the word “Function” and then adds a 

name for the function and specifies the required input parameters. The name you give to 

your new function will be used to call it from Excel UI. Therefore, this name should 

clearly indicate the purpose of its use. In the present case, the name given to the 

function is “Circ_area” to indicate that it calculates the area of a circle. The function 

has only one input parameter, which is the circle’s diameter (Dia). As soon as you type 

the first line of the code and press the “Enter” key, the editor will automatically add the 

End line of the function. Now, type the rest of the code as shown in Figure 3.29.  

 

 
Figure 3.29. A UDF for caclcuating the area of a circle with a given diameter 

 

After typing the code correctly, the function can be used via Excel UI just like any 

built-in function as shown in Figure 3.30. Note that the formula bar in Figure 3.30 

reveals the formula in cell B2 as:  

 

= Circ_area(10)  

 

Where the number 10 refers to the diameter of the circle. You can now check the output 

of your user-defined function, which is 314.1593 square units, by calculating the 

circle’s area with a normal Excel formula. Finally, note that VBA does not provide a 

built-in function for the constant Pi (π) and, therefore, you have to assign a value for it 

as shown in Figure 3.29. Alternatively, you can use the one provided by Excel. 
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Figure 3.30. Using the “Circ_area” function in Excel 

 

In thermofluid analyses, VBA is useful for developing UDFs for fluid properties. For 

example, the molar specific-heat at constant pressure ( pc~ ) for an ideal gas is given by 

the following formula [7]: 

 
3

3
2

210
~ TaTaTaac p    [kJ/kmol.K]    (3.10) 

 

Where T is the absolute temperature and a0, a1, a2, and a3 are constants that have 

different values for different gases. For air, the constants are 28.11, 0.1967x10-2, 0.4802 

x10-5, and -1.966 x10-9 in this order. Figure 3.31 shows the VBA code for the UDF 

“cp_air” that determines pc~ for air based on Equation (3.10) and the formula bar in 

Figure 3.32 shows how the function can be used in an Excel formula to determine pc~  

for air at 300K. The value returned by the function is 29.0771 kJ/kmol.K. 

 

 
Figure 3.31. A UDF for caclcuating the molar specific-heat for air 
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Figure 3.32. Using the cp_air function in Excel 

 

3.8. Closure 

This chapter introduced the Solver add-in that enables Excel to perform constrained 

iterative solutions and optimisation analyses involving multiple parameters. The chapter 

briefly described the three solution methods provided by solver, which are the GRG 

Nonlinear method, the Evolutionary method, and the Simplex LP method, and showed 

how these methods can be used for solving nonlinear equations and systems of linear 

equation and performing optimisation analyses. The use of Solver for optimisation 

analyses of thermofluid systems is demonstrated by considering the case of insulating a 

duct that carries hot air for air-conditioning. This analysis showsed that the default set-

up of Solver may have to be adjusted to allow automatic-scalling in order to perform 

the analysis by the GRG Nonlinear method or to reduce the population size in the 

Evolutionary method in order to reduce the computer time. Solver can also deal with 

multi-variable optimisation analyses as shown in later chapters of the book.  

 

The chapter also showed how VBA can be used for developing user-defined functions 

not provided by Excel. In thermofluid analyses, this is needed for the development of 

custom functions for fluid properties. As an example, a custom function was developed 

for determining the specific heat of air from the ideal-gas law. Another situation that 

requires the development of user-defined functions with VBA is faced when the 

analytical model involves complex equations, implicit nonlinear equations, or a 

complicated logical branching. In such cases, Excel formulae which are confined to 

separate cells become too restrictive and inconvenient to use. VBA can then be used to 

develop a suitable user-defined function that performs the complicated calculations and 

passes the outcome to Excel. More information about the VBA language can be found 

in specialised references [8-10]. 
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Exercises 

1. Draw a line chart with Excel to show the variation of the following function in the 

range -5 ≤ x ≤5:  

 

f(x) = x3 −13x −12  

 

Use Solver with proper bounds to determine the roots of this equation. This exercise 

is based on Example 6.2 in Chapra and Canale [11]. 

2. A system of algebraic equations can be expressed in matrix form as follows: 
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Solve the system of equations by using Solver to determine the values of the three 

unknowns a, b, and c. Based on Example 9.11 in Chapra and Canale [11]. The 

answer is: a = 8.5941, b=34.4118, and c = 36.7647. 

3. Draw a line chart with Excel to show the variation of the following function in the 

range 0 ≤ x ≤4: 

 

f(x) = 2 sin x − x2/10 

 

Use Solver to find the maximum of the function in the same range. Based on 

Example 13.1 in Chapra and Canale [11]. The answer is:  f(x) = 1.7757 at x =1.4276. 

 

https://en.wikipedia.org/wiki/Evolutionary_algorithm
https://en.wikipedia.org/wiki/Gradient_method
https://en.wikipedia.org/wiki/Evolutionary_algorithm
http://ies.fsv.cuni.cz/default/file/download/id/21101
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86          Mohamed M. El-Awad 

 

4. The following figure is a plot of the function: 

 

  2sinef   

 

Use Solver to find: 

 

a) The minimum value of the function and the corresponding angle 

b) The maximum value of the function and the corresponding angle 

c) The angle at which value of the function equals 4 

 

 
Figure P1.4. A composite function  

 

5. Using the Excel sheet developed to solve Example 2.4 by the GRG Nonlinear 

method, study the effect of using central-difference approximation of derivatives 

instead of the default forward-difference approximation on the solution.  

6. Using the Excel sheet developed for the solution of Example 3.3 with the GRG 

Nonlinear method, show that the same solution shown in Figure 3.22 can be 

obtained without imposing a lower limit on D1 by using automatic scaling. 

7. Consider the following set of simultaneous nonlinear equations:  

 

x2 + xy = 10           (A) 

 

y +3xy2 = 57          (B) 

 

To solve the system with Solver, rearrange the equations as follows:  

 

u(x, y) = x2 + xy−10 = 0         (C) 

 

v(x, y) = y + 3xy2 −57 = 0        (D) 

 

Create two cells (B1and B2) to hold initial guesses for x and y. Enter the function 

values themselves, u(x, y) and v(x, y) into two other cells (B3 and B4). The initial 
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guesses may result in function values of u and v that are far from zero. Determine 

the sum of the function squares, i.e. u2 + v2, and store it in cell B5. Use Solver to 

find the values of x and y in cells B1 and B2 (the Changing cells) that make the 

value in cell B5 (the objective cell) equal to zero. Using this procedure, find the 

roots of the above system starting with initial guesses of x =1 and y = 3.5. Based on 

Example 6.5 in Chapra and Canale [11]. The correct pair of roots is x=2 and y=3. 

8. The pipe shown in Figure 3.19 has an external diameter D1 = 4.6 cm. The pipe is 

surrounded by an insulation material with outside diameter D2. The cost of pumping 

the fluid through the pipe (Cp) and the cost of heating the fluid (Ch) are given by 

Equations (3.5) and (3.6) in Examples 3.3, respectively. The total cost (CT) includes 

the cost of the insulation itself, which is given by: 

 

500sC   

 

Use Solver with the GRG Nonlinear method to determine the optimum thickness of 

insulation. 

9. Solve Problem 3.8 with the Evolutionary method using lower and upper bounds for 

D2 of 5 cm and 30 cm respectively. 

10. The volume V of liquid in a spherical tank of radius r is related to the depth h of the 

liquid by: 

 

V = πh2(3r −h)/3  

 

Using VBA, develop a user-defined function that determines h at any given values 

of r [m] and V  [m3]. Check your function at r=1 m and V = 0.5 m3. Answer: h = 

0.431 m.Develop user-defined functions with VBA for determining the specific 

enthalpy and entropy of superheated steam from its pressure and temperature. 

11. Using tabulated data for refrigerant R134a, develop user-defined functions with 

VBA for determining properties, e.g., enthalpy and entropy, of saturated 

liquid/vapour R134a from its temperature or pressure.  

12. Using suitable formulae for superheated refrigerant R134a, develop user-defined 

functions with VBA for determining properties, e.g. enthalpy and entropy, of 

superheated R134a from its temperature and pressure.  
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4 

 

The Thermax add-in 
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Equipped with numerous built-in functions, the Goal Seek command and the Solver 

add-in, Excel is a powerful modelling platform for fluid-flow and heat-transfer 

analyses. However, for thermodynamic analyses Excel’s capacity is limited by the lack 

of built-in functions for fluid properties. Another limitation of Excel for thermofluid 

analyses even for fluid-flow and heat-transfer analyses is that Excel’s cell-confined 

formula becomes too restrictive for model development when an iterative solution 

involves a nonlinear equation like the Colebrook equation. This chapter presents the 

Thermax add-in that provides custom functions for the properties of ideal gases, 

saturated water and superheated steam, six commonly used refrigerants, humid air for 

psychrometric analyses, and air at standard atmospheric pressure. In addition to its 

property functions, Thermax provides two interpolation functions for general use and 

an internal Newton-Raphson solver for nonlinear equations that can be used to deal 

with the linear equation in an iterative solution. The chapter describes the procedure for 

installing the add-in and using its functions and numerical tools in Excel’s formulae.  

  

4.1. Thermax property functions 

Thermax provides five groups of property functions for: (i) ideal gases, (ii) water and 

superheated steam, (iii) vapour-compression refrigerants, (iv) humid air for 

psychrometric analyses and (v) air at atmospheric pressure. To easily select the required 

function from the large number of functions provided by the add-in, Thermax adopts a 

style for naming the functions that indicates the group and the input and output 

parameters of each function. This section describes the adopted name-style and shows 

how the functions in the five groups are formulated.  

 

4.1.1. Name style for Thermax property functions 

The name of any property function consists of three distinct parts as follows:  

 

1. The first part indicates the function’s group: “Gas” for ideal gases, “Wat” for 

water, “Ref” for refrigerants, and “Air” for air at atmospheric pressure. 

2. The second part indicates the function’s output property, e.g. “h” for enthalpy 

and “s” for entropy. 

3. The third part indicates the function’s input parameters, .e.g. “P” for pressure 

and “T” for temperature.   

 

For example, consider the two functions shown in Figure 4.1. The top function, 

Wath_Px, determines the enthalpy of saturated water at a pressure of 500 kPa and 

quality of 0.8. The first three letters in the function’s name refer to its group (Wat) 

immediately followed by the function’s output (h). An underscore precedes the 

function’s two input arguments, which are the pressure (P) and quality (x). Similarly, 

the name of the bottom function, Refs_PT, tells that it belongs to the refrigerants group 

and that it determines the entropy (s) of refrigerant R134a from its pressure (P) and 

temperature (T). This function requires three input parameters which are (i) the 

refrigerant name, (ii) the pressure, and (iii) the temperature. Table 4.1 shows more 

examples for the functions with their intended usage. 
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(a) 

 
(b) 

Figure 4.1. Examples of Thermax functions 

 

Table 4.1. Examples of Thermax property functions with their output arguments 

# Thermax function Output 

1 Gash_TK(“Air”,350) Determines the enthalpy (h) for air at 350K 

2 Wats_Px(300,0.5) 
Determines the entropy (s) of saturated water at  

a pressure of 300 kPa and quality of 0.5 

3 Wath_PT(90,150) 
Determines the enthalpy of superheated steam at 

90 kPa and 150oC 

4 RefPsat_T(“R134a”,-5) 
Determines the saturation pressure (Psat) for 

refrigerant R134a at -5oC. 

5 

PsyRh_PTSh(101,30, 

0.001) 

Determines relative humidity (ϕ) of humid air at 

101 kPa, 30oC, and specific humidity (ω) of 

0.001 kg/kg 

6 Airdv_T(25) 
Determines the dynamic viscosity of air at 

standard atmospheric pressure and 25oC. 

 

The following points should be noted regarding the name style adopted by Thermax: 

 

1. The output properties in all the functions are represented by one or two letters, 

e.g. Gash_TK and GasTK_h, except those for the saturation pressure and 

saturation temperature in the WAT and Ref groups and the air density in the 

Air-group, which are named WatPsat_T, WatTsat_P, RefPsat_T, RefTsat_P, 

and Airrho_T.  

2. The Gas-group and the Ref-group require the name of the gas or the refrigerant 

fluid as the first input parameter as shown in Figure 4.1.b.  

3. The unit for pressure in both the Wat-group and the Ref-group is kPa. 

4. To indicate that absolute temperature is used in the Gas-group, the temperature 

is represented by “TK”. However, “T” represents temperature in oC in the other 

three other groups.  



92          Mohamed M. El-Awad 

 

4.1.2. Functions for ideal gases  

Properties of ideal gases at a given temperature are obtained by suitable integration of 

Equation (3.10) for the molar specific heat at constant pressure ( pc~ ). Accordingly, the 

molar enthalpy ( h
~

), molar internal energy ( u~ ), and temperature-dependent molar 

entropy change (
0~s ) of an ideal gas are calculated from [1]: 
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Where, 0

~
h , 0

~u , and
0

0
~s are pre-specified values at a reference temperature (T0) and Ru is 

the universal gas constant. For h
~

and u~ , the reference temperature is taken as 300K and 

the corresponding values of 
0

~
h  and 0

~u  are those given by Cengel and Boles [1]. 

However, for 
0~s  the reference temperature is taken as 298K and the corresponding 

value of 
0

0
~s  is the absolute entropy. Rather than the molar properties given above, 

Thermax functions return the ideal-gase properties per kg, i.e. h, u and s0, i.e.: 

 

Mhh /
~

          (4.4) 

 
Muu /~          (4.5) 

 
Mss /~ 00           (4.6) 

 

Where M is the molar mass of the gas. The relative pressure (Pr) and relative specific 

volume (vr) are then obtained from [1]: 

 

Pr = exp(s°/R)         (4.7) 
 

rr PTv /          (4.8) 
 
Note that Pr is a dimensionless quantity but vr is not. Based on the above equations, this 

group provides 12 functions that give properties of the 12 ideal gases listed in Table 

4.2. Table 4.3 lists the 12 functions and shows the input and output of each function and 

their relevant units. 
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Table 4.2. The ideal gases supported by Thermax 

# Gas Thermax name 

1 Nitrogen N2  

2 Oxygen O2 

3 Air Air  

4 Hydrogen H2  

5 Carbon monoxide CO  

6 Carbon dioxide CO2  

7 Water vapour H2O 

8 Nitric oxide NO  

9 Nitrogen dioxide NO2  

10 Sulphur S2  

11 Sulphur dioxide SO2  

12 Sulphur trioxide SO3  

 

Table 4.3. Functions for thermodynamic properties of gases 

# Function Input/Unit Output/Unit 

1 GasM Gas name M  [-] 

2 Gascp_TK Gas name, T[K] cp [kJ/kg.K] 

3 Gash_TK Gas name, T[K] h [kJ/kg] 

4 Gasu_TK Gas name, T[K] u [kJ/kg] 

5 Gass0_TK Gas name, T[K] s0 [kJ/kg.K] 

6 GasPr_TK Gas name, T[K] Pr [-] 

7 Gasvr_TK Gas name, T[K] vr [K] 

8 GasTK_h Gas name, h[kJ/kg] T [K] 

9 GasTK_u Gas name, u[kJ/kg] T [K] 

10 GasTK_s0 Gas name, s0[kJ/kg.K] T [K] 

11 GasTK_Pr Gas name, Pr [-] T [K] 

12 GasTK_vr Gas name, vr [K] T [K] 

 

The first five functions shown in Table 4.3 determine the molar mass (M), specific heat 

(cp), enthalpy (h), internal energy (u), and the part of entropy change due to temperature 

change (s0). The following two functions determine the relative pressure (Pr) and 

relative volume (vr). The last five functions in Table 4.3 are inversion functions that 

determine the temperature of the ideal gas by iteration from its enthalpy (h), internal 

energy (u), temperature-dependent entropy change (s0), relative pressure (Pr) or relative 

specific volume (vr). Note that the temperature is represented by the letters “TK” in the 

names of all the functions in this group. With the exception of the first function, GasM, 

all the functions require the absolute temperature as inputs. An auxiliary custom 

function named “Gas_data” stores the values of the four coefficients a0, a1, a2, and a3 in 

Equation (3.10) for the twelve ideal gases. Values of the coefficients for the different 

gases were obtained from Cengel and Boles [1].  
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4.1.3. Functions for saturated water and superheated steam  

This group includes 23 functions that return the properties of saturated water-steam 

mixtures and superheated steam. These functions are divided into two subgroups: (a) 

functions that determine the properties of saturated water and (b) functions that 

determine the properties of superheated steam given the pressure and another property. 

Properties of compressed liquid water are approximated by their corresponding values 

of saturated liquid water at the given temperature. 

 

a) Properties of saturated water/steam mixtures 

Table 4.4 shows the input and output parameters of 8 property functions that determine 

the properties of saturated water/steam mixtures at a given temperature, in oC, with their 

relevant units. The first function “WatPsat_T” returns the saturation pressure at a given 

temperature. The letters “f” and “g” before the underscore in the following 7 functions, 

e.g., “Wathf_T” and “Wathg_T”, refer to the saturated liquid state and saturated vapour 

states, respectively. The corresponding custom functions that provide properties of 

saturated water-steam mixture at a given pressure, in kPa, as listed in Table 4.5 with 

their relevant input and output parameters. 

 

Table 4.4. Property functions for saturated water/steam at a given temperature in oC 

# Function Output/Unit 

1 WatPsat_T ps [kPa] 

2 Wathf_T hf [kJ/kg] 

3 Wathg_T hg [kJ/kg] 

4 Wathfg_T hfg [kJ/kg] 

5 Watvf_T vf [m3/kg] 

6 Watvg_T vg [m3/kg] 

7 Watsf_T sf [kJ/kg.K] 

8 Watsg_T sg [kJ/kg.K] 

 
Table 4.5. Property functions for saturated water/steam at a given pressure in kPa 

# Function Output/Unit 

1 WatTsat_P Ts [oC] 
2 Wathf_P hf [kJ/kg] 

3 Wathg_P hg [kJ/kg] 

4 Wathfg_P hfg [kJ/kg] 

5 Watvf_P vf [m3/kg] 

6 Watvg_P vg [m3/kg] 

7 Watsf_P sf [kJ/kg.K] 

8 Watsg_P sg [kJ/kg.K] 

 

b) Properties of superheated steam and compressed liquid water 

For superheated steam, the water group provides 7 functions that return the properties at 

a given pressure and another property as shown in Table 4.6. The formulae used in these 
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functions are the same as those used for superheated refrigerants which will be 

described in the following section. These functions also determine properties of 

compressed liquid water by calling those of saturated liquid water at the given 

temperature shown in Table 4.4. 

 
Table 4.6. Properties of superheated steam given the pressure in kPa and another 

property 

# Function Input/Unit Output/Unit 

1 Watv_PT P, T[oC] v [m3/kg] 

2 Wath_PT P, T[oC] h [kJ/kg] 

3 Wats_PT P, T[oC] s [kJ/kg.K] 

4 WatT_Ph P, h[kJ/kg] T [0C] 

5 WatT_Ps P, s[kJ/kg.K] T [0C] 

6 Wath_Ps P, s[kJ/kg.K] h [kJ/kg] 

7 Wats_Ph P, h[kJ/kg] s [kJ/kg.K] 

 

4.1.4. Functions for refrigerants  

This group of Thermax functions deal with the properties of three synthetic refrigerants, 

R22, R134a, and R410A (R32/R125 - 50/50), and three natural refrigerants, R717 

(ammonia), R718 (water), and R744 (carbon-dioxide). The group includes 25 functions 

that can be divided into two subgroups: (a) functions that determine the properties of 

saturated refrigerants and (b) functions that determine the properties of superheated 

refrigerants from the given pressure and another property.  

 

a) Properties of saturated liquid/vapour refrigerants 

Table 4.7 lists nine functions that determine the thermo-physical properties of saturated 

refrigerants at a given pressure while Table 4.8 lists nine functions that determine the 

same properties at a given temperature. These functions do not use mathematical 

formulae, but interpolate the tabulated data provided by ASHRAE [2] for the six 

refrigerants by a linear interpolation function. The functions return warning messages if 

the given temperature, pressure, or quality is beyond the expected range.  

 

Table 4.7. Properties of saturated refrigerants at a given pressure in kPa and quality 

# Function Input Output Unit 

 1 RefTsat_P Refrigerant name, P, x Saturation temperature, Tsat  [0C] 

 2 Refv_Px Refrigerant name, P, x Specific volume, v [m3/kg] 

 3 Refh_Px Refrigerant name, P, x Specific enthalpy, h  [kJ/kg] 

 4 Refs_Px Refrigerant name, P, x Specific entropy, s  [kJ/kg.K] 

 5 Refcp_Px Refrigerant name, P, x Specific heat, cp  [kJ/kg.K] 

 6 Refvs_Px Refrigerant name, P, x Velocity of sound [m/s] 

 7 Refdv_Px Refrigerant name, P, x Dynamic viscosity [µPa·s] 

 8 Refk_Px Refrigerant name, P, x Thermal conductivity [mW/(m·K)] 

 9 Refst_P Refrigerant nam, P Surface tension [mN/m] 
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Table 4.8. Properties of saturated refrigerants at a given temperature in oC and quality 

# Function Input Output Unit 

 1 RefPsat_T Refrigerant name, T, x Saturation temperature, Tsat  [0C] 

 2 Refv_Tx Refrigerant name, T, x Specific volume, v [m3/kg] 

 3 Refh_Tx Refrigerant name, T, x Specific enthalpy, h  [kJ/kg] 

 4 Refs_Tx Refrigerant name, T, x Specific entropy, s  [kJ/kg.K] 

 5 Refcp_Tx Refrigerant name, T, x Specific heat, cp  [kJ/kg.K] 

 6 Refvs_Tx Refrigerant name, T, x Velocity of sound [m/s] 

 7 Refdv_Tx Refrigerant name, T, x Dynamic viscosity [µPa·s] 

 8 Refk_Tx Refrigerant name, T, x Thermal conductivity [mW/(m·K)] 

 9 Refst_T Refrigerant name, T Surface tension [mN/m] 

 

b) Properties of superheated refrigerants 

Thermax functions that determine the thermodynamic properties of superheated 

refrigerant use the following mathematical formulae.  

 

Specific volume 

The molar specific volume ( v~ ) of a superheated refrigerant is obtained from the Soave-

Redlich-Kwong equation of state [1]: 

 

P = 
)~(~~ bvv

a

bv

TRu







        (4.9) 

 

where, Ru is the universal gas constant, P is the absolute pressure, and T is the absolute 

temperature. The constants a, b and , which depend on the refrigerant’s pressure and 

temperature at the critical point, are given by: 

 

a = 0.4278 Ru
2 Tc

 2 / Pc                    (4.10) 

 

b = 0.0867 Ru  Tc / Pc                     (4.11) 

 

  211 rTS           (4.12) 

 

where, Tc and Pc are the temperature and pressure at the critical point, Tr =T/Tc is the 

reduced temperature, and S is a function of the acentric factor () for the given 

refrigerant:  

 

S = 0.48508 + 1.55171   0.15613 2              (4.13) 

 

The acentric factor itself can be calculated from [3]: 
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  1log 10  sat
rp ,  at Tr = 0.7       (4.14) 

 

Where sat
rP =Psat/Pc is the reduced saturation pressure. Values of Tc, Pc, and  for the 

six refrigerants supported by Thermax are shown in Table 4.9. 

 

Table 4.9. Values of Tc, Pc,  and M for six refrigerants 

 

Equation (4.9) is a non-linear equation in v~  that requires a numerical solution. In the 

present add-in the equation is solved by using the Newton-Raphson method. The 

specific volume (v), in m3/kg, can be obtained from: 

 

Mvv /~          (4.15) 

 

Where M is the molar mass of the refrigerant and its values for the six refrigerants are 

shown in Table 4.9. The accuracy of the above relation in determining the specific 

volume was demonstrated by El-Awad [4]. 

 

Enthalpy at a given pressure and temperature or entropy 

Enthalpy (h) of a superheated refrigerant at a given pressure and temperature is 

determined from the following relationship [4, 5]: 

 

 sgg TTCphh  *
         (4.16) 

 

Where hg and Ts are the enthalpy and temperature of the saturated vapour refrigerant at 

the given pressure while *
gCp  is the value of its specific heat evaluated at a skewed 

pressure (P*) given by: 

 

PzP *           (4.17) 

 

Where z is an adjusting factor the value of which can be taken as 0.5 [4,5]. Values of hg, 

Ts, and *
gCp  are obtained from ASHRAE data for saturated refrigerants. 

 

Entropy 

# Refrigerant Formula M Tc [K] Pc [MPa]   

1 R134a CF3CH2F 102.03 374.2 4.059 0.3268 

2 R22 CHClF2 86.48 369.0 4.98 0.221 

3 R410A CH2F2,/CHF2CF3 72.585 344.51 4.903 0.296 

4 R717 NH3 17.03 405.5 11.33 0.256 

5 R718 H2O 18.0 647.1 22.06 0.3443 

6 R744 CO2 44.0 304.1 7.38 0.239 
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Entropy (s) of a superheated refrigerant at a given pressure and temperature is 

determined from the following relationship: 

 

 273

*






av

sg

g
T

TTCp
ss          (4.18) 

Where sg is the entropy of saturated vapour refrigerant at the given pressure, 
*
gCp  ,is the 

value of the specific heat evaluated at the reduced pressure (P*), and Tav is an average 

temperature calculated as follows: 

 

  2/sav TTT           (4.19) 

 

Temperature at a given pressure and enthalpy or entropy 

Thermax group of functions for refrigerants properties also determine the temperature 

of a superheated refrigerant given its pressure and enthalpy or pressure and entropy. In 

the first case, Equation (4.16) is rearranged as follows: 

 

  */ ggs CphhTT          (4.20) 

 

Where Ts and hg are values of the saturation temperature and enthalpy of saturated 

refrigerant vapour at the given pressure, but 
*
gCp  is the value of the specific heat of 

saturated refrigerant vapour determined at the reduced pressure P*. Similarly, when the 

pressure and entropy of the superheated refrigerant are known and its temperature is to 

be determined, the following equation is used: 

  273273
*





g

g

Cp

ss

g eTT        (4.21) 

 

Where Tg and sg are the temperature and entropy of saturated vapour refrigerant at the 

given pressure, while 
*
gCp  is the value of the specific heat of saturated refrigerant 

vapour determined at the reduced pressure P*. Table 4.10 lists seven functions that 

apply the above formulae to deal with superheated vapours of refrigerants.  

 

 Table 4.10. Properties of superheated refrigerants given the pressure in kPa 

# Function Input/unit Output/Unit 

1 Refv_PT Refrigerant name, P, T [oC] v [m3/kg] 

2 Refh_PT Refrigerant name, P, T [oC] h [kJ/kg] 

3 Refs_PT Refrigerant name, P, T [oC] s [kJ/kg.K] 

4 RefT_Ph Refrigerant name, P, h [kJ/kg] T [oC] 

5 RefT_Ps Refrigerant name, P, s [kJ/kg.K] T [oC] 

6 Refh_Ps Refrigerant name, P, s [kJ/kg.K] h [kJ/kg] 

7 Refs_Ph Refrigerant name, P, h [kJ/kg] s [kJ/kg.K] 
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The first six functions in Table 4.10 use Equations (4.15) to (4.21) to determine 

property values. The last function is an inversion function that uses an iterative tool. All 

the functions apply for pressures and temperatures not higher than the critical values of 

the given refrigerant. 

 

4.1.5. Functions for psychrometic analyses (Psy) 

Functions of this group are based on the property relations commonly used in 

psychrometric analyses [1]. Accordingly, the enthalpy (h) of an atmospheric mixture of 

dry air and water-vapour is calculated from: 

 

vpa hTch          (4.22) 

 

Where, cpa is the specific heat at constant pressure for dry air (cpa =1.005 kJ/kg.K), T is 

the temperature in oC, ω is the absolute humidity, and hv is the enthalpy of water vapour 

at the air temperature and partial-pressure of the water-vapour (Pv). The absolute 

humidity (ω) in Equation (4.22) is determined from: 

 

v

v

PP

P




622.0
          (4.23) 

Where, P is the total pressure of the air-water-vapour mixture and Pv is the partial 

pressure of water-vapour in the air. The partial pressure of water vapour itself is 

determined from: 

 

satv PP
100


          (4.24) 

 

Where ϕ is the relative humidity and Psat is the saturation pressure of water at the given 

dry-bulb temperature. The enthalpy of saturated liquid water (hv) in Equation (4.22) is 

approximated by the enthalpy of saturated water-vapour at the given temperature (hg) 

and calculated as follows:  

 

Thh gv 82.109.2500         (4.25) 

 

Property functions of this group also use the following relationship between the relative 

and specific humidities: 

 

  gP

P









622.0
         (4.26) 

 

Table 4.11 lists 14 functions that are included in psychrometry group together with their 

input and output arguments. The letters in the function names have the following 
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meanings: h (specific enthalpy), Db (dry bulp), Dp (dew point), P (pressure), Rh 

(releative humidity), Sh (specific humidity), v (specfic volume), Wb (wet bulp).   

 

Table 4.11. Function for psychrometry analyses given the pressure in kPa and two other 

properties 

 

 

This group also needs functions that determine certain properties of saturated liquid 

water, viz. Psat, Tsat and hl. The group has its own functions that determine these 

properties for temperatures in the range 0 – 100oC as met in common air-conditioning 

practice. The saturation pressure (Psat) and saturation temperature (Tsat) are obtained 

from the following Antoine equations [6]:  

 

TC

B
A

satP 


 101333.0        (4.27)  
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

1333.0
log/       (4.28)  

 

Where, T  is in oC, P in kPa and the three constants A, B, and C, respectively, have 

values of 8.07131, 1730.63, 233.426 for 1<  T  < 100oC and 8.14019, 1810.94, 244.485 

for 99 < T < 374oC. Enthalpy of saturated liquid water at a given temperature is 

obtained from the following equation which was obtained by curve-fitting the data 

using Excel’s trendline feature:  

 

ThL 184.4146.0          (4.29) 

 

The functions in this group that use Equations (4.27), (2.18) and (4.29) make the group 

independent from the water group. Case 5 in Table 4.1 shows how the function 

# Function Input/unit Output/unit 

 1 Psyv_PDbRh P,  Tdb [oC], ϕ [%] v [m3/kg] 

 2 PsyRh_PDbSh P, Tdb [oC], ω[kg/kg] ϕ [%] 

 3 PsyRh_PDbWb P, Tdb [oC], Twb [oC] ϕ [%] 

 4 PsySh_PDbRh P, T [oC], ϕ [%] ω [kg/kg] 

 5 PsySh_PDbWb P, Tdb [oC], Twb [oC] ω [kg/kg] 

 6 Psyh_PDbSh P, T [oC], ω[kg/kg] h [kJ/kg] 

 7 Psyh_PDbRh P, T [oC], ϕ [%] h [kJ/kg] 

 8 PsyDp_PDbRh P, Tdb [oC], ϕ [%] Tdp [oC] 

 9 PsyDp_PDbWb P, Tdb [oC], Twb [oC] Tdp [oC] 

 10 PsyDb_PRhSh P, ϕ [%], ω[kg/kg] Tdb [oC] 

 11 PsyDb_PhSh P, h [kJ/kg], ω[kg/kg] Tdb [oC] 

 12 PsyWb_PDbRh P, Tdb [oC], ϕ [%] Twb [oC] 

 13 PsyWb_PDbSh P, Tdb [oC], ω[kg/kg] Twb [oC] 

 14 PsyWb_PRhSh P, ϕ [%], ω[kg/kg] Twb [oC] 
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PsyRh_PTSh can be used to determine the relative humidity for air given its pressure, 

temperature, and specific humidity.  

 

4.1.6. Functions for air at standard atmospheric pressure (Air) 

This group of functions provides the thermo-pysical properties of air at standard 

atmospheric pressure as required by fluid-flow and heat-transfer analyses. Based on the 

tabulated data given by Cengel and Ghajar [7], the functions use the linear interpolation 

function to determine the air desnity (ρ), specific heat (cp), thermal conductivity (k), 

thermal diffusivity (α), dynamic viscosity (μ), kinematic viscosity (ν) and Prandtl 

number (Pr) at temperatures in the range -150oC to 2000oC. Table 2.17 shows the 

names of the seven functions in this group with their corresponding output properties. 

Unlike the functions in the Gas-group, the temperature in this group is given in oC. Also 

note that this group provides its own function for determining the specific-heat at 

constant pressure (cp) for air.  

 

Table 2.17. Properties of air at 1 atm pressure given the temperature in oC 

# Function Output Output unit 

1 Airrho_T Density (ρ)
  

kg/m3 

2 Aircp_T Specific heat (cp) J/Kg.oC 

3 Airk_T Thermal conductivity (k) W/m.oC 

4 Airdf_T Thermal diffusivity (α) m2/s 

5 Airdv_T Dynamic viscosity (μ) kg/m·s 

6 Airkv_T Kinematic viscosity (ν) m2/s 

7 AirPr_T Prandtl number (Pr) - 

 

4.2.  Installation and use of Thermax property functions 

Excel comes with a number of add-ins that have been developed for general use, 

including the Solver add-in. Active add-ins are automatically loaded when Excel starts 

up. Before Thermax can be recognised by Excel you have to save it in your computer 

and then install it. To do that, open the Thermax.xla file and then save it in your 

computer as an “Excel Add-in”. Recent Excel versions locate all add-ins in a certain 

folder in the computer that depends on the version of Excel you are using and 

automatically directs you to the appropriate location. Save the add-in and restart Excel 

in order to activate it. Open a new Excel sheet and then do the following: 

 

1. Go to File and then click Options.  

2. Select Add-Ins. From the Manage ribbon at the bottom of the menu select 

Excel Add-ins and then press Go.  

3. The pull-down menu shown in Figure 4.2 will appear to you. To add Thermax 

to the add-ins menu, tick (√) the corresponding box.  

 

If for any reason you saved the add-in in a location that is different from the default 

folder, then click on Browse and search for it in the destination folder and select it.  
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Having installed the add-in, its functions can be used in Excel's formulae just like its 

built-in functions. Thermax functions are named in a way that helps you to easily 

identify the required function via Excel’s user-interface without having to memorise all 

the names of the functions and required input. The following sections illustrate two 

methods for using the add-in functions in Excel formulae. 

 

 
Figure 4.2. Adding Thermax to the menu of Excel add-ins 

 

4.2.1. Accessing Thermax functions via the Function Wizard 

To illustrate this method, let us start a formula by entering the equal sign (=) in any cell 

(say cell B2). If you now press the fx button in the formula ribbon, the Function 

Wizard shown in Figure 4.3 will come up. The Function Wizard firstly lists the various 

categories of built-in functions provided by Excel, e.g. financial, mathematical, 

statistical, etc. Scroll down the list of function categories and select the User-defined 

functions. Then, all the functions provided by Thermax will be listed alphabetically as 

shown in Figure 4.4. The first function in the list, Air_Data, is the auxiliary function 

that stores the data for the seven thermophysical properties of air at standard 

atmospheric pressure. This function is called by other functions in the Air-group to 

obtain the values of these properties at the required temperature. To start using the add-

in functions, select the function number 4 in the list, which is the function Airk_T that 

determines the thermal conductivity (k) of air at a given temperature. Upon pressing the 

OK button, the Function Arguments box shown in Figure 4.5 will appear to you.  
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Figure 4.3. Finding the add-in user-defined functions in the Function Wizard 

 

 
Figure 4.4. Thermax functions listed alphabetically in the User Defined category 
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Figure 4.5. The Function Arguments box for the “Airk_T” function 

 

Figure 4.5 shows that this function has one input parameter, which is the temperature in 
oC “TempC”, and gives a brief description of its intended use. Let us use the function to 

determine the thermal conductivity for air at 25oC. Fill the form by entering thr value of 

the temperature, 25, as shown in Figure 4.6. Note that the formula ribbon now shows 

the formula in cell B2, which is “=Airk_T(25)”. The form also shows the calculated 

value of k, which is 0.02551 W/m.oC. When you press the “OK” button, this value will 

appear in the cell B2. Check this value with the tabulated data and try other functions.  

 

 
Figure 4.6. Using the function “Airk_T” to determine the thermal conductivity of 

atmospheric air at 25oC 

 

4.2.2. Direct use of Thermax functions in Excel formulae 

It is not necessary to follow the lengthy procedure described above by using the 

Function Wizard in order to use the add-in property functions. Instead, one can simply 

type in the formula that contains the property function in the required Excel cell. For 

illustration, suppose that we want to determine the ideal-gas temperature of carbon-

dioxide (CO2) at which the value of its enthalpy (h) equals 750 kJ/kg. Obviously, in this 

case, we need to use the function in the “Gas” group that determines the temperature for 
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a given enthalpy value. Therefore, we start an Excel formula by typing the equal sign 

“=” in any cell. As shown in Figure 4.7, as soon as we type the prefix "Gas" after the 

equal sign, the user-interface will display all Thermax functions in the ideal-gases 

group for us to select from.  

 

 
Figure 4.7. Excel UI showing all the functions in the Gas-group 

 

Since the property we want to find is the temperature, which the Gas-group functions 

require in absolute degree, we continue the name of the function by adding the letters 

“TK” immediately after the three-letter prefix "Gas" followed by an underscore. As 

shown in Figure 4.8, the user-interface then lists only the five functions in Table 4.3 

that determine the gas temperature given h, Pr, s0, u, or vr.  

 

 
Figure 4.8. UI showing only the five functions that determine the temperature of an 

ideal gas from known values of h, pr, s0, u, or vr 

 

Since we want to find the temperature from a known value of enthalpy, we have to 

select the “GasTK_h” function. This function requires as input the name of the gas, 

which is “CO2”, and the value of enthalpy, which is 750 kJ/kg, as shown in Figure 4.9. 

Pressing the “Enter” key after entering the required data, the function will calculate the 

corresponding temperature. As shown in Figure 4.10, the answer is 817.5544K. 
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Figure 4.9. The required input for the GasTK_h function 

 

 
Figure 4.10. The temperature determined by the GasTK_h function 

 

The following example shows how property functions in the Gas-group can be used for 

applying the exact, variable specific-heat method in thermodynamic analyses. 

 

Example 4.1. Thermodynamic analysis with the exact method 

Figure 4.11 shows a well-insulated piston–cylinder device that initially contains 0.1 m3 

of air at 100 kPa, 330K. Fifty kJ of heat is transferred to the air causing the air to 

expand at constant pressure. Treating air as an ideal gas, determine the final 

temperature inside the cylinder using: (a) the approximate constant-specific heat 

method, with cp= 1.005 kJ/kg.K, and (b) the exact variable specific-heat method with 

Thermax functions. Also, determine the error of the approximate method in determining 

the final temperature. 

 
Figure 4.11. Schematic for Example 4.1 

 

Heat  

Air 

T1 = 330K 

P1 = 100 kPa 

V1 = 0.1 m3 

50 kJ 
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Solution 

Using the approximate constant specific heat method, the final temperature is 

determined from: 

 

pcm

Q
TT


 12

         (4.30) 

 

Where m is the mass of air in the piston-cylinder device, cp is the the specific heat at 

constant pressure, and Q is the amount of heat added. The mass of air is calculated from 

the ideal-gas law: 

 

1

11

TR

VP
m


           (4.31) 

 

Where R is the gas constant for air, R = 0.287 kJ/kg.K. Substituting for P1, V1, R and T1 

in Equation (4.31), leads to m = 0.105585 kg and substituting for m in Equation (4.30) 

gives T2 = 801.194K. 

 

To apply the exact method by using the add-in functions in the Gas group, we first 

determine the final enthalpy, h2, by applying the first law of thermodynamics to the 

closed system: 

 

mQhh /12            (4.32) 

 

Once h2 is found, the final temperature, T2, can be determined by using the function 

GasTK_h in the Gas group.  

 

Figure 4.12 shows the Excel sheet developed for this example. The given data are 

inserted at the left-hand side of the sheet together with the gas constant (R_) and 

specific heat (cp) for air. The calculations part is divided into two parts that determine 

the final temperature according to the approximate method and the exact method using 

the corresponding equations given above.  

 

 
Figure 4.12. Excel sheet developed for Example 4.1 
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Figure 4.12 also reveals the formulae typed in these calculations. As the figure shows, 

the answer found by the approximate method for T2 is 801.2K, while the exact method 

determines the final temperature as 781.6K. Thus, the approximate constant specific-

heat method results in an error of 2.5%. 

 

4.3.  Numerical functions provided by Thermax 

In addition to its five groups of property functions, Thermax provides two interpolation 

functions for tabulated data and a Newton-Raphson solver for nonlinear equations such 

as the Soave-Redlich-Kwong equation of state (Equation 1.39). This section shows how 

to use these additional functions by means of simple relevant examples. 

 

4.3.1.  The interpolation functions 

The two interpolation functions, called Interpol1and Interpol2, perform linear and 

quadratic interpolation of tabulated data. These functions, which are listed in Appendix 

E, enable tabulated fluid properties to be used in parametric studies, iterative solutions, 

or optimisation analyses. For example, Figure 4.13 shows an Excel sheet in which three 

properties of engine oil; density (ρ), specific heat (cp), and kinematic viscosity (ν) are 

given at various temperatures. The interpolation functions can be used to calculate these 

properties at any temperature within the range of tabulated data. Suppose that we want 

to determine the viscosity at 90oC by using these functions.  

 

 
Figure 4.13. Using the interpolation functions for tabulated data 

 

Both Interpol1 and Interpol2 require four input arguments referred to as: X, XX, YY, 

and Ndata. Their meanings are as follows: 
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- X passes the value of the independent property (i.e. temperature) at which the 

value of the dependent property (i.e. viscosity) is to be determined.  

- XX and YY are vectors that store the tabulated data (in this case, the 

temperature, B5:B13, and viscosity values, E5:E13,).  

- Ndata passes the number of entries in the tabulated data. For the tabulated data 

shown in Figure 4.13, Ndata = 9.  

 

The formula bar in Figure 4.13 reveals the formula in which the linear interpolation 

function Interpol1 is used to determine the viscosity at 90oC. Both the linear and 

quadratic interpolation functions return the warning message “Given data is out of 

range” if the temperature lies outside the tabulated range. The following example 

shows how the interpolation functions can be used in a thermofluid analysis. 

 

Example 4.2. Effect of oil temperature on the drag force over a flat plate 

Engine oil at 20°C flows over the upper surface of a 5-m-long flat plate as shown in 

Figure 4.14. If the oil velocity is 2 m/s, determine the total drag force (FD) per unit 

width of the entire plate. Also, plot the variation of FD with oil temperatures in the 

range 40 - 150oC. 

 
Figure 4.14. Schematic for Example 4.2 (adapted from Cengel and Ghajar [7]) 

 

The analytical model 

The drag force (FD) over a flat plate is due to friction, which is given by [7]: 

 

2/2VACF fD          (4.34) 

 

Where Cf is the friction coefficient (not to be confused with the friction factor f), A is 

the surface area of the plate, and ρ and V are the density and velocity of oil, 

respectively. The value of the friction coefficient depends on whether is flow is laminar 

or turbulent as indicated by the Reynolds number (ReL). For the flow over a flat plate, 

the critical Reynolds number above which the flow becomes turbulent is about 5x105. 

For laminar flows, the friction coefficient is given by: 

 

Oil FD 

T∞ = 40 – 150oC 

V = 2 m/s 

Ts = 20oC A 

L = 5 m 
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5.0Re328.1  LfC  
5105Re L       (4.35) 

 

For turbulent flows, it is given by: 

 

2.0Re074.0  LfC  
75 10Re105  L      (4.36) 

 

Note that fluid properties are evaluated at the average temperature (Ts+T∞)/2. For 

example, if the oil temperature is 60oC, the oil viscosity and density are evaluated at 

40oC.  

 

The Excel sheet 

Figure 4.15 shows the Excel sheet developed for this example. The data part shows the 

given information concerning the oil temperature (T_oil), plate temperature (T_plate), 

oil velocity (Velocity), and plate length (Length). Based on the specified oil 

temperature, the sheet calculates the average temperature (T_average) and the 

corresponding oil density (ρ_oil) and kinematic viscosity (ν_oil). The sheet then 

calculates the Reynolds number (Re) and friction coefficient (Cf). The single final 

result, which is the drag force (F_D), is shown on the right-side of the sheet. The sheet 

reveals the formulae entered in each cell in the calculations part and the formula bar 

reveals that used for determining the drag force in cell I2.  

 

 
Figure 4.15. The Excel sheet developed for Example 4.2 

 

The friction coefficient is calculated depending on the value of the Reynolds number by 

using the following nested-If formula in cell F7: 

 

Cf=IF(Re<500000,1.328*Re^-0.5,0.074*Re^-0.2) 

 

The above formula determines whether to use Equation (4.35) or Equation (4.36) to 

calculate the friction coefficient depending on whether the flow is laminar or turbulent. 

Figure 4.15 shows the calculations at an oil temperature of 40oC, which is the initial oil 

temperature in the required range. At the average temperature, which is 30oC, the sheet 

uses the linear interpolation function Iinterpol1 to determine the values of the oil 
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density and viscosity. At this temperature the calculated drag force, F_D, is 88.445 N. 

By inserting a different value for the oil temperature, say 50oC, the sheet automatically 

updates its calculations. Figure 4.16 shows a plot of the drag force determined at 

different oil temperatures in the range 40oC to 150oC. The figure shows that the drag 

force drops exponentially with temperature, approaching a value of about 20 N.  

 

 
Figure 4.16. Variation of the drag force with oil temperature 

 

The usefulness of the linear and quadratic interpolation functions in thermofluid 

analyses goes beyond that of determining fluid properties since these functions are also 

useful for interpolation of other types of tabulated data that is required by such 

analyses. Table 4.12 shows the cost per meter of galvanised-steel air-conditioning ducts 

for different diameters of the duct. In this case, the interpolation functions permit 

automatic determination of the duct diameter from the tabulated data, which is useful 

for optimisation analyses that involve the duct diameter.  

 

Table 4.12. Cost of galvanised-steel air-conditioning ducts 

Duct diameter 

(m) 

Cost per linear 

meter ($) 

0.10 9.0 

0.15 11.5 

0.20 14.5 

0.25 17.0 

0.30 22.5 

0.35 29.0 

0.40 34.0 

0.45 40.0 

0.50 50.0 
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4.3.2. The Newton-Raphson solver 

Excel’s cell formulae become too restrictive and inconvenient to use when the 

analytical model involves an implicit equation such as the following Colebrook 

equation that determines the Darcy friction factor (f) in a turbulent pipe flow: 

 
















f

D

f Re
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log0.2

1
10


    (1.35) 

 

Where D is the pipe’s diameter, ε is the roughness of the pipe material, and Re is the 

Reynolds number. Since the equation involves  f on both sides, it needs to be solved 

iteratively. Determining f from Equation (1.35) will be inconvenient particularly when 

dealing with type-2 or type-3 pipe-flow problems, which themselves require iterative 

solutions, since we have to deal with two nested iterations; an inner iteration to 

determine f and an outer iteration to determine the pipe’s diameter or the flow rate.  

 

Another nonlinear equation that is even more difficult to fit in an Excel formula is the 

following Benedict-Webb-Rubin (BWR) equation of state [1]: 
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Where Ru is the universal gas constant, P is the absolute pressure, T is the absolute 

temperature, and v~  is the molar specific volume. The BWR equation, which is one of 

the most accurate equations of state, is implicit in v~ and, therefore, cannot be used 

directly in an Excel formula to determine the molar specific volume.  

 

Thermax provides a third VBA function for solving nonlinear equations such as the 

Colebrook equation and the BWR equation. The function, called NRM, requires four 

input arguments: fun$, x0, Var1, and Var2. The first argument, fun$, passes the name 

of the user-defined function developed separately for the particular nonlinear equation 

to be solved; e.g. the SRK equation or the BWR equation. The second argument, x0, is 

an initial guess for the dependent variable in the equation; i.e. f in Equation (1.35) and 

v~ in Equation (4.37). The third and fourth arguments, Var1 and Var2, are values of two 

independent variables in the nonlinear equation; i.e. ε/D and Re in Equation (1.35) and 

P and T in Equation (4.37). To illustrate the use of the NRM function, let us use it to 

compare the specific volumes of carbon dioxide (CO2) as determined by the ideal-gas 

law and the BWR equation of state at different temperatures. The following VBA 

function is that for the BWR equation of state taking the different constants in the 

equation as those of carbon dioxide (CO2): 

 

Function BWR(x, P, T) 

    Dim Ru, a, A0, b, B0, c, C0, alfa, gama 
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  'Carbon dioxide, CO2 

Ru = 8314 

  a = 13.86 

A0 = 277.3 

b = 0.00721 

B0 = 0.04991 

c = 1511000.0 

C0 = 14040000.0 

   alfa = 0.0000847 

   gama = 0.00539 

   BWR = P - Ru * T / x + (B0 * Ru * T - A0 - C0 / T ^ 2) / (x ^ 2) + (b * Ru * T 

- a) / x ^ 3 + a * alfa / x ^ 6 + c / (x ^ 3 * T ^ 2) * (1 + gama / x ^ 2) * Exp(-

gama / x ^ 2) 

End Function  

 

Figure 4.17 shows an Excel sheet that determines the specific volume of carbon dioxide 

at 0.2 MPa and temperatures in the range 273 – 373K by using the ideal gas law and by 

using the BWR equation of state and Table 4.13 reveals the formulae used in the sheet.  

 

 
Figure 4.17. Excel sheet for determining the specific volume by the ideal-gas law 

compared to the BWR equation of state 

 

The formula bar in Figure 4.17 reveals the following Excel formula in cell F3 that uses 

the NRM solver to calculate v~ at 273K: 

 

 D4=NRM("BWR",E3,P,D3) 
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Note that the first argument passed to the NRM function is the name of the UDF written 

for the nonlinear equation, which in this case is the BWR function. Also, note that the 

value determined by the ideal-gas law in cell E3 is used as an initial guess for the BWR 

equation. Figure 4.18 shows how the error of the ideal-gas law in estimating the 

specific volume increases at the low temperatures.  

 

Table 4.13. The formulae used in the Excel sheet using the NRM solver 

T v_ideal v_BWR error_v_ideal 

273 =Ru*D3/P =NRM("BWR",E3,P,D3) =ABS(F3-E3)/F3*100 

283 =Ru*D4/P =NRM("BWR",E4,P,D4) =ABS(F4-E4)/F4*100 

293 =Ru*D5/P =NRM("BWR",E5,P,D5) =ABS(F5-E5)/F5*100 

303 =Ru*D6/P =NRM("BWR",E6,P,D6) =ABS(F6-E6)/F6*100 

313 =Ru*D7/P =NRM("BWR",E7,P,D7) =ABS(F7-E7)/F7*100 

323 =Ru*D8/P =NRM("BWR",E8,P,D8) =ABS(F8-E8)/F8*100 

333 =Ru*D9/P =NRM("BWR",E9,P,D9) =ABS(F9-E9)/F9*100 

343 =Ru*D10/P =NRM("BWR",E10,P,D10) =ABS(F10-E10)/F10*100 

353 =Ru*D11/P =NRM("BWR",E11,P,D11) =ABS(F11-E11)/F11*100 

363 =Ru*D12/P =NRM("BWR",E12,P,D12) =ABS(F12-E12)/F12*100 

373 =Ru*D13/P =NRM("BWR",E13,P,D13) =ABS(F13-E13)/F13*100 
 

 
Figure 4.18. Errors in the specific volume estimations by the ideal-gas law compared to 

the BWR equation of state 

 

4.4.  Closure 

The chapter introduced the Thermax add-in that provides property functions for 12 

ideal gases, saturated water and superheated steam, the six refrigerants R134a, R22, 

R410A, R717, R718, and R744, humid air for psychrometric analyses, and air at 
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atmospheric pressure. Thermax property functions are named in a way that makes it 

easy to find the appropriate function via Excel’s user-interface without having to 

memorise the names of all the functions. Thermax also provides two custom functions 

for data interpolation and a solver for nonlinear equations based on the Newton-

Raphson method. While the interpolation functions are useful for including additional 

fluid properties or other tabulated data in a thermofluid analysis, the Newton-Raphson 

solver removes the restriction of Excel’s formula when an optimisation analysis or an 

iterative solution involves a nonlinear equation. 
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Exercises 

1. Complete the following table by specifying the usage of the given Thermax 

function according to its name: 

 

# Function Output property Input property/properties 

1 Watvf_T   

2 Gascp_TK   

3 WatTs_P   

4 GasTK_s0   

5 WatT_Ph   

6 PsyDb_PRhSh   

 

https://en.wikipedia.org/wiki/Acentric_factor
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2. Name the appropriate Thermax function to determine the following tasks: 

# Task Thermax function 

1 The enthalpy of saturated liquid water at 25oC  

2 The internal energy of oxygen at 300K  

3 The entropy of saturated steam at 10 kPa  

4 The absolute temperature at which the relative pressure of 

air is equal to 15 

 

5 The saturation pressure for water at 150oC  

6 To determine the dry-bulb temperature of humid air at P = 

101 kPa, ϕ = 50%, ω = 0.01 

 

 

3. Using Thermax functions, determine the following fluid properties: Also, determine 

the same properties by using the appropriate property tables and compare their 

values with those determined previously by using Thermax functions. 

 

# Fluid Property Given properties 

1 Water Enthalpy (h) 100 kPa, x = 0.5 

2 Air Relative volume (vr) 700K 

3 Steam Entropy (s) 100oC, x = 1.0 

4 Nitrogen Temperature (T) 350K 

5 Liquid water Enthalpy (h) 10 kPa 

6 Carbon dioxide Specific heat (cp) 450K 

7 Water Specific volume (v) P=200 kPa, x = 0.7 

8 Hydrogen Temperature (T) Enthalpy h = 2000 kJ/kg 

 

4. Appendix A shows properties of air at atmospheric pressure and different 

temperatures. Enter the data into Excel and use the interpolation functions 

Interpol1 or Interpol2 to determine these properties at 360K and 500K.  

5. An equation of state that is simpler than the BWR equation, yet more accurate than 

the ideal-gas law, is the following Soave-Redlich-Kwong (SRK) equation of state: 

 

)~(~~ bvv

a

bv

TR
P u







        (1.39) 

 

Where the constants a, b and  are fluid-dependent. Following the method 

described in Section 4.5.2, develop a user-defined function that can be used with 

the Newton-Raphson Solver to calculate the specific volume for refrigerant R-12 

from the SRK equation of state at a pressure of 200 kPa and temperatures in the 

range 0 - 50oC. On a suitable chart, compare values of the specific volume thus 

obtained by those calculated by the ideal-gas equation of state.  
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6. Develop a user-defined function with VBA to determine the friction factor from 

the Colebrook equation, Equation (1.35), and use it with the NRM solver to 

determine the frictional losses (hf) in a circular pipe in the following case: 

  

D = 25 cm, L = 150 m, V = 7 m/s, ks = 0.045 mm, carrying air at 20oC.  

 

7. Using the data for properties of air at atmospheric pressure, develop a user-defined 

function that can be used for determining the kinematic viscosity of air at any 

given temperature in the range 200 – 1000K.  

 

(a) By using the trendline feature of Excel 

(b) By using the linear-interpolation function (Interpl) listed in Appendix E.  
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Iterative solutions  
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Thermofluid analyses frequently require iterative solutions that can be time-consuming 

and inaccurate if only hand calculation and property tables are used. This chapter shows 

how such analyses can be solved by using the iterative tools provided by Excel; the 

Goal Seek command and the Solver add-in. Chapters 2 and 3 illustrated the use of these 

tools for the solution of simple nonlinear equations.  The advantage of Solver over Goal 

Seek is that it enables iterative solutions involving multiple variables and allows 

constraints to be applied to the solution. When the problem involves a nonlinear 

equation, such as the Colebrook equation, the problem becomes difficult to solve with 

only Excel’s iterative tools. For such problems, the chapter shows how the Newton-

Raphson solver provided by Thermax can be used to deal with the nonlinear equation 

while Goal Seek or Solver performs the main iteration.  

 

5.1.  Simple iterative solutions by using Goal Seek 

Despite of its simplicity, the Goal Seek command can be used to solve the majority of 

thermofluid problem that require iterative solutions. This section presents three 

examples that demonstrate the use of Goal Seek for iterative solutions of fluid-

dynamics, thermodynamics, and heat-transfer problems. 

 
5.1.1. Type-2 and type-3 pipe-flow analyses 

Frictional head loss (hf) in a pipe depends on a number of factors that characterise the 

pipe itself as well as the velocity and viscosity of the fluid being transported. For a 

straight pipe with no fittings carrying a viscous Newtonian and incompressible fluid, 

the Darcy-Weisbach equation states: 

 

g

V

D

L
fh f

2

2

           (1.21) 

 

where f is the Darcy friction factor, L the length of the pipe, D its diameter, V the fluid 

velocity, and g the gravitational acceleration constant. The friction factor can be 

obtained from Equation (1.22) if the flow is laminar and from Equation (1.24) or (1.25) 

if it is turbulent. 

 

Practical pipe-flow problems can be divided into three types [1]:  

 

1. Type-1 problem - requires the determination of hf when both the pipe’s 

diameter and fluid velocity (or flow rate) are known.  

2. Type-2 problem - requires the flow rate for a specified hf and pipe diameter to 

be determined.  

3. Type 3 problem - requires the pipe diameter to be determined for a given hf and 

flow rate.  

 

Type-1 problems can be solved in a straight-forward manner by using Equation (1.21) 

to determine the friction head loss. However, both type-2 and type-3 problems require 



Computer-Aided Thermofluid Analyses Using Excel                                                121            

 

iterative solutions because the Reynolds number and, therefore, the friction factor 

cannot be determined in advance. In the case of type-2 problems (i.e. unknown 

velocity), the iterative procedure can be avoided by using extended Moody diagrams 

that require the determination of the following dimensionless parameter [2]: 

 
5.0

5.1
5.0

2
Re 















L

ghD
f

f


.        (5.1) 

 

Apart from the inaccuracy of visual chart interpolation, the procedure is difficult to 

adopt in optimisation or parametric analyses. By using the Goal Seek command, both 

type-2 and type-3 problems can be solved more easily and accurately. The following 

example, which is based on Example 8.4 in Cengel and Cimbala [1], demonstrates this 

method by solving a type-3 problem.  

 

Example 5.1. Solution of type-3 pipe flow problems 

Heated air at 1 atm and 35°C is to be transported in a 150-m-long circular plastic duct 

(ε=0.000045 m) as shown in Figure 5.1 at a rate,V , of 0.35 m3/s. If the head loss in the 

duct is not to exceed 20 m, determine the smallest required diameter for the duct. 

 

 
Figure 5.1. Schematic for Example 5.1 (adapted from Cengel and Cimbala [1]) 

 

Solution: 

The problem can be solved by calculating the friction head loss at different diameters of 

the duct and then selecting the diameter that gives the required head loss of 20 m. The 

iterative solution proceeds as follows: 

 

1. Select a diameter for the inner pipe (D). 

2. Calculate the flow areas of the pipe and velocity of the hot air, AVV / .  

3. Calculate the Reynolds number in the pipe, /Re VD . 

4. Calculate the friction factor (f) from Equation (1.22), (1.24), or (1.25). 

5. Calculate the friction head loss (hf) from Equation (1.21). 

6. If hf ≠20 m, repeat steps 1 to 5.  

 

Figure 5.2 shows the Excel sheet developed for this example which is divided into three 

parts: (i) problem data (ii) calculations, and (iii) results. The data part shows the 

0.35 m3/s 

air 

150 m 

D 
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information given in the question. The value of the kinematic viscosity of air at 35°C (ν 

= 1.655x10-5 m2/s) was obtained from Cengel and Cimbala [1] and fixed throughout the 

calculations. Cell-labelling is applied in the formulae and Figure 5.2 reveals the 

formulae used in each cell of the calculations part. 

 

 
Figure 5.2. Excel sheet and Goal Seek set-up for Example 5.1 

 

As Figure 5.2 shows, for an assumed duct diameter of 0.1 m the friction head loss 

exceeds 2761 m. Figure 5.2 also shows the completed Goal Seek dialog box that 

requires Goal Seek to change the diameter in cell F2 and iterate until the friction head 

loss in cell J2 attains the required value of 20 m. Figure 5.3 shows the answer found by 

Goal Seek, which is D ≥ 0.27 m. This answer agrees with that given by Cengel and 

Cimbala [1]. A similar procedure can be used to solve type-2 flow problems by iterating 

over the flow rate instead of the diameter. 

 

 
Figure 5.3. Goal Seek solution for Example 5.1 

 

5.1.2.  Thermodynamic analyses involving ideal-gas mixtures 

Thermodynamic analyses apply many simplifications and idealisations without which 

most of these analyses, if not all, would require iterative solutions. For example, a 
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common simplificationan in these analyses is the use of constant specific heats for 

gases. Example 4.1 showed how the property function provided by Thermax enable the 

exact method of analysis with variable specific heats to be used instead of the 

approximate method. Another commonly used approximation in thermodynamic 

analyses is to treat air as a pure gas even though it is mainly a mixture of nitrogen and 

oxygen gases. Computer-aided analyses with property functions enable a more realistic 

approximation to be used by treating air as a mixture of gases instead of a single gas. 

However, this method involves an iterative solution when the temperature of the gas 

mixture is not known but has to be determined. The following example shows how the 

method can be applied by using the Goal Seek command.  

 

Example 5.2. Constant-pressure expansion of a heated oxygen-nitrogen mixture 

Figure 5.4 shows a piston–cylinder device that initially contains a mixture of oxygen 

and nitrogen with 21% oxygen and 79% nitrogen by volume. Initially at 100 kPa, 330K, 

the mixture occupies 0.1 m3. Fifty kJ of heat is then transferred to the mixture causing it 

to expand at constant pressure. Treating oxygen and nitrogen as ideal gases, determine 

the final temperature of the mixture inside the cylinder. 

 

 
Figure 5.4. Schematic diagram for Example 5.2  

 

Solution 

This problem is basically the same as that given in Example 4.1, but the air is now 

treated as a mixture of O2 and N2 and not as a single pure gas. The solution procedure 

also applies the first-law of thermodynamics, but the law is now applied as follows: 

 

      (5.2) 

 

Where Q is the amount of heat added, mO2 and mN2 are the masses of oxygen and 

nitrogen in the device, h1_O2 and h2_O2 are enthalpies of oxygen at the initial and final 

temperatures, respectively, and h1_N2 and h2_N2 are the corresponding enthalpies for 

nitrogen. The enthalpies of O2 and N2 in Equation (5.2) can be determined by using the 

O2 21%, N2 79%  

T1 = 330K 

P1 = 100 kPa 

V1 = 0.1 m3 

Heat 50 kJ 

   2_12_222_12_22 NNNOOO hhmhhmQ 
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relevant Thermax function, Gash_TK, and the masses mO2 and mN2 can be obtained 

from the ideal-gas law using the corresponding partial pressures as follows: 
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O          (5.3) 
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N          (5.4) 

 

Where RO2 and RN2 are the gas constants for oxygen and nitrogen, which are 0.2598 

kJ/kg.K and 0.2968 kJ/kg.K, respectively. The correct value of the final temperature is 

that at which the amount of heat added (Q) is the same as the given value, which is 50 

kJ. This can be determined by using Goal Seek.  

 

Figure 5.5 shows the Excel sheet developed for this example. The data part includes the 

initial pressure, temperature, and volume of the gas mixture together with the mole 

fractions and gas constants of oxygen and nitrogen. The initial partial pressures of 

oxygen and nitrogen, P1_O2 and P1_N2, are calculated from the total initial pressure 

(P_1) and the respective volume fractions, y_O2 and y_N2, as shown in cells E2 and 

E3, respectively. The sheet then determines the masses of the two gases in the mixture 

(m_O2 and m_N2) in cells E5 and E6, respectively, and the total mass (m_total) in cell 

E8. Note that the value of the total mass, 0.1052 kg, is slightly different from that 

obtained in Example 4.1, which is 0.106 kg.  

 

 
Figure 5.5. The Excel sheet developed for Example 5.2 by using Thermax functions 

 

The calculations start with a guessed value for the final temperature, T_2g, which is 

500K. Equation (5.2) is then used to determine the total amount heat added in the 

process (Q_g). The initial and final enthalpies of oxygen and nitrogen are determined 

by using the function Gash_TK at the corresponding temperatures. Note that the sheet 

determines the total amout of heat as 18.4 kJ, which is less than the actual values of 50 

kJ. To find the appropriate final temperature, the guessed temperature T_2g has to be 

adjusted by Goal Seek so that the value of Q_2g equals 50 kJ. Figure 5.5 shows the 

required Goal Seek set-up and Figure 5.6 shows the solution obtained by Goal Seek, 

which  is 780.444 K. The value determined in Example 4.1 for T2 by using the exact 
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method was 781.6K, while the value determined by using the approximate method was 

801.2K. Although these results confirm the the accuracy of treating air as a single pure 

gas and using the exact method of analysis, the deviation from the present model and 

that of Exampe 4.1 is expected to increase as the amout of heating increases.  

 

 
Figure 5.6. Goal Seek solution for Exampe 6.2 by using Thermax functions 

 

5.1.3. Convection heat-transfer analyses 

Many types of heat-transfer problems require iterative solutions, particularly those of 

convection heat-transfer. Although dimensional-analysis techniques are used in some 

cases to prepare specific charts that enable the iterative solutions to be avoided, visual 

interpolations of the charts can be inaccurate. The following example shows how 

Excel’s Goal Seek command provides an alternative solution method for such analyses 

that is easier and more accurate. The example is based on Example 10.1 in Holman [3].  

 

Example 5.3. Overall heat-transfer coefficient for pipe in air 

Hot water at 98oC flows through a 2-in schedule 40 horizontal steel pipe (k =54 

W/m·◦C) and is exposed to atmospheric air at 20oC as shown in Figure 5.7. The water 

velocity is 25 cm/s. Calculate:  

 

(a) the rate of heat-transfer through the pipe,   

(b) the temperatures at the inside and outside surfaces of the pipe, and  

(c) the overall heat-transfer coefficient based on the outer area of the pipe.  

 

Properties of water at 98oC are: ρ = 960 kg/m3, μ = 2.82 x 10-4 kg/m.s, k = 0.68 W/m.oC, 

Pr = 1.76. For a 2-in schedule 40 pipe, Di = 5.25 cm and Do = 6.033 cm. 

 

The analytical model 

The rate of heat-transfer through the pipe is given by: 

 

  thw RTTQ /          (5.5)
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Figure 5.7. Schematic for Example 5.3 

 

Where Tw and T∞ are the water temperature and air-temperature, respectively, and Rth is 

the total thermal resistance to heat-transfer that consists of the thermal resistances due 

to heat-transfer by convection inside the pipe (Ri), by conduction through the steel pipe 

(Rp), and by convection from outside the pipe (Ro). The three resistances are given by: 
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Where Ai and Ao are the inside and outside areas of the pipe and hi and ho are the 

corresponding heat-transfer coefficiens. The internal heat-transfer coefficien hi is 

determined from the corresponding Nusselt number (Nu): 
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Where, kw is the thermal conductivity of water. The Nusselt number is determined from 

emprirical equations depending on the type of the flow, i.e. natural or forced, laminar or 

turbulent. For the turbulent forced internal flow (to be confirmed later), Nu is obtained 

from the Dittus-Boelter equation, Equation (1.31), with n = 0.4 following Holman [3]:  

 

4.08.0 PrRe023.0Nu         (5.10)

  

Where, Re and Pr are the Reynolds number and Prandtl number, respectively.  

 

For the external flow, Holman [3] used the following simplified equation for free 

laminar convection from a horizontal pipe to air at atmospheric pressure: 

 

Water 

98oC 

V = 25 cm/s 

hi 

Air, 20
o
C, ho 
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Both Ri and Rp can be determined directly from the given data, but Ro depends on ho 

which cannot be determined directly because To is not known. Therefore, the problem 

has to be solved by adopting an iterative approach. A value for To is assumed based on 

which ho is determined and, consequently, Q. The value of Q thus obtained can be used 

to calculate corresponding values for Ti and To from: 

 

iwi RQTT .             (5.12) 

 

pio RQTT .            (5.13) 

 

If the guessed value for To is correct, it will be the same as that obtained from Equation 

(5.13). Otherwise, a new guess for To has to be made repeatedly until this condition is 

met. Once this is achieved, the overall heat-transfer coefficient (Uo) based on the 

outside area (Ao) can be obtained from: 
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         (5.14) 

 

Solution with Excel 

The Excel sheet developed for this example is shown in Figure 5.8. The given 

information about the pipe, water, and air properties are entered in the data part on the 

left side of the sheet. The cells are labelled and the figure shows the formulae used in 

the calculations. The calculations part at the central part of the sheet starts with a 

guessesd value for the pipe’s outside temperature (T_og) of 50oC. Based on this value, 

the sheet determines the outside heat-transfer coefficient (h_o) from Equation (5.11) 

and the thermal resistance associated with it (R_o) from Equation (5.8). Following the 

analytical model described above, the sheet determines the three thermal resistances 

(R_i, R_p, and R_o), and then calculates the rate of heat-transfer (Q), inside 

temperature (T_i), outside temperature (T_o), and overall-heat transfer coefficient (U).  

 

As Figure 5.8 shows, the value of T_o calculated from Equation (5.13) is 97.876oC, 

which is different from the initially guessed value (T_og = 50oC). The formula bar 

reveals the formula entered in cell H12 that calculates the difference between the 

calculated exit temperature (T_o) and the guessd value (T_og) as a fraction of T_og. 

The exit temperature that makes the difference vanishes can be found by using the Goal 

Seek command and Figure 5.8 shows the required set-up. The solution found by Goal 

Seek is shown in Figure 5.9. Table 5.1 that comapres the presents results with those 

given by Holman [3] confirms the accuracy of the iterative solution with Goal Seek. 
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Figure 5.8. Excel sheet developed for Example 5.3 

 

 
Figure 5.9. Solution obtained by Goal Seek for Example 5.3 

 

Table 5.1. Comparison of the presnt solution with that given by Holman [3] 

 Present solution Holman [3] 

iT  97.64 97.65 

oT  97.59 97.6 

ih  1960.56 1961.0 

oh  7.90 7.91 

oU  7.86 7.87 

 

5.2. Constrained iterative solutions with Solver 

The previous sections demonstrated the adequacy of Excel’s Goal Seek command for 

obtaining iterative solutions of different types of thermofluid problems. However, 

Solver offers greater flexibility than Goal Seek by allowing multiple changeable cells 

and by allowing constraints to be specified in the iterative process. This section 

illustrates the need for these additional features in thermofluid analyses by means of 

two examples from the areas of fluid dynamics and thermodynamics. The first example, 

which is basically a type-2 pipe flow problem, is based on a similar example given by 
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Schumack [4]. The second example demonstrates the usefulness of Solver for a 

constrained iterative solution of Example 5.4 given by Cengel and Boles [5]. 

 

Example 5.4.  Determining the maximum water flow rate to avoid cavitation  

Water at 20oC (γ = 9810 N/m3 and ν =1.006x10-6 m2/s) is to be pumped from a large 

reservoir via a pump-pipe system as shown in Figure 5.10. The pump is positioned 

vertically at a level which is 9 m above the surface of the reservoir and horizontally at 1 

m from the vertical section of the pipe. The pipe is made of commercial steel pipe (ε = 

0.046 mm) and has a 2″ nominal diameter. 

 
Figure 5.10.  Schematic for the pump-pipe system in Example 5.4 

 

Determine the maximum allowable water flow rate (Q) that satisfies the following 

restrictions: 

 

1. To avoid cavitation, the pressure at the pump inlet must be greater than the 

saturation pressure of water at 20oC, which is 2.338 kPa.  

2. For economic considerations, the water velocity (V) is to be in the range 1.4-2.8 m.  

 

The analytical model 

The energy equation between the pipe inlet (point 1) and the pump inlet (point 2) is: 
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Where γ stands for the specific weight of water, z for the elevation, V for the water 

velocity, g for the gravitational acceleration, and hf for the friction loss in the pipe. For 

 
9 m 

1 m 

Q 

1 

2 

2″ commercial steel pipe 
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suction from a large reservoir V1 = 0. Taking point 1 as a reference, i.e. z1 = 0, and 

noting that the water velocity in the pipe is uniform, i.e. V2 = V, the energy equation 

becomes:  
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The velocity V is related to the pipe diameter (D) and water flow rate (Q) as follows: 

 
2/4 DQV            (5.17) 

 

Neglecting minor losses, the friction loss can be calculated from the Darcy-Weisbach 

equation which needs an auxiliary formula to determine the friction factor (f) as 

described in Chapter 1 for both laminar and turbulent flows.  

 

Solution with Excel 

Figure 5.11 shows the Excel sheet developed for this example. The data part on the left 

side stores the problem data such as the diameter, roughness, and length of the pipe, etc. 

The central part stores a guessed value for the water velocity (V=1.0 m/s) in cell E2. 

Based on the guessed water velocity, this part also performs the necessary calculations 

according to the analytical model given above. Figure 5.11 reveals the formulae used in 

these calculations. Note that an IF statement is used to calculate the friction factor (f) 

depending on the value of the Reynolds number (Re). Cell E6 calculates the friction 

loss (hf). Based on the calculated value of friction loss, the pressure at point 2 (P_2) is 

calculated from Equation (5.16) and stored in cell E7.  

 

 
Figure 5.11.  Excel sheet developed for Example 5.4 

 

The right side of the sheet contains the single cell I2 that determines the flow rate (Q). 

The formula in this cell is shown in the formula bar. Based on the assumed water 

velocity of 1.0 m/s, the calculated values of hf and P_2 are 0.2295 m and 8.958 kPa, 

respectively. Since the pressure at point 2 is higher than the minimum design level of 

2.338 kPa, while the water velocity (V) is less than the minimum economic value of 1.4 
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m, there is room to increase the flow rate. The task can be left to Solver and Figure 5.12 

shows the required set-up.  

 

 
Figure 5.12.  Solver parameters dialog box for Example 5.4 

 

The above set-up requires Solver to maximise the value of the flow rate Q while 

satisfying the three constraints shown in the figure. The first constraint on the iterative 

solution requires the value of P_2 in cell E7 to be higher than or equal to the specified 

value of 2.338 kPa, which is the minimum pressure level required to prevent cavitation. 

The two other constraints are to satisfy the limits on the water velocity imposed by 

economic limits, i.e. 1.4 m ≤ V ≤ 2.8 m. Pressing the “Solve” button will trigger Solver 

to search for the solution. The solution found by Solver using the GRG Nonlinear 

method is shown in Figure 5.13.  

 

 
Figure 5.13. Solver solution for Example 5.4 

 

The value determined by Solver for the water velocity is 1.90 m/s. Note that this 

velocity lies within the limits imposed by the economic constraint. The corresponding 

flow rate, which is 0.00413 m3/s, is the maximum flow rate to be recommended. 
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Example 5.5. Restrained expansion of air inside a piston-cylinder device 

Figure 5.14 shows a piston–cylinder device that initially contains 0.05 m3 of air at 200 

kPa, 317K. At this state, a linear spring is touching the piston but exerting no force on 

it. Now, 72.7 kJ of heat is transferred to the air, causing the piston to rise and compress 

the spring that has a constant of 150 kN/m.  

  

 
Figure 5.14. Schematic and pressure-volume diagrams for Example 5.5 (adopted from 

Cengel and Boles [5]) 

 

If the cross-sectional area of the piston is 0.25 m2, determine the final volume, pressure, 

and temperature of the air inside the cylinder. Air can be treated as an ideal gas with a 

specific heat at constant volume (cv) that varies linearly with the temperature according 

to the formula:  

 

cv = 0.645+0.0002T          (5.18) 

 

Where T is the temperature in K and cv is in kJ/kg.K.  

 

Solution 

Unlike the present example, Cengel and Boles [5] specified the final volume to be 0.1 

m3 instead of the amount of heat added. When the final volume (or final pressure) is 

given, the problem can be solved in a straightforward manner without iteration by using 

the ideal-gas law. However, in the present example T2, V2, and P2 at the final state all 

depend on the amount of heat added. The specific value of 72.7 kJ given in this 

example has been chosen so that the final volume will be 0.1 m3 as specified by Cengel 

and Boles [5]. Therefore, the final pressure on the piston and the total work should be 

the same as those obtained by Cengel and Boles [5] even though the formulations of the 

two examples are different. 

 

The analytical model 

Like Example 5.2, this problem can be solved by using the first-law of thermodynamics 

together with the ideal-gas law. However, the addition of the linear spring in this 

example introduces a new factor, which is the variation of pressure with air expansion. 

T1 = 317 k 

P1 = 200 kPa 

V1 = 0.05 m3 

Heat 72.7 kJ 
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As in Example 5.2, the variation of the specific heat with temperature makes it 

necessary to adopt an iterative solution approach. Since the iterative process here 

involves not only the temperature but also the volume (or pressure), the Goal Seek 

command is inadequate. Therefore, this example requires Solver since it allows the 

iterative procedure to start by assumed values for both the final temperature (
*

2T ) and 

the final volume (
*

2V ). The final pressure 2P  is given by: 

 

A

xk
PP


 12           (5.19) 

 

Where A is the base area of the piston and Δx is the reduction in the spring’s length 

given by: 
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The total work (W), i.e. the summation of the air expansion work and the work done 

against the spring, can now be obtained from: 
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The final temperature can be determined by applying the first-law of thermodynamics 

to the piston-cylinder device as a closed system: 

 

   1212 TTmcuumWQ v         (5.22) 

 

Where Q is the amount of heat added, u is the internal energy, m is the mass of air 

inside the cylinder, and vc  is the average specific heat of air at constant volume. The 

mass and specific heat of air can be obtained from: 

 

111 / RTVPm            (5.23) 

 

  2/0002.06.0 *
21 TTcv          (5.24) 

 

Rearranging Equation (5.22), the final temperature 2T  is given by: 
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Using the values obtained for T2 and P2, the final volume V2 can be determined from the 

ideal-gas law: 

 

222 / PmRTV            (5.26) 

 

If the initially guessed volumes of 
*

2T and 
*

2V  are correct, then they will be the same as 

T2 and V2 obtained from Equation (5.23) and Equation (5.25), respectively. Otherwise, 

new values for 
*

2T and 
*

2V  have to be used until the difference between the calculated 

and guessed values becomes negligibly small.  

 

Solution with Excel 

Figure 5.15 shows the Excel sheet developed for this example. The left side of the sheet 

accommodates the problem data. The calculations part start by an assumed values for 

the final temperature (T_2g = 500K) and final volume V_2g = 0.15 m3. Based on the 

assumed final volume, the sheet determines the compression of the spring (Δx), spring 

force (Fspring), final pressure (P_2), and total work involved (Work). The final 

temperature (T_2) is then calculated from the first-law according to Equation (5.24), 

and the final volume (V_2) from the ideal-gas law, Equation (5.26). As Figure, 5.15 

shows, the calculated values T_2 and V_2 are different from the initial values T_2g and 

V_2g. Solver can now be used to adjust the guessed value of T_2g and V_2g until they 

become the same as the calculated values.  

 

 
Figure 5.15. Excel sheet developed for Example 5.5 

 

Figure 5.16 shows the set-up that requires Solver to change the values of T_2g and 

V_2g in cells F2 and F3, respectively, until two constraints are satisfied: (i) T_2 = T_2g 

and (ii) V_2=V_2g. Note that the “Set Objective” option has been left blank. The 

“Changing Variable Cells” are F2 and F3. Figure 5.17 shows the solution obtained by 

the GRG Nonlinear method of Solver, which is T_2g = 1014.864K and V_2g = 0.1 m3. 

At this state, the final pressure on the piston is 320.0 kPa and the total work is 13.0 kJ. 
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These values agree with their corresponding values given by Cengel and Boles [5] 

whose analysis also gave P2 = 320 kPa and W = 13 kJ. 

 

 
Figure 5.16. Solver set-up for Example 5.5 

 

 
Figure 5.17. Solver solution for Example 5.5 

 

5.3.  Iterative solutions involving nonlinear equations 

Several nonlinear equations are met in thermofluid analyses because of the 

characteristics of a process or properties of the fluid involved. For example, to 

determine the head loss due to friction (hf) in Example 5.1 the friction factor (f) for the 

turbulent pipe flow was obtained from Equation (1.25) - which is an explicit equation. 

As mentioned in Chapter 1,  f can be determined more accurately for a turbulent pipe 

flow by using the Colebrook equation [1]: 
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Since the Colebrook equation involves the friction factor f in both sides, it needs to be 

solved iteratively in order to determine f. Therefore, for type-2 and type-3 flow 

problems using the Colebrook equation to determine the friction factor would involve 

two nested iterations; an inside iteration to determine f and an outside iteration to 

determine the pipe’s diameter or flow rate. This situation also occurs in optimisation 

analyses that use the Colebrook equation.  

 

Chapter 4 illustrated the use of the NRM solver provided by Thermax by considering 

the Benedict-Webb-Rubin equation. The NRM solver can also be used to solve the 

Colebrook equation with type-2 and type-3 problems. For illustration, let us reconsider 

Example 5.1 and solve it by the using the Colebrook equation to determine f instead of 

the Swamee-Jain equation. As mentioned in Chapter 4, the NRM solver requires the 

intended nonlinear equation to be written as a separate user-defined VBA function. The 

needed VBA function for the Colebrook equation is listed below: 

 

 Function colebrook(x, e, Re) 

 ‘ Colebrook equation for the friction factor 

  colebrook = 1/Sqr(x) + (2/log(10))*Log(e /3.7 + 2.51/Re/Sqr(x)) 

 End Function 

 

Note that, unlike in an Excel formula, in VBA syntax the term “log” is used for the 

natural logarithm “ln”. Figure 5.18 shows the Excel sheet developed for solving 

Example 5.1 with the Colebrook equation.  

 

Figure 5.18. Excel sheet for Example 5.1 using the Colebrook equation 

 

The only difference between this sheet shown in Figure 5.2 is the content of the cell F9 

that calculates friction factor. As Figure 5.18 shows, the formula typed in this cell now 

reads:  

 

“=NRM (“colebrook”,0.004, ε_by_D, Re)”.  
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The first input to the NRM function, “colebrook”, refers to the function that contains 

the Colebrook equation while the second input, 0.004, is an initial guess for f. The last 

two arguments, ε_by_D and Re, respectively, are labels for the cells that hold values of 

the roughness-diameter ratio (ε/D) and the Reynolds number (Re) at which f is to be 

determined. Figure 5.18, which shows the calculations for a selected diameter of 0.1 m, 

shows that the value of the friction factor obtained by the Colebrook equation is 

0.018075. The diameter that keeps the losses below 20 m can be determined by using 

Goal Seek as in Example 5.1. Figure 5.18 also shows Goal Seek set-up for finding the 

value of D that makes the friction head loss equal to 20 m. As Figure 5.19 shows, the 

answer found by Goal Seek is D ≥ 0.27 m, which is the same answer obtained earlier in 

Example 5.1. 

 

 
Figure 5.19. Goal Seek solution for Example 5.1 using the Colebrook equation 

 

5.4. Closure 

This chapter dealt with thermofluid analyses that require iterative solutions and showed 

how Excel’s Goal Seek command and Solver can be used for solving typical problems 

from the areas of fluid dynamics, thermodynamics, and heat-transfer. The cases 

considered include a type-3 flow problem, expansion of an oxygen-nitrogen ideal-gas 

mixture in a closed system, and a convective heat-transfer analysis of a pipe heat-

exchanger. Because of its simplicity, Goal Seek should be the first option to consider 

for an iterative solution that involves a single parameter. Solver can be used to solve 

more difficult problems because it can handle multiple changeable cells and allows 

constraints to be applied to the iterative process. The chapter also showed how the 

Newton-Raphson solver provided by Thermax can be used to deal with the analyses 

that involve nonlinear equations such as the Colebrook equation.  
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Exercises 

1. Consider the problem in Example 5.1. Suppose that the only available pipe 

diameter is 20 m and we want to maintain the same maximum limit on the friction 

head loss of 20 m by reducing the water flow rate. Using the Excel sheet 

developed for this example, determine the water flow rate that gives the required 

result. Answer: 0.157 m3.  

2. Using the two Excel sheets developed for Example 5.2, determine the final 

temperature for air by the two methods when the amount of heat added is 50, 100, 

150, and 200 kJ. Also calculate the final temperature from Equation (5.4) by using 

a constant specific heat (cp) of 1.043 kJ/kg.K. Plot the values obtained for the final 

temperature (T2) with the amount of heat added by the three methods and comment 

on the result. 

3. A gas mixture consisting of O2 and CO2 with mole fractions 0.2 and 0.8, 

respectively, expands isentropically and at steady state through a nozzle from 700 

K, 500 kPa to an exit pressure of 100 kPa as shown in the figure. Determine the 

temperature at the nozzle exit, in K. 

 

 
Figure P5.3. Isentropic expansion in a nozzle 

 

This exercise is based on Example 12.4 in Moran and Shapiro [6]. Using the 

approximate constant-specific heat method, the exit temperature (T2) can be 

determined from: 

 

P1 = 500 kPa 

T1 = 700K 
P

2
 = 100 

kPa 

https://peer.asae.org/solution-of-complex-pipe-flow-problems-using-spreadsheets-in-an-introductory-fluid-mechanics-course
https://peer.asae.org/solution-of-complex-pipe-flow-problems-using-spreadsheets-in-an-introductory-fluid-mechanics-course
http://sie.scholasticahq.com/article/4657
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Where k is the ratio of the specific heats for the mixture. Using k = 1.304, the 

resulting exit temperature is 480.9K. Using the exact variable specific heat 

method, T2 is determined by requiring that the total entropy change is zero, i.e: 
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Where yO2 and yCO2 are the volume fractions of O2 and CO2, respectively, and RO2 

and RCO2 are the molar masses for O2 and CO2, respectively. The values of 
0

2Os  and 

0
2COs  can be determined by using the relevant function provided by Thermax. 

Equation (B), that requires an iterative solution, can be solved by using the Goal 

Seek command. Answer: T2 = 514.05K. 

4. Steam is be condensed at 30°C on the shell side of the multi-pass shell-and-tube 

heat exchanger shown in Figure P5.4. The condenser has 8-tube-passes with 50 

tubes in each pass. Its overall heat transfer coefficient is 1000 W/m2·°C. Cooling 

water (Cp = 4180 J/kg·°C) enters the tubes at 15°C at a rate of 55,000 kg/h. The 

tubes are thin-walled, and have a diameter of 1.5 cm and length of 2 m per pass. 

Develp and Excel shhet to determine the outlet temperature of the cooling water by 

using Goal Seek and the LMTD method instead of the ε-NTU method [7]. 

 

 
Figure P5.4. A multi-pass shell-and-tube heat exchanger 
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5. Reconsider the problem in Example 5.5. Show that an alternative solution of this 

problem that also takes into consideration the variation of specific heat for air with 

temperature can be obtained by using the ideal-gas property functions provided by 

Thermax instead of Equation (5.18). Show that this solution can be obtained by 

using the Goal Seek command instead or Solver and compare your solution with 

that given in Example 5.5. 

6. Consider the semi-infinite slab shown in the figure that is suddenly exposed to 

convection environment at T∞. The temperature (T) at a depth x from the surface at 

any time is given by [3]: 
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Where  and k are the diffusivity and thermal conductivity of the slap material, 

respectively, and: 

 

 2X    

Ti = initial temperature of solid 

T∞ = environmental temperature 

  = elapsed time in seconds 

 

 
Figure P5.6. Semi-infinite slab with convection heat-transfer 

  

Equation (A) requires an iterative procedure because the time (τ) appears in both 

terms on the right-hand side of the equation.  

 

A large slab of aluminium (k = 215 W/m.oC, 5104.8  m2/s) at a uniform 

temperature of 200oC is suddenly exposed to a convection-surface environment of 

70oC with a heat-transfer coefficient of 525 W/m2·oC. Calculate the time required 

for the temperature to reach 120oC at the depth of 4.0 cm for this circumstance.  

 

T∞ 

h T
1
 

x 
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This problem is based on Example 4-5 in Holman [3]. His answer is approximately 

3000 seconds. 

7. Water at 60oC enters a tube of 3-cm diameter at a mean flow velocity of 1.2 cm/s. 

If the tube is 3.0 m long and the wall temperature is constant at 80oC, what will be 

the exit water temperature?  

 

Use Goal Seek to perform the iterative solution of this problem. To determine the 

viscosity of water at any temperature, develop a user-defined function based on the 

data shown in Appendix B. This exercise is based on Example 5.2 in Holman [3].  

Answer: 73.0oC.  
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Optimisation analyses of thermofluid 

systems  



144          Mohamed M. El-Awad 

 

The cost of energy constitutes a major part of the total lifetime costs of thermofluid 

systems. Therefore, a compromise must be made between the lifetime savings in energy 

cost that result from improving the efficiency of these systems and the additional costs 

of such improvements. Optimisation analyses of thermofluid systems aim to determine 

the most desirable design or operating conditions for these systems. This chapter shows 

how the Excel-based platform described in this book can be used for optimisation 

analyses of thermofluid systems. Initially, the chapter highlights the advantages of the 

Excel-aided optimisation method over the traditional analytical method by considering 

a two-stage air-compression system. The optimisation method with Excel is then 

applied to selected thermofluid systems that involve single and multiple design 

variables. Finally, the chapter demonstrates the use of the Evolutionary method in 

thermofluid optimisation analyses by solving two examples previously solved by the 

GRG Nonlinear method and comparing the results and computer time. 

  

6.1.  Analytical vs. Excel-Aided optimisation of thermofluid systems 

The analytical optimisation process involves two main steps: (a) development of an 

objective function that can be used to analyse the system’s performance in terms of its 

design and operating parameters and (b) using calculus methods to find the values of 

these parameters that maximise or minimise the objective function. An important 

advantage of the Excel-based method that uses Solver in the second step is that the 

optimisation process can easily take into consideration any relevant constraints such as 

physical constraints (spatial or temporal), economical constraints, or safety constraints. 

To highlight the advantages of the Excel-aided optimisation method, let us use the two 

methods to determine the intermediate pressure between the two stages in the air-

compression system shown in Figure 1.1 that minimises the total compression work.  

 

6.1.1. The analytical optimisation method 

The development of the objective function in the analytical method that uses calculus 

techniques to determine the maximum or minimum value of the function usually 

requires simplifying assumptions to be made regarding properties of the materials and 

fluids involved in the system so that an analytical solution can be obtained. Chapter 1 

showed that the total compression work (wtotal) of the two-stage system is given by: 
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Where k is the ratio of the specific heat for air at constant pressure (cp) to that at 

constant volume (cv). Equation (6.1) is the objective function for optimisation and we 

are required to determine the intermediate pressure (Pi) that minimises the total 

compression work. Designating the pressure ratio in the first and second compressor 

stages by rp1 and rp2, respectively, and the ratio (k-1)/k by α, Equation (6.1) can be put 

in the following simpler form:   
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 
211 2 ppptotal rrTcw         (6.2) 

 

The pressure ratio in the second stage rp2 can be replaced by the total pressure ratio (rp) 

and the pressure ratio in the first stage (rp1) as follows:  
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Accordingly, Equations (6.3) can be written as: 
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The analytical solution to the optimisation problem is obtained by determining the 

intermediate pressure such that:  
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For convenience, let us replace rp1 in Equation (6.4) by x. Then, Equation (6.5) leads to: 
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After differentiation, we get: 

 

  0)(0 11     xrx p       (6.7) 

 

Dividing by α and rearranging:  

 
11    xrx p         (6.8) 

 

Multiplying both sides of the equation by x(α+1), we finally get: 

 


prx 2
,  or

prx          (6.9) 

 

Thus, the optimum intermediate pressure ratio is such that: 
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ppp rrr  21
        (6.10) 

 

This solution indicates that, in order to minimise the total compression work, the overall 

pressure ratio should be divided equally between the two compression stages. For 

example, consider a two-stage air compression system designed to receive air at 100 

kPa, 300K and discharge it at 900 kPa. Using Equation (6.10), the optimum pressure 

ratios rp1 and rp2 are such that: 

 

3921  pp rr   

 

The total compression work (w) can be determined from rom Equation (6.1). Taking cp 

for air as 1.005 kJ/kg.K and k as 1.4, gives: 

 

  











4.1

14.1

322300005.1totalw  = -222.35 kJ 

 

6.1.2. The Excel-aided optimisation method 

The analytical optimisation method described above required the following 

simplifications and idealisations in order to develop the objective function: 

  

1. Ideal isentropic compression processes in both stages  

2. Constant specific heat for air 

3. Perfect intercooling, i.e. T3 = T1 

4. Zero pressure losses in the intercooler, i.e. P3 = P2 

 

These simplifications and idealisations can undermine the accuracy of the results 

obtained. The following example demonstrates how the Excel-based platform enables a 

more realistic method for solving the optimisation problem by avoiding all the four 

simplifying assumptions mentioned above. 

 

Example 6.1. Excel-aided optimisation of a two-stage air compressor 

An air compressor with two stages of compression takes atmospheric air at 300K and 

100 kPa and delivers it at a final pressure of 900 kPa. The adiabatic efficiency of both 

stages of the compressor (ηc) is 85%. The intercooler that cools the air after the first 

stage causes a pressure drop of 5 kPa and has effectiveness (ε) of 85%. Determine the 

exit pressure of the first stage (Px) that minimises the total compression work.  

 

Unlike the analytical model, we don’t take the compression process to be ideal, but 

allow for the actual friction losses in the process by using ηc = 85%. We also allow for 

the imperfections of the intercooler by accounting for its pressure losses and heat-

transfer effectiveness. By using Thermax functions for ideal gases, we also don’t have 

to use the approximate method that assumes constant specific heats for air.  
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The analytical model 

Figure 6.1 shows the T-s diagram for the two-stage compression process in this 

example. Given the values of T1, P1, T3, and P4, the first step in the solution is to assume 

a value for the intermediate pressure (Px). Using the exact variable-specific-heat 

method, the relative pressure for air at state 1 (Pr1) is determined by using the relevant 

function provided by Thermax, which is GasPr_TK.  

 

 
Figure 6.1. T-s diagram for the two-stage air compressor with  

inter-stage intercooling 

 

The relative pressure at state 2s (Pr2s) can then be calculated from the following 

relationship [1]: 
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Having determined the value of Pr2s, the ideal isentropic temperature after the first 

compression stage T2s can be determined by using the add-in function GasTK_Pr. 

Enthalpy values at states 1and 2s can be calculated by using the Gash_TK function. 

Enthalpy at the actual temperature (T2) can now be determined as follows: 
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Where ηc is the adiabatic efficiency of the compressor. Therefore, the compression 

work in the first stage (wc1) is given by: 
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The temperature and pressure before the second compressor stage are given by: 
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 wiTTTT  223           (6.14) 

 

ICPPP  23          (6.15) 

 

The compression work in the second stage can also be calculated by using the exact 

method to determine the ideal exit temperature T4s and actual exit enthalpy h4: 
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  cs hhhh /3434 
        (6.17) 

 

342 hhwc 
         (6.18)

 

 

The total compression work (wtotal) is the summation of the work in the two stages: 

 

21 cctotal www  .         (6.19) 

 

The Excel model and solution 

Figure 6.2 shows the sheet prepared for solving this example. The sheet reveals the 

formulae entered in each cell in the calculations part, while the formula bar shows the 

formula that calculates the total compression work (W_c =w_c1+w_c2) in cell L2. Cell 

labelling has been used to clarify the formulae. Three Thermax functions are needed as 

shown in Table 6.1. Figure 6.2 shows the results of calculations at a “guessed” 

intermediate pressure of 200 kPa that gives a total compression work (W_c) of 277.85 

kJ. Figure 6.3 shows the total compression work obtained at various assumed values of 

the intermediate pressure (P_i).  

 

 
Figure 6.2. Excel sheet developed for Example 6.1 
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Table 6.1.Usage of Thermax functions in the Excel model 

# Function Usage 

1 GasPr_TK  Pr1, Pr3 

2 GasTK_Pr  T2 , T4 

3 Gash_TK 4321 ,,, hhhh  

 

 
Figure 6.3.Variation of the total compression work with the intermediate pressure 

 

Figure 6.3 indicates that the total work has a minimum value of about 310 kPa. The 

exact value of the intermediate pressure that minimises the total work can be 

determined by using Solver. Figure 6.4 shows Solver Parameters set-up that requires 

Solver to minimise the total compression work calculated in cell L2 by adjusting the 

value of the intermediate pressure (P_i). Figure 6.5 shows the solution found by Solver 

with this set-up using the GRG Nonlinear method.  

 

 
Figure 6.4. Solver Parameters set-up for Example 6.1 
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Figure 6.5. Solver solution for Example 6.1 

 

As shown in Figure 6.5, the solution found by solver is 316.88 kPa at which the total 

compression work is 270.75 kJ. These values of the optimum intermediate pressure and 

the corresponding compression work are higher than the corresponding values of 300 

kPa and 222.35 kJ given by the analytical method. 

 

This example demonstrates three advantages for the computer-aided optimisation over 

the analytical method. Firstly, the computer-aided method is easier to use because it is 

applied to the basic objective function without differentiation. Secondly, it leads to 

more realistic results because it can take into consideration the pressure and heat-

transfer losses in the compressors and the intercooler. Thirdly, accounting for the 

variation of the specific heat with temperature makes the computer-aided method more 

accurate than the analytical method that uses a constant specific heat. Optimisation 

analyses of thermofluid systems may also involve one or more of the following 

complications that make the analytical method practically impossible to apply:  

 

1. The model may involve discrete-valued variables, such as the cost of material 

or equipment, which are difficult to handle using analytical methods. 

2. The model may involve too many details that require the lengthy 

manipulations. This makes analytical optimisation both tedious and inaccurate. 

3. The analytical method cannot deal with complex systems that involve multiple 

parameters in the objective function. 

 

As the following sections illustrate, with these complications the computer-aided 

method becomes the only viable method for optimisation. 

 

6.2. Optimisation with a single design variable  

Although many optimisation analyses of thermofluid systems involve a single design 

parameter, such as the thickness of insulation or diameter of a pipeline, the nonlinearity 

of the equations involved or the variation of fluid properties with temperature and 

pressure make it practically impossible to solve the optimisation problem analytically. 

Four cases are considered in this section to illustrate how the Excel-based platform can 

be used to perform the optimisation analyses. All four optimisation analyses are 
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performed by using the GRG Nonlinear method of Solver and the default settings 

shown in Figures 3.17 and 3.18.a.  

 

6.2.1. Optimum thickness of insulation  

A thick layer of insulation maximises the resistance to heat-transfer and minimises the 

heat loss, but the cost of insulation also increases as its thickness is increased. 

Therefore, there is an optimum thickness beyond which adding more insulation 

becomes economically unprofitable. The following example, which is based on 

Example 6.1 in Eastop and Croft [2], illustrates the methodology of determining the 

optimum thickness insulation by using the Excel-aided optimisation method.  

 

Example 6.2. Optimum thickness of insulation 

A steel pipe carries wet steam from a gas-fired boiler through a small workshop to a 

process plant. It is proposed to insulate the pipe using glass fibre insulation with an 

aluminium alloy casing. The cost of insulation is given below. 

 

Thickness of insulation (δ) /mm 19 25 32 38 50 60 

Cost per metre length (Ci)/p 476 531 632 763 1007 1280 

 

Determine the most economic thickness of insulation based on the following data: 

 

Pipe outside diameter (D1) = 60.3 mm 

Heat transfer coefficient for outside surface of insulation (ho) = 10 W/m2.K 

Thermal conductivity of insulation (k) = 0.07 W/m.K 

Steam temperature (Ts) = 200oC 

Temperature of air in workshop (T∞) = 15oC 

Boiler efficiency (η) = 80% 

Price of gas (cg) = 0.3 p/MJ 

Operation time of plant (t) = 3000 h per annum 

Lifetime of insulation (N) = 5 years 

 

The analytical model 

Figure 6.6 shows a schematic of the system that consists of a pipe of external diameter 

D1 surrounded by an insulation material with a thickness δ = D2 - D1. The heat loss 

through the insulation per 1 meter length of the pipe is given by: 

 

th

s

R

TT
Q 
  W/m        (6.20)  

 

Where Rth is the total thermal resistance to heat transfer by conduction through the pipe 

and the insulation and by convection and radiation to the surrounding air. 
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Figure 6.6. Dimensions of the pipe and its insulation 

 

Neglecting the thermal resistance to heat transfer by conduction through the pipe and by 

radiation from the outer insulation surface, the total thermal resistance becomes that due 

to heat transfer by conduction through the insulation and by convection from the 

surface of insulation casing to the surrounding air, i.e.:  
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Where D2 is the outside diameter of the insulation given by: 

 

212  DD  (m)         (6.22)  

 

The total annualised cost (CT) is the summation of the annual heating cost and the 

annualised cost of insulation given by: 

 

hiT CCC           (6.23) 

 

Where Ci is the cost of insulation per meter length of the pipe and α is the amortisation 

rate, which can be approximated by the following relationship: 

 

N/1           (6.24) 

 

Where N is the lifetime of insulation or period after which capital cost is written off. 

The annual cost of heat lost to the surrounding (Ch) is given by: 

 

    /360010/ 6  tcQC gh  (p/m)     (6.25)  

 

Although the objective function for optimisation in this case, which is Equation (6.23), 

is a simple one, it is easier to handle the discrete data for the cost of insulation by using 

the computer-aided method of optimisation than by using the analytical method.  
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The Excel sheet 

Figure 6.7 shows the Excel sheet developed for this example in which the problem data 

are shown on the left side of the sheet (column B). The calculations start with a guessed 

insulation thickness (δ) equal to 25 mm. Based on this assumed thickness, the sheet 

determines the thermal resistances due to conduction (R_ins) and due to convection 

(R_con). From the total resistance (R_total = R_ins + R_con), the sheet calculates the 

rate of heat transfer (Q) according to Equation (6.20). From Q and δ, the sheet 

determines the annual cost of heat-loss (C_heat) and annualised cost of insulation 

(C_ins), respectively. Finally, the sheet determines the total annualised cost (C_total) 

for the given insulation thickness according to Equation (6.23).  

 

 Figure 6.7. Excel sheet for the optimisation of insulated pipe 

 

The rate of heat loss (Q) is calculated as 111.3 W, which results in an annual cost 

(C_total) of 450.9 p per metre length of the pipe. Adding the annualised cost of 

insulation of 107.9 p, the total cost becomes 558.8 p. To allow the sheet to determine 

the cost of insulation automatically for other values of δ, the following polynomial was 

obtained by using Excel trendline feature to curve-fit the price data given above: 

 
22329.03713.142.359  iC       (6.26) 

 

As shown in Figure 6.7, the above formula is entered in cell H3 that calculates the 

initial cost (ci_ins). Figure 6.8 shows the variation of the cost of the annualised 

insulation cost (C_ins), annual heat-loss (C_heat), and the total annualised cost 

(C_total) with the thickness of insulation (δ) as obtained by changing the insulation 

thickness from 0 to 60 mm. It can be seen from the figure that the total cost has a 

minimum value at an insulation thickness which is slightly greater than 40 mm. From a 

graph similar to that shown in Figure 6.8, Eastop and Croft selected 50-mm as the 

optimum thickness of insulation. The optimum insulation thickness can be determined 

more accurately by using Solver. Figure 6.9 shows the set-up for Solver Parameters 

dialog box to find the optimum value of δ (in the adjustable cell) by minimising the 

total annualised cost C_total (in the target cell). Based on the given data, two 

constraints have been added to limit the thickness of insulation within the range 19 ≤ δ 

≤ 60 mm. The solution determined by Solver is shown in Figure 6.10. 
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Figure 6.8. Insulation cost against the thickness δ 

 

 
Figure 6.9. Solver set-up for insulation optimisation 

 

 
Figure 6.10. Optimised solution for the insulation thickness 

 

Figure 6.10 shows that Solver determined the optimum thickness of insulation as 42.8 

mm. Since this thickness is not available in the given data, the nearest larger thickness 
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should be selected; which is 50-mm. The thicker insulation is selected so as to allow for 

any possible increase in fuel cost in the future. 

 

6.2.2. Optimisation of a single heat-exchanger  

Heat exchangers are used in many industrial and power generation plants and 

optimisation of both the design and operation of heat-exchangers is needed for 

satisfactory performance of these plants. This section shows how the total life-time cost 

of a single heat- exchanger can be optimised by using Excel and Solver. The example 

considered in this case is based on Example 9.6 in Janna [3]. 

 

Example 6.3. Optimum outlet temperature of the cooling water 

A shell and tube heat exchanger uses water as a cooling medium to dispose of 1000 kW 

of heat from a stream of hot water. The hot water enters the exchanger at 93.3oC and 

leaves at 37.8oC. The cooling water enters the exchanger at 26.7oC. Use the data given 

below to calculate the optimum cooling water outlet temperature: 

 

U = 613 W/m2.K 

F = 0.817 

cw = $1.32/m3 

co = $215/(m2 .yr) 

τ = 7800 hr/yr, 

 

Where U and F are the overall heat exchanger coefficient and correction factor in 

Equation (1.36), respectively, cw is the unit cost of producing the cooling water, and co 

is unit cost of operating the heat-exchanger. Take the density of cold water ( c ) and its 

specific heat (Cpc) as 994 kg/m3 and 4179 J/kg.K, respectively.  

 

The analytical model 

In this case, both the inlet and exit temperatures of the hot water are given as well as the 

inlet temperature of the cold water. The total rate of heat transfer in the heat exchanger  

( Q ) is also given. What is then required is to determine the optimum exit temperature 

and mass flow rate of the cold water that minimises the total cost. The total annual cost 

of the heat-exchangers (CT) consists of two parts: (i) the annual cost of cooling water 

(CAW) and (ii) the annual cost of operating the exchanger (CAO):  

 

AOAWT CCC           (6.27) 

 

The annual cost of the cooling water CAW is given by: 

 




wAW c
m

C


3600          (6.28) 
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Where cw is the cost of water per m3, τ is the total number of operation per year, and the 

mass flow rate of cooling water ( m ) is in kg/s. Taking the time-value of money in 

consideration, the annual cost of operating the exchanger is given by: 

 

oAO AcC            (6.29) 

 

Where co is the annual cost of operating the exchanger per m2 of its area.  

 

Both CAW and CAO depend on the cooling water exit temperature (To). Starting the 

iterative optimisation process by an assumed value of this temperature, the mass flow 

rate of the cold water ( cm ) can be obtained from the following equation: 

 

 cicopc TTCQm  /          (6.30) 

 

Where cp, Tci, and Tco are the specific heat and inlet and exit temperatures of the cold 

water, respectively. From Equation (D.4), the surface area (A) of the heat-exchanger is: 

 

lmTUFQA  /          (6.31) 

 

Where ∆Tlm is the log-mean temperature difference (LMTD) defined in Appendix D by 

Figure D.2 and Equation (D.3).  

 

The above analytical model indicates that, for a given rate of heat rejection to the 

cooling water, the water outlet temperature depends on the water flow rate and the area 

of the heat-exchanger. Increasing the water flow rate will increase the cost of cooling 

water, but reduce the heat-exchanger area and the resulting annual operation cost. The 

optimum water outlet temperature is that at which the total cost is minimal.  

 

Development of the Excel sheet 

Figure 6.11 shows the Excel sheet developed for this example. The left side of the sheet 

stores the given value for the rate of heat-transfer (Q), the heat exchanger data, the 

properties of the hot and cold water, and the water and operation costs involved in the 

analysis. The calculations part starts with an assumed exit temperature for the cold 

water (T_c2) which is given a value of 30oC. Based on this assumption, the sheet 

calculates the log-mean temperature difference (LMTD), the area of the heat-exchanger 

(A_HX), the mass flow rate of cold water (m_c), the volume flow rate of cold water 

(V_c), the annual water and operation costs (C_AW and C_HX), and the total annual 

cost (C_T). Figure 6.11 also reveals the formulae involved in the calculations by the 

side of their respective cells. Based on the assumed outlet temperature of the cold 

water, Figure 6.11 shows that the annual cost of water is $61,453.36, the annual cost of 

operating the exchanger is $14,317.57, and the resulting total annual cost is $75,770.93.   
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Figure 6.11. The Excel sheet developed for Example 6.3 

 

The sheet was used to calculate the heat-exchanger costs at different values of the 

cooling-water outlet temperature and the results are shown in Figure 6.12. The figure 

shows that, as the water temperature increases, the annual cost of water decreases but 

the annual cost of operating the exchanger increases. The total annual cost initially 

decreases as the water outlet temperature is increased but then increases. From the 

figure, it can be seen that the optimum water outlet temperature is in the range 45 to 

60oC. A more accurate estimation of the optimum cooling-water outlet temperature can 

be determined by using Solver. Figure 6.13 shows the required set-up in which two 

constraints have been imposed on the optimisation process to ensure a physically 

meaningful result.  Figure 6.14 shows sheet with the solution found by Solver. The 

figure shows that the optimum cooling-water outlet temperature is 53.27oC at which the 

total annual cost is $26,666.4. 

 

 
Figure 6.12. The variation of the total cost with the cooling water outlet temperature 
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Figure 6.13. Solver set-up for Example 6.3 

 

 
Figure 6.14. Solver solution for Example 6.3  

 

6.2.3. Optimisation of  two heat-exchangers in series 

Li and Priddy [4] presented a hot water generation system that consists of two heaters 

connected in series as shown in Figure 6.15. The incoming water enters at Twi and its 

temperature is raised to an intermediate temperature Tx as it flows through the first 

heater. The water is then heated in the second heater to the desired level Two. Two 

streams of saturated steam flow through the two heaters and heat the incoming water. 

The pressures of two streams are Pslp and Pshp for the first and second heaters, 

respectively. The corresponding saturation temperatures are Tslp and Tshp for the low-

pressure and high-pressure, respectively. The high-pressure steam costs more than the 

low-pressure steam. The high-pressure heater is also expected to cost more to purchase 

than the low-pressure heater. Therefore, the total cost, which is the summation of the 

initial cost and steam cost, depends on how the heat load is distributed between the two 

heaters. It is required to determine the optimal sizes of the two heaters that minimise the 

total annual relative cost of the system. 
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Figure 6.15. Schematic of the hot-water generation system  

(adapted from Li and Priddy [4]) 

 

The analytical model 

The cost of each heater is the sum of its annualised initial cost (Ci) and annual steam 

cost (Cs). For the system that consists of two heaters, the total cost (C) is given by: 

 

C = (Ci + Cs)hp + (Ci + Cs)lp       (6.32) 

 

Where Ci is the annual initial cost ($/year) and Cs is the annual steam cost ($/year) and 

the subscripts hp and lp refer to the high-pressure heater and the low-pressure heater, 

respectively. For a given heat exchanger, the steam cost is determined from the heat 

transfer rate in the heater, which is also the amount of heat transferred to the water. 

Using the notation shown in Figure 6.15, the rates of heat transfer in the two heaters can 

be expressed as: 

 

 wixplp TTCmQ           (6.33) 

 

 xwophp TTCmQ           (6.34) 

 

Where m is the water mass flow rate. The annual steam costs for both heaters are: 

 

., lplplps QaC           (6.35) 

 

., hphphps QaC          (6.36) 

 

Where a is the steam cost in $/kJ and τ is the operating hours per year. To determine the 

annual initial cost of the two heaters, we must calculate their heat-transfer surface areas. 

Water 

Low-pressure steam High-pressure steam 

LP heater HP heater 

Saturated liquid water 

Twi 

Ts,1p Ts,hp 

Tx Two 

Ts,h Ts,1 
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Using Equation (D.4) with F = 1, the surface of the low-pressure heater (Alp) is given 

by: 

 

 lplmlplplp TUQA ,/           (6.37) 

 

Where ΔTlm is the log-mean temperature difference which for the low-pressure heater is 

defined as: 

 

 2,1,

2,1,

,
/ln lplp

lplp

lplm
TT

TT
T






,
       (6.38) 

Where, 

 

 
xslplp TTT  1,

,
        (6.39) 

 
wislplp TTT  2,         (6.40) 

 

The relative cost of the low-pressure heater is simply the product of the heat transfer 

surface area (Aip) and the unit cost per square meter (blp). If we apply the annual fixed 

charge rate, the annual relative cost becomes:

  

., lplplpi AbC          (6.41) 

 

Where β is the annual fixed charge rate. Combining Equations (6.37) and (6.41) gives: 

 

 
2,1,

2,1,

,

/ln..

lplp

lplp

lp

lplp

lpi
TT

TT

U

Qb
C







      (6.42) 

 

Similarly, the annual relative cost for the high-pressure heater is given by: 

 

 
2,1,

2,1,

,

/ln..

hphp

hphp

hp

hphp

hpi
TT

TT

U

Qb
C







      (6.43) 

 

Where, 

 

 
woshphp TTT  1,

,
        (6.44) 

 
xshphp TTT  2,         (6.45) 
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Equation (6.32), which is the objective function for optimisation, requires lengthy 

calculations in order to determine the initial costs and the steam costs for both heaters. 

Since the total cost depends on the intermediate temperature Tx, trying to obtain the 

optimum value of Tx by the analytical method is bound to be a tedious and most likely 

inaccurate procedure. The following numerical example illustrates the application of the 

computer-aided method of optimisation with Excel and Solver. 

 

Example 6.4. Design analysis of a hot water generation system 

It is required to determine the optimum intermediate temperature and pressure for the 

two-stage hot water generation system shown in Figure 6.15 based on the following 

data: 

 

 Low-pressure 

heater 

High-pressure 

heater 

Steam pressure [kPa] 350 550 

Steam cost [$/106 kJ] 5.7 5.72 

Heater surface cost [$/m2] 108.7 109.8 

 

Water flow rate ( m )   180,000 kg/hr 

Water inlet temperature (Twi)  65oC 

Water outlet temperature (Two)  150oC 

Overall heat transfer coefficient (U)  10220.667 kJ/hr-m2-oC 

Annual fixed charge rate (β)   20% 

Operation hours (τ)    2000 h/yr 

 

Excel implementation 

Figure 6.16 shows the Excel sheet developed for this case. The top-left part of the sheet 

shows the data provided above. The bottom-right part of the sheet shows calculations of 

the steam and relative initial cost for the two heaters and their total for each heater. The 

figure shows the calculations and total relative cost of the system at the top right-hand 

side of the sheet for an intermediate temperature Tx = 125oC. We can determine the 

optimal sizes of the two heaters by varying the intermediate temperature Tx and finding 

the value at which the annual relative cost is minimal. Table 6.2 shows the heat load 

distributions and surface areas of the two heaters for Tx in the range 65-135oC. It is seen 

from the table that the heat load supported by the low-pressure heater increases as the 

intermediate temperature Tx increases. Because of its large temperature differences, 

however, the high-pressure heater always has the advantage over the low pressure 

heater in terms of heat transfer surface area required. For instance, at Tx = 65oC, i.e. 

when the heat load is solely supported by the high-pressure heater, the heater surface 

area is approximately 207.41 m2. At Tx = 135oC, i.e. when supported mostly by the low-

pressure, the total surface area becomes 217.95+97.51 = 315.46 m2.  
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Figure 6.16. Excel sheet for Example 6.4 

 

Table 6.2. Heat load distributions and heater sizes 

Tx [oC] 
Heat load Q [kW] Heater surface area [m2] 

LP HP LP HP 

65 0 17850 0 207.41 

75 2100 15750 10.76 198.74 

85 4200 13650 23.35 188.93 

95 6300 11550 38.54 177.61 

105 8400 9450 57.67 164.24 

115 10500 7350 83.54 147.91 

125 12600 5250 123.67 126.93 

135 14700 3150 217.95 97.51 

 

Figure 6.17 shows the variation with Tx of the combined initial cost (C_initial), the 

combined steam cost (C_steam), and the total combined cost (C_total). The figure 

shows that the minimum combined initial cost is obtained at Tx = 65oC, while the 

minimum combined steam cost is obtained at Tx =135oC. If only the initial cost is 

considered, then a single high-pressure heater would be preferred for the hot water 

production. On the other hand, if only steam cost is considered, then only a single low-

pressure heater is to be selected. However, the variation of the total relative cost with Tx 

indicates that the minimum total cost occurs at an intermediate temperature which is 

around 115oC. At this temperature, the figures in Table 6.2 indicate that the high-

pressure heater will take one-third of the total heat load while the low-pressure heater 

will supply the remaining two-thirds. To precisely determine the optimum value of Tx, 

we can use Solver. Figure 6.18 shows the prepared Solver Parameters dialog box for the 

determination of the temperature Tx that minimises the total cost. Two constraints have 

been inserted which are: 
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Figure 6.17. Variation of the systems costs with the intermediate temperature Tx 

 

 
Figure 6.18. Solver parameters dialog box for determining the optimum intermediate 

temperature for two heat-exchangers in series 

 

lsx TT ,  

inwx TT ,  

 

Pressing the Solve button at the bottom of the dialog box will trigger Solver to iterate 

and search for the value of Tx that makes the total cost assume its minimum value. 

Figure 6.19 shows the solution found by Solver, which is Tx=116.5oC. At the optimum 

temperature, the surface area of the LP heater is 88.428 m2 while that of the HP heater 

is 145.07 m2. The relative cost of the LP heater is 446,004.8$ and that of the HP heater 

is 292,679.7$, giving a total relative cost of 738,684.4$. This result shows that steam 

cost is an important variable in the optimisation of the hot-water production system. 

When the steam cost for low-pressure heater is substantially lower than that for high-
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pressure heater, it will definitely favour the use of a low-pressure heater. This is 

particularly true when the hot water system is operated on a continuous basis. 

 

 
 

Figure 6.19. Solver solution for Example 6.4 

 

6.2.4. Optimisation of a rectangular fin 

Fins are added to heat-transfer surfaces so as to increase the rate of heat transfer from 

these surfaces by forced convection. A good example of the application of fins is in car 

radiators which cool the engine’s cooling water. Since the addition of fins increases the 

weight of the radiator, the improvement in heat-transfer achieved by adding the fins 

must be weighed against the additional cost and weight that they cause. In the following 

example, adapted from Bejan et al [2], it is required to optimise the geometry of a 

straight rectangular fin for the maximum possible heat-transfer rate. The example 

illustrates how Solver can be obtaind to determine the optimum geometry for the fin. 

 

Example 6.5. Optimisation of a rectangular fin 

An electronic package includes several parallel straight rectangular (plate) fins such as 

the one shown in Figure 6.20. The width of each fin W = 2.2 cm and the fins are swept 

by forced air with U∞= 1.75 m/s and T∞=20oC. The fin material is aluminium. Weight 

limitations on the overall package permit the use of only 1 g aluminium for each fin. 

Determine the plate fin thickness (t) and length (L) that maximise the heat transfer rate 

extracted per fin and the corresponding heat transfer rate from the fin per degree of the 

temperature difference at the base (Tb-T∞).  

 

Analytical model 

The rate of heat transfer from a fin ( finQ ) is given by Equation (6.9). Using the notation 

of Figure 6.20, the area and efficiency of the straight rectangular fin can be obtained 

from [1]: 
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Figure 6.20. A straight rectangular fin 

 

cfin wLA 2         (6.46) 

 

2/tLLc          (6.46) 

 

For a rectangular fin the fin efficiency is given by: 

 

c

c
fin

mL

mL )tanh(
        (6.48) 

 

The constamt m in Equation (6.13) is defined as: 

 

kthm /2         (6.49) 

 

Where, k is the thermal conductivity of the fin’s material. The coefficient of heat 

transfer h is depends on the type of air-flow over the fin, which is established by 

calculating the Reynolds number (  /Re LU ). For a laminar flow, h is calculated 

from [1]: 

 

3/12/1 PrRe6640
w

k
.h air        (6.50) 

 

Where, kair and Pr are the thermal conductivity and Prandtl number of air, respectively. 

For a turbulent flow…  

 

Excel implementation 

Figure 6.21 shows the Excel sheet prepared for the solution of this case problem. The 

given data are entered on the left-side column of the sheet. The sheet then calculates the 
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Reynolds number (Re), heat-transfer coefficient (h) and volume of the fin (Vol). In the 

present case, the mass of the fin is not to exceed 1 g of aluminium. The thickness of the 

fin is initially assumed and given the value of t=0.0002 m. The length of the fin is then 

calculated from: 

 

wtwt

V
L

al

001.0
         (6.51) 

 

Where, ρal is the mass density of aluminium. Accordingly, the fin efficiency and heat-

transfer from the fin are determined from Equations (6.12.c) and (6.10), respectively. 

As shown in Figure 6.21, the resulting rate of heat transfer is 0.037 W.Solver can now 

be used to find the combination of t and L that gives the maximum possible rate of heat 

transfer from the fin. Figure 6.22 shows the setting up of the dialog box for the 

determination of the thickness that maximises the rate of heat transfer from the fin.  

 

Figure 6.21. Excel sheet for example 6.5 

 

 
Figure 6.22. Solver parameters dialog box for Example 6.5 



Computer-Aided Thermofluid Analyses Using Excel                                                167            

 

No constraints have been inserted for this case. Pressing the Solve button at the bottom 

of the dialog box will trigger Solver to iterate and search for the value of t that 

maximise the fin’s heat transfer rate, which in this case is t=0.00036 m or 0.36 mm 

(Figure 6.23). The corresponding length is 0.046 m or 4.6 cm and the resulting heat 

transfer rate is 0.044 W. 

 

Figure 6.23. Solver solution to Example 6.5 

 

6.3. Multi-variable optimisation 

All the cases considered so far involved a single variable for optimisation, e.g., the 

intermediate pressure (Px) in Example 6.1, the thickness of insulation in Example 6.2, 

and the optimum cold-water outlet temperature (Tco) in Example 6.3. This section 

demonstrates the capability of the Excel-Solver combination to perform multi-variable 

optimisation of thermofluid systems which is the ultimate application of computer-

based methods in thermofluid analyses. The objective of optimisation for the two cases 

to be considered is to minimise the total lifetime cost of the system, which achieved by 

using the GRG Nonlinear method of Solver. 

 

6.3.1. Optimisation of the cooling tower for a power plant  

Steam-turbine power generation plants that consume large amounts of fuel energy have 

to reject significant fractions of that energy to the atmosphere because of the second 

law of thermodynamics. The waste heat is usually released to a near-by river or lake or 

rejected directly into the atmospheric air by means of a cooling tower. Depending on 

the space and fund available for the installation, the cooling tower can be of the forced 

or natural types. Since the cost of the cooling system constitutes a major fraction of the 

total installation cost, the optimisation of its components is important for the economic 

feasibility of the whole plant. Example 6.3 considered earlier dealt with the 

optimisation of the heat-exchanger that transfers the rejected heat from the power plant 

condenser to the cooling water. The following example focuses on the cooling tower 

and illustrates the use of Excel for its optimisation. The example is based on Problem 

11.7 given by Stoecker [5]. 
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Example 6.6. Optimisation of the cooling tower for a power plant  

A cooling-tower is to be used for removing 14 MW of heat rejected by the condenser of 

a steam-turbine power plant as shown in Figure 6.24. The total lifetime cost of the 

system consists of three parts: (a) the first cost of cooling tower (C1), (b) the lifetime 

cost of pumping power (C2) and (c) the lifetime penalty in power production due to 

elevation of temperature of cooling water (C3). 

 
Figure 6.24. Schematic for the cooling system in Example 6.6 

 

The three components of the total cost are estimated by the following formulae: 

 
6.0

1 800 AC            (6.52) 

 
3

2 0005.0 mC            (6.53) 

 

cTC 2703            (6.54) 

 

Where A is the cooling-tower area in m2, m  is the flow rate of cooling water in kg/s, 

and Tc is the temperature of water entering the condenser in oC. The rate of heat 

rejection (QR) is also known to be related to the three factors by the following empirical 

formula: 

 

cR ATmQ 2.17.3   = 14x106W        (6.55) 

 

It is required to determine the values of the three design variables A, m , and Tc, that 

minimise the total cost of the cooling system (CT) given by: 

 

321 CCCCT           (6.56)  
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Solution 

The objective function for optimisation in this case is Equation (6.56). Although three 

variables are involved in the optimisation process, which are A, m , and Tc, Equation 

(6.55) can be used to reduce the number to two variables only, e,g. A and m . Figure 

6.25 shows the Excel sheet developed for this example. The only data in this problem is 

the rate of heat rejection (Qcooling) which is assigned the given value of 14 MW. The 

intermediate calculations start with initially assumed values for the water flow rate 

(m_w=500 kg/s) and the area of the cooling tower (A=150 m2). Based on these assumed 

values, Equation (6.55) is used to calculate the cooling-water temperature (T_cw) and 

then the three costs given by Equations (6.52) - (6.54). Figure 6.25 reveals the formulae 

used in these calculations. As Figure 6.25 shows, the cooling-water turned out to be 

about 14.56oC and the resulting total lifetime cost (C_T) is $82,601.68. The values of 

m_w and A that minimise the total cost C_T can be found by using Solver and Figure 

6.26 shows the required set-up for Solver Parameters dialog box. 

 

 
Figure 6.25. The Excel sheet for Example 6.6 

 

 
Figure 6.26. Set-up of Solver Parameters dialog box for Example 6.6 
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The set-up in Figure 6.26 requires Solver to minimise the total cost (C_T) by adjusting 

the values of the two parameters, m_w and A. Although no constraints have been 

specified, a better practice would be to apply reasonable upper and lower limits on the 

two optimisation variables. The solution found by Solver is shown in Figure 6.27. As 

the figure shows, the optimum mass flow rate for the cooling water is 202.52 kg/s and 

the optimum area of the cooling tower is 167.95 m2. The value obtained for the water 

mass flow rate agrees well with that given by Stoecker [5], which is 202.6 kg/s. 

Stoecker [5] did not give the optimum value for the heat-exchanger area. 

 

 
Figure 6.27. Solution of Example 6.6 obtained with Solver 

 

6.3.2. Optimisation of an air-conditioning duct 

The second example for multi-variable optimisation with Excel-Solver is that of an 

insulated air-conditioning duct for which the objective function for optimisation 

involves both the diameter (D) and thickness of insulation (δ). In this case, we wish to 

install the largest possible duct diameter so as to reduce the friction loss, but this would 

adversely increase the heat loss from the duct because of the larger surface area. Since 

the duct is insulated and the economical thickness of insulation also depends on the 

duct's diameter, the optimisation process for determining the minimum total cost 

involves two parameters, D and δ. Moreover, the duct has two sections with different 

diameters and, therefore, the process involves four parameters; D1, δ1, D2 and δ2. In this 

case, the computer-aided optimisation method is the only viable method to be used.  

 

Example 6.7. Optimisation of an air-conditioning duct 

Conditioned air enters the 30-m air-handling duct shown in Figure 6.28 at P1 = 100 kPa 

and T1 =80oC. The flow rate at the entrance is Q1 = 0.7 m3/s, part of which (Q3=0.3 

m3/s) is discharged at a point 16 m downstream of the duct entrance. The remaining 

part (Q2 = 0.4 m3/s) is discharged at the end. Ambient temperature (T∞2) is 15oC and the 

outside heat-transfer coefficient h2 is 30 W/m2.oC. The air duct is to be assembled from 

1-m-long prefabricated units made of 3-mm galvanized sheet metal and, to minimise 

heat losses to the surroundings, it is decided to insulate the duct with fiberglass.  
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Figure 6.28. The uninsulated air-conditioning duct  

 

It is required to determine the diameters of the two duct sections (D1 and D2) and the 

thicknesses of insulation (δ1 and δ2) that minimise the total owning cost based on the 

data provided below. 

 

Duct data: 

Thermal conductivity (kd) = 18 W/m.oC  

Duct roughness (ε) = 0.045mm 

Cost of 1-m unit (cd) is as shown in Table 6.3. 

 

Table 6.3. Unit cost of the duct body [6] 

Diameter (Di) in m 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

Cost per 1 m length ($) 9 11.5 14.5 17 22.5 29 34 40 50 

 

Insulation (Fiberglas) data: 

Thermal conductivity (ks) = 0.04 W/m.oC 

Insulation cost (cs1): 30 $/m2 per cm of insulation 

Labour cost (cs2): 10 $/m2 (irrespective of thickness) 

 

Operation data: 

365 days per year 24 hours per day 

 

Energy costs: 

Cost of electricity (cE): 0.12 $/kWh 

Cost of fuel (cF): 0.5 $/therm (1 therm = 105500 kJ) 

Capital recovery factor (i) = 0.15 

 

The idea of this example stemmed from a case given by Janna [3] which could be 

solved analytically. The addition of insulation to the duct in the present example makes 

the optimisation process involves four parameters instead of two as in the case 

considered by Janna [3] and, therefore, the example is difficult to solve analytically. 
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The analytical model 

The total annual cost of the insulated air-duct (CTotal) consists of three components as 

expressed by: 

 

FEITotal CCiCC   ($)      (6.57) 

 

Where: 

 

CI  = initial cost of the duct itself plus the cost of insulation 

i = capital recovery factor  

CE = cost of electricity consumed by the fan in order to overcome friction in the 

duct 

CF = cost of fuel needed to make-up for the heat loss to the surrounding air 

 

How the three components of the total cost are evaluated is explained below. 

 

a) Initial cost 

The initial cost (CI) has two parts: (1) the cost of the duct itself (Cduct) and (2) the cost 

of insulation (Cins). The two parts are given by: 

 

Cduct =     22,211,1 LcDLcD dd        (6.58) 

 

Cins =           222111222111 ss cLDLDcLDLD     (6.59) 

 

Where: 

 

dc  = cost of 1-m duct unit which depends on the diameter ($/m) 

1  = thickness of insulation in the first section of the duct (m) 

2  = thickness of insulation in the second section of the duct (m) 

1,sc  = cost of insulation per m2 that varies with insulation thickness ($/m2.cm) 

2,sc  = cost of labour per m2 that depends on insulated surface area only ($/m2) 

 

b) Annual cost of electricity: 

 

)./($)()( hrkWchrtimekWWC EfanE    ($)    (6.60) 

 

Where fanW is the power consumed by the air-circulation fan and cE is the electricity 

tariff in $/kW.hr. The power of the circulation fan depends on the friction head losses 

(hf) in both sections of the duct which are given by the Darcy-Weisbach equation, 

Equation (1.21). The friction factor ( f ) in each section of the duct, which depends on 
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the Reynolds number in the section, is obtained from the Swamee-Jain equation 

(Equation 1.25). The total power consumed by the air-circulation fan ( fanW ) is then 

determined as follows: 

 

 
1000

22,11, QhQhg
W

ffair

fan





  (kW)      (6.61) 

 

c) Annual cost of fuel: 

 

F

Total

F c
hrtWQ

C 





1055001000

][][

 ($)      (6.62) 

 

Where cF is the cost of fuel in $/therm and t is the total number of operation hours in a 

year. The total heat loss ( TotalQ ) is the sum of the heat loss in both sections, i.e. TotalQ = 

1Q + 2Q , where the heat loss ( Q ) in each section is calculated according to the formula: 

 

  thRTTQ /21    (W)       (6.63) 

 

Where T∞1 and T∞2 are the inside and outside air temperatures and Rth is the total 

thermal resistance of the series resistances shown in Figure 6.29.  

 

 
Figure 6.29. Total thermal resistance of the insulated duct 

 

The total thermal resistance (Rth) is given by: 
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Where r1, r2 and r3 are the radii shown in Figure 6.29. Note that the value of the outside 

heat-transfer coefficient (h2) is constant, but the inside heat-transfer coefficient (h1), 

which depends on the air velocity, changes with the inside diameter of the duct and 

therefore, has to be determined from the Nusselt number (Nu). For fully developed 

turbulent flow in tubes, the Nusselt number is calculated from the Dittus–Boelter 

equation, Equation (1.31), with n = 0.3 [7]: 

 
3.08.0 PrRe023.0 iNu          (6.65) 

 

Where Re and Pr are the Reynolds and Prandtl number, respectively. 

 

Nu
D

k
h air

1

1   (W/m2.oC)       (6.66) 

 

Excel sheet 

Figure 6.30 shows the Excel sheet developed for this example. The problem data are 

shown in the two columns at the left side of the sheet. The calculations part has two 

columns for the two sections of the duct. The calculations stat by guessed values for the 

two diameters (D_1 and D_2) and two insulation thicknesses (δ_1 and δ_2) in both 

sections of the duct. The results part determines the total friction loss (hf_total), the fan 

power (Power), and the different costs involved. The formula bar shows how the annual 

cost of electricity is determined. The sheet determines the total annual cost (C_total) for 

the guessed values of D_1=0.3m, D_2=0.2m, δ_1=0.1m and δ_2=0.1m.  

 

 
Figure 6.30. Excel sheet developed for Example 6.7 
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To allow Excel to automatically calculate the cost of duct unit (cd) when the two duct 

diameters are changed, the following equation for cd was obtained by using Excel’s 

trendline feature from the data shown in Table 6.3:  

 
291.1697814.16881.7 DDcd        (6.67) 

 

Solver can now be used to find the optimum values of D_1, D_2, δ_1 and δ_2. As 

shown in Figure 6.31, the set-up box for Solver requires it to minimise the total cost 

(C_total), which is the target cell, by changing the values of the two diameters (D_1 and 

D_2) and the two insulation thicknesses (δ_1 and δ_2), which are the adjustable cells. 

Figure 6.32 shows the Excel sheet with the solution found by Solver. The optimised 

dimensions found by Solver are shown in Table 6.4 which also shows the different cost 

involved. The nearest dimeters are D_1=0.4 m and D_2=0.3 m. Both insulation 

thicknesses are ≈ 0.3 m. The total annual cost sums up to 479.7 $. 

 

 
Figure 6.31. Solver set-up for Example 6.7 

 

As a rule-of-thump, air-conditioning engineers frequently determine the duct areas from 

the ratio of flow rates. Accordingly, the duct diameters D1 and D2 are related as follows: 

 

1132 / DQQD          (6.68) 

 

Equation (6.68) allows us to solve the optimisation problem with only three variables, 

which are D1, δ1 and δ2. The solution determined by Solver with D1, δ1 and δ2 as 

adjustable cells is also shown in Table 6.4. Comparison with the solution obtained 

without Equation (6.68) indicates that the rule-of-thump leads to a larger D1 and a 

smaller D2. Although the insulation thicknesses on the two section are only marginally 

affected, the figures in the table show that the total cost (486.2$) has increased due to 

increases in the initial cost of the duct (132.1$)  as well as the annual cost of electricity 
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(186.4$). By suitably adjusting the given data, the Excel sheet can be used to study the 

effects of electricity cost, fuel cost, or capital recovery factor on the opimised solution. 

 

 
Figure 6.32. Solver solution for Example 6.7 

 

Table 6.4. Solver solution for the insulated duct 

 

Optimised values 

determined by Solver 

without Equation (6.68) 

Optimised values 

determined by Solver 

with Equation (6.68) 

D1(m) 0.4142 0.4525 

D2(m) 0.2951 0.2586 

1 (m) 0.2970 0.2953 

2 (m) 0.3023 0.3056 

Cduct($) 128.5113 132.1191 

Cins($) 95.7092 95.2828 

CE ($) 182.7827 186.4329 

CF ($) 72.6776 72.3330 

CTotal($) 479.6808 486.1678 

 

6.4. Optimisation with the Evolutionary method 

As demonstrated in Chapter 3, the Evolutionary method has an important advantage 

over the GRG Nonlinear method which is the ability to find the global optimal point. 

Although this advantage is particularly important in economic optimisation analyses, 

the method has not been used in the previous sections because of its longer computation 

time compared the GRG Nonlinear method. For the purpose of illustration, two 

examples previously solved by the GRG Nonlinear method were solved by the 
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Evolutionary method. The two examples are Example 6.3 that involved a single 

optimisation variable and Example 6.7 that involved four optimisation variables. The 

same sheets developed for these two examples were used to perform the optimisation 

analyses by changing the solution method from “GRG Nonlinear” to “Evolutionary”. 

Figure 6.33 shows the solution obtained with the Evolutionary method for Example 6.3, 

while Figure 6.34 shows the method’s solution of Example 6.7.  

 

 
Figure 6.33. Solver solution for Example 6.3 with the Evolutionary method 

 

 
Figure 6.34. Solver solution for Example 6.7 with the Evolutionary method 

 

Both solutions were obtained with the default set-up shown in Figure 3.17 and Figure 

3.18.b. As Figures 7.29 and 7.30 show, the two solutions are identical to those obtained 

earlier with the GRG Nonlinear method shown in Figures 7.14 and 7.35, respectively. 

With the default options of the Evolutionary method shown in Figure 3.18.b, Solver 

took more than 100 seconds to solve Example 6.3 which required less than one second 
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with the GRG Nonlinear method. Example 6.7 required more than 110 seconds with the 

Evolutionary method. As mentioned in Chapter 3, the computational time of the 

Evolutionary method can be reduced by adjusting the default set-up for the method 

shown in Figure 3.18.b to reduce the population size from 100 to 10. With this 

adjustment, the Evolutionary method took about one second to solve Example 6.3, but 

took about 24 seconds to solve Example 6.7 that involved four parameters.  

 

6.5. Closure 

This chapter showed how the Excel-based platform can be utilised for optimisation 

analyses of thermofluid systems. The chapter initially highlighted the limitations of 

traditional optimisation methods that apply calculus techniques and the advantages of 

the computer-aided optimisation method. Four examples were then considered that 

dealt with optimisation analyses involving a single design parameter, but the computer-

aided optimisation method was indispensable because the mathematical model either 

involved lengthy calculations, nonlinear equations, or discrete-valued variables. The 

advantage of the computer-aided optimisation method becomes more appreciable when 

the optimisation process involves multiple parameters. In this respect, the chapter 

showed how Solver can be used to handle optimisation analyses of insulating an air-

conditioning duct consisting of two sections with different diameters. Finally, the 

chapter considered using the Evolutionary method instead of the GRG Nonlinear 

method. It was shown that the computer time of the Evolutionary method can be 

reduced by suitable adjustment to the default values of its options. 
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Exercises 

1. Using the analytical optimisation procedure, show that the compression ratios that 

minimise the total work input for in a multi-stage compression systems with n 

compression stages and a maximum compression ratio rp,max are given by: 

 

n
pnpnppp rrrrr max,,1,21 ....     

https://www.theductshop.com/shop/catalog-galvanized-sheet-metal-duct-c-1_3.html
https://www.theductshop.com/shop/catalog-galvanized-sheet-metal-duct-c-1_3.html
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2. An air compressor with three stages of compression takes atmospheric air at 300K 

and 100 kPa and delivers it at a final pressure of 900 kPa. The adiabatic efficiency 

of the three compressors (ηc) is 85%. Each one of the intercoolers that cool the air 

after the first and second stages causes a pressure drop of 5 kPa and has 

effectiveness (ε) of 85%. By suitably extending the Excel sheet developed for 

Example 6.1, determine the exit pressures of the first and second stages, Px and Py, 

respectively, that minimise the total compression work.  

3. Air, initially at a pressure of 175 kPa and a temperature of 50oC, is to be 

compressed to a final pressure of 17,500 kPa by means of a two-stage compression 

system that consists of a centrifugal compressor in series with a reciprocating 

compressor as shown in Figure P6.3.  

 
Figure P6.3. The air compression system with centrifugal and reciprocating 

compressors in series 

 

The advantage of this arrangement is that centrifugal compressors can handle high-

volume flow rates but develop only low pressure ratios while reciprocating 

compressors are suited to low-volume flow rates but can develop high pressure 

ratios. The initial flow rate of air is 15 m3/s and its temperature after the intercooler 

can be taken as the same as the inlet temperature of 50oC. 

 

The first costs of the centrifugal and reciprocating compressors can be represented 

by the following formulae: 
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Where Cc and Cr are the first costs of the centrifugal and reciprocating 

compressors, respectively, and Q0 and Q1 are the corresponding volume flow rates.  

 

(a) Treating air as a perfect gas, develop the relevant analytical model and 

objective function for optimisation in terms of the pressures and flow rates 

appearing in Equations (A) and (B).  

(b) Use Solver to determine the optimum intermediate pressures and the 

corresponding total initial cost of the system.  

 

This exercise is based on Problem 8.5 in Stoecker [5], p 178, Answer: minimum 

cost = $24,100 

4. A gas turbine operates on a regenerative Brayton cycle with air entering the 

compressor at 100 kPa, 300 K. As shown in Figure P6.4, the hot exhaust gas is 

used to preheat the compressed air before the combustion chamber. The 

combustion gases leave the combustion chamber (CC) at 1400 K. Take the 

regenerator effectiveness as 80% and the isentropic efficiency of both compressor 

and turbine as 75%. Pressure losses can be neglected. 

 

 
Figure P6.4. The regenerative gas-turbine system 

 

(a) Treating the working fluid (air) as an ideal gas and using the exact method of 

analysis and the functions provided Thermax for ideal gases, develop a model 

that determines the thermal efficiency of the regenerative gas-turbine cycle.  

(b) By varying the pressure ratio from 2 to 16, study the effect of pressure ratio on 

the thermal efficiency of the plant.  

(c) Use Solver to determine the pressure ratio that maximizes thermal efficiency. 

 

5. Consider the steam power plant that operates with one closed feedwater heater as 

shown in Figure P6.5. Steam enters the high-pressure turbine at 15 MPa and 600°C 

where it expands to a pressure of 700 kPa after which it is returned to the steam 

generator house for reheating to a temperature of 550oC. The steam then expands 
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in the low-pressure turbine and then condensed in the condenser at a pressure of 10 

kPa. A fraction y of the steam leaves the low-pressure turbine at an intermediate 

pressure Pi which is passed to the closed feedwater heater.  

 

 
Figure P6.5. Schematic diagram of a steam-turbine power plant with superheating 

and reheating 

 

Using reasonable upper and lower limits on the value of Pi, develop an Excel-

Thermax sheet to determine the value of Pi that maximises the thermal efficiency 

of the cycle and determine the corresponding fraction y of steam extracted from the 

turbine. 

6. Two identical pumps operate in parallel as shown in Figure P6.6 to deliver a total 

of 0.01 m3/s of water at 15oC. The head losses hL1, hL2 in the lines depend upon 

volumetric flow rates Q1, Q2 according to the following formulae: 

 
2
1

7
1 101.2 QhL   kPa       (A) 

 
2
2

7
2 106.3 QhL   kPa       (B) 

 

Where Q1 and Q2 are the respective flow rates in cubic meters per second. 

 

(a) Develop the mathematical model for determining the flow rates delivered by 

the two pumps that minimize the total pumping power.  

(b) Develop the Excel sheet with appropriate water properties and use Solver to 

determine the optimum values for the pumps flows.  
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Figure P6.6. Water delivery system with two pumps in parallel 

 

This exercise is based on Problem 8.3 in Stoecker [5], p. 177. Answer: Q1=0.00567 

m3/s, Q2=0.00433 m3/s. 

 

Hint: 

 

  1000/2211 LLP hQhQgW    kW      (C) 

 

7. Figure P6.7 shows a circular air duct system is to be design based on the following 

data: 

 

Q1 = 2.4 m3/s, Q2 = 0.6 m3/s, Q3 = 1.0 m3/s, Q4 = 0.8 m3/s, 

Quantity of sheet metal available for the system, 60 m2. 

Use a constant friction factor f = 0.02 

Air density ρ, 1.2 kg/m3 

 
Figure P6.7. The air duct system 

 

It is required to determine the values of the three diameters D1, D2 and D3 that 

minimize the drop in static pressure between points A and B. 

 

(a) Set up the objective function and constraints in terms of D1, D2 and D3. 

(b) Using Excel and Solver, determine the optimal diameters and the minimum 

total head loss. 
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Neglect the influence of changes in velocity pressure 

Neglect the pressure drop in the straight section past an outlet 

 

This exercise is based on Problem 8.9 in Stoecker [5], p 182. Answer: D1,= 0.468 

m D2 = 0.426m and D3.= 0.325 m. hf = 17.203 m.  

 

  


